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Introduction 15	

 16	

Smith and Bailey (2017) (henceforth SB17) criticize methods employed in our recent study of a 17	

highly cyclic calcium (Ca) series measured through the Early Jurassic, Pliensbachian-age, marine 18	

succession of the Llanbedr (Mochras Farm) core, referred to as Mochras (Ruhl et al., 2016, 19	

henceforth R16). In particular SB17 focus on the red noise spectral models calculated in R16. 20	

Here we clarify the red noise models displayed in Figure 5 and Supplementary Figures 4 and 5 of 21	

R16, and comment further on estimating power spectra and AR1 red noise model spectra. We 22	

highlight effects from nonrandom data variation, sampling and pre-whitening on red noise model 23	

estimation, and concur with SB17 that red noise modeling should not be applied with a “boiler-24	

plate” approach. Using the Mochras Ca series as an example, we discuss practical solutions that 25	

can be used for other cyclostratigraphic data presenting similar issues. In summary, whereas 26	

SB17 advocate alternative red noise models, e.g., bent power law models, we show that modest 27	

adjustments to the data can dramatically improve the fit between AR1 red noise and data spectra. 28	

 29	

Red noise spectra in R16 30	

 31	
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The red noise spectra in Supplementary Figures 4 and 5 of R16 were calculated according to the 32	

conventional AR1 red noise model computed by the “mtm” function in the Astrochron package 33	

for R (Meyers, 2014). The supplementary figures therefore include “AR1 Confidence Level 34	

Estimates,” which are exclusively the output of “mtm”. Only the conventional AR1 red noise 35	

spectrum is displayed; confidence levels with respect to the Ca data spectrum were not included 36	

(e.g. 90%, 95% and 99%).  The red noise spectrum displayed in Figure 5 of R16 is based on the 37	

robust AR1 red noise model (Mann and Lees, 1996), and was computed with the “mtmML96” 38	

function in Astrochron.  39	

 40	

The conventional AR1 red noise model 41	

As discussed elsewhere (Meyers, 2012) the conventional AR1 red noise spectral model can be 42	

severely biased. The biasing can be either low or high depending on the frequency distribution of 43	

nonrandom signal and random noise in the data, and on data sampling rate, which affects 44	

calculation of the lag-1 autocorrelation coefficient (r) of the data that is used in the AR1 model. 45	

In both Supplementary Figures 4 and 5 of R16, the conventional AR1 red noise spectra appear to 46	

be overestimated at low frequencies, and underestimated at middle to high frequencies, where 47	

multiple data spectral peaks greatly exceed even the 99% CL.  48	

One challenge relates to the effect of high-amplitude, very low frequencies in data. The Ca 49	

series is affected by a ~150-meter-long cycle, which adversely affects the computation of both 50	

the data power spectrum and the AR1 red noise spectrum (e.g., Supplementary Figure 4A of 51	

R16). The removal of this variation by high-pass filtering is key to evaluating the other 52	

nonrandom spectral components of the Ca series. This was carried out using the notch filter 53	

option in Analyseries 2.0.8, setting the center frequency at 0.0 and the cut-off frequency at 54	

1/(150 m); the results are displayed in Figure 4A (“detrended Ca series”) of R16. (SB17 elected 55	

to remove a 5th order polynomial fit from the Ca series for their analyses.) 56	

A second challenge is that the stratigraphic series has a strong and persistent Ca cycle that 57	

occurs at a thickness of ~1 m, with variable sedimentation rates modulating this thickness from 58	

cycle to cycle along the series (see examples in Figures 3 and 4 of R16). The result is that in the 59	

stratigraphic spectrum of the entire Ca series, a broad frequency band is generated with elevated 60	

power centered at 1 cycle/m, with many spectral peaks (Supplementary Figure 4A of R16). The 61	

Geologic Time Scale 2012 (Ogg and Hinnov, 2012) indicates an ~8.1 million-year duration for 62	
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the ~400-m-long Pliensbachian series, and so these ~1-m-thick cycles are precessional in scale. 63	

Removing the effects of the variable sedimentation rates should “snap” these cycles into narrow 64	

bands associated with precession index frequencies. To a certain extent this was accomplished by 65	

R16’s 405-kyr tuning procedure, which produced a power spectrum with only a few elevated 66	

spectral peaks in the precession index band (Figure 5 of R16).  67	

A third challenge is related to the sampling of the Ca series, which was set at an average of 68	

Dd=0.12 m in order to obtain a robust 8 samples per 1 m cycle (a standard originally suggested 69	

by Herbert, 1994). Unfortunately, this protocol has generated an especially undesirable effect in 70	

the calculation of r in the AR1 red noise spectrum model; this effect – and its management – is 71	

illustrated further below.  72	

 73	

The robust AR1 red noise model 74	

Robust AR1 red noise modeling involves a “pre-whitening” approach to reduce contributions 75	

from nonrandom signal at all frequencies when calculating the red noise spectrum (Mann and 76	

Lees, 1996). A “median smoothed background” estimation of the data spectrum is fitted to 77	

average noise level and r parameters while rejecting frequencies with excessive high power 78	

(presumed nonrandom signal). Hinnov et al. (2016) illustrated the difference between 79	

conventional and robust AR1 red noise spectra computed on a uniformly sampled AR1 red noise 80	

time series with r = 0.7. The elevated spectral peak near f = 0 (Figure 1A in Hinnov et al., 2016) 81	

and its rejection from the robust model is the likely cause for the large difference between the 82	

two AR1 models at low frequencies. 83	

The robust AR1 red noise algorithm was recently improved in Astrochron’s “mtmML96” to 84	

control edge effects and reduce false positive rates at low frequencies up to ~50% (Meyers, 85	

2014), and was used to compute the robust AR1 red noise model for the 405-kyr tuned Fe time 86	

series in Figure 5 of R16.  87	

 88	

Fit of red noise model spectrum to data spectrum 89	

 90	

One of the objections of SB17 is that the AR1 red noise model spectrum (conventional or robust) 91	

does not adequately fit the Ca data spectrum; their criterion for a good or poor fit is limited to 92	

visual inspection. In REDFIT (Schulz and Mudelsee, 2002) a “non-parametric runs test” is 93	
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performed to evaluate the fit of the conventional AR1 red noise spectrum to the data spectrum. 94	

This test has not yet been strongly emphasized as an important step in developing appropriate red 95	

noise models, and is not yet available in other cyclostratigraphic toolboxes (e.g. Astrochron). As 96	

with SB17, the following discussion relies on visual comparisons; ultimately all of these 97	

comparisons should be evaluated statistically with a procedure such as that provided in REDFIT 98	

(and yet to be developed). 99	

 100	

Sampling 101	

 102	

Figure 1 demonstrates the effect of data sampling on the calculation of r, which is integral to the 103	

AR1 red noise model (conventional or robust), using the “mtm” and “mtmML96” functions in 104	

Astrochron. For input to multitaper spectral analysis, the Ca 405-kyr tuned time series was 105	

linearly interpolated to a uniform sample rate of Dt = 0.41 kyr, i.e. the median sample rate of the 106	

time-converted series. The results for the entire Nyquist range (0 to 1/(2·0.41 kyr)=1.22 107	

cycles/kyr) reveal a considerable and obvious misfit between data and conventional AR1 red 108	

noise spectra (Figure 1A). There are shallow notches that characterize the data spectrum at 109	

regular intervals (f=0.0003, 0.004, 0.015, 0.09 and 0.25), and the highest frequencies (>0.3 110	

cycles/kyr) take on an aspect of very high variability. This plot can be compared with the Ca 111	

power spectral analysis shown in Supplementary Figure 5 of R16, although that analysis used 3p 112	

multitapers. Only one low frequency spectral peak at 1/(101.8 kyr) exceeds the 99% CL; many 113	

peaks in the high frequencies lie far above the 99% CL. Below we offer a solution to this highly 114	

biased result that points directly to the original sampling protocol. 115	

 An alternative lower uniform sample rate of Dt = 6.0 kyr sets the Nyquist frequency to a 116	

much lower value of 1/(2·6 kyr) = 0.08333 cycles/kyr, and provides a more reasonable fit 117	

between data spectrum and conventional AR red noise spectrum (Figure 1B). Other (smaller) 118	

Dt’s were also tested; Dt = 6.0 kyr was the largest and thus closest to the precession band, but 119	

still guaranteeing 3 to 4 samples per precession cycle. The shallow notches in this version of the 120	

data spectrum divide the spectrum into bands that coincide with the long orbital eccentricity, 121	

short orbital eccentricity, and obliquity and precession (E, e, and O-p). In the Milankovitch band, 122	

multiple spectral peaks exceed the 99% CL; in particular the two peaks with periodicities at 123	

136.8 kyr and 101.8 kyr are close to the short orbital eccentricity periods of 127 kyr and 97 kyr. 124	
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The fact that simple 405-kyr tuning restricted so much power into these narrow frequency bands 125	

is powerful evidence for the presence of Milankovitch forcing. 126	

Robust AR1 red noise modeling is clearly indicated by the evidence for nonrandom signal, 127	

and results for the Dt = 6.0 kyr sampled Ca time series are shown for two versions of robust AR1 128	

red noise (Figures 1C, 1D). The first version calculates the median smoothed background 129	

spectrum with linear power (linlog=1). This is recommended for data spectra with a broad 130	

frequency distribution of power (Mann and Lees, 1996). For data spectra with a “high dynamic 131	

range” and with most power concentrated in the low frequencies, median smoothing with log 132	

power (linlog=2) is recommended. Mann and Lees (1996) also warn that significance estimates 133	

that are strongly dependent on linear versus log fitting “should not be interpreted with great 134	

confidence.” In this case, the spectral peaks at 16.0 kyr and 14.8 kyr fall into the low confidence 135	

category.  Finally, the window size of the median smoothing is recommended to be 20% of the 136	

Nyquist frequency, but this is adjustable as well. However, the wider the smoothing window, the 137	

more likely that low power high frequencies will bias the result.  138	

 139	

Discussion 140	

 141	

SB17 raise their objections from the very start, challenging the significance of the “5.8 m” 142	

spectral peak in the raw Ca stratigraphic spectrum, which falls short of any CL level in their 143	

Figure 1A.  To be conformable with GTS2012, the 5.8 m cycle is short orbital eccentricity (~100 144	

kyr) scale, which is the astronomical parameter that cannot be measured adequately in the 145	

spectral domain, and is especially prone to failing spectral significance tests (Meyers, 2012). 146	

This is because short orbital eccentricity cycles strongly modulate in frequency and amplitude 147	

through time; power is divided into 2 major bands that themselves are bifurcated (see Figure 4.3 148	

in Hinnov and Hilgen, 2012). This problem is only compounded by the added variable 149	

sedimentation rates and other post-depositional processes that affect cyclostratigraphy. Instead, 150	

R16 focused on ~25 m cycles to select 405 kyr intervals, represented by a spectral peak that 151	

exceeds the 95% CL in Figure 1A of SB17.  152	

The argument then hinges on the proper definition of confidence level, but prior to deciding 153	

that, the most appropriate red noise model needs to be identified. SB17 conclude that the most 154	
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appropriate red noise model for the Mochras Ca stratigraphic series is a bent power law model, 155	

but a lower-sampled Ca stratigraphic series may provide an equally valid AR1 red noise model.  156	

Figure 2 replicates and extends the analysis provided in Figure 1A of SB17. Here we apply 157	

2p MTM power spectral analysis; while it is not stated, SB17 appear to use 3p MTM power 158	

spectra which has a broader frequency band resolution. Consequently, SB17 were not able to 159	

resolve most of the low frequencies, which the 2p resolution readily identifies with wavelengths 160	

exceeding the 99% CL at 74 m, 34 m, and 25 m. Robust red noise modeling with median 161	

smoothing using linear power even sets the now well-resolved 6.0 m cycle above the 99% CL 162	

(Figure 2A). However, for the median-sampled (Dd=0.12 m) Ca stratigraphic series, the highest 163	

frequencies diverge from the robust red noise model (red arrow, Figure 2A), although not quite 164	

to the extent reported in SB17, probably due to the difference in 2p vs. 3p multiapers used for 165	

the data spectrum. SB17 also do not indicate how the robust autocorrelation coefficient r was 166	

determined, nor do they indicate whether they used linear or log power for calculating the 167	

median smoothed background in any of their analyses.  168	

Again, we demonstrate the effect of sampling on AR1 red noise modeling, together with 169	

robust red noise models using linear vs. log power-based background spectrum estimation 170	

(Figures 2B and 2C). Doubling the data sample rate both raises the AR1 red noise model, and 171	

changes its shape in the high frequencies, showing an improved fit (red arrow, Figure 2B). The 172	

elevated noise now slightly reduces the significance of the 6.0 m spectral peak (to below the 99% 173	

CL); log power fitting of the background spectrum further reduces the 6.0 m peak significance, 174	

as well as improving the fit of the model to data in the high frequencies (red arrow, Figure 2C). 175	

As to correction of the CLs to account for “multiple tests of significance” solution proposed by 176	

SB17 is not realistic, especially in light of the limited frequency bands of interest (Hinnov et al. 177	

2016) and the simple sampling reduction illustrated here, among other factors (variable 178	

sedimentation rates). 179	

The adjustments we have suggested above indicate that straight away rejection of AR1 red 180	

noise modeling is unwarranted, at least in this case. Moreover, the misfit of data spectra to noise 181	

spectra can lead to new hypotheses about natural processes, and as demonstrated here, new 182	

protocols for data collection and data treatment. That said, the spectral background structure of 183	

cyclostratigraphy remains an unexplored subject that would benefit greatly from future study. 184	

 185	
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Figure captions 218	

  219	

Figure 1.  2p MTM power spectral analysis of the detrended (procedure of R16) Mochras 405-220	

kyr tuned Ca time series with AR1 red noise modeling. Insets are linear plots of the 221	

Milankovitch band. All figures were created in MATLAB. 222	

A. Ca time series interpolated to the median spacing Dt = 0.41 kyr, with conventional AR1 red 223	

noise model spectrum (r = 0.9916).  The following R command was used with the astrochron 224	

library: 225	
catimeintMTM_41=mtm(catimeintall41,tbw=2,ntap=NULL,padfac=10,demean=T,detrend226	
=F,siglevel=0.9,ar1=T,output=1,CLpwr=T,xmin=0,xmax=1/(2*6.0),pl=1,sigID=T,gen227	
plot=T,verbose=T) 228	

 B. Ca time series interpolated to Dt = 6.0 kyr, with conventional AR1 red noise spectrum (r = 229	

0.3316).  The following R command was used with the astrochron library: 230	
catimeintMTM_6=mtm(catimeintall6,tbw=2,ntap=NULL,padfac=10,demean=T,detrend=F231	
,siglevel=0.9,ar1=T,output=1,CLpwr=T,xmin=0,xmax=1/(2*6.0),pl=1,sigID=T,genpl232	
ot=T,verbose=T) 233	

C. Ca time series interpolated to Dt = 6.0 kyr, with robust AR1 red noise spectrum computed 234	

with a median smoothing window of 0.2 x Nyquist using linear power and a grid search, and 235	

padding the data spectrum by a factor of 10. Robust r = 0.243. The following R command was 236	

used with the astrochron library: 237	
catimeintML96_6_1=mtmML96(catimeintall6,tbw=2,ntap=NULL,padfac=10,demean=T,de238	
trend=F,medsmooth=0.2,opt=3,linLog=1,siglevel=0.9,output=1,CLpwr=T,xmin=0,xma239	
x=1/(2*6.0),sigID=T,pl=1,genplot=T,verbose=T)  240	

D. Ca time series interpolated to Dt = 6.0 kyr, with robust AR1 red noise spectrum computed 241	

with a median smoothing window of 0.2 x Nyquist using log power and a grid search, and 242	

padding the data spectrum by a factor of 10. Robust r = 0.304. The following R command was 243	

used with the astrochron library: 244	
(catimeintML96_6_1=mtmML96(catimeintall6,tbw=2,ntap=NULL,padfac=10,demean=T,d245	
etrend=F,medsmooth=0.2,opt=3,linLog=2,siglevel=0.9,output=1,CLpwr=T,xmin=0,xm246	
ax=1/(2*6.0),sigID=T,pl=1,genplot=T,verbose=T) 247	
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 248	

Figure 2. 2p MTM power spectral analysis of the detrended (procedure of SB17) Mochras Ca 249	

stratigraphic series with AR1 red noise modeling. All figures were created in MATLAB. 250	

 251	

A. Ca stratigraphic series interpolated to the uniform median spacing Dd=0.12 m, with robust 252	

AR1 red noise model spectrum with linear power median spectral background fitting with a 253	

window of 0.2 x Nyquist and a grid search (conventional r=	0.7615427, robust r=	0.662).  The 254	

following R command was used with the astrochron library: 255	
carawintmtmML961=mtmML96(carawint,tbw=2,ntap=NULL,padfac=10,demean=T,detrend=256	
F,medsmooth=0.2,opt=3,linLog=1,siglevel=0.9,output=1,CLpwr=T,xmin=0,xmax=1/(2257	
*0.12),sigID=T,pl=1,genplot=T,verbose=T) 258	

 259	

B.  Ca stratigraphic series interpolated to a uniform spacing of Dd=0.24 m, with robust AR1 red 260	

noise model spectrum with linear power median spectral background fitting with a window of 261	

0.2 x Nyquist and a grid search (conventional r=	0.4664586, robust r=0.395).  The following R 262	

command was used with the astrochron library: 263	
carawintnewmtmML961=mtmML96(carawintnew,tbw=2,ntap=NULL,padfac=10,demean=T,de264	
trend=F,medsmooth=0.2,opt=3,linLog=1,siglevel=0.9,output=1,CLpwr=T,xmin=0,xma265	
x=1/(2*0.24),sigID=F,pl=1,genplot=T,verbose=T) 266	
 267	

C. Ca stratigraphic series interpolated to a uniform spacing of Dd=0.24 m, with robust AR1 red 268	

noise model spectrum with log power median spectral background fitting with a window of 0.2 x 269	

Nyquist and a grid search (conventional r=	 0.4664586, robust r=	 0.485). The following R 270	

command was used with the astrochron library: 271	
carawintnewmtmML962=mtmML96(carawintnew,tbw=2,ntap=NULL,padfac=10,demean=T,de272	
trend=F,medsmooth=0.2,opt=3,linLog=2,siglevel=0.9,output=1,CLpwr=T,xmin=0,xma273	
x=1/(2*0.24),sigID=F,pl=1,genplot=T,verbose=T) 274	
  275	
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 276	
Figure 1 277	

 278	
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 279	
Figure 2 280	
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