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Abstract 

 
Activity recognition that recognises who a user is 

by what they are doing at a specific point of time is 

attracting an enormous amount of attention. Whilst 

previous research in activity recognition has focused 

on wearable dedicated sensors (body worn sensors) 

or using a smartphone’s sensors (e.g. accelerometer 

and gyroscope), little attention is given to the use of 

wearable devices – which tend to be sensor-rich 

highly personal technologies. This paper presents a 

thorough analysis of the current state of the art in 

transparent and continuous authentication using 

acceleration and gyroscope sensors and an 

advanced feature selection approach to select the 

optimal features for each user. Two experiments are 

conducted; the first experiment used all the extracted 

features (i.e., 143 unique features) while (for 

comparison) a more selective set of only 30 features 

are used in the second experiment. The best results 

of the first experiment are average Euclidean 

distance scores of 0.55 and 1.41 for users’ intra 

acceleration and gyroscope signals respectively and 

3.33 and 5.85 for users’ inter acceleration and 

gyroscope activities accordingly- providing sufficient 

disparity in distance to suggest a strong 

classification performance. In comparison, the 

second experiment demonstrated stronger results 

when evaluated (at best the average Euclidean 

distance scores is 0.03 and 0.19 for users’ intra 

acceleration and gyroscope signals respectively and 

1.65 and 1.1 for users’ inter acceleration and 

gyroscope activities). The findings demonstrate that 

the technology is sufficiently capable and the nature 

of the signals captured sufficiently discriminative to 

be useful in performing activity recognition. 

Moreover, the proposed feature selection approach 

could offer better results and reduce the 

computational overhead on digital devices.   

 

1. Introduction 
 

Over 9.5 billion mobile devices, including 

smartphones and tablets, are currently utilized for 

various purposes (e.g., personal communication, and 

online payment). These devices are increasingly use 

to access sensitive information such as financial or 

health records [1]. The data that is stored in the  

 

 
 

mobile device is often considered more valuable than  

the cost of the device itself [2]. Therefore, securing 

information on these devices from unauthorized 

access in an effective and usable fashion is essential. 

However, current user authentication approaches 

(such as password and PIN) are considered as 

intrusive methods that hinder their usability and 

subsequently the security of the mobile device and 

its data [3]. According to a survey, 72% of their 

participants disabled the PIN code on their 

smartphones [4]; thus critical information that is 

stored on the device could be misused if it is lost or 

stolen. The use of a Transparent Authentication 

System is proposed in order to remove the user 

inconvenience (as the user is mainly transparently 

authenticated) and to improve the overall security in 

a continuous fashion [5]. Nevertheless, one of the 

key challenges for using transparent authentication is 

the lack of appropriate biometric modalities. In 

addition, previous research in this domain has also 

encountered performance issue due to the reliability 

of behavioural biometrics (i.e., the performance can 

be influenced by external environmental factors (e.g., 

mood)) [6].  

Smartwatches have become more prevalent in the 

market and it is predicted that this trend will continue 

as the technology improves. A survey showed that 

more than 80% of smartwatch consumers said that 

healthy living and medical care access are major 

benefits of wearable technology [7]. Due to their 

fixed contact with individuals   (i.e., either on left or 

right wrist), it is envisaged     that smartwatches have 

the ability to capture more accurate personal data 

(e.g., acceleration and heart rate) than smartphones 

do. Therefore, wearables could be used to enhance 

mobile security in a      more effective way. Most 

modern smartwatches contain Micro Electro 

Mechanical System sensors, which are based upon a 

single chip that offers both tri-axial gyroscope and 

accelerometer capabilities. Normally, gyroscopes 

(offering rotational velocities) and accelerometers 

(measuring non-gravitational accelerations) are used 

on their own for a biometric system. It is envisaged 

that the system performance can be improved if both 

of them are used together.  

To this end, this paper explores the use of 
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wearable computing devices for transparent 

authentication and in particular aims to investigate 

the feasibility of a novel Activity Recognition 

biometric modality. The rest of the paper is 

structured as follows: Section 2 reviews the state of 

the art in transparent and continuous authentication 

that uses acceleration and gyroscope sensors. 

Sections 3 and 4 present the data collection, feature 

extraction, preliminary results and the proposed 

feature selection approach. Sections 5 and 6 present 

the proposed architecture for an activity recognition 

system, the conclusions and future research 

directions. 

 

2. Background Literature 
 

Given the nature of wearable computing and its 

associated sensors, gait recognition is the modality 

that has the closest link to smartwatch-based activity 

recognition. Based upon how information is 

collected, gait recognition can be categorized into 

three main approaches: machine vision, wearable 

sensor, and mobile sensor. For the machine vision 

based approach, the movement of the human body is 

captured by using a fixed video-camera from a 

distance (such as CCTV) and it is mainly used for 

the purpose of identification.  

 

Table 1. Comprehensive Analysis on Gait 

Authentication using Wearable and Mobile Sensors 

(C: Cycle-based; S: Segment-based; SF: Statistical 

Features; CF: Coefficient Features; DTW: Dynamic 

Time Warping; HMM: Hidden Markov Model; 

SVM: Support Vector Machine; EER: Equal Error 

Rate; CCR: Correct Classification Rate; SD, CD 

Same and Cross Day) 

 

S
tu

d
y

 

A
p

p
ro

a
ch

 

F
ea

tu
re

s 
T

y
p

e
 

C
la

ss
if

ic
a
ti

o
n

 

m
et

h
o

d
s 

A
cc

u
ra

cy
 %

 

 

U
se

rs
 

D
u

ra
ti

o
n

 

(S
ec

o
n

d
s)

 

[8] C SF DTW 6.7 (EER) 35   300/CD 

  [9] C SF Euclidean distance 13 (EER) 99 60/SD 

[10] C SF Manhattan distance 5.7 (EER) 60  180/CD 

[11] C SF DTW 20.1 (EER) 51  120/CD 

[12] S SF Neural Network 100 (CCR) 5  600/SD 

[13] S CF SVM & HMM 
10 &12.63 

(EER) 
36   1200/CD 

[14] C SF Manhattan& DTW 
21.7 & 28 

(EER) 
48   1200/CD 

[15] S CF HMM 6.15 (EER) 48   1200/CD 

[16] C SF DTW 33.3 (EER) 51    60/CD 

[17] C SF SVM 91 (CCR) 14 420/SD 

[18] S SF

& 

CF 

Random Forest 98 (CCR) 

 

5

9 

300-

600/SD [19] S SF Random Forest  93 (CCR) 1

7 

2160/S

D  

In comparison, the other two approaches focus 

upon capturing the periodic motion of the legs by 

attaching physical recording sensors on the human 

body such as hip, waist, lower leg, and arm or by 

carrying a mobile on the go; they are mainly used to 

verify the identity of the carrier. It is these studies 

that this review will focus upon. A comprehensive 

analysis of the prior studies on gait authentication 

using wearable and mobile sensors is summarized in 

Table 1. The use of wearable sensors that are used to 

collect gait signals created a new domain for 

transparent and continuous user authentication on 

mobile devices. However, these studies are required 

to use specialized devices that are expensive for 

collecting the gait information; and the volume of 

their data per user is somewhat limited (i.e., 60 to 

300 seconds) as illustrated in Table 1. Moreover, due 

to the complexity of the data collecting device, an 

additional cost would be required if they were 

utilised in a real-world system. Therefore, more 

recent studies attempted to utilize the smartphone 

built-in sensors for gathering the gait signal; as no 

extra cost is required. Also, this permits the 

authentication task to be performed in a transparent 

and continuous manner as the smartphone is carried 

in the user’s pocket [11-17]. 

A large body of research on accelerometer-based 

activity recognition by using the Same-day scenario 

(i.e., the training and testing data is collected on the 

same day) exist. In comparison, little work is 

considered by applying the Cross-day evaluation 

scenario (which is a more realistic test as it shows 

the variability of the human gait behaviour over the 

time). Most research claim a system resilient to the 

cross-day problem either trains on data from trials 

that are also used to test (thus not making it a true 

cross-day system) or has a high error rate, preventing 

the system being used practically. The lack of 

realistic data underpins a significant barrier in 

applying gait recognition in practice. 

To extract gait features from the captured signal, 

previous studies have focused upon two main 

approaches: cycle-based and segment-based. The 

former attempts to detect the periodic steps of the 

individuals by standardizing the number of steps as 

opposed to the amount of time represented in each 

instance (i.e., pace independent). The latter focuses 

on fixed-length blocks of data (without prior 

identification of the contained gait cycles). The 

literature shows that the performance varies 

significantly by using these two methods. The cycle 

extraction purportedly offers an exciting opportunity 

if a system is implemented effectively and trained in 

just a manner of steps; however, the error rate of 

using this approach is considered as high: the EER is 

ranging from 20.1% [11] to 33.3% [16] as 

demonstrated in Table 1. The high error rate is most 

likely caused by the result of the complicated and 

unclear nature of cycle extraction, as gait is only 

semi-periodic and the signals originating from 

smartphones are noisy due to a number of factors 

(e.g., the device not being securely fastened to the 
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user, cheap sensors, and rounding errors). 

Furthermore, cycles are not guaranteed to be the 

same length and can vary widely in length depending 

on the pace of how a user walks; cycle extraction 

must be paired with a system that normalizes the 

length of each step, which adds another parameter to 

be configured and constantly refined. In contrast, the 

segmentation based method focuses on fixed-length 

blocks of gait data. While the segmentation based 

method is simple to implement, there is no guarantee 

on how many steps are completed within a given 

time window (there could be no full step at all). 

However, the performance of the segment based 

method appears to be more effective and stable, with 

studies reporting EERs between 6.1% and 10% [13, 

15]. If the CCR were used, the performance of 

segment based method is even better: in the range of 

93%-100% of the CCR [12, 18, 19].  

With respect to features, several studies have 

suggested that both statistical features (e.g., standard 

deviation, average, and N-bin histogram) and 

cepstral coefficient features (e.g., Mel Frequency 

Cepstral Coefficients (MFCCs) and Bark Frequency 

Cepstral Coefficients (BFCCs)) can be used to 

produce better performance [12, 13, 15, 18, 19, 20]. 

In addition, some studies only used the combination 

of MFCCs and BFCCs features alone and still 

managed to produce a good level of results [13, 15]. 

The improvement on the performance of sensor 

based biometric systems can be attributed to more 

intricate feature vectors that utilize more complex 

features (e.g. MFCC and BFCC).  

In terms of matching/classification, several 

classification methods (e.g., Absolute, Euclidean, 

and Neural Networks) can be used for training and 

testing phases. Many researchers prefer traditional 

approaches where a single template is generated and 

is later tested based upon the similarity between the 

template and the test data. By using this principle, 

various EERs between 5.7% and 33.3% were 

obtained from the following studies [8, 9, 10, 11, 14, 

16, 17]. While this approach works well for 

physiological biometric methods (e.g., face or 

fingerprint), it is less effective for behavioural 

biometric techniques (e.g., body movement and 

keystroke dynamics). This is because the user’s 

behaviour can change over time and be affected by 

other factors (e.g., mood and health). Therefore, it is 

more reasonable to collect user’s multiple instances 

on multiple days and apply more complex algorithms 

(e.g., HMM and Neural Networks) upon them for 

generating the template and performing the 

classification process. Recent studies on mobile 

accelerometer-based gait authentication and 

smartwatch-based activity recognition demonstrate 

that promising results are obtained by using 

advanced techniques (e.g., decision-tree based 

classifiers, and neural networks) [12, 13, 15, 17, 18, 

19].  

Based upon the classification result, a decision on 

whether to accept or reject the output is made by the 

system. Accordingly to the literature, two standard 

schemas are used: majority or quorum voting. A 

better performance is normally obtained by using the 

quorum voting technical while the system is more 

resilient to error when the majority voting is applied. 

Under the quorum voting scheme, a small number of 

correct classification outputs are required to accept a 

user. While this will improve the user convenience 

(i.e., the user will be highly likely to accept the 

deployment of such system), it will result in a high 

false acceptance rate (i.e., there is a high chance for 

the imposter to abuse the system). In contrast, more 

discriminative user behaviour is required when 

utilizing the majority voting technique; otherwise, a 

high false rejection rate will be produced by the 

system. It is understood that the system will provide 

better security when using the majority voting 

method; at the same time, the system is more 

intrusive (i.e., less user friendly). As a result, it is 

important that a proper decision logic that can 

balance the system security and user convenience is 

applied for the gait authentication system. 

The majority of previous studies collected the 

user’s movement data by placing a smartphone in a 

fixed position (e.g., in the trouser pocket or on the 

hip). It is widely understood that smartphones suffer 

from several issues to produce a consistent and 

reliable data collection in real life; these include the 

problem of orientations (i.e., screen rotations) and 

off-body carry (e.g., when the device is carried in a 

handbag), making the data collection process less 

accurate or nearly impossible. In contrast, 

smartwatches provide a more consistent user’s 

motion data collection as it is almost fixed to the user 

(i.e., it is worn on either left or right hand) regardless 

of their clothing choices. In addition, the smartwatch 

can provide a consistent orientation (i.e., it is worn in 

such a way that the text on screen is easily readable 

to the user). As a result, smartwatches offer the 

opportunity to collect the user’s motion data in a 

more effective and reliable fashion than smartphones 

could.  

 

3. Preliminary Analysis of Activity 

Recognition 
 

With the aim of investigating the feasibility of 

using wearable computing for transparent user 

authentication, a preliminary study was conducted to 

capture and analyse the user’s movement data. 

Details of the study, including data collection, 

feature extraction and analysis are presented in the 

following subsections. 
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3.1 Data Collection and Transformation 
 

In order to collect user’s movement data, the 

Microsoft band 2 was utilized due to its wide range 

of built-in sensors. Of specific interest in this study 

were the accelerometer and gyroscope sensors, 

where samples were collected at a rate of 30-32 

samples per second for the x, y and z-axes. As soon 

as the data was collected by the smartwatch, it was 

sent to a smartphone residing in the user’s pocket via 

Bluetooth. In total, 36 users participated for the data 

collection; each user was required to walk on a 

predefined route over six sessions, each of the three 

sessions were provided on different days within a 

time frame of 3 weeks. In each session, the subject 

was asked to walk at a natural speed on flat ground 

for 2 minutes. For a more realistic scenario, the 

subject had to stop in order to open a door, and take 

multiple turns. Once the data collection was 

completed, the signal processing phase was 

undertaken- a brief description of the steps are: 

 

 Time interpolation: Due to the limited accuracy 

of sensors in android devices, the smartwatch was 

not able to record data at a fixed sample rate (in 

other words, the time intervals between two 

successive acceleration values were not fixed). 

Therefore, time interpolation was required to 

make sure that the time period between two 

successive data points was always equal. 

 Filtering: a low pass filter was designed in order 

to enhance the accuracy of the signal. This was 

done by setting the cut-off frequency to 0.2Hz.  

 Segmentation: once the signal was filtered, the 

tri-axial raw format for both acceleration and 

gyroscope signals were segmented into 10-

second segments by using a sliding window 

approach with no overlapping. Therefore, in total 

36 samples were collected for each user per day. 

  

3.2. Feature extraction 
 

In the previous work [20], 88 features were 

extracted for the gait data based upon prior          

work identified in gait recognition studies 

[12,13,15,17,18,19]. In this study, a comprehensive 

feature extraction process was carried out on both the 

acceleration and gyroscope data. Features were 

extracted in both, the time and frequency domains.  

In total, 143 unique features were created for 

each sensor.  Details of these features (e.g., what 

they are and how they are calculated) are presented 

below; also the number of generated features for 

each type is specified in brackets.  

 

 

 

 

 

3.2.1 Time domain features 

 Difference (3): the difference between the 

maximum and minimum of the values in the 

segment (each axis). 

 Median (3): the median values of the data 

points in the segment. 

 Zero crossing rate (3): is the rate of sign-

changes along a signal. 

 Root Mean Square (3):  the square root of 

the mean squared. 

 Interquartile range (3): is the range in the 

middle of the data. It is the difference 

between the upper and lower quartiles in the 

segment. 

  Skewness (3): is a measure of the symmetry 

of distributions around the mean value of the 

segment. 

  Kurtosis (3): is a measure of the shape of the 

curve for the segment data.  

 Percentile25 (3): the percentile rank is 

measured using the formula: 

R=(P/100)*(N+1). Where R represents rank 

order of values, P  percentile rank, N total 

number of the data points in the segment. 

 Percentile50 (3) : similar to the previous 

feature but setting P=50 

 Maximum (3): The largest 4 values in the 

segment are calculated and averaged.  

 Minimum (3): The smallest 4 values in the 

segment are calculated and averaged.  

 Correlation Coefficients (3): The 

relationship between two axes is calculated. 

The Correlation Coefficients is measured 

between X and Y axes, X and Z axes, and Y 

and Z axes. 

 Average (3): the mean of the values in the 

segment. 

 Standard Deviation (3): the Standard 

Deviation of the values in the segment. 

 Average Absolute Difference (3): the 

average absolute distance of all values in the 

segment from the mean value over the 

number of data point in the segment. 

 Time Between Peaks (3): during the user’s 

walking, repetitive peaks are generated in the 

signal. Thus, the time between consecutive 

peaks was calculated and averaged. 

 Minimum Peaks (3): the smallest 4 peaks in 

the segment are calculated and averaged.  

 Maximum Peaks (3): the largest 4 peaks in 

the segment are measured and averaged.    

 Peaks Occurrence (3): determines how many 

peaks are in the segment.  

 Binned Distribution (30): relative histogram 

distribution in linear spaced bins between the 

minimum and the maximum acceleration in 

the segment. Ten bins are used for each axis. 
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 Average Resultant Acceleration (1): for 

each value in the segment of x, y, and z axes, 

the square roots of the sum of the values of 

each axis squared over the segment size (i.e., 

10 seconds) are calculated. 

 Variance (3): The second-order moment of 

the data. 

3.2.2 Frequency domain features. The process of 

extracting frequency domain features is somewhat 

different from the time domain. Before extracting a 

frequency domain feature, a Fourier transform needs 

to be applied to the data. A set of frequency domain 

features are calculated which might be useful to 

create a discriminative feature vector for each 

individual. The extracted features are presented in 

Table 2. In the second and the fourth columns, NF 

stands for the number of generated features. 

 

Table 2. Frequency domain features 

 
Features NF Features NF 

Energy 3 Difference 3 

Entropy 3 Zero crossing rate 3 

Root Mean Square 3 Interquartile range 3 

Maximum 3 Correlation Coefficients 3 

Minimum 3 Percentiles25 3 

Standard Deviation 3 Percentiles 50 3 

Median 3 Skewness 3 

Variance 3 Kurtosis 3 

Average Absolute 

Difference 
3 

Average Resultant 

Acceleration 
1 

 

3.2.3 Validating features extracted from the 

smartwatch. In order to validate the effectiveness of 

the 143 generated features for a promising 

authentication technique, the data set was divided to 

form both reference and testing templates for all 

users in two scenarios (i.e., Same-Day and Cross-

Day). The average Euclidean distance between the 

reference template and testing templates was 

calculated; this distance value represents the 

similarity between the two templates: the smaller the 

value, the more similarity between the reference and 

testing templates and vice versa. As a result, in order 

for this technique to work, a small distance value 

should be presented when the reference and testing 

templates are from the same user; while a large 

distance value should be expected when these 

templates are from different users – representing the 

intra and inter sample variances. The results of 36 

users’ movement data for the Same-Day and Cross-

Day scenarios are presented in Tables 3 and 4 

respectively.  

Table 3 shows (for the Same-Day) the 

acceleration templates of the same user competitive 

average Euclidean distance scores, ranging from  

0.55 (subject 17) to 1.41 (subject 34). When 

gyroscope data was used, the distance scores of the 

same subject were in the range of 1.41 (subject 35)    

– 4.61 (subject 14).  In comparison, average 

Euclidean distance scores for reference and testing 

templates of different subjects that are extracted on 

the same day are much larger: 2.54 (subject 25) to 

3.33 (subject 34) for acceleration and 3.57 (subject 

4) - 5.85 (subject 20) for gyroscope.  

The imposter distance scores from each genuine 

user are further analyzed separately (Figures 1 and 2 

for acceleration and gyroscope data respectively). 

The given acceleration based- results in Figure 1 

show that the user’s arm movement is highly 

consistent and each subject has a distinctive arm 

pattern. Moreover, the majority of imposters are 

more likely to be rejected by the system as their 

distances scores were far away from the genuine 

user. In contrast, when gyroscope data was applied, 

the average Euclidian distance scores between 

imposters and a genuine user were greatly dependent 

on the subject (Figure 2). For example, subjects 3, 5, 

7, 11, 13, 15, 17, 21, 27, and 33 had low inter-

variance, which means the chance of accepting an 

imposter is high. One reason for this is that using a 

large number of features might influence the system 

performance.  

 

Table 3. Results of Same-Day Scenario 

 

ID 
Dist to Self Dist to Others 

ID 
Dist to Self   Dist to Others 

Acc  Gyr Acc Gyr Acc Gyr Acc     Gyr 

1 0.89 2.08 2.76 3.82 19 0.97 1.96 3.08 4.45 

2 0.72 1.82 3.3 3.72 20 1.58   2.2 3.13 5.85 

3 0.77 3.21 3.18 4.03 21 0.83 2.45 2.62 3.51 

4 1.11 2.2 3.07 3.57 22 0.74 1.53 2.82 3.74 

5 0.89 2.35 2.69 3.75 23 1.32 2.96 2.68 5.13 

6 1.01 1.73 2.65 3.84 24 1.04 2.35 2.72 3.73 

7 1.15 2.57 2.78 3.7 25 1.01 1.76 2.54 3.74 

8 1.02 2.56 2.67 4.14 26 0.91 1.91 3.13 3.72 

9 0.84 1.78 2.7 3.61 27 1.17 3.05 3.69 3.97 

10 1.18 2.21 2.84 3.9 28 1.12 2.23 2.58 3.61 

11 1.19 4.94 2.93 5 29  1.2 2.18 2.89 3.8 

12 0.76 2.35 2.57 4 30 1.02   2 2.8 3.59 

13 1.02 3.9 2.71 4.82 31 1.01   1.9 2.85 3.72 

14 1.23 4.61 3.17 5.24 32 0.89 2.33 3.06 3.49 

15 0.98 2.44 2.83 3.72 33 0.86 2.95 2.73 3.79 

16 1.4 1.87 3.23 4.78 34 1.41 3.14 3.33 4.64 

17 0.55 3.59 2.91 4.5 35 0.91 1.41 2.62 3.93 

18 0.97 2.39 2.92 4.72 36 0.85 1.51 2.57 4.07 

   A more realistic test for a behavioural based-

biometric comes when the Cross-day scenario is 

applied to show the influence of the variation of 

human movement over time. Therefore, the Cross-

day scenario was also evaluated and the results 

shown in Table 4. 
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Figure 1. Acceleration Euclidean Distance Scores Using All Features 

 

Figure 2. Gyroscope Euclidean Distance Scores Using All Features 

 

While the distance scores under this more 

realistic evaluation scenario for acceleration and 

gyroscope templates of the genuine user were 

increased, they were still viable to be used for 

discriminating users: ranging from 0.58 (subject 17) 

to 2.11 (subject 10) for acceleration and from 1.52 

(subject 22) to 4.51 (subject 13)  for gyroscope. In 

comparison, the resulting distance scores for 

reference and probe templates of imposters were 

generally quite high: 2.47 (subject 25) to 3.39 

(subject 27) for acceleration, which is an indication 

that imposters are more likely to be rejected by the 

system. In contrast, the distance scores for the 

gyroscope were slightly larger ranging from 3.6 

(subject 9) to 6.21(subject 20); this could cause more 

imposters to be falsely accepted. The results also 

show the necessity of using a sensor fusion approach 

(i.e., combining the smartwatch sensors data) in 

order to have a balance between security and 

usability. In addition, an improved feature selection 

method to select a set of features that have low-intra 

and high inter-variance is definitely required. 

 

Table 4. Results of Cross-Day Scenario 

 

ID 
Dist to Self Dist to Others 

ID 
Dist to Self Dist to Others 

Acc  Gyr Acc Gyr Acc Gyr Acc     Gyr 

1 1 3.28 2.65 4.5 15 1.69 3.9

9 
2.67 4.38 

2 0.91 1.94 3.29 3.83 16 1.33 2.1

1 
2.93 4.49 

3  0.9 3.38 3.09 3.61 17 0.58 4.0

8 
2.91 4.29 

4 1.16 2.43 2.94 3.68 18 1.12 2.3

6 
2.76 4.18 

5 1.05 2.29 2.62 4.15 19 1.2

6 

2.9

2 
2.91 4.27 

6 0.95 1.58 2.63 3.85 20 1.4

9 

2.7

8 
2.68 6.21 

7 1.03 2.71 2.76 3.81 21 1.0

2 

2.4

8 
2.62 4.5 

8 0.97 3.19 2.67 4.3 22 1.0

8 

1.5

2 
2.63 3.83 

9 1.1 1.86 2.63 3.6 23 1.2 4.1

8 
2.6 3.61 

10 2.11 3.1 3 4.18 24 0.9

4 

3.3

4 
2.74 3.68 

11 1.13 3.8 2.83 4.39 25 1.3

9 

1.6

9 
2.47 4.15 

12 0.89 2.81 2.59 4.1 26 1.0

7 
2 3.12 3.85 

13 1.1 4.51 2.69 4.87 27 1.2

4 

1.9

9 
3.39 3.81 

14 0.85 4.18 3.14 5.69 28 1.0

8 

3.9

5 
2.52 4.3 

29 1.4

1 

2.6

5 
2.91 3.6 33 0.9

8 

2.7

3 
2.66 4.87 

30 0.8

2 

2.1

2 
2.68 4.18 34 1.1

9 

2.7

5 
3.32 5.69 

31 1.1

4 

2.0

6 
2.79 4.39 35 1.0

3 

2.0

6 
2.64 4.38 

32 0.8

7 

2.1

6 
3.04 4.1 36 0.8 1.5

4 
2.55 4.49 

 

4. Feature selection approach 
 

The feature selection step has become the focus 

of many research studies in the area of authentication 

in order to reduce potentially large dimensionality of 

input data and thus system performance could          

be enhanced by selecting the most optimal and 

unique features for individual. Furthermore, it will be 

easier to manipulate small feature subsets on digital 

devices (i.e., smartphones and smartwatches). The 

majority of activity recognition systems select 

common features (e.g., features that have the 

smallest standard deviation) for all the population. 
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This could be very useful if it is considered that the 

authentication system is based on identifying the 

genuine user only. However, a balance between 

security and usability needs to be taken for 

Transparent Authentication Systems (i.e., low false 

acceptance rate (FAR) and low false rejection rate 

(FRR)). FAR shows the percentage in which the 

system incorrectly accepts an imposter as the 

legitimate user while FRR displays the percentage in 

which the authorized user is wrongly rejected by the 

system. 

The current study focused on creating a dynamic 

feature vector that contains unique features for each 

subject. This was achieved by measuring the 

standard deviation (STD) for each feature and, 

subsequently, selecting feature subsets that have the 

smallest STD for each user independently. Using this 

method 30 features were identified for each subject. 

For example, the reference template of subject 1 

could be created  by using features 1, 2, 3,  and 7 

(features with smallest STD) while  features 3, 4, 5,  

and 7 might be used to form the reference template 

of subject 2. This could result in low FRR and FAR. 

Moreover, selecting small feature subsets will greatly 

reduce the complicated computations on 

smartphones, which limit processing resources as 

compared to standard computers. 

To evaluate the effectiveness of the selected 

feature subsets (30 features) for classification, the 

Euclidean distance metric for both scenarios (i.e., 

Same-Day and Cross-Day) are calculated and the 

results were presented in Tables 5 and 6 accordingly. 

The results in Table 5 indicate that applying small 

feature subsets yields very small distance scores 

between the training and test of the genuine user 

ranging from 0.03 (subject 6) to 0.2 (subject 16) for 

acceleration and 0.19 (subject 22) to 0.39 (subject 

18) for gyroscope (compared to 0.55 and 1.41 for 

acceleration and 1.41 to 3.59 for gyroscope when the 

entire feature sets are used). These results suggest 

that the chance of a genuine user being correctly 

authenticated by the system is high. Also, the system 

would be able to identify imposters as their 

Euclidean distance scores are large:   0. 57 (subject 

28) to 1.65 (subject 27) and 0.48 (subject 26) to 1.1 

(subject 15) for acceleration and gyroscope 

respectively. Interestingly, the results in Table 6 

show that the selected feature subsets are more 

resistant to changes of the user’s behavior as the 

Euclidean distance scores of Same and Cross-day 

scenarios for most subjects are nearly similar, apart 

from subjects 10, 15, 25, 27, 29, and 31 for 

acceleration and subjects 9, 10, 15, and 23 for 

gyroscope. 

By using features associated with the acceleration 

data, Figure 3 shows that all imposters will be more 

likely to be rejected by the system (apart from 

subject 8 as one or two imposters might be able to 

deceived the system). 

 

Table 5.  Results of Same-Day Scenario by using 30 

Features 

 

ID 
Dist to Self Dist to Others 

ID 
Dist to Self Dist to Others 

Acc  Gyr Acc Gyr Acc Gyr Acc     Gyr 

1 0.08 0.32 0.99 1.06 19 0.14 0.25 0.78 0.51 

2 0.06 0.23 1.05 0.5 20 0.11 0.36 1.02 1 

3 0.07 0.23 1.18 0.84 21 0.06 0.26 0.82 0.56 

4 0.08 0.29 0.91 0.56 22 0.04 0.19 0.84 0.95 

5 0.05 0.26 0.9 0.52 23 0.1 0.29 0.9 0.64 

6 0.03 0.25 0.7 1.03 24 0.08 0.3 0.71 0.51 

7 0.09 0.3 0.83 0.58 25 0.06 0.24 0.88 0.55 

8 0.1 0.3 0.69 0.53 26 0.06 0.3 0.89 0.48 

9 0.07 0.2 0.7 0.5 27 0.11 0.29 1.65 0.94 

10 0.15 0.2 1.02 0.95 28 0.07 0.21 0.57 0.8 

11 0.1 0.3 1.06 0.59 29 0.08 0.23 0.58 1.05 

12 0.04 0.21 0.97 0.89 30 0.08 0.25 0.76 0.91 

13 0.08 0.33 0.65 0.59 31 0.06 0.24 0.65 0.53 

14 0.08 0.27 1 0.62 32 0.05 0.21 1 0.84 

15 0.09 0.23 0.71 1.1 33 0.05 0.25 0.77 1.07 

16 0.2 0.33 1.16 0.68 34 0.2 0.31 1.12 0.61 

17 0.05 0.31 0.9 0.56 35 0.1 0.24 0.85 0.58 

18 0.13 0.39 1.1 0.99 36 0.07 0.25 0.86 0.89 

 

Table 6.  Results of Cross-Day Scenario by using 30 

Features 

 

ID 
Dist to Self Dist to Others 

ID 
Dist to Self Dist to Others 

Acc  Gyr Acc Gyr Acc Gyr Acc     Gyr 

1 0.09 0.31 0.9 1.08 19 0.17 0.31 0.74 0.51 

2 0.11 0.26 1.15 0.53 20 0.18 0.35 0.64 0.93 

3 0.12 0.25 1.19 0.55 21 0.06 0.27 0.81 0.62 

4 0.1 0.28 0.69 0.59 22 0.05 0.22 0.95 1 

5 0.12 0.31 1 0.48 23 0.17 0.48 0.74 0.83 

6 0.05 0.23 0.69 0.99 24 0.11 0.38 0.88 0.57 

7 0.07 0.31 0.83 0.61 25 0.21 0.25 0.46 0.59 

8 0.09 0.31 0.75 0.5 26 0.12 0.29 0.56 0.51 

9 0.12 0.3 0.79 0.52 27 0.2 0.26 0.67 1.19 

10 0.28 0.31 1.1 0.99 28 0.08 0.23 0.54 0.97 

11 0.13 0.29 1.02 0.61 29 0.17 0.27 0.95 1.07 

12 0.05 0.22 0.99 1.01 30 0.1 0.3 0.86 0.48 

13 0.08 0.31 0.67 0.66 31 0.12 0.23 0.5 0.57 

14 0.09 0.31 0.69 0.65 32 0.05 0.25 0.98 0.96 

15 0.27 0.39 0.78 1.15 33 0.1 0.3 0.77 1.03 

16 0.18 0.3 1.01 0.62 34 0.18 0.29 1.09 0.65 

17 0.06 0.27 0.88 0.59 35 0.12 0.27 0.86 0.86 

18 0.17 0.3 1.04 0.77 36 0.08 0.26 0.85 0.8 

 

When gyroscope features are used, Figure 4 

reveals that the system was still able to identify the 

majority of imposters. While some of the gyroscope 

results may not seems that positive, they are actually 

quite impressive when one considers that they were 

produced from only 30 features. Compared to the 

previous experiment, which used the whole 

gyroscope feature set (143 features), it can be clearly 

noticed that the imposters overlapping with subjects 

3, 5, 11, 15, 21, 27, and 33 are greatly reduced. This 

is due to the fact that selecting more discriminative 

feature sets could result in low intra-variance and 

high inter-variance. The results show that 

accelerometer features are unique and more 
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distinctive than gyroscope features as the distance 

scores between the reference  and test templates of 

the genuine user are small (i.e., low intra- variance), 

as well as provide a significant distinction between 

the genuine user and imposters (i.e., high inter-

variance). 

 

 

 

 

 
Figure 3. Acceleration Euclidean Distance Scores Using 30 Features 

 
Figure 4. Gyroscope Euclidean Distance Scores Using 30 Features 

 

5. Proposed Architecture to support 

Smartwatch-based Activity Recognition 
 

A high-level architecture of the proposed system 

is presented in Figure 5. The prior art has established 

that managing the complex and varying signals of 

real-life use is a significant barrier. In order to 

overcome this, a context aware approach will be used 

in order to predict the user’s activity at a specific 

point of time. This can be achieved by obtaining 

information from other smartwatch sensors (e.g., 

GPS) and using the information to create a multi-

classifier approach that is trained to specific 

activities. This should result in a reduction in the 

variability in the feature set and provide better 

classification performance. 

Unlike most of the prior studies that utilized 

information from a single sensor only (i.e., 

accelerometer or gyroscope), the proposed system 

aims to collect the movement data of both sensors as 

well as GPS information. 

 
Figure 5. Proposed Architecture for Motion-based Activity 

Recognition 

 

It is possible that the fusion of acceleration and 

gyroscope data would offer a greater level of 

accuracy than either sensor alone. Thereafter, feature 

selection needs to be sophisticated enough before the 

classification phase takes place. This can be achieved 

by selecting the features that are more resistant to 

changes of the user’s behaviour. Finally, a set of 

classification methods will be evaluated to create a 

model for each individual activity 
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6. Conclusion and Future Work 
 

    In the experimental study, movement data was 

collected from 36 subjects and the feature set 

analysed to determine its uniqueness. The data 

collection process was more realistic than previous 

studies [20], as each subject was asked to walk a 

predefined route that included flat ground/ multiple 

turns and opening doors. The results of this paper 

show that smartwatch motion sensors (i.e., 

accelerometer and gyroscope) can be effectively 

used in a Transparent Authentication System and 

future work needs to focus upon developing 

appropriate classification strategies to maximise 

performance. The study also shows some good 

results using the more realistic Cross-day scenario by 

utilizing small feature subsets. Unlike most of the 

previous smartphone based activity recognition 

systems, the proposed feature selection method 

utilized a dynamic feature vector for each user in 

order to have a trade-off between FAR and FRR. 

This feature reduction will help to decrease the 

computation burden of creating the test template on 

smartphones and/or smartwatches. However, more 

experimental work is required to evaluate whether 

the selected features of this study are the most 

effective feature sets. This can be carried out by 

using advanced techniques (e.g., decision-tree based 

classifiers and neural networks).  

Unlike most existing motion-based authentication 

studies implemented within a controlled environment 

(i.e., all participants were asked to perform specific 

activities in an indoor environment), future work will 

also aim to design a methodology in order to collect 

real life data (i.e., users would wear a smartwatch 

during their day-to-day activities). By collecting 

unconstrained data a richer user profile can be 

generated. This could be extended to include 

interacting and typing on the smartphone touch 

screen and collecting different walking paces. As the 

nature of the real life signals is likely to be noisy, 

data from other smartwatch sensors (e.g., GPS) could 

be used in order to develop a context-aware approach 

(which will be useful to predict the user’s activity).  
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