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Abstract

This thesis focusses on the properties of, and relationships between, several fun-

damental objects arising from critical physical models. In particular, we consider

Schramm–Loewner evolutions, the Gaussian free field, Liouville quantum gravity

and the Brownian continuum random tree.

We begin by considering branching diffusions in a bounded domain D ⊂ Rd,
in which particles are killed upon hitting the boundary ∂D. It is known that such

a system displays a phase transition in the branching rate: if it exceeds a critical

value, the population will no longer become extinct almost surely. We prove that at

criticality, under mild assumptions on the branching mechanism and diffusion, the

genealogical tree associated with the process will converge to the Brownian CRT.

Next, we move on to study Gaussian multiplicative chaos. This is the rigorous

framework that allows one to make sense of random measures built from rough

Gaussian fields, and again there is a parameter associated with the model in which

a phase transition occurs. We prove a uniqueness and convergence result for approx-

imations to these measures at criticality.

From this point onwards we restrict our attention to two-dimensional mod-

els. First, we give an alternative, “non-Gaussian” construction of Liouville quan-

tum gravity (a special case of Gaussian multiplicative chaos associated with the

2-dimensional Gaussian free field), that is motivated by the theory of multiplicative

cascades. We prove that the Liouville (GMC) measures associated with the Gaus-

sian free field can be approximated using certain sequences of “local sets” of the

field. This is a particularly natural construction as it is both local and conformally

invariant. It includes the case of nested CLE4, when it is coupled with the GFF as

its set of “level lines”.

Finally, we consider this level line coupling more closely, now when it is between

SLE4 and the GFF. We prove that level lines can be defined for the GFF with a wide

range of boundary conditions, and are given by SLE4-type curves. As a consequence,

we extend the definition of SLE4(ρ) to the case of a continuum of force points.

1 Introduction

1.1 Background

This thesis will aim to explore, and hopefully gain a little insight into, the behaviour

of a few canonical models in random geometry. These models, that we will describe

shortly, are all linked in that they arise naturally from physical models at their
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“critical” point. That is, at a point (usually a special temperature), where a phase

transition occurs.

We will be interested in the macroscopic behaviour of such systems. Take a

discrete lattice model (for example, a random model for the spins of particles in a

magnet) and observe what happens in the scaling limit, as the number of particles

tends to infinity. Perhaps surprisingly, it turns out that in many cases, what one

gets in the end doesn’t actually depend very much on the initial model at all. This

is the notion of universality.

The main objects studied here will all be universal in this sense. Let us start, as

an example, with Brownian motion. Take any random walk in space with mean zero

increments, and then speed up the walk and rescale the size of the steps accordingly.

The following result tells us that, if we do this in the correct way, the walk will

converge to a Brownian motion.

Theorem 1.1 (Donsker’s invariance principle (1-dimension)). Let (Xk)
∞
k=1 be a

sequence of i.i.d. random variables with mean 0 and variance 1. Set Sn =
∑n

k=1Xk

and define a process S = (St : t ∈ [0, 1]) by linear interpolation: St = Sbtc + (t −
btc)(Sbtc+1 − Sbtc). Then the laws of the process

SN :=

(
1√
N
SNt : 0 ≤ t ≤ 1

)
converge weakly to that of a Brownian motion on (C[0, 1],B(C[0, 1])).

In particular, the scaling limit in the above theorem does not actually depend on

the details of the random walk we chose in the first place. For this reason, Brownian

motion can be thought of as a canonical notion of random curve.

However, there are some things that Brownian motion lacks the complexity to

describe. For example, the natural interfaces that appear in many planar lattice

models (say, between positive and negative spins in a magnet) become increasingly

fractal as the number of particles tends to infinity, but do not look like the trace

of a Brownian motion. A great breakthrough was made in our understanding of

these interfaces when Oded Schramm, [Sch00], introduced a family of random fractal

curves known as Schramm–Loewner evolutions (SLE) as candidates for their scaling

limits. Indeed, it has since been proved that in several cases, [CS12, LSW04, SS09,

Smi01], such interfaces do in fact converge to SLE.

Another natural question, which has been of great interest to the probability

community in the last few years, is whether the notion of a canonical random path
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(i.e. Brownian motion) can be extended to higher dimensions. For example, in two-

dimensions, can we say what a random sphere should look like? This problem, which

can be phrased more concretely in terms of putting a “random metric” on the 2-

sphere, has attracted much recent discussion and attention. Although seemingly

a very difficult question, astounding progress on this has been made in several

directions. We will discuss two different approaches to this now.

Just as Brownian motion is a limit of random walks, it seems natural to search for

a “random sphere” by considering sensible discrete approximations. In this case, the

analogous things to look at are random planar maps; essentially, large collections

of polygons glued together to give a metric space with the topology of a sphere.

A major breakthrough in this direction came when Le Gall [LG13] and Miermont

[Mie13] proved, independently, that for certain natural choices of random planar

maps these metric spaces have a scaling limit, known as the Brownian map.

Theorem 1.2 (Convergence to the Brownian map). Suppose that p = 3 or an

even integer greater than or equal to 4. Let mn be a uniformly chosen rooted p-

angulation of the sphere (that is, a finite connected graph embedded in S2, viewed

up to orientation preserving homeomorphisms of S2, with a distinguished oriented

root edge and with n faces of degree p.) Let dgr be the graph distance on mn. Then

there exists a positive constant λp such that

(mn,
λp

n1/4
dgr)

(d)−→ (m∞, d
∗)

as n→∞, with respect to the Gromov–Hausdorff topology on compact metric spaces.

The limit (m∞, d
∗), known as the Brownian map, is a random compact metric

space that is almost surely homeomorphic to S2.

This limit is clearly a good candidate for our “uniform” random surface. The

only drawback is that it does not come with a canonical conformal embedding into

the sphere. Thus, it does not give us immediately the canonical conformal structure

that is desirable from the perspective of Liouville quantum gravity.

Another approach to this question has been to try and define the limiting metric

space directly in the continuum, using a further canonical object known as the

Gaussian free field (GFF). This is the natural analogue of Brownian motion in two

dimensional time: it is a planar, conformally invariant Gaussian field, that also arises

from numerous physical models. The GFF describes the fluctuations of an electric

potential, the scaling limit of various discrete “height-function” models, such as the

dimer model, and is also a centrally important object in quantum field theory.
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Motivated by non-rigorous constructions in the physics literature, one would like

to define a random “Liouville quantum gravity” surface from a Gaussian free field

h, roughly, by taking it to have Riemannian metric tensor equal to eγh dz. In fact,

the Gaussian free field is too rough to be defined pointwise, so to define these things

rigorously is a non-trivial task. Nevertheless, remarkable progress has been made

recently by Miller and Sheffield, who are able to define a metric on the sphere using

the GFF, and also connect it to the Brownian map [MS15a, MS15b, MS16e].

The final object that will be considered in this thesis is Aldous’ continuum

random tree [Ald91]. This is a random metric space that again arises as the scaling

limit of various critical models. As an example, take the Galton–Watson tree: a

simple and classical model associated with many natural biological processes. It has

been proved [Ald93, LGD02, Mie08], that if one takes a critical (multitype) Galton–

Watson tree and conditions it to be large in some sense, then it will converge after

rescaling to the Brownian CRT.

Theorem 1.3 (Convergence of critical (single-type) Galton–Watson trees). Suppose

that L is an offspring distribution with E[L] = 1 and E[L2] = σ2. Let Tn be a sample

of the associated Galton–Watson tree, viewed as a random metric space with distance

dn, and conditioned to reach height n. Then

(Tn,
1

n
dn)

(d)−→ (Te, de)

with respect to the Gromov–Hausdorff topology as n → ∞, where (Te, de) is the

Brownian continuum random tree: the real tree encoded by a Brownian excursion e

conditioned to reach height 1.

In this thesis we will see another example, where the CRT appears as a scaling

limit for the genealogy of critical branching diffusions.

To conclude, we remark that one of the most fascinating things about this

collection of canonical objects, and indeed many others that have not been men-

tioned here, is the web of connections between them. For example, it turns out

that SLE curves actually appear as level lines and flow lines of the Gaussian free

field [Dub09, SS09, MS16a], and in another direction, [DMS12] proves that Liouville

quantum gravity can be constructed as a “mating” of two continuum random trees.

We will be particularly interested in exploring such connections here. Specifically,

we will look more closely at the relationship between SLE and the GFF in Chap-

ter 5, and at the relationship between branching processes and Liouville quantum

gravity in Chapter 4.
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1.2 Results and Outline

We begin, in Section 1.3, by giving a brief overview of the main objects appearing

in this thesis. This will include relevant definitions, results, and a little historical

context. We then conclude the introduction by mentioning a few open problems,

and discussing possible directions for future research.

In Chapter 2, we move on to our first main topic: invariance principles for branch-

ing diffusions in bounded domains. We consider branching diffusions in a bounded

domain D of Rd in which particles are killed upon hitting the boundary ∂D. It is

known [Sev58, Wat65] that such a process undergoes a phase transition when the

branching rate exceeds a critical value. We investigate the system at criticality, and

prove an asymptotic for the probability of survival up to large times. We show fur-

ther that the genealogical tree associated with such a critical process converges to

Aldous’ continuum random tree, under appropriate rescaling. This result holds un-

der only a mild assumption on the domain, and is valid for all branching mechanisms

with finite variance, and a general class of diffusions.

Next, in Chapter 3, we turn our attention to the theory of Gaussian multiplica-

tive chaos. This is the framework, developed by Kahane in the 1980s, that allows

one to rigorously define random measures of the form “eγh(z)− γ
2

2
var(h(z)) dz ”, when

γ > 0 is a parameter and h is a rough Gaussian field. It turns out that at a critical

value γ =
√

2d, where d is the dimension of the underlying space, the usual con-

struction of these measures yields something degenerate. Our main result in this

chapter is that, if we approximate the field h by convolving with a mollifier, and

use a “derivative” renormalisation at criticality (formally, taking the derivative of

the subcritical measures in γ and evaluating at γ = 2), we can obtain a non-trivial

limit measure.

One of the fields covered by this result is the 2-dimensional Gaussian free field. As

discussed in the Section 1.1, the chaos measure in this case (known as the Liouville

measure) is of particular interest. In Chapter 4, we give an alternative construction

of this measure, that is inspired by the theory of branching random walks and

multiplicative cascades. We prove that the Liouville measure can be approximated,

including at criticality, using certain sequence of “local sets” for the Gaussian free

field. This is in an extremely simple and natural construction, as it is defined entirely

using the local geometry of the field (in particular, not using any Gaussian process

machinery). It also resolves a conjecture of Aı̈dekon, [Aid15].

Finally, in Chapter 5 we study in more detail the “level line” coupling [SS09]

between SLE4 and the Gaussian free field. We generalise the existing theory by

considering a free field with general boundary data F , rather than the specific
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examples of boundary data that had been considered before. We show that the level

lines of this field exist as continuous curves, under only the assumption that F is

regulated (i.e., admits finite left and right limits at every point), and satisfies certain

inequalities. Moreover, we show that these level lines are almost surely determined

by the field. This allows us to define and study a generalization of the SLE4(ρ)

process, now with a continuum of force points. A crucial ingredient is a monotonicity

property in terms of the boundary data which strengthens a result of Miller and

Sheffield [MS16a] and is also of independent interest.

Chapter 5 is joint work with Hao Wu from the University of Geneva and Chap-

ter 4 was completed in collaboration with Juhan Aru and Avelio Sepúlveda from

ETH Zürich. The work in Chapter 5 is based on the accepted paper [PW17], and

the work in Chapters 2, 3 and 4 are based on the preprints [Pow17b],[Pow17a]

and [APS17]. All of this work was supported by the UK Engineering and Physi-

cal Sciences Research Council (EPSRC) grant EP/H023348/1 for the University of

Cambridge Centre for Doctoral Training, the Cambridge Centre for Analysis.

1.3 Preliminaries

We will now discuss in a little more detail some of the main objects that we will be

concerned with.

1.3.1 Brownian Motion

As discussed in the introduction, Brownian motion plays a central role in our un-

derstanding of physical systems. It is a canonical object to study for probabilists,

since it arises from the most simple model of motion: the random walk. Indeed,

Donsker’s invariance principle (see for example [MP10]), tells us that any unbiased

random walk will converge after rescaling to a Brownian motion.

We will briefly recall here some basic properties of Brownian motion, but this is

by no means a complete survey. For a more detailed introduction see, for example,

[MP10].

Brownian motion can be characterised in many different ways, but we will use

the following definition:

Definition 1.4 (Brownian Motion). Let (Bt)t≥0 be a continuous random process in

Rd starting from 0. If (Bt)t≥0 is a zero-mean Gaussian process with

E[BsBt] = s ∧ t

for all s, t ≥ 0, then we say that (Bt)t≥0 is a Brownian motion.
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Figure 2: A one-dimensional Brownian motion.

Remark 1.5. To start a Brownian motion at a position x other than 0, as we will

often want to do, we simply consider the process x+Bt, where Bt is as in Definition

1.4.

One of the most important properties of Brownian motion is the following

Markov property. It says that if one stops a Brownian motion at any given time

t, its evolution from time t onwards will simply be that of another Brownian mo-

tion, starting from Bt, but otherwise completely independent of what happened

before. We write (FBs )s≥0 for the filtration generated by (Bs)s≥0.

Lemma 1.6 (Weak Markov Property). For any s ≥ 0, the process (Bt+s − Bs)t≥0

is a standard Brownian motion, independent of FBs .

In fact, this property does not only hold at deterministic times. To describe this

phenomena we need the notion of stopping times.

Definition 1.7 (Stopping times). A random variable T defined on the same prob-

ability space (Ω,F ,P) as a Brownian motion (Bt)t≥0 is a stopping time for the

Brownian motion if, for all t ≥ 0,

{T ≤ t} ∈ FBt .

These times are precisely those at which we have a stronger version of Lemma

1.6. For T and B as above, we define the stopped σ-algebra by setting

FBT = {A ∈ F : A ∩ {T ≤ t} ∈ FBt ∀t ≥ 0.}

Lemma 1.8 (Strong Markov Property). Let B be a standard Brownian motion and

T be a stopping time for B which is almost surely finite. Then the process

(Bt+T −BT )t≥0

is a standard Brownian motion, independent of FBT .
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A variant of Brownian motion that will be relevant to what comes next is the

Brownian Bridge. This is a Brownian motion on some interval of time, let’s say

[0, 1], that is conditioned to start and end at 0. Although this is an event of proba-

bility zero, one can make sense of this conditioning, and obtain a process which is

characterised as follows.

Definition 1.9 (Brownian Bridge). Let (Wt)t∈[0,1] be a continuous Gaussian process

with

• W0 = W1 = 0 almost surely.

• E[Wt] = 0 ∀t and

• cov(Ws,Wt) = s ∧ t− st for all s, t ≥ 0.

Then we say that W is a Brownian bridge on [0, 1].

We conclude this section by mentioning a very special property of Brownian

motion in two dimensions. This is the property of conformal invariance. We will see

it appearing again and again in the following sections, and it will play a central role

in this thesis. To define it, we need the following fundamental theorem:

Theorem 1.10 (Riemann Mapping Theorem). Let D be the open unit disc and

D ⊂ C be any proper, simply connected domain. Then there exists a conformal

isomorphism Φ : D → D. That is a bijection Φ such that Φ and Φ−1 are holomorphic

with non-vanishing derivative.

Lemma 1.11 (Conformal Invariance of Brownian Motion). Let D and D′ be sim-

ply connected complex domains and let B,B′ be Brownian motions in D and D′

respectively, starting at z, z′ and stopped upon leaving D, D′. Let Φ : D → D′ be a

conformal isomorphism. Then Φ(B) and B′ have the same law, up to a time change.

1.3.2 Gaussian free field

The planar Gaussian free field (GFF) is another canonical, conformally invariant

object in two dimensions. In fact, we will see that it is the natural generalisation

of Brownian motion, or more specifically, the Brownian bridge, to two-dimensional

time. This section will mainly follow the approach taken in [Ber15b]. We refer the

reader to these excellent notes for further details and proofs, as well as to [She07]

and [Wer].

We will begin by briefly discussing the discrete counterpart of the GFF, the

Discrete Gaussian free field, in order to get some intuition. Take a finite graph

G = (V,E) with a special set of boundary edges ∂, and let Xn be a random walk

on G. Write Px for the law of Xn, when it is started from position x ∈ V.
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Definition 1.12 (Discrete Green Function). The discrete Green function G(x, y)

is defined, for x, y ∈ V by

G(x, y) :=
1

d(y)
Ex

( ∞∑
n=0

1{Xn=y;τ>n}

)

where τ is the first time that Xn hits ∂.

We then define the Discrete GFF on G in a very simple way. Let

V = {x1, · · · , xn}.

Definition 1.13 (Discrete GFF). The Discrete GFF is the centered Gaussian vector

(h(xi))1≤i≤n on V , with covariances given by the discrete Green function.

Figure 3: A simulation of the discrete GFF (extended as a continuous function).

From this definition, one can in fact prove that the density of h with respect to∏
dxi takes a very special form. It is proportional to

exp

−1

4

∑
x,y∈V :x∼y

(h(x)− h(y))2


where the term

∑
x,y∈V :x∼y(h(x)− h(y))2 is what is known as the Dirichlet energy

of h: an energy that is minimised by harmonic functions. Thus, the DGFF can be

considered a natural pertubation of harmonic functions, just as the random walk,

or Brownian motion, can be considered a perturbation of linear ones.

We would like the continuum Gaussian free field to also be such a perturbation.

Unfortunately, it turns out that in this case, as we will discuss shortly, it cannot

even be defined as a function! With this in mind, perhaps the simplest way to think

of the GFF is as a limit of discrete Gaussian fields, in the same way that Brownian

motion is often thought of as the limit of random walks. Indeed, one can define it in

this way, and this is useful to bear in mind. However, we will approach things more

directly.
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To do this, we first need an analogue of the discrete Green function. Let D ⊂ C
be a bounded domain, and let pD(t, x, y) be the transition density 1 for a Brownian

motion killed when leaving D.

Definition 1.14 (Continuum Green Function). We define the Green function on

D by

GD(x, y) :=

∫ ∞
0

pD(t, x, y) dt

Similarly to Definition 1.13, we would like to define the continuum GFF to be the

centered Gaussian function with covariances given by the Green function. However,

there is now a problem, as the Green function is not actually well defined. In fact,

it can be characterised as the only function in D that blows up logarithmically on

the diagonal and is harmonic away from it. 2

Although this singularity prevents us from defining the GFF pointwise, we can

still define it in other ways. One approach, using the Kolmogorov extension theorem,

is to define it as functional acting on the set

M := {ρ = ρ+ − ρ− s.t.

∫
D2

ρ±(x)ρ±(y)GD(x, y) dxdy <∞}

of signed measures with finite Green energy. We can think of this action as “inte-

grating” the GFF against these measures (which will make more sense in light of

the following discussion, see Lemma 1.17.)

Definition 1.15 (Gaussian free field zero boundary conditions [Ber15a]). There

exists a unique stochastic process (hρ)ρ∈M indexed by M such that for every

ρ1, · · · , ρn ∈M
(hρ1 , · · ·hρn)

is a centered Gaussian vector with

cov(hρi , hρj ) =

∫
D2

GD(x, y)ρi(x)ρj(y) dxdy.

Remark 1.16. Recall Definition 1.9 of the Brownian bridge: it is the unique cen-

tered Gaussian process on [0, 1] with covariances given by the function G(s, t) =

s ∧ t− st. In fact, this function G is exactly the Green function on [0, 1].

1That is, pD(t, x, y) = p(t, x, y)Pt
x,y(Ws ∈ D ∀s ∈ [0, t]), where p(t, x, y) = (2πt)−1 exp(−|x− y|2/2t)

is the transition density for Brownian motion in Rd and Pt
x,y is the law of a Brownian bridge from x to

y on [0, t].
2More precisely, it is the only function such that GD(x, y) = − log(|x− y|) +O(1) as y → x, ∀x ∈ D

and ∆GD(x, ·) = −2πδx(·) as a distribution.
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We can intepret the above as saying that the GFF has “covariances given by the

Greens’ function”. But how does the definition fit in with our intuition in terms of

Dirichlet energy? This can be made clearer with an alternative approach.

It turns out that one can also view the GFF as a random distribution. That is,

as a continuous linear map D(D)→ R, where D(D) is the set of smooth, compactly

supported functions in D. 3 We denote the set of distributions by D′(D), and endow

it with the weak-* topology.

Define the Sobolev space H1
0 (D) to be the Hilbert space completion of D(D)

with respect to the Dirichlet inner product :

(f, g)∇ :=

∫
D
∇f · ∇g.

Let (fn)n≥1 be an orthonormal basis of H1
0 (D) and let (αn)n≥1 be a collection of i.i.d

N(0, 1) random variables. Then we can also construct the GFF using the following

approximation:

Lemma 1.17. Set

hn :=
n∑
i=1

αifi.

This sum converges almost surely in the space of distributions (in fact, in the

Sobolev space H−ε0 (D) for any ε > 0). Moreover, the limit agrees in distribution

with the process h from Definition 1.15, when it is restricted to D(D).

Figure 4: A simulation of the discrete GFF using a lot of terms.

Remark 1.18. In fact, a density argument can be used to show that the above

definition extends directly to give a process satisfying Definition 1.15 (see [Ber15b,

Theorem 1.16]). With this in mind, we write (h, ρ) for hρ in Definition 1.15, as is

standard for distributions.

3We use the topology on D(D) which is defined by saying that a sequence fn → 0 if there exists a
compact K ⊂ D supporting all the fn, and such that fn and f ′n converge uniformly to 0 on D.
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Note that for any distribution f in D′(D), and function g ∈ D(D), one can

define the Dirichlet inner product (f, g)∇ using the definition of the distributional

derivative. This definition is just the natural extension of the Gauss–Green for-

mula (integration by parts), and so we have that (f, g)∇ = −(f,∆g). Thus, for the

Gaussian free field, whenever g is such that −∆g = ρ ∈M we set

(h, g)∇ := (h, ρ).

This is then a Gaussian random variable with mean 0, and variance (g, g)∇.

We should also point out that, in all of the above, we have been considering

a Gaussian free field with zero boundary conditions. In fact, we will often want

to work in a more general setting, where we allow it to have non-zero mean. The

way we do this is simply to add on a deterministic harmonic function to the field.

This harmonic function will be referred to as the mean of the distribution, and its

restriction to the boundary will be referred to as its boundary conditions.

Now we will review some of the key properties of the Gaussian free field. The

first is conformal invariance, and follows directly from the corresponding conformal

invariance of the Green function (which in turn follows from the conformal invariance

of Brownian motion, Lemma 1.11.)

Lemma 1.19 (Conformal Invariance of the GFF). Let h be a Gaussian free field in

D, and φ : D → D′ be a conformal map. Then h · φ−1 has the law of a GFF on D′.

The second is a spatial Markov property. See [Ber15b, Theorem 1.17] for a proof.

Lemma 1.20 (Weak Markov Property for the GFF). Take a deterministic closed

set A ⊂ D and let h be a GFF with zero boundary conditions on D. Then we can

write h = hA + hA where

• hA is a random distribution that is a harmonic function when restricted to

D \A;

• hA is a zero-boundary GFF in D \A; and

• hA, hA are independent.

Note the analogy between this Lemma, and Lemma 1.6. The latter says that a

Brownian motion can be written, from any fixed time t onwards, as a sum of two

parts: Bt, plus another independent Brownian motion. The above Lemma says that

a Gaussian free field can be written, in any fixed open set, as a sum of two parts:

a harmonic function, plus another independent Gaussian free field. It is therefore

perhaps not particularly surprising that there is also a strong Markov property for

the Gaussian free field. This is described by the notion of a local set.
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D

A ⊂ D closed

h|D\A = hA + hA

h|A

Figure 5: Weak Markov property for the GFF.

Definition 1.21 (Local sets, Strong Markov Property). Take a (now possibly ran-

dom) relatively closed set A ⊂ D and let h be a GFF with zero boundary conditions

on D. We say that A is a local set for h if there exists a distribution hA, that is

harmonic when restricted to D\A, and is such that, conditionally on A, hA = h−hA
is a zero-boundary Gaussian free field in D \A.

D

h|D\A = hA + hA

A ⊂ D: local seth|A

Figure 6: Strong Markov Property for the GFF.

These sets are exactly analogous to stopping times for Brownian motion - they

are random “stopping” sets at which a strong Markov property holds. One can

even draw stronger analogies between particular types of local sets for the GFF and

stopping times for Brownian motion. For examples of this, see [ASW15]. Local sets

will play an important role in two of the papers included in this thesis, and we will

see many natural, non-deterministic examples later on.

One final thing that we will discuss here is the so-called circle average process of

the free field. This will be important in the following sections, as it is particularly

useful way of approximating the field. Essentially we approximate the value of the

Gaussian free field h at a point z by taking its average on smaller and smaller circles

around z. That is, we define hε(z) := (h, ρzε). where ρzε is the uniform measure on

the circle of radius ε around z, and let ε → 0. One can prove (see [DS11, Propn

3.1]) that a modification of h exists for which this process is jointly Hölder in z and

ε. In fact (for fixed z) it has the same law as a Brownian motion.
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Lemma 1.22. Fix z ∈ D let hε(z) be defined as above, for ε ≤ ε0 < dist(z, ∂D).

Then

(he−t(z))t≥log(1/ε0)

is a Brownian motion started from he− log(1/ε0)(z).

1.3.3 Gaussian multiplicative chaos

Gaussian multiplicative chaos theory was introduced by Kahane [Kah85] in the

1980s in order to rigorously define measures of the form

µγ(dz) = eγh(z) dz

where h is a rough Gaussian field and γ > 0 is a parameter. Although Kahane’s

original construction of these measures was restricted to a special class of fields h

(having so called σ-positive kernels) it has since been extended (at least for some

values of γ) to general log-correlated fields [Ber15a, RV10]. By a log-correlated field

we mean a Gaussian field h defined as in Definition 1.15, but with the Green function

GD replaced by another non-negative definite kernel K satisfying

K(x, y) = − log |x− y|+ O(1) asx→ y.

The basic idea to construct the measures µγ , is to approximate the field h using

a sequence of smooth fields. A natural way to do this is to convolve h with a

mollifying measure θ, supported in a compact set and with total mass 1. This yields

the approximations

hε(z) := h ? θε(z) = (θz,ε, h)

for ε > 0, where θε is the image of the measure θ under the map x 7→ εx, and θε,z

is the image of θε under the map x 7→ x+ z. Then one can define the approximate

measures

µγε := eγhε(z) E[eγhε(z)]−1

and try to take a limit as ε→ 0. Note that for each z, the process eγhε(z) E[eγhε(z)]−1

is a martingale. We have the following result.

Theorem 1.23 ([Ber15a, RV10]). Let h be a log-correlated field and θ a measure

supported in B(0, 1), with total mass 1 and satisfying
∫

log(1/|w− v|)θ(dw) = O(1)

uniformly in v ∈ B(0, 5). Then for γ <
√

2d, µγε converges weakly in probability to a

random measure µγ as ε → 0. Moreover, µγ a.s. has no atoms, µγ(A) > 0 for any

A ⊂ D open, and µγ does not depend on the choice of mollifier θ.
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Remark 1.24. This includes the case when h is the 2d-GFF in a domain D and θ

is uniform measure on the unit circle. In Chapter 4, based on [APS17], we will give

an alternative construction of this measure using only the local geometry of the field

and its local sets.

Note that this theorem only holds for γ <
√

2d. Indeed, it is known [RV10], that

the measures µγε converge to the 0 measure almost surely if γ ≥
√

2d. Therefore, to

define something non-trivial in the critical (γ =
√

2d) and supercritical (γ >
√

2d)

cases, it is necessary to give an extra push as to the measures ε → 0. That is, to

make an additional renormalisation. These cases turn out to be much more tricky

to deal with than the subcritical case. One of the main reasons for this is that the

µγε mass of a fixed set is no longer uniformly integrable, meaning that existence of

a limit is much harder to show.

We first discuss the critical case. In analogy to the corresponding results for

Gaussian multiplicative cascades (a discrete counterpart of Gaussian multiplicative

chaos related to the branching random walk, see Section 1.3.5) we expect to be able

to renormalise at criticality and obtain a non-trivial limit measure in two different

ways:

(1) by instead considering
√

log(1/ε)µ
√

2d
ε or

(2) by taking the derivative measures Dε(dz) := d
dγµ

γ
ε (dz)|γ=

√
2d.

The first is a deterministic renormalisation, known as the Seneta–Heyde rescal-

ing, and has the advantage of yielding a sequence of positive approximating mea-

sures. The downside, however, is that
√

log(1/ε) eγhε(z) E[eγhε(z)]−1 is no longer a

martingale for each z. On the other hand, the derivative, random, renormalisation

preserves the martingale property. The drawback here is that it gives only a sequence

of signed measures.

Both problems are reasonably difficult to get around. However, in [DRSV14a,

DRSV14b] the authors considered a special class of fields h, with so-called ?-scale

invariant kernels, and used a different sequence of “cut-off” approximations to the

field to define the critical chaos measures. In this specific set-up, they were able to

show that both sequences (1) and (2) yield a non-trivial limiting measure, and in

fact, they are the same up to a constant.

Theorem 1.25. Suppose h has a ?-scale invariant kernel K(x, y) =
∫∞

1 k(u|x −
y|)/u dx, and the approximate fields hε have kernels given by

Kε(x, y) :=

∫ 1/ε

1

k(u|x− y|)
u

du.

21



Then the two sequences of approximating measures (1) and (2) converge to the same

limiting measure, up to a constant
√

2/π - the limit of (1) is
√

2/π times the limit

of (2).

They also extended the above result to cut-off approximations for the 2d-GFF,

which does not quite fit into the ?-scale invariant framework.

However, these approximations do not correspond to convolving the field with

a mollifier. To complete the picture at criticality therefore, it remains to show that

(1) and (2) yield (the same) limiting measure when h is a general log-correlated

field and hε is a convolution approximation.

This was done for (1) when h has ?-scale invariant kernel by Junnila and Saksman

[JS17], and also when h is the 2d-GFF [JS17, HRV15]. The corresponding result (2)

is the main result of [Pow17a] (and Chapter 3.)

In the supercritical case (γ >
√

2d) less is known, but there are still alternative

constructions that should lead to non-trivial chaos measures. We refer the reader to

the survey [RV14] for a discussion of what is expected from the physics literature,

and of recent mathematical progress (see in particular Section 6.2.)

1.3.4 Liouville quantum gravity

Liouville quantum gravity is a canonical model of a random Riemannian surface, first

studied by physicists in the 1980’s [Pol81a, Pol81b]. It was introduced to extend the

notion of Feynman path integrals (closely related to Brownian motion) to Feynman

integrals over surfaces. Näıvely, one would like to define a Liouville quantum gravity

surface as the Riemannian surface with metric tensor given by

eγh(z) dz

where γ > 0 is a real parameter, and h is an instance of the Gaussian free field. This

would result in a random surface, parameterised by say, the sphere, in which areas

where h is large correspond to those with large area, and areas where h is small

correspond to those with small area.

Note the connection with the chaos measures µγ described in the previous sec-

tion. The difference is that here we want to define a random surface (as a metric

space, together with a conformal structure) rather than just a volume measure. It

turns out that this is a much more difficult problem.

Connection to the Brownian map. As discussed in Section 1.1, another approach to

LQG is to consider the scaling limit of certain sequences of random planar maps.

This yields a random metric space, known as the Brownian map, by the work of
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Le Gall [LG13] and Miermont [Mie13]: see Theorem 1.2. This metric space has the

topology of the sphere, but comes without any canonical conformal embedding. So,

on one hand we have a metric space with no conformal structure, and on the other,

we have a conformal structure with no metric. It has long been conjectured that

these two objects should be closely related in the case when γ =
√

8/3, known as

pure gravity. Moving forward, however, has proved extremely difficult.

Figure 7: A Random Planar Map (Simulation by Nicolas Curien).

Despite the difficulties presented by this problem, Miller and Sheffield [MS15a,

MS15b, MS16e] have recently found a way to connect the two. Using a random

growth process called QLE they are able to put a metric on
√

8/3-Liouville quantum

gravity which agrees in law with the Brownian map. Conversely, they can show that

the Brownian map comes almost surely with a canonical conformal structure, and

that the resulting conformal sphere (equipped with a measure) agrees in law with√
8/3-Liouville quantum gravity. This represents an enormous breakthrough in our

understanding of these random surfaces.

1.3.5 Branching Brownian motion and connections with Gaussian

multiplicative chaos.

In this section, we will provide a (very) brief introduction to branching Brownian

motion. This will not only be the central object of study in Chapter 2, but is also

linked to the theory of Gaussian multiplicative chaos. The process in the simplest

case (binary branching) is defined as follows:

Definition 1.26 (Branching Brownian Motion). We start, at time 0, with a single

particle at position x ∈ Rd.
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• This particle moves according the law of a Brownian motion in Rd.

• After an Exp(β)-distributed waiting time, independent of the motion, the par-

ticle splits into two.

• Each offspring particle repeats stochastically the behaviour of the initial parti-

cle, starting from the point of fission, and independently of one another.

Figure 8: A Branching Brownian Motion (simulation by Matt Roberts).

This definition can be extended, as will be done in Chapter 2, to more general

branching mechanisms and individual particle motions. Here we will study the be-

haviour of the process when we introduce a bounded domain to the model, and kill

particles upon hitting the boundary. It turns out that doing this induces a phase

transition in the system, and we will study what happens at criticality. However,

we will not discuss this further until Section 1.3.8, and leave the precise definitions

to Chapter 2.

One crucial tool in Chapter 2 will be to make us of an certain martingale asso-

ciated with the process.

Lemma 1.27 (The Exponential Martingale). Let (X1
t , · · · , XNt

t ) denote the posi-

tions of particles in a branching Brownian motion (in the whole of Rd) at time t.

Then for λ ∈ R the process

Wλ(t) :=

Nt∑
i=1

eλX
i
t+(λ2/2−β)t

is a martingale.

Now, the discrete time counterpart of BBM, the branching random walk, turns

out to be closely related to Gaussian multiplicative chaos. Indeed, the branching
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Figure 9: Branching Brownian Motion in a bounded domain (simulation by Henry Jack-
son).

random walk gives rise to a very similar construction of measures - known as mul-

tiplicative cascades.

To illustrate this, let us describe multiplicative cascade measures on the interval

[0,1]. Denote the dyadic subintervals of [0, 1] by In = {[k/2n, (k + 1)/2n] : 0 ≤ k ≤
2n− 1} and let I = ∪nIn. Take W > 0 any random variable with mean one and let

(WI)I∈I be independent copies of W . Then we can define a sequences of measures

on ([0, 1],B) inductively, by setting µ0 to be Lebesgue measure and defining

µn+1 =
∑
I∈In

WI · µn|I

for each n ≥ 0. The following result is originally due to Kahane and Peyrière [KP76].

Theorem 1.28. Define µn as above. Then

• µn → µ a.s. for some limiting measure µ (in the sense of weak convergence of

measures.)

• If in addition E[W log2W ] < 1, then µ([0, 1]) > 0 almost surely and µ almost

surely has no atoms.

Note the similarity to Theorem 1.23.

We can alternatively use the random variable W to define a branching random

walk in the following way. Begin at time 0 with one particle (at 0) and after the first

discrete time step, let this particle branch into two. Let each of the children of the

initial particle be displaced from 0 (the position of their parent) by an independent

random variable with law log(W ). Repeat the procedure. It is not hard to see that
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the exponential martingale associated with this process (as in Lemma 1.27, when

λ = 1) has exactly the same law as µn([0, 1]). Thus, the theory of multiplicative

cascades boils down to the theory of exponential martingales for the branching

random walk (see for example, [BK77, Kyp00, Lyo97]).

In a similar fashion, many classical techniques from the theory of branching

processes can be adapted to prove results about Gaussian multiplicative chaos. This

is due to the fact that the circle average process of a GFF is in fact closely linked

with branching Brownian motion. We saw in Lemma 3.12 that the circle average

process around a single point z ∈ D is a Brownian motion. However, there is also an

underlying branching structure. Roughly speaking, if one takes the circle averages

around two different points z and w, they will be the same until the circles become

disjoint, and then will move independently. For a rigorous statement along these

lines see [DRSV14b, Appendix A].

We will see more connections between branching processes and LQG measures

in Chapter 4. In fact, our construction of the Liouville measure using local sets

is simply an analogue of the fact that branching random walk martingales also

converge along certain random time sets known as stopping lines [BK04].

1.3.6 Schramm–Loewner evolutions

The aim of this section will be to give a brief introduction to the theory of Schramm–

Loewner evolutions (SLE). These are a family of random fractal curves in the plane,

that were introduced by Oded Schramm [Sch00] as the only possible candidates for

the scaling limits of certain interfaces in discrete lattice models. Schramm realised

that any such scaling limits would have to satisfy two defining properties (conformal

invariance and a certain spatial Markov property) and was able to classify the range

of possibilities as a one-parameter family.

As an example, let us consider percolation in the triangular lattice. Place a

triangular lattice of mesh size δ on the upper half plane H = {z ∈ C : Im(z) > 0}
and colour the sites of the lattice black or white with probability p, independently of

one another. This model displays a phase transition when p = 1/2; it is the largest

value of p for which all the monochromatic clusters have finite size almost surely.

As with many such models, the system displays interesting behaviour at criticality.

One natural thing to consider is the collection of interfaces between monochro-

matic clusters, which results in a collection of discrete loops. In fact, this is rather

complicated to study, and so in order to simplify things we introduce some boundary

conditions. We insist that all vertices in the lattice lying the negative real line are

coloured black (we assume that the lattice has been placed such that ±δ/2 are lattice
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points and 0 is not), and that all lattice points on the positive real line are coloured

white. This induces a single interface, from the origin to∞, that keeps black vertices

on its left, and white vertices on its right. It is known as the exploration process for

percolation.

The problem is to describe what happens to this exploration interface as the mesh

size of the lattice goes to 0. It was proved by Smirnov [Smi01] that the interface

converges to a continuous curve known as SLE6. The fact that the scaling limit

must be given by this curve is a consequence of properties of the discrete interfaces

(conformal invariance, and a “domain Markov” property) that should be preserved

in the continuum.

To define the SLE curves, we will need a few tools from complex analysis. For

more details we refer the reader to the classical textbook [Law05] or to the lecture

notes [BN], where one can also find proofs of all the results.

Complex H-hulls A complex domain D ⊂ C is a non-empty connected open subset

of the complex plane. We say that D is simply connected if C \ D is connected in

C ∪ ∞. As we saw in Section 1.3.1, such domains are connected by a powerful

theorem, the Riemann Mapping Theorem. This says that given any two simply

connected domains we can choose a conformal isomorphism mapping one to the

other.

We say that K ⊂ H is a complex H-hull if K is bounded and H := H \K is a

simply connected domain. This means that K is connected to the real line, and H is

a neighbourhood of ∞ in H. For any such hull, we know by the Riemann Mapping

Theorem that there must exist a conformal isomorphism gK : H → H. Moreover,

we can fix this isomorphism by requiring it to have a certain “hydrodynamic nor-

malisation” at ∞. That is, we define gK to be the unique conformal isomorphism

from H → H, such that gK(z) − z → 0 as z → ∞. One can prove that, given this

choice of gK , we have the expansion

gK(z) = z +
aK
z

+O(|z|−2)

as z →∞, where aK ≥ 0 is a real constant.

Definition 1.29 (Half-plane capacity). This constant aK is known as the half plane

capacity of K and denoted by hcap(K).

In some sense, the half-plane capacity measures the size of the hull K, when

“viewed from infinity”. Indeed, one can prove that

hcap(K) = lim
y→∞

yEiy[Im(BT )]
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where B is a Brownian motion started at iy and T is the time that it leaves the

domain H. In particular, the half plane capacity increases as a hull increases: if

K ⊂ K ′ are two complex H-hulls, then hcap(K) ≤ hcap(K ′).

Loewner Chains

Definition 1.30 (Loewner Chain). A Loewner chain is a family (Kt)t≥0 of complex

H-hulls satisfying the following two properties:

• Kt is increasing: Ks ≤ Kt for s ≤ t, and

• Kt satisfies the following local growth property: for any T ≥ 0

sup
s,t∈[0,T ],|s−t|≤h

rad (gKs(Kt \Ks))→ 0 as h→ 0

where rad(K) is the radius of the smallest semicircle that can be placed on the

real line to completely encapsulate K.

Ks

Kt \Ks

gKs

gKs(Kt \Ks)

For any such family one can prove that, for all t ≥ 0, there exists a unique

ξt ∈ C with ξt ∈ gKt(Kt+h \Kt). This process (ξt)t≥0 turns out to be a continuous,

real-valued function of time, and is known as the Loewner transform of the chain,

or the driving function.

Another thing to point out is here (which of course requires some complex anal-

ysis to prove) is that the map t 7→ hcap(Kt) induces a homeomorphism of [0,∞).

Thus, we may assume (by reparameterisation) that

hcap(t) = 2t ∀t ≥ 0

whenever we are considering a Loewner chain.

The observation of Loewner was that continuous driving functions ξt and

Loewner chains Kt are in fact in one-to-one correspondence. Moreover, they are

connected, together with the sequence of maps gt : H \ Kt → H, by a certain

differential equation.
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Theorem 1.31 (Loewner’s Theorem). Let (ξt)t≥0 be a continuous real valued func-

tion and for each z ∈ H let gt(z) be the maximal solution to the Loewner equation

∂gt(z)

∂t
=

2

gt(z)− ξt
, g0(z) = z

which exists on some time interval [0, ζ(z)] by classical ODE theory. Let Kt = {z ∈
H : ζ(z) ≤ t}.

Then (Kt)t≥0 is a Loewner chain, parameterised so that hcap(Kt) = 2t, and with

driving function ξt. Moreover, gt is the unique sequence of maps H \Kt → H with

the hydrodynamic normalisation at ∞.

Remark 1.32. • The time, ζ(z), when the solution to the Loewner equation for

gt(z) fails to exist, is the time that the growing hull Kt “swallows” the point

z.

• One can prove that continuous curves (γt)t≥0 in H which do not cross them-

selves and have |γt| → ∞ as t → ∞ are examples of Loewner chains. In this

case the map gt sends the tip of the curve, γt, to the point ξt (where gt is

extended by continuity.)

Chordal SLE We are now ready to define Schramm–Loewner evolutions.

Definition 1.33 (Chordal SLE in H from 0→∞). For κ > 0, SLEκ in H from 0

to ∞ is defined to be the Loewner chain driven by ξt =
√
κBt where Bt is a standard

Brownian motion.

Not all Loewner chains are generated by curves in the sense of Remark 1.32.

Hence the obvious question: is SLE? This was answered by Rohde and Schramm

for κ 6= 8 in their seminal work [RS05] on SLE. It was later completed for the case

κ = 8 by Lawler, Schramm and Werner, [LSW04].

Theorem 1.34 (Rohde–Schramm, Lawler–Schramm–Werner). For every κ > 0,

SLEκ is generated by a a random continuous curve γ.

Thus, SLE are random curves driven by Brownian motion. Intuitively, one can

think of SLE as random curves travelling from 0 to ∞ which change direction

whenever an underlying Brownian motion increases or decreases.

One of the first things to note about SLE is that, due to the scaling property

of Brownian motion (Bt has the same law as
√
tB1 for any t), SLE is itself scale

invariant. That is, for any r ≥ 0 if (γt)t≥0 is an SLEκ process, then the rescaled

process (r−1/2γrt)t≥0 also has the law of an SLEκ.

29



Figure 10: SLE4 (Simulation by Tom Kennedy).

This says that SLE is invariant under conformal maps of H that fix 0 and ∞
(indeed scaling maps represent all such maps.) This allows us to define SLE, by

conformal invariance, in any simply connected domain and between any two marked

boundary points.

Definition 1.35 (Chordal SLE). SLEκ is a collection (µD,a,b) of laws on continuous

curves, indexed by triples (D, a, b) where D is a simply connected domain and a and

b are two marked boundary points. The law µH,0,∞ is that given by Definition 1.33.

For any other triple (D, a, b), µD,a,b is defined to be the image of µH,0,∞ under the

(unique) conformal isomorphism sending H to D, 0 to a and ∞ to b.

Chordal SLE defined in this way is therefore a conformally invariant process, in

the following sense. Take an SLEκ curve γ, in a domain D from a to b, and apply

a conformal map ϕ : D → D′ that sends a to a′ and b to b′. Then ϕ(γ) has the law

of an SLEκ in D′ from a′ to b′.

The other characteristic property of SLE is the following:

Definition 1.36 (Domain Markov Property). Suppose that γ is an SLEκ in D

from a to b (that is, γ has the law µD,a,b) and that τ is a stopping time for γ.

Then, conditionally, on γ[0, τ ], the remainder of the curve γ[τ,∞) has law given by

µD\γ[0,τ ],γ(τ),b. This is the domain Markov property of (µD,a,b).

In fact, it was proved by Schramm [Sch00] that these two properties completely

characterise SLE. This is what makes them the only possible candidates for certain

scaling limits of discrete models.

Proposition 1.37 (Characterisation of SLE, [Sch00]). Suppose that (µD,a,b) is a

family of laws on continuous curves (indexed by triples as in Definition 1.35) that is

conformally invariant and satisfies the domain Markov property. Then there exists

κ > 0 such that (µD,a,b) is chordal SLEκ.
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gτ

0 gτ(γ(τ ))

Figure 11: Domain Markov Property of SLE.

The behaviour of SLEκ paths, of course, depends on the value of κ. Indeed, the

paths should arise from physical models lying in different, so-called, universality

classes. It turns out that the behaviour can be classified in to three distinct phases,

[RS05].

Theorem 1.38 (Rohde–Schramm). For different values of κ the behaviour of SLEκ

can be described as follows:

• For κ ≤ 4, γ is almost surely a simple curve, and γt ∈ H for all t > 0 (i.e. it

does not hit the real line);

• For κ ∈ (4, 8) γ has double points, and γ ∩ R 6= ∅;

• For κ ≥ 8, γ is almost surely a space filling curve. That is, γ[0,∞) = H.

Figure 12: SLE2, SLE4 and SLE6 from left to right (Simulations by Tom Kennedy).

Thus, κ = 4 and κ = 4 can be thought of as critical values for SLE. In Chapter

5 we will focus on a special connection with the Gaussian free field in the κ = 4

case.

One final thing to note about SLE, as is perhaps already visible from the pictures,

is that the curves generating them have Hausdorff dimension strictly bigger than

one. That is, they are fractal. The dimension of the SLEκ curves was computed by

Beffara [Bef08] and shown to be equal to min(2, 1 + κ
8 ).

Scaling Limits As we have already mentioned several times, the defining properties

of SLE mean that they are widely believed to be the scaling limits of a whole class of

interfaces in discrete lattice models. The continuous parameter κ should correspond
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to what physicists call the “universality class” of the discrete model, and is related

to the “central charge” c of conformal field theory via the relationship

c =
(8− 3κ)(κ− 6)

2κ
.

However, proving that these scaling limits exist is often extremely difficult, and

results that we have obtained so far have been much celebrated:

• SLE2 was proved by Lawler, Schramm and Werner [LSW04] to be the scaling

limit of the loop erased random walk (or equivalently, by Wilson’s algorithm,

the branches of the uniform spanning tree);

• SLE3 has been proved to be the limit of the interface between positive and

negative spins in the critical Ising model [CS12, CDCH+14];

• SLE4 corresponds to the “level lines” of the Gaussian free field [SS09, SS13];

• SLE16/3 has been proven to arise from the exploration interface in the critical

FK model [CS12, CDCH+14];

• SLE6 is the limit of the exploration path in critical percolation [CN07, Smi01];

and finally

• SLE8 can be shown to be the scaling limit of the path separating the uniform

spanning tree from its dual, [LSW04].

But there is much left to do. For example, when κ = 8/3, SLEκ satisfies a special

restriction property ([LSW03]) which leads us to believe that it should the scaling

limit of a model known as the self-avoiding random walk. This is one of many open

problems in this area.

SLEκ(ρ) processes. SLEκ(ρ) processes are a variant of SLEκ where the curves have

an additional attraction, or repulsion, from certain “force points” in the domain or

on its boundary. The vector ρ tells us how strong this attraction or repulsion is, and

in which direction. This is rigorously described by the addition of an extra drift term

in the differential equation defining their driving functions (they are still Loewner

chains, but now the driving function is the solution of an SDE related to Brownian

motion rather than Brownian motion itself.)

However, the new differential equations are somewhat more tricky to deal with.

It has only been shown recently, through a remarkable connection with the Gaussian

free field [MS16a, WW16], that the associated Loewner chains are actually generated

by continuous curves. In [PW17], which will make up Chapter 5, we generalise the

notion of SLE4(ρ) to a continuum of force points and show that this property still

holds.
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Conformal Loop Ensembles (CLE) Recall that in our earlier discussion of crit-

ical percolation, the most natural interfaces to look at were those separating all the

monochromatic clusters in the model. Instead of a single interface from 0 to ∞,

this produces a collection of loops in the upper half plane. It is believed that these

should converge, as the mesh size of the lattice goes to 0, to CLE.

CLEκ are collections of loops in complex domains (indexed by a real parameter

κ), that again satisfy conformal invariance and a specific form of spatial Markov

property. They were introduced by Sheffield and Werner [SW12], and can be defined

either using something known as a Brownian loop-soup, or by using a branching

variant of SLEκ(ρ) [She09]. This is why, locally, CLEκ loops look like SLEκ curves

(a fact that should not be surprising given the interpretation in terms of interfaces.)

Again, it is known that conformal loop ensembles arise as scaling limits in a

number of cases: κ = 3 corresponds to interfaces in the critical Ising model [CS12,

CDCH+14]; κ = 4 to contour lines of the Gaussian free field [MS11, ASW15]; κ =

16/3 to cluster interfaces in critical FK percolation [CS12, CDCH+14]; and κ = 6

to cluster interfaces for critical percolation on the triangular lattice [CN07, Smi01].

Once more, however, the theory is far from complete.

1.3.7 Connection between SLE and the GFF

Many intriguing connections between Schramm–Loewner evolutions and the Gaus-

sian free field have been uncovered in recent years. Although both are canonical,

conformally invariant objects in the plane, the link between them is subtle, and not

at all obvious.

The main connection we will focus on in this thesis, see Chapter 5 in particular,

is the interpretation of SLE curves as “level lines” or “flow lines” of the GFF [Dub09,

MS16a, SS09, SS13, WW16]. This was first studied by Schramm and Sheffield [SS09],

who proved the following. Take a discrete GFF on a lattice approximation to a

domain D ⊂ C (with certain specific boundary conditions) and extend it to a

continuous function on D. Then the zero level-line of this field (that is, the line

along which the field is equal to 0) converges in distribution, as the mesh size of the

lattice goes to 0, to an SLE4. Hence SLE4 is the scaling limit of level lines of the

discrete GFF.

The question follows: is it possible to make sense of SLE4 as a level line of the

continuum Gaussian free field? This was again answered by Schramm and Sheffield

[SS13]. The construction they came up with is this:

Theorem 1.39 (SLE4-GFF coupling). SLE4 and the GFF can be coupled as follows.

• Take an SLE4 γ in the upper half plane from 0 to ∞.
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Figure 13: A level line of the discrete GFF (from [SS09]). Different colours represent
varying height of the field.

• On either side of the curve γ sample an independent GFF. On the left with

boundary conditions −λ (recall, this means that we add on the constant func-

tion −λ to the field on the left) and on the right with boundary conditions +λ.

Here, λ = π
2 . 4

• The law of the resulting field (we can interpret it as a field on the whole of H,

since the SLE curve has Lebesgue measure 0) is just another GFF. Now it has

special boundary conditions given by the function F0 = −λ1(−∞,0) + λ1[0,∞)

on the real line (recall, this means that it has the law of a zero-boundary GFF

plus the harmonic extension of F0.)

The proof of this is by a relatively simple martingale argument, that we will

sketch below.

−λ λ

−λ λ
0

∞

Figure 14: Construction of the coupling.

Proof of Theorem 1.39. Let (γt)t≥0 be a SLE4 curve from 0 to ∞ in H, parame-

terised by half-plane capacity. By Theorem 1.38, we know that this is a continuous

curve which does not touch the boundary of H. Let ηt be the harmonic extension

in H \ γ[0, t] of the function on the boundary given by

• −λ on the left-hand side of γ[0, t] and R−, and

4However, in general its specific value depends on the choice of normalisation for the Green function,
and so it is usually better to leave it vague.
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• +λ on the right-hand side of γ[0, t] and R+,

as in Figure 15. Recall that gt, the unique conformal map H \ γ[0, t] → H with

−λ λ

−λ λ
0

∞

γ(t)

Figure 15: The boundary values of the harmonic function ηt in H \ γ[0, t].

hydrodynamic normalisation at ∞ satisfies, for any fixed z ∈ H,

dgt(z)

dt
=

2

gt(z)−Wt
∀t a.s. (1.1)

where Wt = 2Bt and Bt is a standard Brownian motion. We also set ft(z) :=

gt(z)−Wt so that ft(γ(t)) = 0.

Then we can calculate explicitly that

ηt(z) = − arg ft(z) + π/2

for any z ∈ H. A simple application of Itô’s formula, using (1.1), then gives us

that ηt(z) is a continuous local martingale. In fact, by boundedness, it is a true

martingale and so has an almost sure limit η∞(z) as t→∞. We also define

Gt(z, w) = GH(ft(z), ft(w)) and Et(p) =

∫∫
H2

p(z)Gt(z, w)p(w)dzdw ; p ∈ C∞c (H).

Note that Gt(z, w) and Et(p) are non-decreasing in t for any z, w ∈ H and positive

test function p. This means that the limits G∞(z, w) and E∞(p) also exist in this

case.

Recall, we would like to prove that if we take a field h̃ which is given by the

function η∞ plus an independent Gaussian free field on either side of γ([0,∞)),

then the law of h̃ is that of a zero-boundary Gaussian free field plus the harmonic

function η0. To this end, it is enough to show that for any positive test function p

in C∞c (H), the random variable (h̃, p) is Gaussian with mean (η0, p) and variance

E0(p).

Fix such a p. We will show that for each z ∈ H, (ηt, p) is a continuous martingale

with quadratic variation −Et(p). This will allow us to conclude because then we
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have, for any µ > 0

E[ exp(−µ(h̃, p)) ] = E[E[ exp(−µ(h̃, p)) ] | γ([0,∞) ]

= E[ exp(−µ(η∞, p) +
µ2

2
E∞(p)) ]

= E[ exp(−µ(η0, p) +
µ2

2
E0(p)) ]

by the optional stopping theorem.

To verify the claim, observe that since ηt is a continuous local martingale, so is

(ηt, p) by Fubini’s theorem. Thus we only need to show that (ηt, p)
2 + Et(p) is a

continuous local martingale. However, this can be seen by noting that it is a double

integral of the function ηt(z)ηt(w) + Gt(z, w) against p(z)p(w) on H, and again

applying Fubini. The latter process is easily verified to be a martingale for each

z, w ∈ H, using Itô’s formula and the explicit expression for GH. �

So, this provides a coupling between SLE4 and the continuum Gaussian free field

in which the curve can in some sense be interpreted as a level line of the field. In

fact, we can see that it is actually more like a “level cliff”; there is a constant height

gap of 2λ between either side of the curve. This, in essence, is a consequence of the

roughness of the field.

One important and highly non-trivial property of this coupling, is that the Gaus-

sian free field we get in the end actually determines the SLE4 curve uniquely. Of

course we would expect this from a continuous field and its level line, but in the

case of the GFF it is not so clear. Despite the deep nature of this result, the proof

in [SS13] again follows a simple and elegant argument.

So now, what about different boundary conditions? The choice of F0 is clearly

very specific. In order to make sense of this question we need a more general defini-

tion (cf. Definition 5.1.)

Definition 1.40 ([MS16a, WW16]). Suppose that F is L1 with respect to harmonic

measure on R viewed from some point in H and that h is a zero boundary GFF in

H. If (Kt, t ≥ 0) is a Loewner chain and (gt, t ≥ 0) is the corresponding sequence

of conformal maps, set ft = gt −Wt, and let V R
t (x) (resp. V L

t (x)) be the image of

x ≥ 0 (resp. x ≤ 0) under gt. Let η0
t be the bounded harmonic function on H with

36



boundary values (see Figure 16)

F (f−1
t (x)), if x ≥ V R

t (0+)−Wt,

λ, if 0 ≤ x < V R
t (0+)−Wt,

−λ, if V L
t (0−)−Wt ≤ x < 0,

F (f−1
t (x)), if x < V L

t (0−)−Wt,

and define, for z ∈ H \Kt,

ηt(z) = η0
t (ft(z)).

We say that K is a level line of h + F if there exists a coupling (h,K) such

that the following domain Markov property holds: for any finite K-stopping time τ ,

given Kτ , the conditional law of (h+ F )|H\Kτ is equal to the law of h ◦ fτ + ητ .

More plainly, suppose we have a curve γ that is coupled with a Gaussian free

field with boundary data F . Then we say that γ is a level line of the field if, for

any stopping time τ , the curve γ[0, τ ] is a local set for the field, and the associated

harmonic function has boundary values as shown in the lefthand side of Figure 16.

fτ

λ

−λ

0

λF F ◦ f−1τ−λF

0 V Rτ (0+)−Wτ

Kτ

V Lτ (0−)−Wτ

F ◦ f−1τ

Figure 16: The lefthand side shows the boundary values of the harmonic function ητ in
H \Kτ . This is the image under f−1

τ of the harmonic function η0
τ in H, whose boundary

values are shown on the right hand side.

This definition is satisfied by the coupling of Schramm and Sheffield described

above (by an easy adaptation of the proof given here). Moreover, the argument can

be extended to show that level lines do in fact exist for a very wide class of boundary

data F . Wu and Wang [WW16] proved the existence for piecewise constant functions

F , and later Wu and Powell ([PW17], see Chapter 5) extended this to any function

that is regulated (has left and right limits at every point). These couplings again

satisfy the desirable property that the curve is determined by the field, and the

curves themselves are given by SLE4(ρ) processes. See Chapter 5 for the specific

relationship between ρ and the boundary data F .

Another point of interest is that this relationship provides a way to couple to-

gether many different SLE4(ρ) processes. That is, as level lines of a single Gaussian
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free field, to which lots of different boundary data is added. This results in a nice

interaction between the curves; they are in fact monotonic in the corresponding

boundary data [WW16, PW17]. Note that this makes sense in terms of their inter-

pretation as level lines.

A final consequence we will mention, is that these couplings allow previously

less-tractable properties of the SLE curves to be attacked from the point of view

of the GFF. For example, it is not immediately obvious from their definitions in

terms of Loewner chains that SLE4(ρ) processes are actually generated by curves

at all (although it was proved for SLE4 in [RS05]). In general, this result comes as

a consequence of their coupling with the GFF [MS16a, WW16, PW17].

Flow line coupling. When κ 6= 4 the coupling between SLEκ and the GFF becomes

even more exotic. This is the subject of the Imaginary Geometry series by Jason

Miller and Scott Sheffield [MS16a, MS16b, MS16c, MS16d]. It turns out that SLEκ

curves with κ 6= 4 can be interpreted as so-called “flow lines” of the Gaussian free

field. Heuristically, let h be a GFF and consider the “vector field” described by eih/χ

for χ > 0 (although of course this is not really well defined). Then one can try to

trace the flow lines of this field, that is, curves η that are solutions of the differential

equation

η′(t) = eih(η(t))/χ .

The heuristic is that what one should get is an SLEκ (χ = 2/
√
κ−√κ/2).

Rigorously, one can define flow lines as curves coupled with the GFF in a similar

way to Definition 1.40, but with an additional “winding” term in the definition of

the harmonic function. Again, different boundary conditions of the field correspond

to SLEκ(ρ) for different values of ρ.

Coupling with CLE. We should also mention here the coupling between the Gaus-

sian free field and CLE4. This somehow represents a fuller description of the GFF’s

level lines; indeed, CLE4 arises when one considers the scaling limit of the entire

collection of contour lines of a discrete, zero-boundary condition GFF. Of course

this results in a collection of loops rather than a single curve. In the continuum, the

coupling can be described as follows:

• Sample a CLE4 in a domain D.

• Define a function h1, by taking its value inside each CLE4 loop to be given by

an independent random variable, taking values ±2λ with equal probability.

• Sample independent CLE4’s inside all of these loops and repeat the procedure

above in the second generation loops to obtain a function h′2.

• Let h2 = h1 + h′2 and iterate.
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• It is known [MS11] that the limit of hn as n→∞ is a zero-boundary Gaussian

free field.

This coupling was first discovered by Miller and Sheffield [MS11], but see also

[ASW15] for a proof.

Note that in all these couplings, the loops or curves define non-trivial exam-

ples of local sets for the corresponding GFF. In [ASW15] the authors construct

even more general local set couplings, in which the harmonic functions can take 2

arbitrary constant values (so the coupling above with first generation CLE4 loops

corresponds to ±2λ.) These can be thought of as being analogous to uniformly

integrable stopping times for Brownian motion.

These local sets, and the coupling between the GFF and CLE4 will also play

an important role in Chapter 4. Here we will construct the Liouville measure as

a multiplicative cascade measure using CLE4, in the natural way suggested by the

above construction of the GFF.

Quantum Zipper. To conclude this section, we briefly mention another coupling

between SLE and the GFF, due to Scott Sheffield [She16]. Roughly speaking, one

takes two special Liouville quantum gravity surfaces (known as quantum wedges)

and conformally welds them to obtain a new surface equipped with a curve. It turns

out that what results is simply another Liouville quantum gravity surface, equipped

with an SLEκ (κ = γ2.) This coupling can be thought of as the coupling emerging

from the real counterpart of the martingale that produces the imaginary geometry

coupling described above. For more details, see [She16] or [Ber15b].

1.3.8 Branching Processes and the Brownian CRT

This brings us to our final object of consideration. To begin, suppose we have a

finite tree, that is, a finite connected graph with no cycles. Then we can view this

as a metric space in a natural way, by giving each branch of the tree length one,

and letting the distance between any two points on the tree be given by the length

of the unique path that joins them without backtracking. Generalising this unique

path property gives us the notion of a continuum, or real, tree.

Definition 1.41 (Real Tree). A metric space (T , d) is said to be a real tree if, for

all v, w ∈ T the following two conditions hold:

• There exists a unique isometric map φv,w : [0, d(v, w)] → T with φv,w(0) = v

and φv,w(d(v, w)) = w.

• Any continuous injective map [0, 1] → T that joins v and w has the same

image as φv,w
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One way to define is a real tree is the following: take a continuous function

f : [0,∞)→ [0,∞) with f(0) = 0 and define a “distance” function on [0,∞)×[0,∞)

by

df (s, t) = f(s) + f(t)− 2 min
r∈[s,t]

f(r)

whenever s ≤ t. It is easy to verify that this defines a pseudometric on [0,∞). Thus,

quotienting by the equivalence relation ∼ that identifies points with df (·, ·) = 0 we

obtain a metric space (Tf , df ) := ([0,∞)/ ∼, df ). One can prove, see for example

[LG06], that this metric space is a real tree.

To connect this with our initial intuition, consider a finite tree, and turn it into

a continuum object by joining the vertices with branches of length one. The metric

described at the beginning of this section then produces a real tree. Actually, it is a

real tree of the form (Tf , df ), where the function f is given by the contour function

Ct of the tree (see Figure 17) below.

t

Ct

Figure 17: Ct (on the right) is the contour function of the tree on the left-hand side. This
is the function that we get if we traverse the tree at speed one in a depth-first order with
backtracking (see figure), and measure how our height is changing with time.

The Brownian continuum random tree of David Aldous [Ald91], is an example

of a particularly natural probability law on real trees.

Definition 1.42 (Brownian CRT). The Brownian CRT is the metric space

(Te, de)

where e is a normalised Brownian excursion.

By a normalised Brownian excursion we mean, intuitively, a Brownian path that

is conditioned to begin at 0, stay positive on the interval [0, 1] and end at 0 at time

1 (although this takes a bit of work to define rigorously). We could also consider a

Brownian excursion that is conditioned to reach a fixed positive height, rather than
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Figure 18: A Brownian CRT (Simulation by Igor Kortchemski).

to last a fixed length of time. For more rigorous definitions of these objects see, for

example, [IM65].

This real tree turns out to be universal in that it arises from many different

constructions. We will be mainly concerned with the view of it as a limit of condi-

tioned critical Galton Watson trees (to be discussed shortly). However, it can also

be defined as a certain law on spanning subtrees, or using a so-called line breaking

construction, see [Ald91].

Let us now turn to Galton Watson trees. Let L be a random variable, with mean

m and variance σ2; this will be our offspring distribution. The GW tree associated

with L is the tree generated by the random population growth model defined as

follows:

• Initially, at time 0, there is one particle.

• At time 1 this particle dies, and gives birth to a random number of offspring,

with distribution L.

• Each offspring particle then stochastically repeats the behaviour of its parent,

completely independently of everything else.

It is a classical result of Kolmogorov [Kol38] that there is a phase transition in this

model when the mean m of the offspring distribution is equal to 1. For m ≤ 1 the

population becomes extinct almost surely, and for m > 1 it survives with positive

probability. We will focus here on the critical case m = 1.

We consider the natural tree associated with this process. It turns out [Ald93,

LGD02], that if this tree is conditioned to reach a large height n (which is the

same as conditioning the process to survive to generation n) then it will converge

after rescaling to the Brownian CRT (in this case we mean the tree generated by

a Brownian excursion conditioned to reach a fixed height). Similar statements also

exist in terms of conditioning the process to have a large total progeny.
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The Brownian CRT is in fact the scaling limit of a much wider class of models.

For example, one generalisation of the Galton–Watson process is to take a mul-

titype version, where the particles also have types that influence their offspring

distribution. In this case, there is again a notion of criticality, and it was proved

by Miermont [Mie08] that the associated critical conditioned trees converge to the

CRT. In Chapter 2 we will extend this to a result concerning genealogical trees of

critical branching diffusions. Take branching Brownian motion say, (see Definition

1.26), in a bounded domain. There is again a phase transition for extinction here,

and criticality corresponds to a certain value of the branching rate. In [Pow17b] we

prove that the genealogical tree of such a critical process, when it is conditioned to

be large, also converges after rescaling to the Brownian CRT. See Chapter 2 for a

proof of this fact.

We will conclude this preliminary section in what seems like a suitable manner:

by mentioning one last connection. This time, between the CRT and Liouville quan-

tum gravity. Recall the discrete approach to LQG, where one considers the scaling

limits of certain random planar maps ([LG13, Mie13]). One of the key steps in the

proof that this scaling limit exists is to encode the maps using a correspondence

known as the Cori–Vauquelin–Schaeffer bijection. This is a correspondence between

random planar maps and labelled trees. It turns out, in a similar vein to the above

discussion, that the labelled trees corresponding to a suitable sequence of random

planar maps actually converge to a Brownian CRT, together with a labelling func-

tion. The interpretation of this limit in terms of the original random planar maps

is what is used to prove the existence of the limiting Brownian map.

In the continuum, the connection between LQG and the Brownian CRT was

established in the paper [DMS12] of Duplantier, Miller and Sheffield. Here they find

a way to “mate” a pair of correlated CRTs, that in the end produces a continuum

LQG surface.

1.4 Questions

There were of course many more interesting questions that arose during this PhD,

that we have so far not been able to address. Here we present a selection, that we

hope will be answered at some point in the future:

• We know from Chapter 2 that the genealogical structure of critical branching

diffusions in nice, bounded domains converge to the Brownian CRT. However,

if one removes the assumption of boundedness, or regularity, then more ex-

otic things may occur. For example, in the half line with absorption at the
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origin, we know by [BBS14] that at least the survival probability decays com-

pletely differently (although this is also for a slight variant of the model, where

particles are given a drift towards 0.).

So, there may be some rough or unbounded domains where the critical geneal-

ogy is given by a Brownian CRT, but we expect that there should also be some

where it is not (although explicit examples are not known to my knowledge).

It is therefore an interesting and seemingly open problem to try and classify

all possible scaling limits, depending on the geometry of the domain.

• Another natural extension would be to consider what happens if you allow

the offspring distribution to be more general. For example, if you remove the

assumption of finite variance, or allow it to depend on the spatial motion, will

the behaviour remain the same?

• Some of the motivation for Chapter 4 comes from the following question: how

does the Liouville measure, µγ , of a fixed Gaussian free field vary with γ?

Current work with Juhan Aru, Avelio Sepúlveda and Xin Sun will prove that

it varies continuously in the space of measures, and converges to 0 as γ → 2.

The approach will make use of the new construction of µγ from Chapter 4. We

also hope to use this to prove that the renormalised limit µγ/(2−γ) converges

to the critical derivative measure as γ ↑ 2.

• On that note, can we say what happens to the Liouville measure (for some

fixed γ) if we put a dynamic on the underlying GFF? For example, take the

Ornstein–Uhlenbeck dynamic (defined by putting an independent OU process

on each of the coefficients αi from Lemma 1.17). In the subcritical case, the

dynamical Liouville measure should vary continuously. But what happens at

criticality?

• This leads to an analogous question regarding the level, or flow, lines of the

Gaussian free field. We know from [SS13, MS16a, WW16, PW17] that the

GFF determines it level lines. Furthermore, we will see in Chapter 5 that

the level lines are in some sense continuous in the boundary data. But are

they continuous in general (i.e. with respect to some topology on the space of

fields)? What happens to the level lines or flow lines when we put an Ornstein–

Uhlenbeck dynamic on the field? We believe that, at least for level lines, there

should be exceptional times for the process. For example, there should be

times when the SLE4 curves hit the boundary of the domain. This, however,

is proving to be a challenging problem, as the relationship between the GFF

and its level lines remains rather mysterious.

• We can also ask what happens if we change the parameter κ in the coupling of
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SLEκ and the GFF. In this case we may also see special values of κ at which

the associated curve jumps. As above, this seems to be a little tricky to make

rigorous.

• Finally, the theory of level lines of the GFF with general boundary data,

Chapter 5, is a little way from being complete. We prove the existence of level

lines in the case when a certain inequality is satisfied, that corresponds to the

non-existence of a continuation threshold for the associated SLE4(ρ) process.

However, we should be able to construct level lines without this assumption,

at least up to the continuation threshold (i.e. until the level line hits a “bad”

part of the boundary). Construction up to this time is done in [MS16a, WW16]

for the case of piecewise constant boundary data, and also beyond this time in

[MSW16] for the case of one force point. Extending our results to these types

of situation is a work in progress with Hao Wu.
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2 Invariance principles for branching diffu-

sions in bounded domains

2.1 Introduction

This article concerns branching diffusions in a bounded domain D of Rd. These

are processes in which individual particles move according to the law of some dif-

fusion, are killed upon exiting the domain, and branch into a random number of

particles (with distribution A, independent of position) at rate β > 0. Whenever

such a branching event occurs, each of the offspring then independently repeats the

behaviour of its parent, starting from the point of fission. Throughout, the config-

uration of particles will be denoted by

(X1
t , · · · , XNt

t )

where Nt is the number of particles alive at time t, and we will write Px for the

law of the process initiated from a point x ∈ D. We will always assume that the

offspring distribution has mean m > 1 and finite variance, and that the generator

L = −1
2

∑
i,j a

ij ∂xi ∂xj +
∑

i b
i ∂xi of the diffusion is uniformly elliptic and self-

adjoint with smooth coefficients.

It is known [Sev58, Wat65] that such a system exhibits a phase transition in

the branching rate: for large enough β there is a positive probability of survival,

but for small β, including at criticality, there is almost sure extinction. The critical

value of β is equal to λ
m−1 , where λ is the first eigenvalue of L on D with Dirichlet

boundary conditions. The main goal of this paper will be to study the system at

criticality and find a scaling limit for the resulting genealogical tree. This is the

continuous planar tree that is generated purely by the birth and death times of

particles in the system, and encodes no information about the spatial movement.

More precisely, for given y > 0, we condition the diffusion to survive until time

ny > 0 and look at the associated genealogical tree T yn , equipped with its natural

distance dyn. Rescaling the distances by a factor n produces a sequence of random

compact metric spaces (T yn , 1
nd

y
n)n∈N. We will prove that this sequence converges in

distribution to a conditioned Brownian Continuum Random Tree as n → ∞, with

respect to the Gromov-Hausdorff topology. Indeed, if we write (Tey , dey) for the real

tree whose contour function is given by ey, a Brownian excursion conditioned to

reach level y, then we obtain the following result.

Theorem 2.1. Suppose that D ⊂ Rd is a bounded C1 domain and that L is uni-

formly elliptic and self-adjoint with smooth coefficients. Further suppose that A has
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mean m > 1 and finite variance, and ϕ ∈ C1(D) where ϕ is the first eigenfunction

of L on D. Then for any y > 0, and any starting point x ∈ D,

(T αyn ,
1

αn
dαyn ) −→

n→∞
(Tey , dey)

in distribution, with respect to the Gromov-Hausdorff distance, where

α =

√
4(m− 1)

λ 〈1, ϕ〉E[A2 −A]
∫
D ϕ(y)3 dy

.

Remark 2.2. One sufficient condition to ensure that the hypotheses of Theorem

2.1 are satisfied is to assume that the boundary of D is C2+bd/2c. Standard regularity

theory of elliptic partial differential equations, see for example [Eva98, §6.3], then

implies that ϕ ∈ C1(D). However, this is also satisfied in many other cases.

On the way to proving Theorem 2.1 we obtain several other results on critical

branching diffusions, which are interesting in their own right as well as being es-

sential to our method. We start with the phase transition. This was first proved

by Sevast’yanov [Sev58] and Watanabe [Wat65], but has also been reworked and

generalised in recent years, for example in [EK04], which studies local versus global

extinction in unbounded domains. The precise description is as follows:

Theorem 2.3 ([Sev58], [Wat65]). Let D ⊂ Rd be a bounded domain, satisfying a

minimal regularity assumption (see Condition 2.9). Suppose that L is a uniformly

elliptic self-adjoint operator with smooth coefficients and that A is a distribution

with finite mean m > 1. Then there are two possibilities for the long term behaviour

of the branching diffusion determined by L and A in D, according to the value of

the branching rate β. Namely, for any starting position x ∈ D, if λ is the principal

eigenvalue of L on D with Dirichlet boundary conditions then,

(1) for β > λ
m−1 the process survives for all time with positive probability.

(2) for β ≤ λ
m−1 the process becomes extinct almost surely.

Moreover, if β ≤ λ
m−1 then Px (Nt > 0)→ 0 uniformly in D.

In the statement above we have taken some care to specify the regularity required

on the domain, which is not detailed in the earlier works. Essentially we require that

the eigenfunctions of the Laplacian converge to 0 pointwise on the boundary, and

that Brownian motion started from a point on the boundary leaves the domain

immediately with probability one. We will provide alternative proof of this Theo-

rem, which in contrast to the earlier more analytic proofs in [Sev58], [Wat65], uses

arguments centred around martingales (also appearing in [EK04]) arising naturally
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from the definition of the process. This proof will show that the stated regularity

assumptions are sufficient.

The rest of the paper will focus on the behaviour of the system at criticality,

starting with an asymptotic for the survival probability.

Theorem 2.4. Suppose that the domain D is C1, that L is as in Theorem 2.3, and

that A has finite variance. Then, in the critical case β = λ
m−1 , for all x ∈ D we

have

Px (Nt > 0) ∼ 1

t
× 2(m− 1)ϕ(x)

λ (E[A2]− E[A])
∫
D ϕ(y)3 dy

(2.1)

as t→∞. Here ϕ is the first eigenfunction of L on D, normalised to have unit L2

norm.

This asymptotic then allows us to study the behaviour of the system when it is

conditioned to survive for a long time, which is important for the proof of Theorem

2.1. One tool that we will use is a classical spine change of measure, under which

the process has a distinguished particle, the spine, which is conditioned to remain

in D forever (as in [Pin85]). Along this spine, families of ordinary critical branching

diffusions immigrate at rate m
m−1λ according to a biased offspring distribution. Note

that there is no extinction under this new measure, which we denote by Qx. We will

prove that changing measure in this way is in fact somewhat close to conditioning

on survival for all time, in the sense of the following Proposition.

Proposition 2.5. Assume the hypotheses of Theorem 2.4. Then for any T ≥ 0,

x ∈ D and B ∈ FT , where F is the natural filtration of the process, we have

lim
t→∞

Px (B|Nt > 0) = Qx(B). (2.2)

Furthermore, we are able to prove a Yaglom type limit theorem for the positions

of the particles in the system at time t, given survival.

Theorem 2.6. For any measurable function f on D such that
∫
D f(x)2ϕ(x) dx <

∞, we have (
t−1

Nt∑
i=1

f(Xi
t)

∣∣∣∣∣Nt > 0

)
→ Z

in distribution as t→∞, where Z is an exponential random variable with mean

λ
(
E[A2]− E[A]

)
〈ϕ, f〉L2(D)

∫
D ϕ

3

2(m− 1)
.

One consequence of Theorem 2.6 (or rather its proof) is that it allows us to

describe the limiting distribution of the particles in the system at time t, given sur-
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vival. It turns out that this is the law with density ϕ, normalised to be a probability

distribution.

Corollary 2.7. Let

µt :=
1

Nt

Nt∑
i=1

δXi
t

be the uniform distribution on all particles alive at time t, given survival. Then, for

each f as in Theorem 2.6, we have that

µt(f)→ µ(f)

in distribution, and hence in probability, as t→∞, where

µ(f) =

∫
D ϕ(x)f(x) dx∫
D ϕ(x) dx

.

As this paper was being completed, the author learnt that similar results to

Theorem 2.4 and Theorem 2.6 have also been shown by Asmussen and Hering in

[AH83]. However their proofs are completely different from those in the current pa-

per and, more importantly, our method provides several new and crucial ingredients

for the proof of Theorem 2.1.

2.1.1 Related Work

It is interesting to note the analogy between Theorems 2.3-2.6, and the classical

results from the theory of Galton-Watson processes. Indeed, for critical Galton-

Watson processes, Kolmogorov [Kol38] proved an asymptotic for the probability of

survival up to time n;

P(Zn > 0) ∼ c

n

where Zn is the population size at time n, and the constant depends on the variance

of the offspring distribution. Moreover, Aldous [Ald91],[Ald93] and Duquesne and

Le Gall [LGD02] showed that if you condition a critical Galton-Watson process to

reach a large generation or have a large total progeny, then you have a scaling limit

for the resulting tree. This limit is in the Gromov-Hausdorff topology, after rescaling

distances in the tree appropriately, and the limiting object is the Continuum Ran-

dom Tree, [Ald91]. In fact, this result can be extended to multitype Galton-Watson

processes, as in [Mie08], where the same scaling limit exists. Since a branching diffu-

sion can be thought of as a limit of multitype Galton-Watson processes, considering

the types to be positions and discretising the domain appropriately, this is the first

indication we should be able to obtain a similar scaling limit.
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Remark 2.8. The constant α in Theorem 2.1 is exactly what one obtains formally

from the convergence in [Mie08], considering the branching diffusion to be a scaling

limit of appropriate multitype Galton-Watson processes. However, Miermont’s proof

strategy is to make an induction on the number of types, and the lack of uniformity

in the estimates as the number of types grows means that it does not extend to the

set up considered here. Instead we use a combination of probabilistic and analytic

ideas; see Section 2.1.2 for a sketch of the argument.

An asymptotic for the survival probability has also been considered previously,

see [BBS14] and [Kes78], in the case of branching Brownian motion with absorption

at the origin, where the branching rate is kept constant and each particle moves

with a drift −µ, which is varied. In this set up, there is a critical value of µ = µc

above which extinction occurs with probability one. The near-critical system, as µ

approaches its critical value from below, has also been studied, and in [BBS11] a

limit, as µ ↑ µc, is found for the probability of survival for all time as a function

of the initial position. However, these results are quite different from ours as we do

not allow our domain to be unbounded. The proofs of Theorems 2.1 and 2.4 do not

extend to this situation, and in fact, we would expect to see a variety of behaviours

for the critical system if we remove the assumption of boundedness. It would be an

interesting problem to explore the possible cases here, and classify which domains

fall into the regime of Theorem 2.1 and Theorem 2.4.

2.1.2 Organisation of the Paper and Main Ideas

We begin, for completeness and in order to introduce key concepts for the latter

part of the paper, by providing a full proof of Theorem 2.3 in the case of Brownian

motion with binary branching. This also allows us to make precise the regularity

that is required on the domain for this statement to be true, see Condition 2.9.

The main idea behind the proof we will give is to exploit the existence of a certain

martingale

Mt = e(λ−β)t
Nt∑
i=1

ϕ(Xi
t),

where ϕ is the first eigenfunction of −1
2∆ on D, with unit L2 norm, and λ is the

first eigenvalue. We show that its properties (which depend on β) change critically

at the point β = λ. These critical features turn out to determine the long term

behaviour of the entire process, and thus provide the result of the theorem.

We will then turn to the proofs of the remaining theorems. Again we will give

these for binary branching Brownian motion, and wherever adaptation for general
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diffusions and branching mechanisms is required, we will indicate the necessary

changes. Any extra arguments are in fact minor, which is why we prefer to highlight

the simplest case. This allows us to keep the arguments clear and avoid introducing

extra notation.

The proof of Theorem 2.4 proceeds by a combination of probabilistic arguments,

and analysis of the Fisher-Kolmogorov-Petrovskii-Piscounov equation. This is a par-

tial differential equation which is known to be satisfied by the survival probability for

branching Brownian motion; first noted by McKean [McK75] in the one-dimensional

case, and used as the main tool by Sevast’yanov in the original proof of Theorem

2.3. Naively, we can write the survival probability in an L2 expansion with respect

to the orthonormal basis of L2(D) given by eigenfunctions of the Laplacian. Since

the survival probability satisfies the FKPP equation we get a family of coupled

ODEs from the coefficients. However, this is tricky to analyse directly. Instead, we

apply a probabilistic line of reasoning, changing measure by Mt/M0 to get a spine

characterisation of the system as discussed in the introduction. This allows us to

deduce that the survival probability decays like a(t)ϕ(x) as t → ∞, where a(t) is

the first coefficient in our expansion. Thus, our problem is reduced to the study of

a single ODE. From here elementary analysis, combined with some extra informa-

tion obtained from the probabilistic arguments, yields the result. We then prove

Theorem 2.6 and Corollary 2.7, using the method of moments and a Many-to-Few

Lemma.

The remainder of the paper is devoted to the proof of Theorem 2.1. Again work-

ing primarily in the case of Brownian motion with binary branching, we take an i.i.d.

sequence of critical processes and concatenate the height functions of their associated

trees. We would like to find a process which approximates this, and will converge

after rescaling to a reflected Brownian motion: an analogue of the Lukasiewicz path

for Galton-Watson trees. Just as the martingale Mt roughly measures the size of

our system as we increase time, exploring it in a different, depth-first, order provides

another martingale that is a proxy for the height function. After strengthening our

result, Corollary 2.7, for the conditioned system, we can prove that the quadratic

variation of this martingale is essentially linear, and so we obtain an invariance

principle.

We then have to prove that this martingale is indeed a good approximation to

the height process. This is one of the main difficulties, as the reversibility tools that

are key to proving this for the Lukasiewicz path in the Galton-Watson case are lost.

Instead, we must use precise estimates, and a delicate ergodicity argument related to

our spine change of measure. This is one of the reasons that our machinery from the
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proof of Theorem 2.4 is so essential. Tightness arguments then allow us to conclude.

Acknowledgements I would like to thank Nathanaël Berestycki, for suggesting

this problem and for many helpful discussions and suggestions.

2.2 Preliminaries

2.2.1 Diffusions as Trees

As stated in the introduction, Px will denote the law of our branching diffusion,

initiated from the point x ∈ D. We will consider this as a law on continuous planar

trees, where every vertex is also marked with a position in D. In this representation,

the vertices at a given height t in the tree will correspond to the particles alive in the

system at time t, and their marks will correspond to their positions. To complete

the definition of the tree we also need to decide, at every branch point, how the

branching subtrees are ordered from left to right. To do this, we assume that given

the number of offspring at a branching event, this ordering is chosen uniformly at

random. This gives us a law on planar, or equivalently labelled, rooted trees. We

emphasise here that these trees, unlike Galton-Watson trees, are in continuous time.

Note that, in Theorem 2.1, we are considering them without their marks (in fact,

the marks are irrelevant to the tree considered as a metric space.) The final point

to make, is that when we use our notation (X1
t , · · · , XNt

t ) for the system at time t,

the indices correspond to the ordering of the vertices from left to right in the tree,

and the Xi
t are their positions, or marks.

height

t

X1
t X2

t

0

Figure 19: An example of the continuous tree generated by a branching diffusion. The two
vertices at height t (marked with dots) have positions, or marks, given by X1

t and X2
t .

2.2.2 Spectral Theory and Martingales

From now on we will work in the case of Brownian motion with binary branching,

unless stated otherwise.
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As discussed in the introduction, the behaviour of branching Brownian motion

killed when leaving a given domain D will be closely related to the spectral prop-

erties of the Laplacian on that domain. Throughout, we will let {λi}i≥1 denote the

eigenvalues of −1
2∆ on D with Dirichlet boundary conditions, with corresponding

eigenfunctions {ϕi}i≥1, normalised to have unit L2 norm. Recall that under this nor-

malisation the eigenfunctions form an orthonormal basis for L2(D), the eigenvalues

are real with

λ := λ1 < λ2 ≤ λ3 ≤ · · · → ∞

and the first eigenfunction

ϕ := ϕ1

is strictly positive in the domain. Also note that the eigenfunctions are in C∞(D),

and assuming the domain is sufficiently regular, converge pointwise to 0 on ∂D. In

particular, they are all bounded.

Condition 2.9. For the proof of Theorem 2.3 we will assume that the domain D

is regular enough that:

(1) The eigenfunctions converge to 0 pointwise on the boundary, and

(2) Every point x0 on the boundary satisfies, for every ε > 0,

limx→x0 Px (τD > ε) = 0,

where Px is the law of Brownian motion started from the point x and τD is the first

time it hits the boundary ∂D.

These are very weak regularity conditions on the domain D. For example, see

[GT83, Theorem 8.29], both conditions are satisfied by any domain satisfying a

uniform exterior cone condition.

To set up some notation, let pR
d
(t, x, y) be the transition density for Brownian

motion on Rd and set, for x, y ∈ D,

pD(t, x, y) = pR
d
(t, x, y)−Ex

[
pR

d
(t− τD, BτD , y)1{τD≤t}

]
.

Then we have

0 ≤ pD(t, x, y) ≤ pRd(t, x, y) ≤ 1

(2πt)d/2
(2.3)

and by the strong Markov property pD is the transition density of Brownian motion

killed when leaving the domain D. This means, in particular, that for all integrable

functions f we have ∫
D
f(y)pD(t, x, y) dy = Ex

[
f(Bt)1{τD>t}

]
(2.4)
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for t > 0 and x ∈ D. It can be shown (see for example [MNV09, Remark 2.1]) that

if D satisfies Condition 2.9, then for any bounded continuous function f on D which

vanishes on ∂D, ∫
D
pD(t, x, y)f(y)dy = Ex

[
f(Bt)1{τD>t}

]
(2.5)

is the unique solution of the heat equation in the domain, with initial data f and

Dirichlet boundary data. One consequence of this is that for any of the eigenfunc-

tions ϕi, we have

Ex [ϕi(Bt∧τD)] = e−λit ϕi(x) (2.6)

for all x ∈ D. This leads to the following decomposition for functions f ∈ L2(D).

Here and throughout the rest of the paper, 〈·, ·〉 will represent the usual inner

product on L2(D).

Lemma 2.10. If f ∈ L2(D) then for all t ≥ 0 and x ∈ D

Ex

[
f(Bt)1{τD>t}

]
=
∞∑
1

e−λit ϕi(x) 〈ϕi, f〉 .

Proof. First note that pD(t, x, y) is bounded for all x, y ∈ D by (2.3), and that(
pD(t, x, ·), ϕi

)
= e−λit ϕi(x) by (2.5) and (2.6). Therefore, since the ϕi’s form an

orthonormal basis of L2(D), we have that

n∑
i=1

e−λit ϕi(x)ϕi(·)→ pD(t, x, ·)

in L2. Thus for any f ∈ L2(D), we may conclude that

Ex

[
f(Bt)1{τD>t}

]
=
(
pD(t, x, ·), f

)
= lim

n→∞
(
n∑
i=1

e−λit ϕi(x)ϕi(·), f)

which yields the result.

Another consequence of (2.6) is the existence of an additive martingale for the

system. Indeed, a straightforward application of the branching Markov property and

the Many-to-One Lemma (see for example [HH07] or [HR15]) which tells us that

Ex[

Nt∑
i=1

f(Xi
t)] = eβt Ex

[
f(Bt)1{τD>t}

]
for measurable f , provides the following:
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Lemma 2.11. The process

Mt = e(λ−β)t
Nt∑
i=1

ϕ(Xi
t)

is a martingale under Ex, for each x ∈ D.

Moreover, by positivity of ϕ in D, Mt is a positive martingale, and thus by the

martingale convergence theorem converges almost surely to an almost surely finite

limit. This is a strong indicator of the existence of a phase transition, since the

properties of the limit M∞, which depend on β > 0 and change critically at β = λ,

determine the long term behaviour of the system.

Remark 2.12. The above theory directly extends to more general diffusions, with

generators and offspring distributions as in Theorem 2.3. In particular, Condition

2.9 will provide the required degree of regularity. Here we have that

Mt = e(λ−β(m−1))t
Nt∑
i=1

ϕ(Xi
t)

defines a positive martingale, using a generalisation of the Many-to-One Lemma.

2.3 The Phase Transition

In this section we will provide a proof of Theorem 2.3.

2.3.1 The Supercritical Case

We begin by supposing that β is strictly greater than λ, in which case the proof

can be summarised as follows. We already know that Mt(β)→ M∞ as t→∞. We

will show that for this range of β, the martingale Mt is square integrable and so the

limit M∞ cannot be degenerate. Thus, since e(λ−β)t → 0 as t→∞, it must be the

case that
Nt∑
i=1

ϕ(Xi
t)→∞

with positive probability. Boundedness of ϕ then implies that Nt →∞ on this event.

In order to prove square integrability, we need a generalisation of the Many-to-

One Lemma to a Many-to-Two form. This is well know, see for example [HR15,

Lemma 1] or [Wat67, Equation (2.23)].
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Lemma 2.13 (Many-to-Two). If f, g are measurable functions on D then

Ex

[
Nt∑
i=1

f(Xi
t)

Nt∑
i=1

g(Xi
t)

]
= Ex

[
eβt f(Bt)g(Bt)1{τD>t}

]

+ Ex

∫ t∧τD

0
2β eβs EBs [

Nt−s∑
1

f(Xi
t−s)]EBs [

Nt−s∑
1

g(Xi
t−s)]


where B is standard Brownian motion started at x ∈ D and (X1

t , · · · , XNt
t ) repre-

sents branching Brownian motion as usual.

Applying the Lemma with f = g = ϕ, and using (2.6) to rewrite the expectation

terms in the integrand, along with Fubini, we see that

Ex
[
M2
t

]
= e2(λ−β)t Ex

[
eβt ϕ(Bt∧τD)2

]
+ 2β

∫ t

0
e2(λ−β)s Ex

[
eβs ϕ(Bs∧τD)2

]
ds.

Since we also have the bound,

Ex

[
eβt ϕ(Bt∧τD)2

]
≤ ‖ϕ‖∞Ex

[
eβt ϕ(Bt∧τD)

]
≤ ϕ(x)‖ϕ‖∞ e(β−λ)t

for all t and x, we can substitute this in and integrate to see that

Ex
[
M2
t

]
≤ ϕ(x)‖ϕ‖∞

(
1 +

4β

λ− β

)
for all t. Thus we obtain square integrability.

Remark 2.14. For the more general set up, with generator L and offspring dis-

tribution A as in Theorem 2.3, a generalisation of the Many-to-Two lemma, see

[HR15], proves uniform integrability of the martingales. This again shows that there

is a positive probability of survival in the supercritical case.

2.3.2 The Subcritical Case

Now let us suppose that β < λ. The convergence of the martingale in this case,

along with the fact that e(λ−β)t →∞ as t→∞, means that in fact

Nt∑
i=1

ϕ(Xi
t)→ 0

almost surely as t→∞. Although this does not show that Nt → 0 a.s. for all such

β immediately, Lemma 2.10 ensures that
∑Nt

i=1 ϕ(Xi
t) being small must mean that
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Nt is small with high probability. This is made explicit by the following Lemma,

which is essentially a consequence of Lemma 2.10.

Lemma 2.15. Let ε > 0 be given. Then there exists T (ε) ≥ 0 and an absolute

constant K, such that for all t ≥ T (ε) and all x ∈ D we have

Px ({ϕ(Bt) < ε} ∩ {t < τD}) ≤ e−λtKε.

Proof. Let fε(x) = 1[0,ε)(ϕ(x)) = 1[0,ε) · ϕ. This is clearly in L2 (it is bounded by

1), so we may apply Lemma 2.10 to obtain that

Px ({ϕ(Bt) < ε} ∩ {t < τD}) = Ex

[
fε(Bt)1{τD>t}

]
=
∞∑
i=1

e−λit (ϕi, fε)ϕi(x).

Intuitively, since λ = λ1 < λi for i ≥ 2, we expect that the sum should behave

roughly like e−λt (ϕ, fε)ϕ(x) as t becomes large. Indeed we can bound it above,

using that (ϕ, fε) ≤ vol(D)ε, by

e−λt

(
‖ϕ‖∞vol(D)ε+ e−γt

∣∣∣∣∣
∞∑
i=2

e−(λi−λ2)t 〈ϕi, fε〉ϕi(x)

∣∣∣∣∣
)

(2.7)

where γ > 0 is the spectral gap for D. Therefore, it is enough to show that the

expression in the modulus above is bounded by some absolute constant, for all t

large enough. To do this, observe that since λi → ∞ as i → ∞, there exists an N

such that (λi − λ2) > λi
2 for all i ≥ N . This means that∣∣∣∣∣

∞∑
i=2

e−(λi−λ2)t 〈ϕi, f〉ϕi(x)

∣∣∣∣∣ ≤
∞∑
i=2

e−(λi−λ2)t | 〈ϕi, f〉 ||ϕi(x)|

≤ N vol(D) sup
1≤i≤N

‖ϕi‖2 +

∞∑
N+1

e−
λi
2
t | 〈ϕi, f〉 ||ϕi(x)|

for all t, where the first term in the final line is a constant depending only on D.

Furthermore, by Cauchy-Schwarz we have∣∣∣∣∣
∞∑
N+1

e−
λi
2
t | 〈ϕi, f〉 ||ϕi(x)|

∣∣∣∣∣ ≤
√√√√ ∞∑

i=N+1

e−λit ϕi(x)2

√√√√ ∞∑
i=N+1

〈ϕi, f〉2

where the first term is less than ‖pD(t/2, x, ·)‖L2 ≤ (πt)−d/4 and the second is less

than ‖f‖∞. This can clearly be bounded uniformly for all t large enough.

Corollary 2.16. Let τD be the hitting time of ∂D, for a Brownian motion started
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at x ∈ D. Then

Px (τD > t) ≤ A e−λt

for all t ≥ T = T (‖ϕ‖∞), where A is a constant independent of x and T .

Proof. This follows immediately from the above taking ε = ‖ϕ‖∞.

Lemma 2.17 (Expectation of the population size). Suppose β ≤ λ. Then for all

x ∈ D and all t ≥ T = T (‖ϕ‖∞), we have

Ex [Nt] ≤ A e(β−λ)t

where A is a constant, independent of t and x.

Proof. This is a straightforward consequence of the Many-to-One Lemma and the

above Corollary.

To prove almost sure extinction in the subcritical case, it is enough to show that

Px (Nt > 0)→ 0 as t→∞. However, this is immediate from Lemma 2.17, since

Px (Nt > 0) ≤ Ex [Nt] ≤ A e(β−λ)t

which indeed tends to 0 in the case β < λ.

2.3.3 The Critical Case

When β is equal to λ, it is still the case that branching Brownian motion with

parameter β dies out almost surely. However, since we can no longer rely on the

fact that e(β−λ)t → 0 as t → ∞, the decay of Ex [Nt] from Lemma 2.17 is lost,

and we must apply a slightly more delicate argument. To improve the situation, we

make use of the following Lemma, which can be found in [Wat65, Lemma 2.1]. We

provide a proof for completeness.

Lemma 2.18 ([Wat65]). For all x ∈ D

Px (Nt → 0 or Nt →∞ as t→∞) = 1.

Proof. Since Nt is integer-valued it is sufficient to prove that Px (Nt = k i.o.) = 0 for

every k ∈ N. Fix k and define a sequence of hitting and leaving times (Ln, Hn)n≥1,

by letting L1 be the first time t that Nt 6= N0, and H1 be the first time that Nt = k.

Then inductively, let Ln be the first time after Hn−1 that Nt 6= k, and Hn the first

time after this that Nt = k. We have to show that Px (Hn <∞) → 0 as n → ∞.

Set γ to be the infinum over all x ∈ D of the probability that a Brownian motion
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started at x leaves the domain before an independent exponential waiting time. It

is easily verified, using for example Corollary 2.16, that γ > 0. Then we have that

Px (H1 <∞) ≤ P(NL1 6= 0) ≤ (1 − γ) and inductively, using the Markov property

for the k particles alive at each time Hj , that Px (Hn <∞) ≤ (1 − γ)(1 − γk)n−1.

This completes the proof.

This, together with Lemma 2.15, provides the basis for the proof of Theo-

rem 2.3 in the critical case. By Lemma 2.18, it will be sufficient to prove that

Px (Nt →∞ as t→∞) = 0 for all x ∈ D. Since we know that
∑Nt

1 ϕ(Xi
t) →

M∞ < ∞ almost surely, letting Ak be the event that {Nt → ∞} ∩ {
∑Nt

1 ϕ(Xi
t) ≤

k eventually }, we can write this probability as

Px (Nt →∞) = sup
k

Px (Ak)

since the Ak’s are increasing. Thus, it will be enough to show that Px (Ak) = 0 for

all k > 0. To do this, fix k, and observe that Px (Ak) = limm→∞ Px (Amk ) where Amk
is the event that {{Nt ≥ m} ∩ {

∑Nt
1 ϕ(Xi

t) ≤ k} eventually}. However, for

{Nt ≥ m} ∩ {
Nt∑
1

ϕ(Xi
t) ≤ k}

to occur, it must be the case that one of the particles in the system at time t has

ϕ(Xi
t) ≤ k

m (since ϕ is positive.) Hence,

Px

(
{Nt ≥ m} ∩ {

Nt∑
1

ϕ(Xi
t) ≤ k}

)
≤ Px

(
(

Nt∑
i=1

1{ϕ(Xi
t)≤

k
m
}) ≥ 1

)
≤ Ex

[
Nt∑
i=1

1{ϕ(Xi
t)≤

k
m
}

]
,

which is less than K k
m for t ≥ T (k/m), as a consequence of Lemma 2.15. Since the

probability of this holding for all large times is certainly smaller than the probability

of it holding at time T (k/m) say, we see that

Px (Ak) = lim
m→∞

Px (Amk ) ≤ lim
m→∞

K
k

m
= 0

as required.

Remark 2.19. The proofs given above for the subcritical and critical cases rely

purely on spectral properties of the Laplacian. These still hold for our more general

diffusions, so no adaptation of the arguments is required.

To complete the proof of Theorem 2.3 we must show that the decay of the

survival probability in the critical case (the subcritical case having been dealt with
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by Lemma 2.17) is uniform in D. However, this will follow from elementary analysis,

once we have noted that the survival probability is a solution of the FKPP equation

in D. This was first observed by McKean, [McK75], in one dimension, but the proof

extends directly to our situation. In fact, the relationship with the FKPP equation

is the key tool employed in [Wat65] and [Sev58] to prove Theorem 2.3.

Lemma 2.20. Assume that D satisfies Condition 2.9 and let u(t, x) := Px (Nt > 0)

for the critical system. Then u ∈ C2,1(D × (0,∞)) ∩ C(D) is a solution of

∂u/ ∂t =
1

2
∆u+ λ(u− u2) on D × (0,∞)

u(x, 0) = 1{x∈D} on D × {0}
u(x, t) = 0 on ∂D × (0,∞). (2.8)

Proof. Conditioning on the first branching time of the process, we can write

u(x, t) = e−λt Px(τD > t) +

∫ t

0
λ e−λs Ex

[
(2u− u2)(Bs, t− s)1{τD>s}

]
.

An easy differentiation after making the change of variables s↔ t−s in the integral

then provides (2.8). Note that u(t, x)→ 0 as x→ ∂D since

Px (Nt > 0) ≤ 1− Px (the process becomes extinct before the first branching time)

≤ 1− e−λs1 Px (τD ≤ s1)

for any s1, where the last line can be made arbitrarily small by first taking s1 to 0,

and then using the property (2) of Condition 2.9. Thus u ∈ C(D).

To conclude the proof of 2.3, we note the continuous functions u(x, t) are clearly

decreasing in t and converge to the continuous function 0 for each x ∈ D. This is a

compact set and so by Dini’s theorem, an elementary result from real analysis (see

for example [Rud76, Theorem 7.13]), the decay must indeed be uniform.

Remark 2.21. In the case of a more general diffusion with generator L and branch-

ing mechanism determined by offspring distribution A, the partial differential equa-

tion (2.8) becomes

∂u

∂t
= −Lu+

λ

m− 1
((1− u)−G(1− u))

where G is the probability generating function of A. This results in the same regu-

larity for u.

59



2.4 Survival at Criticality: Proof of Theorem 2.4

Throughout this section, we will work in the critical case β = λ (for binary branching

Brownian motion) and also from now on assume the domain D to have C1 boundary.

We will prove the asymptotic (2.1) for the survival probability, using a combination

of spine techniques, and analysis of the FKPP equation.

2.4.1 Spine Decomposition

It turns out that a helpful approach in the proof of (2.1) will be to change measure

via the Px-martingale Mt from the previous section, see Lemma 2.11, and use a spine

construction to describe the behaviour of λ-branching Brownian motion under this

new measure. This is a so called spine change of measure, in that it changes the law

of the initial particle, but then all subprocesses branching off this spine still behave

as ordinary λ-branching Brownian motions.

To make sense of this, we extend our probability measure Px to a probability

measure Px on a bigger space, by choosing one distinguished line of descent which

we call the spine. We let the initial particle be part of the spine and then, whenever a

spine particle splits, the new spine particle is chosen uniformly from its children. We

denote the natural filtration of this new process by (F t)t≥0, and the position of the

spine by (ξt)t≥0. Then it follows from the fact that eλt ϕ(Bt)/ϕ(x) is a martingale for

our individual particle motion under Px (a consequence of (2.6)) that the process

M t =
ϕ(ξt)

ϕ(x)
2St

is a martingale with respect to F t, where St is the number of branch points along

the spine before time t. For a proof of this, see [Rob10, Theorem 2.4], and see also

[Rob10] and [HH09] for details of the above construction. We can therefore define a

new measure Qx on the same probability space as Px via

dQx

dPx

∣∣∣∣
Ft

= M t.

Then there is a nice characterisation of the process under Qx, which follows from the

classical spine theory for such changes of measure developed in [HH09]; but see also

[HH07], [CR88] and [HHK12] among others. Using the fact that under the change

of measure for Brownian motion defined by

dQx

dPx

∣∣∣∣
Ft

=
eλt ϕ(Bt)

ϕ(x)
(2.9)
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we have that the new particle evolves as a Brownian motion conditioned to remain

in D, see [Doo57], [Pin85], we obtain a description of the whole process under Qx,

as summarised in the Lemma below. We refer the reader to the papers cited above

for more details, and proof of the characterisation.

Lemma 2.22. Under the measure Qx, the law of λ-branching Brownian motion

with a distinguished spine can be constructed as follows:

• The initial particle evolves as a Brownian motion started at x and conditioned

to remain in D for all time.

• At an accelerated rate of 2λ it splits into two particles.

• One of these particles, the spine particle, is chosen uniformly at random and

goes on to repeat stochastically the behaviour of the initial ancestor.

• The other particle goes on to perform an independent λ-branching Brownian

motion, starting from the point of fission.

Alternatively, we can think of the process as being formed by a single spine particle,

which evolves as a Brownian motion conditioned to remain in D, and along which

ordinary λ-branching Brownian motions immigrate (branch off) at rate 2λ.

We also let Qx := Qx|Ft be the corresponding measure on the original filtration

Ft of the branching process. Then we have that

dQx

dPx

∣∣∣∣
Ft

=

∑Nt
i=1 ϕ(Xi

t)

ϕ(x)
=

Mt

ϕ(x)
(2.10)

(again see [Rob10, Theorem 2.4]). Furthermore, the probability under Qx that a

certain particle Xj
t at time t is the spine particle, given Ft, is equal to

ϕ(Xj
t )/

Nt∑
i=1

ϕ(Xi
t), (2.11)

see [Rob10] or [HR14, Remark 1.2].

Remark 2.23. For more general diffusions and branching mechanisms, we obtain a

similar characterisation of the system after changing measure by the corresponding

martingale. In this case, the spine particle will move under the law of the origi-

nal diffusion conditioned to remain in the domain (defined by the same change of

measure as in (2.9)), and at rate m
m−1λ, a certain number of the original branch-

ing diffusions will immigrate. The number of these immigrants has the size-biased
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offspring distribution Ã, where

P
(
Ã = k

)
=
k + 1

m
P (A = k + 1)

for k ≥ 0. Note the spine particle itself is not included in Ã.

One important fact we will use is that the position of the spine particle in the

decomposition described by Lemma 2.22 converges quickly to an equilibrium distri-

bution, with density ϕ2. In fact, if we assume that 1
2∆ is intrinsically ultracontractive

for the domain (for which a Lipschitz assumption is enough), it is well known that

this convergence is uniform in the starting position.

Lemma 2.24. Suppose that D is a bounded Lipschitz domain. If

KD(t, x, y) =
eλt pD(t, x, y)ϕ(y)

ϕ(x)

is the transition density for Brownian motion conditioned to remain in D, then for

any ε > 0 there exists a constant Cε depending only on the domain such that∣∣∣∣KD(t, x, y)

ϕ(y)2
− 1

∣∣∣∣ ≤ Cε e−γt

for all t > ε and x, y ∈ D where γ := λ2 − λ1 > 0 is the spectral gap for −1/2 the

Laplacian on D.

Proof. See for example [DS84] or [Bañ99, Equation (1.8)].

Remark 2.25. The corresponding convergence to equilibrium when the single par-

ticle motion is governed by a generator L as in Theorem 2.3 still holds whenever

the domain is Lipschitz (see [Bañ99].)

2.4.2 Asymptotics for the Survival Probability

Using this spine decomposition, and the fact that the law of the spine particle

converges to an equilibrium distribution as t → ∞, we may first deduce that we

have an asymptotic for the survival probability which is of the correct form.

Proposition 2.26. Uniformly in x ∈ D

Px (Nt > 0) ∼ a(t)ϕ(x)

as t→∞, where

a(t) :=

∫
D
Pz (Nt > 0)ϕ(z) dz
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converges to 0 as t→∞, and is independent of x.

Proof. The key idea for the proof of this is to write, recalling (4.6),

Px (Nt > 0)

ϕ(x)
= Qx

[
1∑Nt

i=1 ϕ(Xi
t)

]

and then show that the right hand side essentially does not depend on x for large t.

The intuition behind this is that under the new measure, the position of the spine

particle will converge very quickly to equilibrium. Then, contributions to the sum

in the denominator from subprocesses branching off the spine before its position

has become well mixed are unlikely to occur, as these have the law of standard

λ-branching Brownian motions, which we know are unlikely to survive for a long

time.

To begin, for t0 ≤ t, write

Nt∑
i=1

ϕ(Xi
t) = Mt := Mt0,t +M0,t0

where M0,t0 is the sum of all contributions to Mt from subprocesses branching off

the spine before time t0. Also define f(r) := Qϕ2 [1/
∑Nr

i=1 ϕ(Xi
r)], where ϕ2 in the

subscript indicates that the initial position is distributed according to the probability

measure with density ϕ2. Note that this is a function of r only. Then for any t0 ≤ t

1

Mt
=

1

Mt0,t
+

(
1

Mt
− 1

Mt0,t

)
=

1

Mt0,t
− M0,t0

MtMt0,t

and so

Qx

[
1∑Nt

i=1 ϕ(Xi
t)

]
= f(t− t0) + (Qx

[
1

Mt0,t

]
− f(t− t0))−Qx

[
M0,t0

MtMt0,t

]

where we label the error (second and third) terms above by ε1x(t, t0) and ε2x(t, t0)

respectively. The plan is to show that we can choose t0(t) < t such that both the

error terms become small as t→∞. The reason we expect these terms to decay is

as in the heuristic discussion above, since the equilibrium distribution for Brownian

motion conditioned to remain in D is precisely ϕ2.

Now observe that since the quantities whose expectations we are evaluating are

Ft measurable, their Qx and Qx expectations are the same, and we may work with

either. Considering the definition of Mt0,t, and conditioning on Gt0 , for (Gs)s≥0 the

filtration generated by the position of the spine up to time s (a subfiltration of
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(Fs)s≥0) we see that

ε1x(t, t0) = Qx[Qx[1/Mt0,t|Gt0 ]]− f(t− t0)

is simply the difference in expectation of the function of y,

Qy[
1∑Nt−t0

i=1 ϕ(Xi
t−t0)

] = Py (Nt−t0 > 0) /ϕ(y)

under the Qx law of the spine particle at time t0, and the law with density ϕ2. As t0

increases, we know that the law of the spine particle approaches the law with this

density, and by Lemma 2.24 we can quantify this with the bound

sup
x,y∈D

∣∣∣∣KD(t0, x, y)

ϕ(y)2
− 1

∣∣∣∣ ≤ C e−γt0 (2.12)

for all t0 > 1 say, where KD(s, x, y) is the transition density of Brownian motion

conditioned to remain in D. Hence we have the estimate, for all t0 > 1:

|ε1x(t, t0)| ≤ sup
x,y∈D

∣∣∣∣KD(t0, x, y)

ϕ(y)2
− 1

∣∣∣∣ ∫
D
ϕ(y)Py (Nt−t0 > 0) dy ≤ C e−γt0 f(t− t0).

(2.13)

To bound the second term, write Att0 for the event that some subprocess branch-

ing from the spine before time t0 survives until (total) time t. Since M0,t0/MtMt0,t

is positive and less than or equal to 1/Mt0,t we see that

∣∣ε2x(t, t0)
∣∣ ≤ Qx

[
1

Mt0,t
1Att0

]
.

Again, to estimate this we condition; but now on G̃t0 , where G̃ ⊃ G is the filtration

which also contains information about the branching points along the spine. The

reason for doing this is that we know, given the position of the spine (ξs) for 0 ≤
s ≤ t0 and all its branching points, that the subprocesses branching off the spine

before t0 and the process continuing on from ξt0 are independent. Thus, the term

on the right above is equal to

Qx

[
Qx

[
1Att0
|G̃t0
]
Qx

[
1

Mt0,t

∣∣∣∣ G̃t0]] = Qx

[
Qx

[
1Att0
|G̃t0
] Pξt0 (Nt−t0 > 0)

ϕ(ξt0)

]
,

where we can now show that the conditional probability Qx[1Att0
|G̃t0 ] is small. In-

deed, since the probability that any subprocess branching off the spine before t0
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survives until total time t is less than supw∈D |Pw (Nt−t0 > 0) |, we see that

Qx

[
1Att0
|G̃t0
]
≤ St0 sup

w∈D
|Pw (Nt−t0 > 0) |,

where St0 is the number of such subprocesses. Moreover, again for t0 > 1 say by

(2.12), we have

Qx

[Pξt0 (Nt−t0 > 0)

ϕ(ξt0)

]
. f(t− t0)

where the implied constant depends only on D. Combining all of the above, and

noting that St0 is independent of the motion under Qx with Qx [St0 ] = 2λt0 provides

the final estimate

|ε2x(t, t0)| ≤ C̃t0f(t− t0) sup
w∈D
|Pw (Nt−t0 > 0) | (2.14)

for all t0 > 1, where C̃ is another constant. With both these error bounds in hand,

we may deduce that∣∣∣∣Px (Nt > 0) /ϕ(x)

f(t− t0)
− 1

∣∣∣∣ ≤ ∣∣∣∣ ε1x(t, t0)

f(t− t0)

∣∣∣∣+∣∣∣∣ ε2x(t, t0)

f(t− t0)

∣∣∣∣ ≤ C e−γt0 + C̃t0 sup
w∈D
|Pw (Nt−t0 > 0) |

for any x ∈ D, and 1 < t0 < t.

Now, since we know that supw∈D |Pw (Nt−t0 > 0) | → 0 as s→∞, it is possible

to choose t0(t) such that both t0(t)→∞ and t0(t) supw∈D |Pw (Nt−t0 > 0) | → 0 as

t→∞. Then we have, letting c(t) = f(t− t0(t)), that∣∣∣∣Px (Nt > 0) /ϕ(x)

c(t)
− 1

∣∣∣∣→ 0 (2.15)

as t → ∞, uniformly for x ∈ D. To complete the proof, we need only show that

c(t) must be asymptotically equivalent to a(t) :=
∫
D Px (Nt > 0)ϕ(x) dx as t→∞.

Note that a(t) is less than supw∈D |Pw (Nt−t0 > 0) |, and so clearly decays with t.

To see the equivalence, observe that∣∣∣∣a(t)

c(t)
− 1

∣∣∣∣ =

∣∣∣∣∫
D

(
Px (Nt > 0)

c(t)
− ϕ(x)

)
ϕ(x) dx

∣∣∣∣ ≤ ∥∥∥∥Px (Nt > 0)

c(t)
− ϕ(x)

∥∥∥∥
L2(D)

(2.16)

where the inequality holds by Cauchy-Schwarz and the fact that
∫
D ϕ

2 = 1. Multi-

plying (2.15) by ϕ(x) and integrating tells us that the final expression converges to

0 as t→∞.

Remark 2.27. The proof of this Lemma remains essentially the same in our more
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general framework, using Remark 2.23 in place of Lemma 2.24. Some more care is

required to bound

Qx [St0 ] ,

as multiple processes may now immigrate at each branching point on the spine, but

since the size-biased distribution has finite mean (we are assuming that A has finite

variance) this is again less than some constant times t0.

2.4.3 Asymptotics for a(t)

Now, since by Lemma 2.20 we know that

Px (Nt > 0) := u(x, t)

is a solution of the FKPP equation in D, we can find an ODE which is satisfied by

a(t). This will allow us to deduce the desired asymptotic for a(t) as t → ∞. More

precisely, we have the following:

Lemma 2.28. Assume that D is C1. Letting a(t) =
∫
D u(x, t)ϕ(x) dx we have that

a(t) is differentiable for all t > 0 and

da

dt
(t) = −λ

∫
D
u2(x, t)ϕ(x) dx. (2.17)

Proof. First suppose that u(·, t) ∈ H1
0 (D) and ∆u(·, t) ∈ L2(D) for all t > 0. Then,

since
∂u

∂t
(x, t) =

1

2
∆u(x, t) + λ(u(x, t)− u2(x, t))

we see that ∂u
∂t (·, s) ∈ L2(D) for all strictly positive s, and∫

D

∂u

∂t
(x, s)ϕ(x) dx =

∫
D

(
1

2
∆u(x, s) + λ(u(x, s)− u2(x, s))

)
ϕ(x) dx

is well defined. Furthermore, we have that ϕ ∈ H1
0 (D) (since ∂D is assumed C1 and

ϕ vanishes on the boundary - see [Eva98, §5.5]) and that u ∈ H1
0 (D) by assumption.

This means that we can integrate by parts against ϕ ∈ H1
0 (D) and use that ϕ is an

eigenfunction of the Laplacian to obtain the equality∫
D

du

dt
(x, s)ϕ(x) ds = −λ

∫
D
u2(x, s)ϕ(x)dx. (2.18)

Observe that the left hand side is continuous in s (for s > 0) since the right hand

side must be by continuity of u2 and dominated convergence.
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Hence, for any t > 0, letting 0 < a < t we see that

−λ
∫
D
u2(x, t)ϕ(x) dx =

d

dt

∫ t

a

∫
D
−λu2(x, s)ϕ(x) dx =

d

dt

∫ t

a

∫
D

∂u

∂t
(x, s)ϕ(x) dxds

by the continuity discussed above, and (2.18). Then, applying Fubini and using the

continuity of du
dt (x, s) in s for fixed x, we can write this as

d

dt

∫
D

∫ t

a

∂u

∂t
(x, s)dsϕ(x)dx =

d

dt

∫
D
u(x, t)ϕ(x)− u(x, a)ϕ(x) dx =

da

dt
(t).

Therefore, we need only show that u ∈ H1
0 (D) and ∆u ∈ L2(D). However, this is

simply the regularity that u obtains by virtue of being a solution of (2.8). This is a

straightforward consequence of the standard regularity theory for parabolic PDEs.

Since the domain is C1 and u vanishes on the boundary, it is enough to show that

∞∑
k=1

λk 〈f, ϕk〉2 <∞ and
∞∑
k=1

λ2
k 〈f, ϕk〉2 <∞ (2.19)

(see, for example, [Tho06, Lemma 3.1]). This can be proved using the Duhamel

representation for u as a solution of (2.8) and a standard bootstrapping argument.

We omit the straightforward calculations.

Remark 2.29. For the more general branching diffusion we can apply the same

arguments to show that

da

dt
(t) = − λ

m− 1

∫
D

(G(1− u) +mu− 1)ϕ(x) dx (2.20)

where G is the probability generating function of A. Continuity of the right-hand

side requires an extra application of the dominated convergence theorem to first see

that G(1 − u) = E[(1 − u)A] is continuous. To bound the Sobolev norms in (2.19)

one must observe that

∇(G(1− u)) = −∇uE[A(1− u)A]

is bounded in modulus by a constant times |∇u|.

This allows us to deduce an asymptotic for a(t), which completes the proof of

Theorem 2.4.

Proposition 2.30.

a(t) ∼
t→∞

1(
λ
∫
D ϕ(y)3 dy

)
t
.
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Proof. The desired asymptotic for a(t) follows fairly easily from Lemma 2.28 since

we have, writing u(t, x) = a(t)ϕ(x) + v(t, x) and substituting this into (2.17), that

da

dt
(t) = −λa2(t)

∫
D
ϕ(y)3 dy − 2λa(t)

∫
D
v(t, x)ϕ2(x) dx− λ

∫
D
v2(t, x)ϕ(x) dx.

(2.21)

Then, Proposition 2.26 tells us that the second two terms are negligible compared

with the first for large t. Indeed, since |u(t, x)/a(t)ϕ(x)−1| = |v(t, x)/a(t)ϕ(x)| → 0

uniformly in x, we have that

da

dt
(t) =

(
−λ
∫
D
ϕ(y)3 dy − g(t)

)
a2(t)

for g(t) := 2λ

∫
D

v(t, x)

a(t)
ϕ2(x) dx+ λ

∫
D

v(t, x)2

a(t)2
ϕ(x) dx

where g(t)→ 0 as t→∞. Thus we obtain, denoting differentiation with respect to

t by a dot, that

−λ
∫
D
ϕ(y)3 dy − |g(t)| ≤ ȧ(t)

a2(t)
≤ −λ

∫
D
ϕ(y)3 dy + |g(t)|.

Moreover, since da−1

dt (t) = − ȧ(t)
a2(t)

, integration yields that

1

a(t)
≥
(
λ

∫
D
ϕ(y)3 dy

)
(t− 1)−

∫ t

1
|g(s)| ds+

1

a(1)

1

a(t)
≤
(
λ

∫
D
ϕ(y)3 dy

)
(t− 1) +

∫ t

1
|g(s)| ds+

1

a(1)

where we have started from 1 to avoid any differentiability issues at 0. Note that

ȧ(s)/a2(s) is clearly integrable over [1, t] for any t, and so we are justified in applying

the fundamental theorem of calculus here. Upon dividing by
(
λ
∫
D ϕ(y)3 dy

)
t we see

that ∣∣∣∣∣∣
1

(λ
∫
D ϕ(y)3 dy)t

a(t)
− 1

∣∣∣∣∣∣ ≤ 1

t
+

1(
λ
∫
D ϕ(y)3 dy

) ( 1

a(1)t
+

∫ t
0 |g(s)| ds

t

)
.

The first term in the brackets on the right hand side of this expression clearly

converges to 0 as t → ∞. Furthermore, since |g| is bounded and |g(s)| → 0 as

s→∞, so does the second. This yields the result.

Remark 2.31. Note that this Proposition, combined with the proof Theorem 2.3,
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in particular (2.15), shows that∣∣∣∣ tλ
∫
D ϕ(y)3 dy × Px(Nt > 0)

ϕ(x)
− 1

∣∣∣∣ −→ 0

as t→∞, uniformly in x.

Remark 2.32. For the more general set up, observe that

G(1− u) +mu− 1 =
E[A2]− E[A]

2
u2 + o(u2)

by Taylor’s theorem and our moment assumption on the offspring distribution A

(see [DN80, Theorem A] for a general statement concerning Taylor expansions of

probability generating functions). Replacing the expression for da
dt by (2.20) and pro-

ceeding as above, we may incorporate the error term from the integral into g(t), and

reach the desired conclusion.

2.5 The Conditioned System

Theorem 2.4 allows us to study the law of branching Brownian motion conditioned to

survive for a long time in much greater depth. One aspect of the limiting behaviour

is captured by what happens to the law of the process run up to some fixed time T ,

if it is then conditioned to survive until a much larger time t. It turns out that this

limiting description is given precisely by the evolution of the process under Qx, as

described in Lemma 2.22.

Proof of Proposition 2.5. Recall, we would like to prove that for any T ≥ 0,

x ∈ D and B ∈ FT , we have that

lim
t→∞

Px (B|Nt > 0) = Qx(B).

Conditioning on FT , we see that

Px (B|Nt > 0) =
Ex [1BPx (Nt > 0|FT )]

Px (Nt > 0)
:=

Ex [1BY ]

Px (Nt > 0)

where we have defined

Y := Px (Nt > 0|FT ) =

NT∑
i=1

PXi
T

(Nt−T > 0)

∏
j<i

P
Xj
T

(Nt−T = 0)

 .
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Then, from our asymptotic for the survival probability and the fact that t
t−T → 1

as t→∞, it follows that

1BY

Px (Nt > 0)
→
t→∞

∑NT
i=1 ϕ(Xi

T )

ϕ(x)
1B =

MT

M0
1B

almost surely, as t→∞. Moreover, we have that Y ≤∑NT
i=1 PXi

T
(Nt−T > 0) . MT

t−T
for all large enough t (recalling that our asymptotic estimates were uniform in D),

and so we can dominate 1BY/Px (Nt > 0) by an integrable random variable, namely

a constant multiple of MT . The dominated convergence theorem then provides the

result.

�

Given the asymptotic for the survival probability, it is also not too much work

to prove Theorem 2.6, which gives some limiting information on the positions of

particles at time t, given survival. Recall (since we are working in the branching

Brownian motion case) we would like to show that for any f with
〈
f2, ϕ

〉
<∞ that

we have

(t−1
Nt∑
i=1

f(Xi
t)|Nt > 0)→ Z

in distribution as t→∞, where Z ∼ Exp(1/λ 〈ϕ, f〉
∫
D ϕ(y)3 dy). To prove Theorem

2.6, we will use the method of moments, relying on Theorem 2.4 and the following

Lemma.

Lemma 2.33. For all n ∈ N and x ∈ D,

Ex
[
(
∑Nt

i=1 ϕ(Xi
t))

n
]

n!ϕ(x)λn−1(
∫
D ϕ

3)n−1tn−1
→ 1

as t→∞, uniformly in x.

Proof of Lemma 2.33. The proof of this relies on the expression for

Ex[(
∑Nt

i=1 ϕ(Xi
t))

n] that one obtains from a Many-To-Few generalisation of the

Many-to-Two Lemma, see below, and then proceeds by induction. We start with

n = 1. This case is simple, however, because we know that∣∣∣∣∣Ex
[∑Nt

i=1 ϕ(Xi
t)

ϕ(x)

]
− 1

∣∣∣∣∣ = 0

for all t and x, since the expectation is that of our mean 1 martingale Mt/M0.
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We also record here that∣∣∣∣∣eλt Ex

[
ϕ2(Bt)1{t>τD}

]
ϕ(x)

∫
D ϕ

3
− 1

∣∣∣∣∣ =
1∫

D ϕ(y)3 dy

∫
D

eλtpD(t, x, y)ϕ2(y)

ϕ(x)
− ϕ(y)3 dy

(2.22)

≤ sup
y∈D

∣∣∣∣KD(t, x, y)

ϕ(y)2
− 1

∣∣∣∣
which we know is less than C e−γt for all x and t ≥ 1 say, where C is some universal

constant. This fact will be crucial to the induction.

For the inductive step, we need a Many-to-Few Lemma, which is a generalisation

of Lemma 2.13. This tells us, as a special case, that

Ex[(

Nt∑
i=1

ϕ(Xi
t))

n] = eλt Ex

[
ϕ(Bt)

n1{τD>t}
]

(2.23)

+
n−1∑
j=1

(
n

j

)∫ t

0
λ eλs Ex

[
1{τD>s}E

j(t− s,Bs)
]
ds

where Ej(s, x) := Ex[(
∑Ns

i=1 ϕ(Xi
s))

n−j ]Ex[(
∑Ns

i=1 ϕ(Xi
s))

j ], and is proved in a very

general setting in [HR15, Lemma 1]. Thus, for n > 1 we can break up∣∣∣∣∣∣
Ex
[
(
∑Nt

i=1 ϕ(Xi
t))

n
]

n!ϕ(x)λn−1(
∫
D ϕ

3)n−1tn−1
− 1

∣∣∣∣∣∣
into n parts, each corresponding to one of the terms in (2.23). Since we know

that eλt Ex

[
ϕ(Bt)

n1{τD>t}
]
≤ ‖ϕ‖n−1

∞ ϕ(x), the first of these terms will tend to 0

uniformly in x as t→∞. Thus we need only show that for each 1 ≤ j ≤ n− 1, we

have ∣∣∣∣∣
∫ t

0 eλs Ex

[
1{τD>s}E

j(t− s,Bs)
]
ds

j!(n− j)!ϕ(x)λn−2(
∫
D ϕ

3)n−1tn−1
− 1

n− 1

∣∣∣∣∣→ 0 (2.24)

uniformly in x as t→∞. In the following we set

Qky(r) :=
Ey
[
(
∑Nr

i=1 ϕ(Xi
r))

k
]

k!λk−1(
∫
D ϕ

3)k−1rk−1
(2.25)
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for y ∈ D, k ∈ N and r ≥ 0 so that (2.24) is less than

∣∣∣∣∣∣
∫ t

0 eλs(t− s)n−2Ex

[
1{τD>s}

(
Qn−jBs

(t− s)QjBs(t− s)− ϕ2(Bs)
)]

ds

tn−1ϕ(x)
∫
D ϕ

3

∣∣∣∣∣∣
+

∣∣∣∣∣
∫ t

0 eλs Ex

[
ϕ2(Bs)1{τD>s}

]
(t− s)n−2 ds

tn−1ϕ(x)
∫
D ϕ

3
− 1

n− 1

∣∣∣∣∣ . (2.26)

We will show that both the terms here converge to 0, uniformly in x.

The second expression is relatively easy to deal with, since
∫ t

0 (t− s)n−2/tn−1 =

1/(n− 1). This means that we can pull the 1/(n− 1) term, and then the modulus,

inside of the integral. After doing this, and noting that (t− s)n−2/tn−1 ≤ 1/t for all

s ∈ [0, t], we see that the term is bounded above by

1

t

∫ t

0

∣∣∣∣∣eλs Ex

[
ϕ2(Bs)1{τD>s}

]
ϕ(x)

∫
D ϕ

3
− 1

∣∣∣∣∣ ds.
From here the result follows by (2.22). Note that the bound Ex[ϕ2(Bs)1{τD>s}] ≤
e−λs ϕ(x)‖ϕ‖∞ (which holds for all s and x) tells us that the integrand is uniformly

bounded in x.

For the first expression, we use our induction hypothesis. This tells us that

Qn−jz (r)Qjz(r)/ϕ(z)2 → 1 uniformly in z as r →∞. It is also clear from the defini-

tion (2.25) that for fixed n and j, rn−2Qn−jz (r)Qjz(r) is uniformly bounded on any

compact interval [0, T ] (for example by bounding the expectation in (2.25) by the

corresponding expectation for a Yule process and using that ϕ is bounded). With

this in mind we bound (2.26) above by

supz supr≥T |Qn−jz (r)Qjz(r)/ϕ(z)2 − 1|
t
∫
D ϕ(y)3 dy

∫ t−T

0
eλs

Ex

[
1{τs>0}ϕ

2(Bs)
]

ϕ(x)
ds

+
supz supr≤T (|rn−2Qn−jz (r)Qjz(r)|+ |rn−2ϕ(z)2|)

tn−1
∫
D ϕ(y)3 dy

∫ t

t−T
eλs

Ex

[
1{τD>s}

]
ϕ(x)

ds

where we have used that (t− s)n−2/tn−1 ≤ 1/t for the first part. Since

eλs
Ex[1{τD>s}]

ϕ(x)
=

∫
D

eλspD(s, x, y)

ϕ(x)ϕ(y)
ϕ(y) dy

is the expectation of ϕ(ξs) for ξ a Brownian motion conditioned to remain in D, and

therefore bounded uniformly in s and x, we obtain the convergence to 0 by letting

first T →∞ and then t→∞ in the above. �

Proof of Theorem 2.6. Lemma 2.33 combined with Theorem 2.4 tells us that for
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each n > 0,

Ex[(t−1
Nt∑
i=1

ϕ(Xi
t))

n|Nt > 0]→ n!

(
λ

∫
D
ϕ3

)n
as t → ∞, where the right hand side is the nth moment of an Exp

(
1/λ

∫
D ϕ

3
)

random variable. Since convergence of the moments is enough to ensure convergence

in distribution when the limiting distribution is nice enough, see for example [Bil95,

Theorem 30.2], Theorem 2.6 is proved in the case f = ϕ. To deal with general f we

write f̃ = f − 〈ϕ, f〉ϕ. We will show that for any ε > 0

Px(|t−1
Nt∑
i=1

f̃(Xi
t)| > ε|Nt > 0)→ 0

as t→∞ (uniformly in x), which implies the result by the above decomposition and

the proof when f = ϕ. To do this we use Markov’s inequality and the Many-to-Two

Lemma. This Lemma tells us that Ex[(t−1
∑Nt

i=1 f̃(Xi
t))

2|Nt > 0] is equal to

ϕ(x)

tPx(Nt > 0)

(
eλt Ex[f̃(Bt)

21{τD>t}] + 2
∫ t

0 λ eλs Ex[1{τD>s}EBs [
∑Nt−s

i=1 f̃(Xi
t−s)]

2] ds

tϕ(x)

)

where we know that the expression outside the brackets is uniformly bounded in t

and x (for t large enough). We also know that

eλt Ex[f̃(Bt)
21{τD>t}]

tϕ(x)
≤ t−1

(
1 + sup

y

∣∣∣∣KD(t, x, y)

ϕ(y)2
− 1

∣∣∣∣) (ϕ, f̃2) (2.27)

and so this term converges uniformly to 0 by the assumption on f . To conclude

we use the fact that (ϕ, f̃) = 0, which was the reason for choosing f̃ as we did.

This means that supz ϕ(z)−1Ez[
∑Nr

i=1 f̃(Xi
r)] → 0 as r → ∞, by the Many-to-One

Lemma and the same argument used for the bound in (2.27). Thus we have that

(tϕ(x))−1

∫ t

0
λ eλs Ex[1{τD>s}EBs [

Nt−s∑
i=1

f̃(Xi
t−s)]

2] ds

≤
∫ t
t−T λ eλs Ex[1{τD>s}EBs [

∑Nt−s
i=1 f̃(Xi

t−s)]
2] ds

tϕ(x)

+ sup
r≥T

sup
z

(
ϕ(z)−1Ez[

Nr∑
i=1

f̃(Xi
r)]

)2 ∫ t−T
0 λ eλs Ex[ϕ(Bs)

21{τD>t}] ds

tϕ(x)

where the second term on the right can be made arbitrarily small for all t ≥ T as

long as T is large enough (using the bound eλs Ex[ϕ(Bs)
21{τD>t}] ≤ ϕ(x)‖ϕ‖∞ on

the integrand). Therefore, we are left with having to show that, for fixed T , the
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first term converges to 0 (uniformly in x) as t → ∞. However, we can apply the

Many-to-one Lemma and Cauchy-Schwarz to the EBs [·] term in the integral, and

then the Markov property, to see that

Ex[1{τD>s}EBs [
Nt−s∑
i=1

f̃(Xi
t−s)]

2] ≤ Ex[1{τD>s} e2λ(t−s) EBs [f̃
2(B̃t−s)]

≤ e2λ(t−s) Ex[1{τD>t}f̃(Bt)
2]

where the process B̃ in the middle expression is just an independent Brownian

motion. Using the assumption that (ϕ, f̃2) < ∞ and (2.27) once more, the result

follows from computing the integral.

�

Remark 2.34. We note here that Lemma 2.33 would also hold if we started the

initial particle in a random position, with density ϕ2. This follows directly from

the proof, since everything is uniform in x. In fact, since the asymptotic for the

survival probability is also uniform in the starting point by Remark 2.31, we have

that Theorem 2.6 holds when f = ϕ and we start the system in this random initial

position. Of course this also holds for other initial configurations, but we will only

use this one in the proof.

We conclude by explaining how one can obtain Corollary 2.7 from here, which

describes the asymptotic distribution of a particle picked at random from the pop-

ulation, given survival.

Proof of Corollary 2.7 . To prove the Corollary we first show that for any f with

(ϕ, f2) <∞

Px

(∣∣∣∣∣
∑Nt

i=1 f(Xi
t)∑Nt

i=1 ϕ(Xi
t)
− (ϕ, f)

∣∣∣∣∣ > ε

∣∣∣∣∣Nt > 0

)
→ 0 (2.28)

as t→∞. Defining f̃ as in the proof of Theorem 2.6, this is equal to

Px

(∣∣∣∣∣ t
∑Nt

i=1 f̃(Xi
t)

t
∑Nt

i=1 ϕ(Xi
t)

∣∣∣∣∣ > ε

∣∣∣∣∣Nt > 0

)
≤ Px

(
t−1

Nt∑
i=1

f̃(Xi
t) > δ|Nt > 0

)
(2.29)

+ Px

(
t−1

Nt∑
i=1

ϕ(Xi
t) < δ/ε|Nt > 0

)

for any δ > 0. From the proof of Theorem 2.6, if we take a limit as t → ∞ on

the right hand side, we are left with simply the probability that an exponential

random variable is less than δ/ε. Taking δ → 0 proves (2.28). The Corollary then

follows by applying the above with both f and the constant function 1, and writing
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∑
f(Xi

t)/Nt =
∑
f(Xi

t)/
∑
ϕ(Xi

t)×
∑
ϕ(Xi

t)/Nt. �

Corollary 2.35. For f as in Corollary 2.7, and any ε > 0, we have that

Px

(∣∣∣∣∣
∑Nt

i=1 f(Xi
t)∑Nt

i=1 ϕ(Xi
t)
− (ϕ, f)

∣∣∣∣∣ > ε

∣∣∣∣∣Nt > 0

)
→ 0 (2.30)

as t→∞, uniformly in the starting position x.

Proof. Note that the proof of Theorem 2.6 immediately gives us convergence of the

first term in (2.29) to 0 as t → ∞, for any δ > 0, uniformly in x. Therefore, it is

sufficient for us to prove that there exists a function g(δ) converging to 0 as δ ↓ 0,

such that for every η > 0 there exists a T with

Px

(
t−1

Nt∑
i=1

ϕ(Xi
t) < δ/ε|Nt > 0

)
≤ g(δ) + η

for all t ≥ T and all x ∈ D. To do this, we change measure to Qx, and use the fact

that the spine particle under Qx converges uniformly to an equilibrium distribution

with density ϕ2. By definition of the change of measure, and Cauchy-Schwarz, we

have that

Px

(
t−1

Nt∑
i=1

ϕ(Xi
t) < δ/ε|Nt > 0

)
(2.31)

≤ ϕ(x)

tPx(Nt > 0)
Qx

( 1∑Nt
i=1 ϕ(Xi

t)

)2
1/2

Qx

(∑Nt
i=1 ϕ(Xi

t)

t
≤ δ/ε

)1/2

which is in turn less than

ϕ(x)

tPx(Nt > 0)
Qx

[
1/ϕ(ξt)

2
]1/2 Qx

(
Qξu

(∑Nt−u
i=1 ϕ(Xi

t−u)

t
≤ δ/ε

))1/2

where ξs is the position of the spine particle at time s, under Qx. The second

inequality holds simply by positivity of ϕ, and the fact that Qx = Qx on Ft, the

filtration generated by the process, but not the position of the spine, up to time

t. Now, the first two terms in the product (2.31) do not depend on δ, and are

uniformly bounded in t and x, for t > 1 say. This follows from Remark 2.31 (uniform

asymptotic for the survival probability), and Lemma 2.24 (convergence of the spine.)
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The final term of the product is also, by Lemma 2.24 again, less than or equal to(
Ce−γu +

∫
D
ϕ(y)2Qy

(∑Nt−u
i=1 ϕ(Xi

t−u)

t
≤ δ/ε

)
dy

)1/2

(2.32)

for all u > 1 say, where C does not depend on x, u or t. By changing measure back

to Py in the integrand, and again applying Cauchy-Schwarz, we see that the second

term in the square root in (2.32) above is bounded by

∫
D
ϕ(y)2

(
Py(Nt−u>0)Ey[(

∑Nt−u
i=1 ϕ(Xi

t−u))2|Nt−u > 0]1/2

ϕ(y)
×

Py

(∑Nt−u
i=1 ϕ(Xi

t−u)

t− u ≤ t

t− uδ/ε
∣∣∣∣∣Nt−u > 0

)1/2)
dy.

However we know that ϕ(y)−1Py(Nt−u>0)Ey[(
∑Nt−u

i=1 ϕ(Xi
t−u))2|Nt−u > 0]1/2 is uni-

formly bounded in y as long as t − u > 1 say (using the moments we calculated

in Lemma 2.33 and the asymptotic for the survival probability). Since everything

is positive we can take this bound outside of the integral. Furthermore, by Remark

2.34 we know that if we let g′(δ) be the square root of the probability that an ex-

ponential random variable with mean λ
∫
D ϕ(y)3 dy is less than δ/ε, then g′(δ) ↓ 0

as δ ↓ 0, and

∫
D
ϕ(y)2Py

(∑Nt−u
i=1 ϕ(Xi

t−u)

t− u ≤ t

t− uδ/ε
∣∣∣∣∣Nt−u > 0

)1/2

dy −→ g′(δ)

as t→∞, for any fixed u. Putting all of this together proves the result.

We will use this to prove a stronger version of Corollary 2.7. We know by the

Corollary that the average value of f(v) among all vertices v at large height in one

tree, given survival, converges to 〈f, ϕ〉 / 〈1, ϕ〉. The next Lemma will tell us that in

fact we need only look at the average over a large enough subset of these vertices.

This will be helpful to us for the proof of Theorem 2.1.

Lemma 2.36. Let f be as in Corollary 2.7. Then for any ε, ρ > 0 and x ∈ D

Px (Bt(ρ)|Nt > 0) := Px

 ⋃
ρt≤M≤Nt

{∣∣∣∣∣
∑M

i=1 f(Xi
t)

M
− 〈f, ϕ〉〈1, ϕ〉

∣∣∣∣∣ > ε

}∣∣∣∣∣∣Nt > 0

→ 0

as t→∞.

Recall here from Section 2.2.1 how we have chosen to enumerate the particles in

the system.
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Proof. We will prove the Lemma by looking at the tree conditioned to survive until

time t, and dividing the set of vertices at time t into families, depending on whether

or not they have the same ancestor at some earlier time. This earlier time will be

chosen such that with high probability, the average value of f over the positions

of any one of these families is close to 〈f, ϕ〉 / 〈1, ϕ〉. This will show that at many

places along the tth generation (vertices at height t) the average of f , taken over

the positions of all previous vertices at this height, is close to what we want. To

extend this to all vertices far enough along the tth generation, we will show that

the size of each of these families is very small compared to t.

0

t

t− t
g(t,ε)

t
g(t,ε)

O( t
g(t,ε) )

Figure 20: Sketch of the argument. There are O(g(t, ε)) particles at time t− t/g(t, ε) with
descendants at time t (marked with dots). Each of these families is likely to be good and
has size O(t/g(t, ε)).

To do this, fix ε > 0 and write

p(t, ε) := sup
x∈D

Px

(∣∣∣∣∣
∑Nt

i=1 f(Xi
t)

Nt
− 〈f, ϕ〉〈1, ϕ〉

∣∣∣∣∣ > ε/2

∣∣∣∣∣Nt > 0

)
,

which by Corollary 2.35, converges to 0 as t→∞. This means that we can choose

a function g(t, ε) such that g(t, ε)→∞ as t→∞, but

g(t, ε) p

(
t

g(t, ε)
, ε

)
→ 0 (2.33)

as t → ∞. Indeed, since sup{p(u, ε);u ≥ t} converges monotonically to 0 as

t → ∞, you can choose g(t, ε) less than
√
t but still converging to ∞, such

that g(t, ε) sup{p(u, ε);u ≥
√
t} → 0 as t → ∞. Then since p(t/g(t, ε), ε) ≤

sup{p(u, ε);u ≥ t/g(t, ε)} ≤ sup{p(u, ε);u ≥
√
t}, the function g will satisfy (2.33).

As mentioned above, we will break up the particles at time t into families.
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Two vertices will be in the same family if they have a common ancestor at time

t− t/g(t, ε). We let the number of these families be N̂t−t/g(t,ε) and set mi to be the

average value of f among the ith family. Here the order of the families corresponds

to the order of the ancestors at time t−t/g(t, ε). The key to the proof of this Lemma

will be to show that

Px

 N̂t−t/g(t,ε)⋃
i=1

{∣∣∣∣mi −
〈f, ϕ〉
〈1, ϕ〉

∣∣∣∣ > ε/2

}∣∣∣∣∣∣∣Nt > 0

→ 0 (2.34)

as t → ∞. The reason for this is that there are order g(t, ε) particles that have

descendants at time t, and the probability that they are bad in the sense of (2.34)

is less than p(t/g(t, ε)) by definition. Then (2.33) provides the result.

To prove this rigorously however, it is more convenient to consider the uncon-

ditioned version of the probability in (2.34), noting that the event clearly does not

occur if Nt = 0. To analyse this probability, we condition on the total collection of

particles at time t− t/g(t, ε). There are order 1 of these, uniformly in t by Markov’s

inequality (i.e. for any δ > 0 there exists a K such that Px(Nt−t/g(t,ε) > K) ≤ δ for

all t.) Moreover, for any one of them, the probability that it

(a) has a descendant at time t, and

(b) the average value of f over all its descendants at time t is more than ε/2 away

from (f, ϕ)/(1, ϕ)

is less than some constant times g(t,ε)
t p (t/g(t, ε), ε). This follows from the definition

of p and the asymptotic for the survival probability. Multiplying by t to account for

the conditioning in (2.34) and applying (2.33) gives (2.34).

The upshot of (2.34) is that we now know, letting σi be the number of particles

in the ith family at time t, that

Px (At|Nt > 0) := Px

 N̂t−t/g(t,ε)⋃
i=1

{∣∣∣∣∣
∑σ1+···+σi

j=1 f(Xj
t )

σ1 + · · ·+ σi
− 〈f, ϕ〉〈1, ϕ〉

∣∣∣∣∣ > ε/2

}∣∣∣∣∣∣∣Nt > 0

→ 0

(2.35)

as t→∞ (observe that the families are clearly grouped together in the ordering of

generation t.) This tells us that we have many “good” vertices along generation t,

where the average value of f (considered over previously visited vertices) is close to

what we want. To complete the proof, we must show that gaps between these good

vertices, i.e. the lengths σi, are not too long.
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To do this, we will prove that

Px
(
A′t|Nt > 0

)
:= Px

 N̂t−t/g(t,ε)⋃
i=1

{
σi >

t

(g(t, ε))1/3

}∣∣∣∣∣∣∣Nt > 0

→ 0 (2.36)

as t → ∞. For this we apply a similar argument to above. We consider the uncon-

ditioned probability and condition on the system at time t− t/g(t, ε). By Markov’s

inequality there are order 1 particles at this time, uniformly in t, and for any one

of them the probability that it

(a) has a descendant at time t, and

(b) the total number of descendants at time t is greater than t/(g(t, ε))1/3

is less than some constant times

g(t, ε)

t
× g(t, ε)−4/3.

The first term in the product comes from the asymptotic for the survival probability.

The second comes from the fact that, given survival of a process to time t/g(t, ε), the

total number of particles is roughly t/g(t, ε) times an exponential random variable

by Theorem 2.6. We use Markov’s inequality to get the explicit bound (uniformly

in the starting point). Again multiplying by t to account for the conditioning gives

(2.36).

Let us now show that Px(Bt(ρ)|Nt > 0)→ 0 as t→∞. By the above work, and

a union bound it is enough to show that

Bt(ρ) ⊂ At ∪A′t

for all t large enough. Suppose we are on the event {At∪A′t}c, and for every ρt ≤M ≤
Nt, set k(M) = σ1 + · · ·+σi, where i is such that σ1 + · · ·+σi ≤M ≤ σ1 + · · ·+σi+1.

Then ∣∣∣∣∣
∑k(M)

i=1 f(Xi
t)

k(M)
− 〈f, ϕ〉〈1, ϕ〉

∣∣∣∣∣ ≤ ε/2
for all ρt ≤ M ≤ Nt simultaneously However, since we are on the event {A′t}c we

also have ∣∣∣∣∣
∑M

i=1 f(Xi
t)

M
−
∑k(M)

i=1 f(Xi
t)

k(M)

∣∣∣∣∣ ≤ 4
〈f, ϕ〉
〈1, ϕ〉

1

ρ(g(t, ε))1/3
. (2.37)

Thus, for all t large enough, we must also be on the event {Bt(ρ)}c.
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Remark 2.37. The proof of Theorem 2.6 directly extends to the case of a general

branching diffusion, by applying a generalised version of the Many-to-Few Lemma,

see [HR15, Lemma 1]. Then Corollary 2.7 and Lemma 2.36 follow as above.

2.6 Convergence to the Brownian CRT

From this point onwards, we will assume that ϕ ∈ C1(D) as in the statement of

Theorem 2.1. In particular this means that |∇ϕ| is bounded on D.

Recall from Section 2.2.1 that we can consider our branching diffusions as con-

tinuous planar trees, where all the vertices are marked with a position. We write

Px for the law of a sequence of i.i.d critical branching Brownian motion trees, each

starting at x ∈ D. We will explore these trees in a depth-first order. This exploration

is defined as follows:

• We start at the root of the first tree and move upwards (i.e. increasing height)

at speed one. Whenever we reach a branching point we take the left branch.

• When we can no longer continue, we jump instantaneously to the most recent

branching point that we have visited.

• We then repeat the process, starting to explore along the right branch ema-

nating from this point.

• Whenever we can no longer continue, we jump instantaneously to the most

recent branch point that we have visited, but not already jumped up to.

• When we reach the end of the first tree, we jump instantaneously to the root

of the next tree and repeat.

height

Figure 21: A sketch of the depth-first exploration of a continuous tree. Full arrowed lines
represent motion at speed one in the vertical direction. Dotted arrowed lines represent
instantaneous jumps.

This is the analogue of the lexicographical ordering for discrete trees. Recording

the height of vertices as we traverse the trees in this way gives us the height process
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Ht associated with the sequence. To show the convergence in Theorem 2.1 it will be

important to show that this height process, when rescaled appropriately, looks like

a reflected Brownian motion. To do this, we introduce a further process, St, which

will turn out to be a martingale.

In the following, we will say that a vertex in the sequence of trees has been

visited by time t if the exploration has passed through that point before time t. We

will say that a vertex, that is also a branch point, has been explored by time t if it

has been visited and jumped back to before time t. Recall that the mark associated

with a vertex v corresponds to the spatial position of the particle it represents: we

denote this by v∗. Finally, we write Y (v) for the set of branch points that have been

visited but not explored before the time that v is visited.

Vt

time t

Figure 22: The exploration up to time t. Branch points with filled circles have been visited
and explored before time t. Branch points with empty circles have been visited but not
explored. Note that the branch point furthest to the right has neither been visited nor
explored before time t. Y (Vt) is the set of branch points with empty circles.

Definition 2.38. Let Vt be the vertex that is visited at time t in the depth-first

exploration, writing V ∗t as usual for its position in D. We define for t ≥ 0

St = ϕ(V ∗t ) +
∑

v∈Y (Vt)

ϕ(v∗)− Λtϕ(x).

Here, Λt is the index of the tree being visited at time t.

In fact, St is very closely related to the martingale Mt. Essentially they are the

same process, but explored in different orders, and we will see that this is enough to

preserve the martingale property. We would like to approximate the height process

by St, and then apply an invariance principle for the martingale. This is an analogous

idea to that used to prove convergence of Galton-Watson processes to the CRT in

[LGD02], where St here plays the role of the Lukasiewicz path. We first record a
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property of this process, which will be essential to showing a relationship with the

height function:

Lemma 2.39. Let S′t = St − ϕ(V ∗t ) and I ′t = inf0≤s≤t S
′
s. Then

S′t − I ′t =
∑

v∈Y (Vt)

ϕ(v∗)

Proof. Since ϕ is positive, it is clear that I ′t = −Λtϕ(x). This implies the result.

Definition 2.40. The process on the right hand side in Lemma 2.39 also makes

sense for a depth-first exploration of a single tree, and we denote such a process by

Ŝ. Note that this is a process that starts at 0 and is positive until the exploration of

the tree is finished, i.e. an excursion.

We also write Ŝy for Ŝ conditioned to reach level y. Then Ŝy is equal in law to

S′t − I ′t, restricted to the first excursion in which it exceeds y.

Observe that we can decompose S into continuous and discontinuous parts, Sc

and Sd. Indeed, if we let Sd be the pure jump process that jumps up by ϕ(v∗) when-

ever the exploration reaches a branch point vertex v, then Sc = S−Sd is continuous.

In fact, Sc is simply ϕ(V ∗t ) minus a compensating sum that makes it continuous. If

the exploration reaches the end of a branch at time t, then lims↑t ϕ(V ∗s ) = 0, but

lims↓t ϕ(V ∗s ) > 0. It is easy to verify that Sc is just ϕ(V ∗t ) with the jumps subtracted

whenever they occur.

Remark 2.41. For a general diffusion and branching mechanism, as in the state-

ment of Theorem 2.1, we define the process S in almost the same way, setting ϕ

to be the first eigenfunction of the generator as usual. In this case we will only say

that a branch point has been explored when all of the subtrees branching from the

point have been partially explored. If a branch point has been visited but not explored

before time t we let kt(v) be the number of these subtrees that have not been explored

at all before time t. We replace the sum
∑

v∈Y (Vt)
ϕ(v∗) in the definition of S by∑

v∈Y (vt)
kt(v)ϕ(v∗). Lemma 2.39 then holds with this sum on the right hand side.

When we decompose S into its continuous and discontinuous parts, the jumps are

given by (k − 1)ϕ(v∗) whenever a branch point v with k branches is reached. The

continuous part is again just ϕ(V ∗t ) with the jumps removed.

We will return to this later, but let us now prove an invariance principle for St.

2.6.1 Martingale Convergence

Lemma 2.42. Under Px, for any x ∈ D, (St)t≥0 is a locally square-integrable mar-

tingale with respect to the natural filtration generated by the depth-first exploration.
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Its predictable quadratic variation is given by

〈S〉t =

∫ t

0
λϕ(V ∗s )2 + |∇ϕ(V ∗s )|2 ds.

Proof. First observe that breaking up S = Sd + Sc gives us the expression for the

predictable quadratic variation. The first term comes from the discontinuous part,

which we know jumps, at rate λ, by ϕ applied to the position of the vertex being

visited. The second comes from the fact that we can write dSct = ϕ(V ∗t )dBt for B

a standard Brownian motion. This follows from the description of Sct , and the fact

that the increments of (V ∗t )t≥0 are equal in law to those of a Brownian motion.

To see that S is a martingale, we condition on the depth first exploration up to

time s and notice that we can write

Ex [St − Ss|Fs] = EV ∗s [Ŝτ −ϕ(V ∗s )] +
∑

v∈Y (Vs)

Ev∗ [Ŝv,τv −ϕ(v∗)] +
∞∑
i=1

Ex[Ŝi,τi −ϕ(x)]

by the Markov property, where Ŝτ , (Ŝv,τv)v∈Y (Vs) and (Ŝi,τi)i≥1 are the processes

Ŝ for the subtrees rooted at vs, {v}v∈Y (Vs) and {vi}i≥1 (the roots of the remaining

sequence of trees) respectively, each run up to a stopping time that does not depend

on that subtree by conditional independence. Thus, to prove the martingale property

it is enough to show that

Ex[Ŝt] = ϕ(x)

for any x ∈ D and t ≥ 0.

To do this, we will approximate Ŝ by a discrete version (Ŝδn, n ∈ N), with δ ↓ 0.

This process will be defined by discretising the tree using steps of size δ in the natural

way. This results in a discrete tree where every vertex is marked with a position -

corresponding to its spatial position in the original tree. To define Ŝδ, set Ŝδ0 = ϕ(x)

(where x is the starting position) and traverse the discrete tree in a depth-first, or

lexicographical, order. If you are visiting a vertex with position y at step n, and

it has children with positions (zj)1≤j≤J , then set Ŝδn+1 − Ŝδn =
∑J

j=1 ϕ(zj) − ϕ(y).

By considering the martingale M , it is clear that Ex[Ŝδn] = ϕ(x) for every n and δ.

Moreover, for fixed t ≥ 0 we have that Ŝδbt/δc → Ŝt almost surely as δ → 0. This is

clear after noting that:

• Almost surely the discrete tree only captures single branching events in any

step, for all δ small enough.

• If vertex being visited at time bt/δc in the discrete process corresponds to the

vertex at time u in the continuous process, then |u−t| ≤ δ(1+Wt), where Wt is
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the total number of deaths plus branch points before time t in the exploration.

• The particle motion is almost-surely continuous.

Since the Ŝδbt/δc are dominated, for example by ‖ϕ‖∞ times the number of branch

points in the continuous tree up to level t, the result follows by dominated conver-

gence.

Remark 2.43. If we have a generator L = −1
2

∑
i,j a

ij ∂xixj +
∑

i b
i ∂xi as in Theo-

rem 2.1 and an offspring distribution A with finite variance, then the same argument

implies that S is a martingale. Letting λ, ϕ be the first eigenvalue/eigenfunction pair

for −L we can calculate that the predictable quadratic variation of S is given by

〈S〉t =

∫ t

0

λ

m− 1
E[A2 −A]ϕ(V ∗s )2 − λϕ(V ∗s )2 +

∑
i,j

∂ϕ

∂xi

∂ϕ

∂xj
ai,j(V ∗s ) ds.

The second term here comes from the single particle motion under L and the first

comes from the jumps (recall the critical branching rate in this case is λ/(m− 1)).

Proposition 2.44. Let

σ2 =
2λ
∫
D ϕ(y)3 dy

〈1, ϕ〉 .

Then (
Snt√
n

)
t≥0

→ (σBt)t≥0

in distribution as n→∞, with respect to the Skorohod topology.

Proof. Since the jumps of S are bounded, this follows from the functional central

limit theorem for martingales [JS87, Theorem 3.22, Chapter VIII] once we can show

that for all t ≥ 0

〈Sn〉t → σt

in probability as n→∞. Here (Snt )t≥0 = (Snt/
√
n)t≥0. However, we can write

〈Sn〉t
t

=
1

nt

∫ nt

0
λϕ(V ∗s )2 + |∇ϕ(V ∗s )|2 ds.

Then, since ϕ and |∇ϕ| are bounded, this follows immediately from Proposition 2.45

below. We recover σ2 by integrating by parts to see that
〈
λϕ(·)2 + |∇ϕ(·)|2, ϕ

〉
=

2λ
∫
D ϕ(y)3 dy.

Proposition 2.45. Suppose that f is a bounded, measurable function and let

(V ∗s )0≤s≤t be the positions of vertices visited in the depth-first exploration before
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time t as usual. Then

Qt :=
1

t

∫ t

0
f(V ∗s ) ds→ 〈f, ϕ〉〈1, ϕ〉

in Px-probability as t→∞.

Remark 2.46. In the general case (assuming Proposition 2.45) we can integrate by

parts, using that ϕ is an eigenvector of L and L is self-adjoint, to see that 〈Sn〉t → σt

as n→∞, where

σ2 =
λE[A2 −A]

∫
D ϕ(y)3 dy

(m− 1) 〈1, ϕ〉 .

Since the jumps are not necessarily bounded in this case, to apply the FCLT for

martingales we need to verify a Lindenberg-Feller type condition (for example, [JS87,

(3.23),Theorem 3.22, Chapter VIII].) However, this follows immediately from the

fact that we are assuming the offspring distribution to have finite variance. Then

Proposition 2.44 holds.

Before we prove Proposition 2.45, let us record some of the consequences of

Proposition 2.44.

Proposition 2.47. Let Λt be the index of the tree being visited in the exploration

at time t (so Λ0 = 1). Then we have the joint convergence(
S′nt − I ′nt√

n
,
Λnt√
n

)
t≥0

→
(
σ|βt|,

σ

ϕ(x)
L0
t (β)

)
t≥0

(2.38)

as n→∞, in distribution with respect to the Skorohod topology. Here, β is a stan-

dard Brownian motion started at 0 and L0
t (β) is the local time of β at 0. Further-

more, for any y > 0, we have(
Ŝ
y
√
n

nt√
n

)
t≥0

(d)−→
n→∞

(
σe

y/σ
t

)
t≥0

(2.39)

where ey/σ is a Brownian excursion conditioned to reach height y/σ.

Proof. From the definition of S′, we have that |S′nt/
√
n− Snt/

√
n| ≤ ‖ϕ‖∞/

√
n for

all t ≥ 0 and so Proposition 2.44 implies that(
S′nt√
n

)
t≥0

→ (σBt)t≥0

as n→∞ as well. Writing Bt = inf0≤s≤tBs this implies the joint convergence(
S′nt − I ′nt√

n
,− I

′
nt√
n

)
t≥0

(d)−→
n→∞

(σ(Bt −Bt),−σBt)t≥0 (2.40)
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where the right-hand side by Lévy’s theorem, see for example [RY91, Chapter VI,

Theorem VI.2.3], is equal in distribution to

(
σ|βt|, σL0

t (β)
)
t≥0

.

However, we know that Λt = −I ′t/ϕ(x), and so (2.38) follows. For the second claim

of the Proposition, we follow [LGD02, Proposition 2.5.2]. It is well known that you

can construct the process ey/σ from a standard Brownian motion β by taking

e
y/σ
t = |β(G+t)∧D|

where T = inf{t ≥ 0 : |βt| ≥ y/σ}, G = sup{t ≤ T : βt = 0} and D = inf{t ≥
T : βt = 0}. By the Skorohod representation theorem and (2.38) we also know that

there exists a process

(
Z

(n)
t ,Λ

(n)
t

)
t≥0

(d)
=

(
S′nt − I ′nt√

n
,
Λnt√
n

)
t≥0

such that (
Z

(n)
t ,Λ

(n)
t

)
t≥0
−→
n→∞

(
σ|βt|,

σ

ϕ(x)
L0
t (β)

)
t≥0

uniformly on every compact set almost surely. This is because Skorohod convergence

is equivalent to local uniform convergence when the limit is continuous. Define

T (n) = inf{t ≥ 0 : Z(n) ≥ y} for this sequence of processes, and G(n), D(n) in the

same way as G and D above. By the remark in Definition 2.40 and (2.38), if we can

prove that G(n) → G and D(n) → D almost surely, we will be done. First note that

since β must exceed x/σ immediately after time T , we have that T (n) → T almost

surely. This implies straight away that for all t < D we have t ≤ D(n) for all n large

enough almost surely. Now we must show that for all t > D we have t ≥ D(n) for all

n large enough almost surely. These facts together (along with the corresponding

results for G) are enough to prove the convergence. To see the final claim, we use

the convergence of the local time. For any t > D, we have using basic properties

of Brownian local time that L0
t > L0

D = L0
T . The convergence of the local time

therefore tells us that Λ
(n)
t > σ

ϕ(x) L
0
T for all n large enough almost surely. Since

Λ
(n)

T (n) →
σ

ϕ(x)
L0
T

almost surely, this implies that we have also have Λ
(n)
t > Λ

(n)

T (n) for all n large enough

almost surely. Using the fact that Λ(n) stays constant on [T (n), D(n)), we see that

t ≥ D(n).
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Remark 2.48. The above proof is not affected by changing the generator or off-

spring distribution, since it relies only on the convergence from Proposition 2.44.

The rest of this subsection will be devoted to the proof of Proposition 2.45, but

we will first need some preliminary estimates. We write h(v) for the height of a

vertex v in the the exploration.

Lemma 2.49. Let L be the total length of a branching Brownian motion process

(i.e. how long it takes to traverse the tree in depth-first order). Then for all x ∈ D

Px(L > t) &
ϕ(x)√
t
.

Let Ut be a vertex picked uniformly at random from those visited before time

t in the depth-first exploration under Px. Write U∗t as usual for the position in D

corresponding to its mark. Finally, denote by Px the law on the sequence of trees

plus Ut. Then we have the following control on the height of the uniform vertex.

Lemma 2.50. For all x ∈ D

Px
(
h(Ut) ≥ C

√
t
)
→ 0

as C →∞, uniformly in t.

We will now show how we may deduce Proposition 2.45, and then go on to prove

the Lemmas. Let N i
s be the number of particles at level s in the ith tree of our

exploration. Also write (Xi,j
s )1≤j≤N i

s
for the positions of these particles. Finally, let

I(t) be the index of the tree in which the uniform vertex lies.

Proof of Proposition 2.45. We first show that Ex[Qt] → 〈f,ϕ〉
〈1,ϕ〉 as t → ∞. Let mt

be the average value of f among the vertices at height h(ut) of the I(t)th tree, that

have been visited before time t. Observe that by conditioning on mt, we have

Ex[Qt] = Ex[f(U∗t )] = Ex[mt]

as t → ∞. This is because, given the positions of these particles, we know that ut

is chosen uniformly from them. We will aim to show that for fixed ε > 0,

Px (At) := Px
(∣∣∣∣mt −

〈ϕ, f〉
〈ϕ, 1〉

∣∣∣∣ > ε

)
→ 0 (2.41)

as t→∞. Then since mt is bounded, the convergence in expectation will follow.
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For the ith tree in our exploration and s > 0, let mi
s,t be the average value of f

among the vertices of tree i at height s that are visited before time t, and Ñ i
s,t be the

number of such vertices. Also write Ais,t for the event that |mi
s,t−〈ϕ, f〉 / 〈ϕ, 1〉 | > ε.

Then, conditioning on the entire sequence of trees, we can write our probability as

1

t
Ex
[∫ ∞

0

∞∑
i=1

1{i≤Λt}1Ais,tÑ
i
s,t ds,

]

since the probability of picking a vertex in tree i at height ds is Ñ i
s/t ds. Note that

we can interchange the integral, expectation and sum as we like here by Fubini (the

expression being bounded by 1.) Now, given δ > 0, by Lemma 2.50 we can choose

C such that P(h(Ut) ≥ C
√
t) < δ

3 for all t. Similarly we can define R(t) > 0 such

that Px(h(Ut) ≤ R(t)) = δ
3 . Note that R(t) → ∞ as t → ∞ by the law of large

numbers. Indeed, for any K > 0 the proportion of time spent below height K in

the exploration is less than or equal to
∑Λt

i=1 p
i
K/t where piK is the time spent below

level K in the ith tree. We also have that t is greater than or equal to
∑Λt−1

i=1 Li

where Li is the length of the ith tree. However, piK has finite variance and Li does

not, and so the strong law of large numbers allows us to conclude.

Since 1As,ti
≤ 1 this tells us that

Px (At) ≤
2δ

3
+

1

t
Ex
[∫ C

√
t

R(t)

∞∑
i=1

1{i≤Λt}1Ais,tÑ
i
s ds

]
(2.42)

where by Fubini we can rewrite the expectation term as

1

t

∫ C
√
t

R(t)

∞∑
i=1

Ex
[
1{i≤Λt}1Ais,tÑ

i
s,t

]
ds. (2.43)

Now for each i, we condition on Gi−1: the σ-algebra generated by the first i − 1

trees. Note that Gi−1 is independent of the ith tree. Moreover, the event {i ≤ Λt}
and the start time τi of the ith tree, are measurable with respect to Gi−1. Thus we

can write

Ex
[
1{i≤Λt}1Ais,tÑ

i
s,t

∣∣∣Gi−1

]
= 1{i≤Λt}Ex

[
1As(t−τi)Ns(t− τi)

∣∣Ns > 0
]
Px(Ns > 0)

where the expectation is now with respect to a single branching Brownian motion

tree, Ns(r) is the number of particles at level s before time r in a depth-first explo-

ration of the tree, and As(r) is the event that the average of f among these particles

is more than ε away from 〈ϕ, f〉 / 〈ϕ, 1〉.
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We note here, by Theorems 2.4 and 2.6, that there exists a K such that

Ex
[
N2
s

∣∣Ns > 0
]1/2 ≤ Ks, Px(Ns > 0) ≤ K/s (2.44)

for all s. We can also, by Lemma 2.49, choose this K such that

Ex [Λt] ≤ K
√
t (2.45)

for all t. Indeed, Ex[Λt] is less than the expectation of geometric random variable,

whose success rate is Px(L > t) & 1/
√
t. Decomposing on whether or not Ns(t− τi)

is bigger than sδ/6CK2 we have

Ex
[
1As(t−τi)Ns(t− τi)

∣∣Ns > 0
]
≤ δs

6CK2
+ Ex

[
1Bs(δ/6CK2)Ns(t− τi)

∣∣Ns > 0
]

≤ δs

6CK2
+ Ex

[
N2
s

∣∣Ns > 0
]1/2 Px (Bs(δ/6CK2)

∣∣Ns > 0
)1/2

where Bs(·) is the event from Lemma 2.36. Using (2.44), and the conditioning above,

we have that

Ex
[
1{i≤Λt}1Ais,tÑ

i
s,t

]
≤
(

δ

6CK
+K2Px

(
Bs(δ/6CK

2)
∣∣Ns > 0

)1/2) Ex[{i ≤ Λt}].
(2.46)

This means that the expression in (2.43) is less than(
δ

6CK
+K2 sup

s≥R(t)

{
Px
(
Bs(δ/6K

2)
∣∣Ns > 0

)1/2}) 1

t

∫ C
√
t

R(t)

∞∑
i=1

Ex
[
1{i≤Λt}

]
.

However, by Fubini and (2.45), this is less than

δ

6
+ CK3 sup

s≥R(t)

{
Px
(
Bs(δ/6K

2)
∣∣Ns > 0

)1/2}
.

Using Lemma 2.36, and the fact that R(t)→∞, we see than this is less than δ
3 for

all t large enough. Substituting in to (2.42) proves (3.29).

To complete the proof of the Proposition, we must also show that

Ex[Q2
t ]→

〈f, ϕ〉2

〈1, ϕ〉2

as t → ∞. However, letting U1
t and U2

t be two vertices picked independently uni-

formly from those visited before time t (again denoting the extended law by Ex) we

see that

Ex
[
Q2
t

]
= Ex

[
f(U1∗

t )f(U2∗
t )
]
.
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Let mi
t and Ait correspond to mt and At for U it , i = 1, 2. Then the same reasoning

as above tells us that

Ex
[
f(U1∗

t )f(U2∗
t )
]

= Ex
[
m1
tm

2
t

]
and we also have, by a union bound, that

Px
[
A1
t ∪A2

t

]
→ 0

as t→∞. The result follows in exactly the same way.

�

Proof of Lemma 2.49. We will prove this result using our asymptotic for the

survival probability. Since we have

Px(L > t) ≥ Px(L > t |N√at > 0)Px(N√at > 0) (2.47)

and we know that the probability of survival until time
√
at decays like ϕ(x)/

√
at,

it is enough to show there exists an a such that Px(L > t|N√at > 0) is bounded

below, uniformly in t. In fact, we will prove a slightly stronger statement, as it will

also be of use later on. We will show that

Px(L ≤ cs2|Ns > 0)→ 0 (2.48)

as c→ 0, uniformly in s. Clearly this is enough to prove the Lemma.

To do this, we first fix some compact subdomain D′ ⊂ D. Then, we condition

on the positions Xi
s of the particles at time s that lie within D′, and consider the

subprocesses continuing from these points. In particular, we consider the contribu-

tions that each subprocess makes to L from its first µs generations. Note that, given

the positions Xi
s, these are independent random variables, with distribution equal

to that of
∫ µs

0 Nu du for a branching Brownian motion started at Xi
s. This means

that they all have mean ≥ Cµs and variance ≤ C ′µ3s3 for some fixed C,C ′ > 0.

The statement concerning the mean follows from the expression for Ey [Nu], which

is bounded below by Lemma 2.33 for all y in the subdomain and all u > 0 by some

C. For the variance, note that for r < u

Ey[NrNu] = Ey [NrEx [Nu| Fr]] ≤ C ′′Ey[N2
r ]

for some C ′′ > 0 (not depending on r, u or y). Since [Ey[N2
r ] . r uniformly in y, the

claim follows by integration.
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By Theorem 2.6 we also know that for any δ > 0 there exist m and S, such

that the probability of having less than ms vertices at time s in D′ (conditioned

on survival) is less than δ for all s ≥ S. On the complementary event, conditioned

on the tree up to time s, we have ms independent random variables with mean

≥ Cµs and variance ≤ C ′µ3s3. By the standard application of Markov’s inequality

to sums of independent random variables, the probability that their sum is more

than mµCs2/2 away from its mean is less than 4C ′µ/C2m for all s ≥ S. Since the

mean is greater than mµCs2, this has to occur for the sum to be less than mµCs2/2.

Taking µ to 0, and noting that L is greater than this sum, shows that the left hand

side of (2.48) can be made less than δ as long as c is small enough and s is large

enough. In fact, we can choose c small enough that this will hold for all s, due to

the continuity in s of the probability in (2.48) (which you can prove by dominated

convergence.) Thus the claim is proved. �

Proof of Lemma 2.50. As explained in the proof of Proposition 2.45, Lemma 2.49

immediately implies that Ex[Λt] .
√
t. Then using our asymptotic for the survival

probability, we have

Px
(
h(Ut) ≥ C

√
t
)
≤ Ex

[ ∞∑
i=1

1{i≤Λt}1{N i
C
√
t
>0}

]
.

1

C
√
t
Ex[Λt]

where the implied constant does not depend on C, x, t.

�

Remark 2.51. The proofs of Proposition 2.45 and Lemmas 2.49 and 2.50 do not

need any adaptation for the more general set up.

2.6.2 Connection with the height function

In order to make use of the above invariance principle, we must connect the martin-

gale with the height function of our trees. In this section we will look at the height

function, and the process Ŝ from Definition 2.40, for the depth-first exploration of

a single tree conditioned to be large. We know by Lemma 2.39 that the value of the

Ŝ when it visits a vertex v in the tree is equal to

Ŝ(v) :=
∑

u∈Y (v)

ϕ(u∗).

We will show that for vertices with large heights, this sum is close to a constant

times the height. Our approach will use an ergodicity property for the spine particle

in the system under Qx, and is inspired from [HR14].
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In the following, given η > 0, we will say that a vertex v in a branching Brownian

motion tree is η-bad if ∣∣∣∣∣ Ŝ(v)

h(v)
− λ

∫
D
ϕ(y)3 dy

∣∣∣∣∣ > η. (2.49)

We also say, for given T ≥ 0, that a vertex v is ηT -bad if some ancestor of the vertex

v at height greater than T is η-bad. Then we have the following estimate for the

proportion of ηT -bad vertices:

Proposition 2.52. Fix ε, η > 0 and write NηT
t for the collection of ηT -bad vertices

at time t. Then we have

Px
(
NηT
t

Nt
> ε

∣∣∣∣Nt > 0

)
→ 0 (2.50)

as T →∞, uniformly in t ≥ T , for any x ∈ D.

By this we mean that for any x ∈ D, given any δ > 0, there exists T ′ large

enough that Px(NηT
t /Nt > ε|Nt > 0) ≤ δ for all t ≥ T ≥ T ′.

Proof. We will first show that for any ε > 0

Px
(
EεT,t|Nt > 0

)
:= Px

(∑Nt
i=1 ϕ(Xi

t)1{Xi
t ηT−bad}∑Nt

i=1 ϕ(Xi
t)

> ε

∣∣∣∣∣Nt > 0

)
→ 0

as T →∞, uniformly in t. To do this, we will use the spine decomposition given by

Lemma 2.22. Recalling the definition of Qx from this section we see that the above

probability is equal to

Qx

[
ϕ(x)/Px(Nt > 0)∑Nt

i=1 ϕ(Xi
t)

1EεT,t

]
:= Qx

[
Yt1EεT,t

]
.

To see that this converges to 0 it is enough to prove that:

• Qx(EεT,t)→ 0 as T →∞, uniformly in t ≥ T and

• For every δ > 0, there exists T ′ and K positive, such that Q
(
Yt1|Yt|>K

)
≤ δ

for all t ≥ T ′.

The first point comes from the fact that the spine particle under this new law is

unlikely to be ηT -bad for large T . More precisely, recall that Qx is a law on branching

processes equipped with a distinguished path, the spine, such that

Qx = Qx

∣∣
Ft
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for Ft the filtration generated by the process but not the distinguished path. Under

Qx, we know that the spine particles evolves as a Brownian motion conditioned to

remain in the domain for all time, and branches at constant rate 2λ, where each

branch is either to the left or right of the spine (i.e. comes before or after in the

depth-first ordering) with equal probability. Due to the mixing of this Brownian

motion to a stationary distribution with density ϕ2, see Lemma 2.24, ergodicity

tells us that the probability of the spine vertex being ηT -bad at time t converges to

0 as T →∞, uniformly in t ≥ T .

The connection between the motion of the spine and the event EεT,t comes from

the fact that under Qx, conditioned on Ft, the spine particle is chosen proportionally

to ϕ, see (2.11). Indeed, since

Nt∑
i=1

ϕ(Xi
t)1{Xi

t ηT−bad}/

Nt∑
i=1

ϕ(Xi
t)

is positive, it is enough, for the first point, to show that its Qx expectation converges

to 0 (uniformly in t ≥ T as T →∞). However, this follows directly from the above

and (2.11) since∑Nt
i=1 ϕ(Xi

t)1{Xi
t ηT−bad}∑Nt

i=1 ϕ(Xi
t)

= Qx (spine ηT -bad at time t|Ft) .

The second point essentially says that (Yt)t≥0 is Qx uniformly integrable. To prove

it, one can use the change of measure between Qx and Px again to write

Qx

[
Yt1{|Yt|>K}

]
=

Px ({|Yt| > K} ∩ {Nt > 0})
Px(Nt > 0)

= Px (|Yt| > K|Nt > 0) .

Since ϕ(x)/tPx(Nt > 0) is uniformly bounded above for t ≥ 1 say, by Theorem 2.4,

we just need to show that for any δ > 0 there exists K and T ′ such that

sup
t≥T ′

Px

(∑Nt
i=1 ϕ(Xi

t)

t
< 1/K

∣∣∣∣∣Nt > 0

)
≤ δ. (2.51)

However, this is a direct consequence of the convergence given by Theorem 2.5,

since we know that for fixed K the probability above converges, as t → ∞, to the

probability that an exponential random variable is less than 1/K.

We must now deduce that

Px
(
NηT
t

Nt
> ε

∣∣∣∣Nt > 0

)
→ 0
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uniformly in t ≥ T as T →∞ from the fact that

Px(EεT,t|Nt > 0)→ 0.

The idea behind this is that
∑Nt

i=1 ϕ(Xi
t)1{Xi

t ηT−bad}/
∑Nt

i=1 ϕ(Xi
t) is a reasonable

approximation to NηT
t /Nt on survival at large times. By Corollary 2.7, we know

that for any δ > 0 there exist r and T ′ positive such that

sup
t≥T ′

Px

(
NDr
t

Nt
>
ε

2

∣∣∣∣∣Nt > 0

)
≤ δ/2 (2.52)

where Dr = {y ∈ D : ϕ(y) < 1/r} and NDr
t is the number of particles in Dr at time

t. Also, write N
Dcr,ηT
t for the number of particles that are ηT -bad and lie in Dc

r at

time t. Then∑Nt
i=1 ϕ(Xi

t)

Nt
≤ ‖ϕ‖∞ and

N
Dcr,ηT
t∑Nt

i=1 ϕ(Xi
t)1{Xi

t ηT−bad}
≤ r.

Bounding NηT
t above by NDr

t + N
Dcr,ηT
t , and choosing T ≥ T ′ large enough that

Px(E
(2‖ϕ‖∞r)−1ε
T,t ) ≤ δ/2, we have that

Px
(
Nη
t

Nt
> ε

∣∣∣∣Nt > 0

)
≤ δ

for all t ≥ T .

Remark 2.53. We can extend the proof to show that for any c > 0 and x ∈ D,

Px
(
{N

ηT
ct

Nct
> ε} ∩ {Nct > 0}

∣∣∣∣Nt > 0

)
→ 0 (2.53)

uniformly in ct ∧ t ≥ T as T →∞. This follows immediately from (2.50), since

Px
(
{N

ηT
ct

Nct
> ε} ∩ {Nct > 0}

∣∣∣∣Nt > 0

)
= Px

(
{N

ηT
ct

Nct
> ε} ∩ {Nct > 0}

∣∣∣∣Nct > 0

)
× Px(Nct > 0)

Px(Nt > 0)

where Px(Nct > 0)/Px(Nt > 0) is uniformly bounded in ct ∧ t ≥ T .

Remark 2.54. For the more general set up, the above arguments do not need to be

changed, except to replace λ
∫
D ϕ(y)3 dy in (2.49) by

λE[A2 −A]

2(m− 1)

∫
D
ϕ(y)3 dy
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where A is the offspring distribution and ϕ as usual becomes the first eigenfunction

of the generator. This follows from Remark 2.23, since branching occurs along the

spine at rate (m/m−1)λ and the number of younger siblings at each such point has

expectation E[(A2 −A)/2].

The next Lemma provides the key connection between Ŝ and the height function,

for a branching Brownian motion tree that is conditioned to survive for a long time.

Lemma 2.55. Write Px for the law of a branching Brownian motion started at x,

plus a vertex u chosen uniformly from it. Then for any η > 0 we have

Px (u is ηT -bad |Nt > 0)→ 0,

uniformly in t ≥ T as T →∞.

Proof. By conditioning on Ns and NηT
s for all 0 ≤ s <∞ and L, which is the total

length of the tree as usual, we see that

Px (u is ηT -bad |Nt > 0) = Ex
[∫ ∞

0

NηT
s

Ns

Ns

L
ds

∣∣∣∣Nt > 0

]
.

Thus we need to show that, given ε > 0, we have

Ex
[∫ ∞

0
1{|NηT

s /Ns|>ε/2}
Ns

L
ds

∣∣∣∣Nt > 0

]
≤ ε/2

for all t ≥ T , whenever T is large enough. First note that by (2.48), we can pick a

c such that Px
(
L ≤ ct2

∣∣Nt > 0
)
≤ ε/8 for all t, and also using our asymptotic for

the survival probability, can choose an R such that Px (NRt > 0|Nt > 0) ≤ ε/8 for

all t. Moreover, since

Ex
[∫ s

0
Ns ds

∣∣∣∣Nt > 0

]
≤Mst

for some M and all s, t, we have that Ex[
∫ bt

0 Ns ds|Nt > 0] ≤Mbt2 and can therefore

choose b > 0 small enough that this is less than εct2/8. Combining this with the

condition on L, our problem is reduced to showing that

lim
T→∞

1

ct2
Ex
[∫ Rt

bt
1{|NηT

s /Ns|>ε/2}Ns ds

∣∣∣∣Nt > 0

]
≤ ε/8

uniformly in t ≥ T . However, by Remark 2.53 we know that

sup
bt≥T

sup
s∈[bt,Rt]

Px ({|NηT
s /Ns| > ε/2} ∩ {Ns > 0}|Nt > 0)→ 0

as T →∞ (the uniformity comes straight from the proof.) Hence, applying Fubini,
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Cauchy-Schwarz and integrating, similarly to in the proof of Proposition 2.45, we

obtain the result.

We will use the above to show that, if we choose k particles (u1, · · · , uk) uni-

formly from a branching Brownian motion tree conditioned to survive up to time t

and define the matrices

(dSt (ui, uj))1≤i<j≤k =
Ŝ(ui) + Ŝ(uj)− 2Ŝ(vi,j)

t

and

(dHt (ui, uj))1≤i<j≤k =
h(ui) + h(uj)− 2h(vi,j)

t

where vi,j is the most recent common ancestor of ui and uj , then the two are

essentially the same up to the multiplicative constant λ
∫
D ϕ(y)3 dy. Note that dHt

is actually how we define distances in the genealogical tree (after rescaling by t) and

λ

∫
D
ϕ(y)3 dy =

σ

α

where α is the constant from the statement of Theorem 2.1.

Proposition 2.56. Let dSt , dHt and (u1, · · · , uk) be defined as above. Then for any

ε > 0

P
(
‖(σ
α
dHt (ui, uj)− dSt (ui, uj))‖ > ε

∣∣∣Nt > 0
)
→ 0 (2.54)

as t→∞, where the distance is the Euclidean distance between k × k matrices.

Proof. We prove this in the case k = 2, the general result following by a union

bound. Lemma 2.55 tells us that if we pick a vertex u uniformly at random from

a tree conditioned to survive to time t, then with high probability the value of

Ŝ(u)/h(u) is close to σ/α. In fact, the probability that this holds at all points along

u’s ancestry (except for at very small times) is very large. Hence, if we pick any

pair of vertices uniformly, since dHt and dSt depend only on their joint ancestry and

the values of Ŝ along it, they will be close (when dHt is multiplied σ/α) with high

probability.

To make this more precise, pick an η > 0. Then we can pick T large enough

that the probability of two uniformly chosen vertices u1, u2 from the tree under

BH
n being ηT -bad is arbitrarily small, uniformly in t ≥ T . We can also pick R large

enough the probability that [h(z1) ∧ h(z2), h(z1) ∨ h(z2)] ⊂ [t/R,Rt] is arbitrarily

close to 1, uniformly in t (see the proof of Lemma 2.55.)

Then, on the event that u1 and u2 are both ηT -good, and [h(u1)∧h(u2), h(u1)∨
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h(u2)] ⊂ [t/R,Rt], we have, as long as t ≥ RT∣∣∣∣∣ Ŝ(ui)

h(ui)
− σ/α

∣∣∣∣∣ ≤ η
for i = 1, 2. The other contributions to dHt and dSt come from the height (resp. the

value of Ŝ) at the most recent common ancestor u of the two vertices. There are

two possibilities: either h(u) ≤ T , or not. In the second case we have that∣∣∣∣∣ Ŝn(u)

h(u)
− σ/α

∣∣∣∣∣ ≤ η
and so ∣∣∣dSt (u1, u2)− σ

α
dHt (u1, u2)

∣∣∣ ≤ 4Rη.

In the first we have

∣∣∣dSt (u1, u2)− σ

α
dHt (u1, u2)

∣∣∣ ≤ 2Rη +

(
2σ

α
+ sup
s≤T

Ns

s

)
T

t
.

However for fixed T , we have that Px
(

sups≤T |Ns/s| ≥ K
∣∣Nt > 0

)
converges to 0

as K → ∞, uniformly in t (see Proposition 2.5). This proves the convergence in

probability.

Immediately from the proof, we also get the following Corollary, which we will

need later on.

Corollary 2.57. We also have for any ε > 0 and c > 0

P
(
‖(σ
α
dHct (ui, uj)− dSct(ui, uj))‖ > ε

∣∣∣Nt > 0
)
→ 0 (2.55)

as t→∞, where the distance is the Euclidean distance between k × k matrices.

Remark 2.58. The proofs of Lemma 2.55 and Proposition 2.56, given all the pre-

vious work, are exactly the same for the more general set up.

2.6.3 Convergence to the CRT

2.6.4 Preliminaries on convergence of metric measure spaces

Before we can prove Theorem 2.1, we must introduce various notions of convergence

for metric spaces, and more generally, for metric measure spaces. Although our aim

is to prove convergence of conditioned genealogical trees in the sense of Gromov-

Hausdorff distance between metric spaces, it turns out to be helpful to go through
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the framework of metric measure spaces. We first recall the definition of the Gromov-

Hausdorff metric on Xc: the space of (isometry classes of) compact metric spaces.

Definition 2.59. The Gromov-Hausdorff distance between (X, rX) and (Y, rY ) in

Xc is given by

dGH ((X, rX), (Y, rY )) = inf
gX ,gY ,Z

d
(Z,rZ)
H (gX(X), gY (Y )),

where the infinum is taken over all isometric embeddings gX , gY from X and Y to a

common metric space (Z, rZ), and d
(Z,rZ)
H is the usual Hausdorff distance on (Z, rZ).

Now we will briefly discuss some modes of convergence for metric measure spaces,

and how they are related, both with each other and the above. For us, a metric

measure space (X, r, µ) will be a compact metric space, equipped with a finite Borel

measure. These will be considered up to isometry, where (X, r, µ) ∼ (X ′, r′, µ′) if

there exists a measure preserving isometry between X and X ′. We denote the set

of (isometry classes) of these spaces by X. We will be interested in the Gromov-

Prohorov metric and the Gromov-Hausdorff-Prohorov metric on X. We will begin

by defining the so-called Gromov-Weak topology.

Definition 2.60. [GPW09, Definition 2.3] We will call a function Φ : X → R
a polynomial if there exists an k ∈ N and a bounded continuous function φ :

[0,∞)(
k
2) → R such that

Φ((X, r, µ)) =

∫
µ⊗k(d(x1, · · · , xn))φ((r(xi, xj))1≤i<j≤k),

where µ⊗k is the product measure of µ. Write Π for the set of all polynomials.

Definition 2.61. [GPW09, Definition 2.8] A sequence Xn ∈ X is said to converge

to X ∈ X with respect to the Gromov-weak topology if and only if Φ(Xn) converges

to Φ(X ) in R, for all polynomials Φ ∈ Π.

It was proved in [GPW09, Theorem 5] that this topology is metrised by the

Gromov-Prohorov metric defined below.

Definition 2.62. The Gromov-Prohorov distance between X = (X, rX , µX) and

Y = (Y, rY , µY ) in X is given by

dGP (X ,Y) = inf
gX ,gY ,Z

d
(Z,rZ)
Pr ((gX)∗(µX), (gY )∗(µY )),

where the infinum is as in Definition 2.59 and d
(Z,rZ)
P is the Prohorov distance

between probability measures on (Z, rZ).
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Finally, we define the Gromov-Hausdorff-Prohorov metric [ADH13],[Mie09] on

X.

Definition 2.63. Let X ,Y be as in Definition 2.62. The Gromov-Hausdorff-

Prohorov distance between X and Y is defined by

dGHP (X ,Y) = inf
gX ,gY ,Z

(
d

(Z,rZ)
Pr ((gX)∗(µX), (gY )∗(µY )) + d

(Z,rZ)
H (gX(X), gY (Y ))

)
.

Remark 2.64. It is clear from the above definitions that convergence in the

Gromov-Hausdorff-Prohorov metric implies convergence in both the Gromov-

Hausdorff metric and the Gromov-Prohorov metric.

We will need a couple of facts for our proof:

Lemma 2.65. [GPW09, Corollary 3.1] A sequence {Pn}n∈N of probability measures

on X converges weakly to a probability measure P with respect to the Gromov-weak

topology, if and only if

(i) The family {Pn}n∈N is relatively compact in the space of probability measures

on X.

(ii) For all polynomials Φ ∈ Π, Pn[Φ]→ P[Φ] in R as n→∞.

and

Lemma 2.66. [ADH13, Theorem 2.4], [BBI01, Theorem 7.4.15] A set K ⊂ X is

relatively compact with respect to the Gromov-Hausdorff-Prohorov metric if and only

if

(i) There is a constant D such that diam(X ) < D for all X ∈ K.

(ii) For every δ > 0 there exists N = Nδ such that for all X ∈ K, X can be covered

by Nδ balls of radius δ.

(iii) supX∈K µX(X) < +∞

2.6.5 Proof of the main theorem

In this section we will assume that our critical branching Brownian motion is always

started from position x ∈ D. Recall that for any y > 0 we let T yn be the genealogical

tree generated by this process, when it is conditioned to survive until time ny. This

is just our usual tree, but with the marks forgotten. Denote by dyn the natural metric

on this tree (given by the length of the path connecting two vertices by their most

recent common ancestor). Finally, write (Tey , dey) for the real tree whose contour

function is given by ey, a Brownian excursion conditioned to reach height y. We
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will often want to put a uniform measure on these trees, to make them into metric

measure spaces. In the case of T yn the measure will be denoted by µyn and will be

defined by the following procedure. Let φ : T yn → R send the vertex visited at time

t in a depth-first exploration of the tree to t ∈ R. Then we can put a uniform

measure on the image of φ (which will almost surely be a finite interval) and pull

this back to the tree. Note that choosing a vertex from T yn according to µyn is the

same as choosing a vertex uniformly from the tree, as in Section 2.6.2. To define

the uniform measure µey for (Tey , dey), recall that Tey is the real tree encoded by

the excursion ey. This means that the metric space is (isometric to) the interval on

which the excursion is supported, quotiented by the equivalence relation that s ∼ r
if inf{eyu;u ∈ [r, s]} = eyr = eys , with metric dey(r, s) = eyr + eys − 2 inf{eyu;u ∈ [r, s]}.
The uniform measure µey is then just the quotient measure of uniform measure on

the interval.

Recall that, since we are working in the case of binary branching Brownian

motion, we would like to show that for any y > 0

(T αyn ,
1

αn
dαyn ) −→

n→∞
(Tey , dey)

in distribution, with respect to the Gromov-Hausdorff distance, where

α =

√
2

λ 〈1, ϕ〉
∫
D ϕ(y)3 dy

.

Proof. An outline of the proof is as follows:

(1) We will show that if we make (T αyn , 1
αnd

αy
n ) into a metric measure space for

each n, by equipping it with the uniform measure µαyn , then the family(
T αyn ,

1

αn
dαyn , µαyn

)
n≥0

is tight with respect to the Gromov-Hausdorff-Prohorov metric.

(2) Using Propositions 2.47 and 2.56, we will show convergence of the above family,

with respect to the Gromov-Prohorov metric, to (Tey , dey , µey), where µey is

uniform measure on the real tree Tey , as defined above.

(3) This also characterises the subsequential limits with respect to the Gromov-

Hausdorff-Prohorov metric, since Gromov-Hausdorff-Prohorov convergence

implies Gromov-Prohorov convergence. Thus we have the convergence in dis-

tribution (
T αyn ,

1

αn
dαyn , µαyn

)
−→
n→∞

(Tey , dey , µy)
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with respect to the Gromov-Hausdorff-Prohorov metric. Consequently, by Re-

mark 2.64, we have that(
T αyn ,

1

αn
dαyn

)
−→
n→∞

(Tey , dey)

with respect to the Gromov-Hausdorff metric, as desired.

All that remains is to verify the statements in (1) and (2). For Part (1), we need

to show that for any ε > 0 there exists a relatively compact K ⊂ X (wrt the

Gromov-Hausdorff metric) such that

inf
n

P((T αyn ,
1

αn
dαyn ) ∈ K) ≥ 1− ε.

We will use the characterisation given by Lemma 2.66. Since all of our measures are

probability measures, condition (iii) of this characterisation is trivial. We begin by

proving the existence of K > 0 such that

sup
n

P
(

diam

(
T αyn ,

1

αn
dαyn )

)
> 2K

)
< ε/2, (2.56)

which gives condition (ii). However, diam
(
T αyn , 1

αnd
αy
n

)
is less than 2/αn times the

maximum height of a branching Brownian motion process conditioned to survive

until time αny, so this follows immediately from our asymptotic for the survival

probability. To complete the proof of tightness we will consider the tree
(
T αyn , 1

αnd
αy
n

)
cut off at height Kn, and show that there exists an M > 0 such that the probability

of this cut off tree having a δ-net with less than M/δ4 balls is greater than 1− δε/2
for all n ∈ N and δ > 0. By summing probabilities over the sequence δk = 2−k,

and combining with (2.56) this provides the set K that we need. This estimate is of

course very crude, but will suffice for our purposes here.

To prove the claim, we will take K as above, and for any δ > 0, n ∈ N divide

[0,Kn] into intervals of length nδ/2 := bn,δ (so there are 2K/δ of them.) Then

we will choose M such that in any one of these intervals [jbn,δ, (j + 1)bn,δ] the

probability of having more than M/2Kδ3 particles at time jbn,δ with descendants

at time (j+1)bn,δ is less than δ2ε/4K, independently of j, n, δ. Assuming we can do

this, summing up gives that the probability of this holding for any of the subintervals

is less than δε/2. Moreover, on the event that it doesn’t happen for any subinterval,

we can put a δ ball, for each j, at every vertex in level jbn,δ that has a descendant at

level (j + 1)bn,δ. This will cover the tree up to level Kn, since a δ-ball is effectively

a δn ball (remember that lengths are rescaled), and the choice of positions means

that every vertex with height in [jbn,δ, (j+ 1)bn,δ) for j ≥ 1 is covered by one of the
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δ balls centred at level (j − 1)bn,δ. For j = 0, vertices in this interval are covered

by the ball placed at the root. In this covering, by definition of the event, there

are less than M/δ4 balls. Thus it remains to show that we can choose such an M ,

independently of δ, n. This is a result of the following observations:

• By Theorem 2.4, there exists an R > 0 such that the probability of a critical

branching Brownian motion starting from z surviving until time nδ/2 is less

than R/nδ for all n, δ and z.

• Let Ñjbn,δ be the number of vertices at time jbn,δ that have descendants at

time (j + 1)bn,δ. Then, by Wald’s identity, we have for all j, n and δ

Px
(
Ñjbn,δ ≥

M

2Kδ3

)
≤

2RKδ2Ex[Njbn,δ ]

Mn
≤ 2CRKδ2

Mn

where C := supz,u Ez[Nu] is finite by the proof of Theorem 2.6. Note that we

are not conditioning on survival here.

Therefore,

Px
(
Ñjbn,δ ≥

M

2Kδ3

∣∣∣∣Nαyn > 0

)
≤ 2CRKδ2

Mn
× Px(Nαyn > 0)−1.

This is less than δ2ε/4K if we choose

M =
8CRK2

ε
sup
n≥1

(nPx(Nαyn > 0))−1

where the supremum is finite by Theorem 2.4.

Now we move on to (2). We would like to show that (T αyn , 1
αnd

αy
n , µαyn ) converges

to (Tey , dey , µy) in the Gromov-Prohorov metric, or equivalently, with respect to

the Gromov-weak topology. We will consider the latter formulation, in order to

use the characterisation given by Lemma 2.65. Since convergence in the Gromov-

Hausdorff-Prohorov sense implies convergence in the Gromov-Prohorov/Gromov-

Weak sense, the argument for (1) also shows that part (i) of the characterisation

(relative compactness of the laws) is satisfied. Therefore, we need only show for any

polynomial Φ ∈ Π, writing PHn for the law of (T αyn , 1
αnd

αy
n , µαyn ) and P for the law

of (Tey , dey , µy), that we have PHn [Φ] → P[Φ] as n → ∞. To do this, we use the

convergence of the martingale, Proposition 2.47, and Proposition 2.56.

Fix a polynomial Φ from [0,∞)(
k
2) to R. We will first introduce some notation. We

let BH
n be the event that a branching Brownian motion tree reaches height αyn, and

BS
n be the event that its associated process Ŝ, recall the definition from Definition

2.40, reaches level σyn. Note that σ/α = λ
∫
D ϕ(y)3 dy, which is the constant from
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Propositions 2.52 and 2.56 that relates the height function and Ŝ. We denote by PSn
the law (on metric measure spaces) which is the same as PHn , except that the tree

is conditioned on BS
n rather than BH

n . To prove that PHn [Φ]→ P[Φ] we show that:

(i) Px(BS
n |BH

n )→ 1 and Px(BH
n |BS

n )→ 1 as n→∞.

(ii) PSn [Φ]→ P[Φ] as n→∞.

Combining these provides the result. We start with (i). The convergence

Px(BS
n |BH

n ) → 1 is in fact a direct consequence of Proposition 2.52, and the fact

that given a branching Brownian motion survives until time yαn, the probability of

it surviving to time εyαn and having more than two particles alive at this time, is

high. For the second part, it is therefore sufficient to show that Px(BH
n )/Px(BS

n )→ 1

as n → ∞. However, the convergence given by Proposition 2.47 allows us to com-

pute an exact asymptotic for Px(BS
n ), just as in for example [LG05, Section 1.4,

p263]. It is easy to check that this is indeed equal to ϕ(z)
yσn = ϕ(x)

αyn
∫
D ϕ(z)3 dz

.

For the proof of (ii) recall that we write Ŝy for the process Ŝ conditioned to

reach y. This is where we will use Proposition 2.47. This, along with the Skorokhod

representation theorem, tells us that there exists a sequence of processes (Z
(n)
t )t≥0,

equal in distribution to (Ŝyσn
n2t

/n)t≥0, such that

(Z
(n)
t )t≥0 → (σeyt )t≥0 (2.57)

uniformly almost surely as n → ∞. Here we set the processes identically equal to

zero after they reach zero, at times that we denote by (τn)n∈N and τ. Choose k

points (zi; 1 ≤ i ≤ k) uniformly from [0, τ ] and for each n set (zni ; 1 ≤ i ≤ k) =
τn
τ (zi; 1 ≤ i ≤ k). Then for each n, the law of(

(Z
(n)
t )t≥0, (z

n
i ; 1 ≤ i ≤ k)

)
is that of (Ŝyσn

n2t
/n)t≥0 together with k points chosen uniformly from its length.

Define the distance between zni and znj for 1 ≤ i < j ≤ k by

dZn (zni , z
n
j ) := Z

(n)
zni

+ Z
(n)
znj
− 2 inf

s∈[zni ,z
n
j ]
Z(n)
s . (2.58)

Setting

dey(zi, zj) = ey
zi

+ ey
zj
− 2 inf

s∈[zi,zj ]
eys

(corresponding to the normal metric dey in Tey) it is immediate from (2.57) that

(zni ; 1 ≤ i ≤ k) −→ (zi; 1 ≤ i ≤ k)
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almost surely as n→∞, and so also that

1

σ

(
dZn (zni , z

n
j )
)

1≤i<j≤k −→ (dey(zi, zj))1≤i<j≤k (2.59)

almost surely as n → ∞. This is useful, because the law of the object on the right

is the same as the law of the matrix of pairwise distances between k points chosen

independently according to µey from (Tey , dey). Note that although the metric space

is actually a quotient of [0, τ ] in this case, the law above is not affected.

Moreover, the law of the object on the left is what we get if we choose k vertices

uniformly from a branching Brownian motion tree conditioned on BS
n , and take

the matrix defined by dSn in Proposition 2.56. However, we know by Proposition

2.56 and Corollary 2.57 that if we condition instead on BH
n , the difference between

this matrix and the matrix of pairwise distances under 1
αnd

αy
n , converges to 0 in

probability as n→∞. By part (i), this is still true under conditioning on BS
n . Since

Φ is continuous and bounded, the proof of part (ii) is complete.

We conclude by noticing that, since the above proof does not use anything

specific about the branching diffusion (except the results that have been proven

earlier in the paper and some constants), the more general statement of Theorem

2.1 holds.

Remark 2.67. The same result holds for a branching diffusion with generator L

and offspring distribution A as in Theorem 2.1 where

α =

√
4(m− 1)

λ 〈1, ϕ〉E[A2 −A]
∫
D ϕ(y)3 dy

so that
σ

α
=
λE[A2 −A]

2(m− 1)

∫
D
ϕ(y)3 dy

as in Remark 2.54.
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3 Critical Gaussian chaos: convergence and

uniqueness in the derivative normalisation

3.1 Introduction

The theory of Gaussian multiplicative chaos was developed by Kahane, [Kah85], in

order to rigorously define measures of the form

µγ(dx) := eγh(x)− γ
2

2
E[h(x)2] dx

where h is a rough centered Gaussian field, satisfying certain assumptions, and γ > 0

is a real parameter. Since h is not defined pointwise, a regularisation procedure is

required to define µγ . In [Kah85], it is assumed that the covariance kernel K of h

is σ-positive, meaning that K can be approximated by a series of smooth positive

kernels Kn. It is then possible to associate to such an approximation the sequence of

measures µn(dx) := exp{γhn(x) − (γ2/2)var(hn(x))}dx. Kahane proved that these

measures converge as n → ∞, and that the limit is independent of the choice of

approximation. We call this limit the γ-chaos measure associated to h.

However, σ-positivity can be hard to check pointwise, and in recent years this

theory has been significantly generalised by several authors [RV10, Ber15a, JS17,

Sha16]. When K is not σ-positive, a natural way to approximate h is to convolve

it with a general mollifier function θ. Writing hε for these regularisations, it has

been shown that for log-correlated h, and under very general conditions on θ, the

approximate measures

µγε (dx) := eγhε(x) e−
γ2

2
var(hε(x)) dx (3.1)

converge weakly in law [RV10] and in probability [Ber15a, Sha16] as ε → 0. The

limit is non-zero if and only if γ2 < 2d. Moreover, it is universal in that it does not

depend on the choice of regularisation [Ber15a, JS17, Sha16].

When γ2 = 2d, an additional renormalisation is required in order to yield a non-

trivial limiting measure. Motivated by the theory of multiplicative cascades and the

branching random walk [BK04, AS14] one can hope to renormalise at criticality in

one of two different ways. The first is called the Seneta–Heyde renormalisation, and

involves premultiplying the sequence of measures (3.1) by the deterministic sequence√
log(1/ε). The other is a random renormalisation, which is defined by taking a

derivative of the measure (3.1) in γ. It has been shown in [DRSV14a, DRSV14b]

that for a special class of fields h having so-called ?-scale invariant kernels, and for
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a specific sequence of approximations to h, both procedures yield the same non-

zero limiting measure (up to a constant). However, the result in these papers relies

heavily on the cut-off approximation used for the kernel of h, and does not generalise

to arbitrary convolution approximations. These are somewhat more natural, local

approximations to the field, and the goal of the paper will be to extend the theory

to this set-up.

In this paper we will be particularly, but not exclusively, interested in the specific

case where the underlying field h is a 2d Gaussian free field with zero-boundary

conditions. In this case the measure µγ (when it is defined and non-zero) is known

as the Liouville measure with parameter γ. This has been an object of considerable

recent interest due to its strong connection with 2d Liouville quantum gravity and

the KPZ relations [DS11, RV11, Ber15b]. Recent works in the case γ < 2 include

[DS11, RV11, Ber15a], which among other things make an in-depth study of its

moments, multifractal structure, and universality. Recently, in [APS17], it has also

been shown that these measures can be approximated using so-called local sets of

the Gaussian free field. This is a particularly natural construction because it is both

local and conformally invariant.

The critical case γ = 2 has also been considered for the Gaussian free field:

[DRSV14b, HRV15, JS17, APS17]. In [DRSV14b], the authors generalised their

construction for ?-scale invariant kernels to show convergence in the Seneta–Heyde

and derivative renormalisations for a specific “white noise” approximation to the

field. These both yield the same (up to a constant) non-trivial limiting measure µ′,

that we will call the critical Liouville measure. However, this proof again does not

extend to convolution approximations.

The purpose of this article is to complete the picture for convolution approx-

imations to critical chaos. We will focus specifically on the case of the 2d GFF,

and fields with ?-scale invariant kernels. This builds on recent work of Junnila and

Saksman [JS17] (and also [HRV15] in the case of the free field), who show that in

either of the cases above, the critical measure can be constructed using convolution

approximations in the Seneta–Heyde renormalisation.

To complete the story, therefore, it remains to show that the random “deriva-

tive” renormalisation procedure will also yield the same limit for general convolution

approximations. This is the main result of the current paper. We remark that the

derivative renormalisation is somewhat more natural, and in fact, it is usually easier

to show convergence of this before convergence in the Seneta–Heyde renormalisa-

tion (which is then obtained by a comparison argument). Here we will reverse this

procedure.

Suppose that h is a log-correlated field in D ⊂ Rd with kernel K(x, y). By this
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we mean that (h, ρ)ρ∈M is a centered Gaussian process, indexed by the set of signed

measures ρ whose positive and negative parts ρ± satisfy
∫∫

ρ±(dx)|K(x, y)|ρ±(dy) <

∞, with covariance structure

cov((h, ρ)(h, ρ′)) =

∫∫
ρ(dx)K(x, y)ρ′(dy)

for ρ, ρ′ ∈M. Also suppose that θ ∈M is a positive measure of unit mass, supported

in B(0, 1), and such that ∫
1√
|u− v|

θ(du) = O(1) (3.2)

uniformly over v ∈ B(0, 5). Then we define a sequence of θ-mollified approximations

to h by setting for ε > 0,

hε := h ? θε(x) = (h, θε,x), (3.3)

where θε is the image of θ under the map y 7→ εy and θε,x is the image of θε

under the map y 7→ y + x. We define the measures Mε and Dε associated with this

approximation by setting for O ⊂ D:

Mε(O) :=

∫
O

e2hε(x)−2var(hε(x)) dx;

Dε(O) :=

∫
O

(−hε(x) + 2var(hε(x)))e2hε(x)−2var(hε(x))dx

Note that Mε is exactly the same as µγ=2
ε (but we introduce the new notation to

distinguish the special case γ = 2 and avoid confusing notation.) Our aim will be

to prove the following:

Theorem 3.1. Suppose that h is a 2d Gaussian free field and Dε is defined as

above, for a mollifier θ satisfying (3.2). Then Dε converges weakly in probability as

ε → 0 to the critical Liouville measure µ′ constructed in [DRSV14b]. In particular

limεDε does not depend on θ.

Theorem 3.2. Suppose that h is a Gaussian field with ?-scale invariant kernel and

Dε is defined as above, for a mollifier θ satisfying (3.2) and with Hölder continuous

density. Then Dε converges weakly in probability as ε → 0 to a limiting measure.

This measure is independent of the choice of approximation, and agrees with the

critical measure constructed in [DRSV14a, JS17] (see Theorems 3.8 and 3.9).

There is one further motivation for proving Theorem 3.1. In [APS17], the authors

also construct a critical measure for the Gaussian free field, using a simple and
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natural approximation based on its local sets. This is closely related to the classical

construction of multiplicative cascades [KP76], and we believe that this connection

can be exploited to help us improve our understanding of the situation at criticality

(in particular, to prove a conjecture given in [DRSV14a].) However, it is a priori

hard to connect the measure of [APS17] to the measure µ′ of [DRSV14b]. It turns

out that Theorem 3.1 is exactly what is needed to show that they are in fact equal

(for details of this argument, see [APS17]). In conclusion, Theorem 3.1 gives us a

universality statement for critical Liouville quantum gravity, that is now in line with

the statement for the subcritical case [Ber15a, Sha16, APS17].

Outline We will begin in Section 3.2 by giving a brief introduction to log-correlated

fields, and explaining how to approximate them using general mollifiers. We will also

discuss here some of the existing literature concerning subcritical and critical Gaus-

sian multiplicative chaos, and recall some basic facts about the 3-dimensional Bessel

process. These occur naturally in critical Gaussian multiplicative chaos; roughly, as

the value of the field locally about a typical point, and will be instrumental in the

proof of Theorems 3.1 and 3.2. In Section 3.3 we concentrate on the case when h is a

2d Gaussian free field, and prove Theorem 3.1. We begin in Section 3.3.1 by showing

that certain families of “cut-off” approximations to the derivative measures (that

we shall call Dβ
ε ) are uniformly integrable. In fact, this will not be used directly

in the proof of Theorem 3.1, but is needed for the aforementioned application to

[APS17], and introduces technical facts required for the rest of the proof. Section

3.3.2 contains the bulk of the proof. The main idea is to connect the derivative mea-

sures Dε with the renormalised measures
√

log(1/ε)Mε, which we know converge by

[JS17, HRV15]. To do this, we use a technique similar to that first applied in [AS14],

and then in [DRSV14b], although the details of the proof are quite different. This is

centred around the fact that for the circle average approximation to the free field,

there is a natural “rooted measure” arising from the definition of Dε, under which

it becomes a 3d Bessel process. We can also show that for a general convolution ap-

proximation, under the corresponding rooted measure, the process is approximately

a Bessel (unfortunately, this introduces many technicalities in the proof.) Properties

of the Bessel process then allow us to conclude. Finally, in Section 3.4, we show how

the proof can be adapted for the case of ?-scale invariant kernels, to give Theorem

3.2.
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3.2 Preliminaries

3.2.1 Log-correlated fields, 2d Gaussian free field and ?-scale in-

variant kernels.

Let us recap the definition of log-correlated fields from the introduction. Suppose

we have a non-negative definite kernel K(x, y) on D ⊂ Rd of the form

K(x, y) = log(|x− y|−1) + g(x, y) (3.4)

where g is a C1 function on D̄ × D̄. As in the introduction, we let M be the

set of signed measures ρ := ρ+ − ρ− whose positive and negative parts satisfy∫∫
D×D |K(x, y)|ρ±(dx)ρ±(dy) <∞. The centered Gaussian field h, with covariance

K(x, y), is then defined as in [Ber15a] to be the unique centred Gaussian process

(h, ρ)ρ∈M indexed by M, such that

cov((h, ρ), (h, ρ′)) =

∫∫
D×D

K(x, y)ρ(dx)ρ′(dy)

for all ρ, ρ′ ∈M.

We say that a kernel K is ?-scale invariant if it takes the form

K(x, y) =

∫ ∞
1

k(u|x− y|)
u

du (3.5)

for k : [0,∞) → R a compactly supported and positive-definite C1 function with

k(0) = 1. One can easily check that such a K indeed has the form (3.4). Although

this does not cover all kernels satisfying (3.4) it is still a natural family to consider,

due to the nice scaling relations it possesses, [?]. Moreover, the sequence of “cut

off” approximations to K given by

Kε(x, y) =

∫ 1
ε

1

k(u|x− y|)
u

du

yields a family of approximating fields that exhibit a useful decorrelation property

(see the proof of Theorem 3.2).
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As mentioned in the introduction, we will also be interested in the special case

when h is a 2-dimensional Gaussian free field. To define this, let D ⊂ C be a simply-

connected domain. Then the zero boundary Gaussian free field h on D is defined as

above, to be the log-correlated field whose kernel K is given by the Green function,

GD, for the Laplacian on D. This satisfies

GD(x, y) = − log |x− y|+ g(x, y) (3.6)

for g a smooth function on D̄ × D̄.

One feature that makes the Gaussian free field particularly nice to work with is

that it satisfies the following spatial Markov property: if A ⊂ D is a closed subset,

then we can write h = hA+hA where hA, hA are independent, hA is a zero-boundary

GFF on D \A, and hA is harmonic when restricted to D \A. We will see how this

is useful to us in Section 3.3.

In the following we will always assume, for technical reasons and without loss

of generality, that our domain D ⊂ Rd contains the ball of radius 10 around the

origin.

3.2.2 Convolution with mollifiers

Suppose we have a field h with kernel K satisfying (3.4). As discussed in the intro-

duction, since h is not defined pointwise, we need to use a regularisation procedure

to define its chaos measures. A natural approach is convolve h with an approxima-

tion to the identity. Let θ be a non-negative Radon measure on Rd, satisfying the

conditions described in the introduction, and define the convolution approximations

(hε(x))ε>0 as in (3.3). The assumption (3.2) on θ will be important to show various

properties of the convolution approximations later on (cf. Lemma 3.3 and Corol-

lary 3.6). We remark here that (3.2) is more restrictive than the condition given

in [Ber15a], but includes most of the important examples. In particular, it includes

the case when θ is uniform measure on the unit circle, or when θ has an Lp density

with respect to Lebesgue measure for some p > 2.

We have the following estimate for the covariances of (hε)ε:

Lemma 3.3 ([Ber15a]). Suppose θ satisfies (3.2) and hε is defined as above. Then:

cov(hε(x), hε′(y)) = log(1/(|x− y| ∨ ε ∨ ε′)) + O(1). (3.7)

where by O(1) we mean something that is uniformly bounded in ε, ε′, and x, y.

Remark 3.4. Similarly, whenever we use order notation in the sequel, we will mean

the order in ε, uniformly in whatever spatial position(s) we are considering.
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3.2.3 Maxima of the mollified fields

It will also be important for us in this article to get a hold of how fast our approxi-

mations hε can blow up. For this we use the work of [Aco14]. Among other things,

this gives us the following Lemma (in fact, we state here a slight modification of the

result, that is proved in [HRV15]).

Lemma 3.5. Let (Y x
ε : x ∈ [0, 1]d)ε>0 be a family of Gaussian fields indexed by

[0, 1]d for any integer d. Suppose that for some 0 < CY < ∞ and all x, y ∈ [0, 1]d

we have

(1) | cov(Y x
ε , Y

y
ε ) + log(max{ε, ‖x− y‖})| ≤ CY and

(2) E
[
(Y x
ε − Y y

ε )2
]
≤ CY

√
‖x− y‖/√ε for all ‖x− y‖ < ε.

Then, almost surely,

inf
ε

inf
x∈[0,1]d

{−Y x
ε +
√

2d log(1/ε)} > −∞.

This Lemma, together with the assumption (3.2), allows us to deduce the fol-

lowing:

Corollary 3.6. Suppose that θ satisfies our usual conditions, including (3.2), and

that h has kernel K satisfying (3.23). Assume further that O ⊂ Rd is bounded. Then

inf
ε

inf
x∈O
{−hε(x) + 2 log(1/ε)} > −∞

almost surely.

Proof. Condition (1) of Lemma 3.5 is easy to verify. To show condition (2) we write

K(x, y) = (log |x − y|−1) + g(x, y) where g is C1 on Rd × Rd. We need only prove

that E[hε(x)(hε(x)− hε(y))] ≤ C
√
‖x− y‖/√ε for all ‖x− y‖ < ε and an absolute

constant C. The result then follows by symmetry.

To show this we write

E[hε(x)(hε(x)− hε(y))] =

∫∫
log

∣∣∣∣x− y + ε(v − w)

ε(v − w)

∣∣∣∣ θ(dv)θ(dw)

+

∫∫
g(x+ εv, y + εw)− g(x+ εv, x+ εw)θ(dv)θ(dw)

Since g has continuous derivative and we are working on a bounded set, it is clear

that the second term satisfies the required condition. To deal with the first we note

that∣∣∣∣log

∣∣∣∣x− y + ε(v − w)

ε(v − w)

∣∣∣∣∣∣∣∣ ≤ max

{
log

(
1 +

|x− y|
ε|v − w|

)
, log

(
1 +

|x− y|
|x− y + ε(v − w)|

)}
,
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where we have used that |x− y| < ε (and that |v −w| ≤ 1) to remove the modulus

inside the log on the left-hand side. Since log(1 + |a|) ≤
√
|a| for all a, we can

conclude using assumption (3.2).

3.2.4 Previous works on subcritical and critical Gaussian multi-

plicative chaos

As discussed in the introduction, Gaussian multiplicative chaos theory is a frame-

work we can use to make sense of measures of the form “eγh(x)−γ2/2var(h(x)) dx” for

log-correlated Gaussian fields h. This stems from the classical martingale theory of

the branching random walk [BK77, Kyp00] and multiplicative cascades [KP76], and

was initiated by Kahane [Kah85] in the 1980’s. In the special case where h is a 2d

Gaussian free field, the Gaussian multiplicative chaos measure is often referred to

as the Liouville measure [DS11]. Here we will state precisely some of the results

mentioned in the introduction.

When γ <
√

2d (the subcritical regime) there are various approximation pro-

cedures that can be used to construct the chaos measure with parameter γ. One

natural choice is to use the convolution approximations hε described in the previous

section, and define approximate measures µγε by setting

µγε (dx) := E[eγhε(x)]−1 ehε(x) dx (3.8)

for ε > 0. Note that the normalisation factor here is equal to ε
γ2

2 (up to a bounded

constant that depends on x). We have the following result.

Theorem 3.7 ([Ber15a]). For γ <
√

2d the measures µγε converge to a non-trivial

measure µγ weakly in probability. Moreover, for any fixed Borel set O we have that

µγε (O) converges in L1.

We emphasise that this limit µγ does not depend on the choice of mollifier θ. In

fact, one can approximate the field in other, completely different ways (for instance

using a Karhunen–Loève expansion [Ber15a]) and find the same limit. For the case

of the free field, this will even work for “non-Gaussian” approximations. Indeed,

in [APS17] the authors construct (the same) Liouville measure for γ < 2 using

sequences of so-called “local sets” of the field.

For general h, the subcritical measures µγ with γ <
√

2d are almost surely

atomless, and assign positive mass to any open set. On the other hand, as discussed

in the introduction, it is known that for γ ≥
√

2d, the measures µγε converge to zero

[RV10]. To define the critical (and supercritical) measures we must therefore make

an additional renormalisation. These cases turn out to be much more tricky to deal
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with than the subcritical case, in part because the limiting measure will not possess

any moments of order greater than or equal to 1. Consequently a complete theory is

still lacking, but some progress has been made (see [RV14] for a survey). Here and

in the rest of this paper we will discuss the critical case γ =
√

2d.

3.2.5 Critical measures

Motivated by the corresponding constructions for multiplicative cascades, [BK04,

AS14], we expect to be able to obtain a non-trivial measure at criticality using either

of two renormalisation procedures: one deterministic and one random. Let us outline

how this should work. Suppose you have some approximations hε to a log-correlated

field h, that are continuous fields for each ε. Then each of the following sequences

should converge to the same (up to a constant) limiting measure.

• The sequence of measures
√

log(1/ε)µγ=2
ε :=

√
log(1/ε)Mε, where µγε is de-

fined by (3.8). This is known as the Seneta–Heyde renormalisation.

• The sequence of signed “derivative” measures, obtained by taking the deriva-

tive of µγε with respect to γ and evaluating at γ =
√

2d. That is, the sequence

Dε(dz) := (−hε(z) + γE[hε(z)
2]) exp

(
γhε(z)−

γ2

2
E
[
hε(z)

2
])

dz

(where we have also multiplied by −1 in order to yield a non-negative limit

measure.)

This statement was verified for a specific set-up in [DRSV14a, DRSV14b].

Theorem 3.8 ([DRSV14a, DRSV14b]). Suppose h has a ?-scale invariant kernel

K(x, y) =
∫∞

1 k(u|x−y|)/u dx as in (3.5) and the approximate fields hε have kernels

given by

Kε(x, y) :=

∫ 1/ε

1

k(u|x− y|)
u

du.

Then the two sequences of approximating measures described above converge weakly

in probability to the same limiting measure, up to a constant
√

2/π. In particular,

for any open set O ⊂ Rd,
√
π/2

√
ln(1/ε)Mε(O) and Dε(O) converge in probability

and in Lp (any p < 1) to the same limit.

The authors in [DRSV14a, DRSV14b] were also able to generalise this approach

to the case when h is a 2d Gaussian free field, using a white-noise decomposition for

the field and another specific sequence of “cut-off” approximations for the kernel.

However, both of these proofs rely strongly on a martingale property satisfied by
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the choice of approximating fields hε. In particular, they do not extend to general

convolution approximations.

Convolution is clearly a natural way to approximate the field h, and so we would

like to have a version of Theorem 3.8 for such approximations. Using comparison

techniques, Junnila and Saksman were able to do this for the Seneta–Heyde renor-

malisation.

Theorem 3.9 ([JS17]). Let h be a ?-scale invariant field, and assume that in ad-

dition to (3.2), the mollifier θ has a Hölder continuous density. Then the measures√
log(1/ε)Mε converge to a limiting measure weakly in probability as ε → 0. This

limit is equal to
√

2/πµ′ where

• µ′ is the measure from Theorem 3.8,

• E [µ′(O)] =∞ for any O ⊂ Rd and

• µ′(O) is positive almost surely for any O ⊂ Rd.

Again we have that for any open set O ⊂ Rd,
√
π/2

√
ln(1/ε)Mε(O) and Dε(O)

converge in probability and in Lp (p < 1) to the same limit.

This has also been proven for the 2d-Gaussian free field.

Theorem 3.10 ([HRV15, JS17]). Let h be a 2d-GFF, and take any mollifier θ

satisfying (3.2). Then the measures
√

log(1/ε)Mε converge to a limiting measure

weakly in probability as ε→ 0. This limit is equal to
√

2/πµ′ where µ′ is the critical

Liouville measure of [DRSV14b].

Note that Theorem 3.10 places a weaker constraint on the mollifier θ. This is due

to the proof given in [HRV15]. The aim of this paper will be to prove the analogues

of Theorems 3.9 and 3.10 for the derivative renormalisation.

3.2.6 Bessel processes

To conclude this introduction, we need to recall some basic properties of Brownian

motion; in particular, of the 3-dimensional Bessel process. Let P denote the law of

a standard Brownian motion Bt in R, started from a possibly random position B0

such that P(B0 > 0) = 1. Then it is easy to check that for any β, γ > 0, the process

(−Bt + γvar(Bt) + β)1{−Bu+γvar(Bt)+β>0 ∀u∈[0,t]} eγBt−
γ2

2
var(Bt) (3.9)

is a positive martingale. Let Ft be the filtration generated by the Brownian mo-

tion and define a new measure Q by letting its Radon–Nikodym derivative when

restricted to Ft be given by the martingale at time t. One can check that this yields
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a well-defined law Q, under which the process (−Bt+γvar(Bt)+β)t≥0 is a 3d Bessel

process started from −B0 + γvar(B0) + β. Note that this starting position will also

be biased, and will be positive almost surely under Q. The next lemma records some

properties of the 3d Bessel process that we will use in our proofs.

Lemma 3.11. Let (Xt)t≥0 be a 3d Bessel process started from a random (positive)

position X0 with finite variance, and law Q. Then

(1) Q[ 1
Xt

] =
√

2
πt + o(t−1/2) where the error term is less than 2√

t
(
Q[X2

0 ]
t + Q[X0]√

t
).

(2) Q[ 1
X2
t
] ≤ 2/t, uniformly in the starting position.

(3) Q[
√
u

log(2+u)2
≤ Xu ≤ (1 +

√
u log(1 + u)) eventually ] = 1

(4)

Q

[ √
u

R log(2 + u)2
≤ Xu ≤ R(1 +

√
u log(1 + u)) ∀u ≥ 0

]
→ 1

as R→∞, uniformly over X0 with Q[X0] ≤ K for any K.

(5) Q[ 1
Xt
1{Xt≤t1/4}] ≤ C

2t , uniformly in the starting position, where C is an abso-

lute constant.

Proof. (1),(2) and (5) are straightforward to verify using direct calculation and

scaling arguments. (3) is a classical result due to Motoo [Mot58] and then (4) follows

by continuity and Markov’s inequality.

3.3 Proof of Theorem 3.1

In this section we will work to prove Theorem 3.1. Recall that this concerns the case

when the underlying field h is a 2d Gaussian free field in a domain D ⊂ R2. For this

choice of field, there is a particular convolution approximation, when θ is uniform

measure on the unit circle, that plays an important role. We call this the circle

average process and distinguish it by writing h̃ε := h ? θε. The Markov property of

the field allows us to deduce the following:

Lemma 3.12. For each x ∈ D and δ < d(x, ∂D), {h̃e−u(x) : u ≥ log(1/δ)} is a

Brownian motion started from h̃δ(x).

We will also need to compare h̃ε with a general convolution approximation hε.

Lemma 3.13. Let hε and h̃ε be the mollified and circle averages of h at a point x

with d(x, ∂D) > ε. Then we can write

hε(x) = λε(x)h̃ε(x) + Yε(x) (3.10)
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where λε(x) = 1+O(log(1/ε)−1) (uniformly in x) and Yε(x) is independent of h̃ε(x),

Gaussian, and has mean 0 and variance O(1).

Proof. For this, we observe (by an easy calculation using (3.6)) that

cov(hε(x), h̃ε(x)) = log(1/ε) + O(1)

for any x ∈ D and ε < d(x, ∂D). Let λε(x) := cov(hε(x), h̃ε(x))/ cov(h̃ε(x), h̃ε(x)),

so that by direct calculation cov(hε − λεh̃ε, h̃ε) = 0. Then by Gaussianity, h̃ε and

Yε := hε− h̃ε are independent. Using Lemmas 3.12 and 3.3, we see that the variance

of Yε is O(1) and that λε = 1 + O(log(1/ε)−1).

Remark 3.14. We will often drop the x from λε(x) when it is clear from the context.

Lemma 3.15. Yε(x) also has bounded covariances with Yε(y) and h̃ε(y) for any

x, y ∈ D. Moreover, for δ ≥ ε, we have

−ρεδ(x)/2 := cov(Yε(x), h̃δ(x)) = O(1),

uniformly in ε, δ and x.

Proof. The first claims follow using direct calculation similar to the above. For the

final claim note that E[Yε(x)h̃δ(x)] = E[hε(x)h̃δ(x)]−λε(x)E[h̃ε(x)h̃δ(x)] where both

expressions on the right-hand side are log(1/δ) + O(1).

Remark 3.16. Lemma 3.13 implies that ρεε(x) = 0 for all ε, x.

Let us now move on to the proof of Theorem 3.1. By standard arguments, see

[Ber15a], we need only prove that Dε(O) → µ′(O) in probability for each fixed

O ⊂ D. In fact, without loss of generality we may assume that O := B(0, 1) is the

unit disc. From now on we will work with this assumption.

3.3.1 A uniformly integrable family.

We know from [DRSV14b] that if µ′ is the critical Liouville measure, µ′(O) has infi-

nite expectation for any O ⊂ D. Therefore, we cannot hope to have L1-convergence

or uniform integrability of Dε(O). Since we prefer to work with uniformly integrable

families, we instead consider a sequence of cut-off approximations Dβ
ε to Dε. It will

be very important to choose these cut-offs correctly, but for the right choice they will

be uniformly integrable (for each β) and moreover, will converge as ε → 0 (albeit

in some slightly unusual sense, see Lemma 3.21). Obtaining the desired convergence

in Theorem 3.1 then amounts to letting β → ∞ and using Lemma 3.5 to see that

Dβ
ε is actually very close to Dε for large enough β.
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So, let us fix ε0 > 0, such that B(x, ε) ⊂ D for every ε ≤ ε0 and x ∈ O. Then

we define for β > 0 and ε ∈ (0, ε0], the “cut-off” approximations

Mβ
ε (O) :=

∫
O

e2hε(x)−2var(hε(x)) 1Lε(x)1{−hε(x)+2var(hε(x))+β>1} dx; and

Dβ
ε (O) :=

∫
O

(−hε(x) + 2var(hε(x)) + β)e2hε(x)−γ2/2var(hε(x))1Lε(x)1{−hε(x)+2var(hε(x))+β>1} dx;

where

Lε(x) := {−h̃δ(x) + 2λε(x)var(h̃δ(x)) + β − ρεδ(x) > 0; ∀ δ ∈ [ε, ε0]}.

Note that bothMβ
ε (O) andDβ

ε (O) are positive by definition, and also thatMβ
ε (O) ≤

Dβ
ε (O). For ease of notation we set

fβε,γ(x) = −hε(x) + γvar(hε(x)) + β gε,γ(x) = γhε(x)− (γ2/2)var(hε(x))

f̃βε,γ(x) = −h̃ε(x) + γvar(h̃ε(x)) + β g̃ε,γ(x) = γh̃ε(x)− (γ2/2)var(h̃ε(x))

fβ,Yε,γ (x) = −Yε(x) + γvar(Yε(x)) + β gYε,γ(x) = γYε(x)− (γ2/2)var(Yε(x))

recalling the definition of Y from Lemma 3.13. Then we have

Mβ
ε (O) :=

∫
O

egε,2(x) 1Lε(x)1{fβε,2(x)>1} dx and Dβ
ε (O) :=

∫
O
fβε,2(x)egε,2(x)1Lε(x)1{fβε,2>1} dx

and

Lε(x) = {f̃βδ,2λε(x)(x)− ρεδ > 0 ∀δ ∈ [ε, ε0]}

The decomposition

fβε,2(·) = λε(·)f̃βε,2λε(·)(·) + f0,Y
ε,2 (·) + (1− λε(·))β and gε,2(·) = g̃ε,2λε(·)(·) + gYε,2(·).

(3.11)

will also come in very useful it what follows.

Proposition 3.17. For fixed β > 0, (Dβ
ε (O))ε≤ε0 is a uniformly integrable family.

Proof. The proof of this Lemma is inspired by that of Berestycki [Ber15a], who

shows uniform integrability of µγε in the subcritical case. In analogy to his approach,

for a ≥ ε > 0 we define the good event

GRε,a(x) :={ √
log(1/u)

R log(2 + log(1/u))2
≤ f̃βu,2λε(x)(x) ≤ R(1 +

√
log(1/u) log(1 + log(1/u))) ∀u ∈ [ε, a]

}
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and write Dβ
ε (O) = Jβε + Ĵβε , where Jβε is the integral over all “good” x, for which

GRε,ε0(x) holds. 5 The rationale behind choosing G in this way is that it separates

bad points of the field, which are “too thick” and make the second moment explode,

from the good points.

To conclude, it is enough to prove the following two lemmas.

Lemma 3.18. E[Ĵβε ] ≤ p(R) for all ε ≤ ε0 where p(R)→ 0 as R→∞;

Lemma 3.19. For fixed R, Jβε is uniformly bounded inL2.

We first give a very rough idea of why these should hold:

• E[Ĵβε ] corresponds to the probability of GRε,ε0(x) not holding under a weighted

law: specifically, under the law with Radon–Nikodym derivative (with respect

to P) proportional to

fβε,2(x) egε,2(x) 1Lε(x)1{fβε,2(x)>1}.

Under this law we know that f̃βu,2λε(x)(x) is (approximately) a Bessel process.

Thus we know by Lemma 3.11 that this probability tends to 0 as R→∞.

• Now we move on to the L2 bound. Every time we write ≈ it requires a lot of

justification, usually because hε is not exactly a Brownian motion. First note

that by the Markov property of the field and the fact that (3.9) is a martingale,

E[fβε,2(x)fβε,2(y) egε,2(x) egε,2(y) 1Lε(x)1Lε(y)] ≈ E[fβδ,2(x)fβδ,2(y) egδ,2(x) egδ,2(y) 1Lδ(x)1Lδ(y)]

for x, y ∈ O, where δ = δ(x, y) = (|x− y|/3)∨ ε. Now, on the event GRε,ε0(x)∩
GRε,ε0(y),

fβδ,2(x) ≈
√

log(1/δ), fβδ,2(y) ≈
√

log(1/δ) and gδ,2(y) ≈ −2
√

log(1/δ)+2 log(1/δ).

We can use this to show that, roughly,

E[fβδ,2(x)fβδ,2(y) egδ,2(x) egδ,2(y) 1GRε,ε0 (x)1GRε,ε0 (y)] . δ
−2 log(1/δ) e−2

√
log(1/δ) E[egδ,2(x)]

= δ−2 log(1/δ) e−2
√

log(1/δ) .

We then only need to verify that this function of δ(x, y) is integrable over

O ×O.

We prove Lemmas 3.18 and 3.19 below. As already mentioned, there are several

technical difficulties with making the above argument rigorous.

5Note that we are setting a = ε0 here, but we define the more general notation GR
ε,a for use later on.
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Proof of Lemma 3.18. Consider for x ∈ O

E
[
fβε,2(x)egε,2(x)1Lε(x)1{fβε,2(x)>1}1GRε,ε0 (x)c

]
. (3.12)

To prove the lemma, we need to show that this converges to 0 as R→∞, uniformly

in ε and x. The strategy is to rewrite it as an expectation with respect to a different

measure, under which we understand well the behaviour of f̃ε,2λε(x). We set

dQ̃β,ε
x

dP
= (Z̃βε (x))−1f̃βε,2λε(x) egε,2(x) 1Lε(x); Z̃βε (x) = E

[
f̃βε,2λε(x) egε,2(x) 1Lε(x)

]
.

This measure will be extremely important throughout the paper because, under

Q̃β,ε
x , the process

{f̃βu,2λε(x)− ρεu(x); u ∈ [ε, ε0]}

is a time changed 3d Bessel process. To see why this is true, we split the weight-

ing that defines Q̃β,ε
x into two steps. By decomposition (3.11) we have gε,2(x) =

g̃ε,2λε(x) + gYε,2(x) and so we can first consider what happens if we only weight by

exp(gYε,2(x)). Let us call this intermediate law P̂. By the Cameron–Martin–Girsanov

theorem, and the definition ρεδ(x) := −2 cov(h̃δ(x), Yε(x)), the process

−hδ(x)− ρεδ(x)

is a time changed Brownian motion under P̂. For the second step in the weighting

we use the definition of Lε(x), and the fact that ρεε(x) = 0. This means that this

second step is simply the Bessel process weighting described in Section 3.2.6, with

γ = 2λε(x). The same argument also implies that Z̃βε (x) does not depend on ε for

each x, since (3.9) is a martingale.

To prove the lemma, and we will apply this technique over and over again, we

rewrite (3.12) as

Z̃βε (x)Q̃β,ε
x

[
fβε,2(x)

f̃βε,2λε(x)
1{fβε,2>1}1GRε,ε0 (x)c

]

where by Lemma 3.11 part (4) we know that Q̃β,ε
x (GRε,ε0(x)c) → 0 as R → ∞,

uniformly in ε and x (using the uniform boundedness of (ρεδ(x))δ>ε.)

Using the fact that

fβε,2(x) = λε(x)f̃βε,2λε(x)(x) + O(1)− Yε(x),
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(cf. decomposition (3.11)), and Hölder’s inequality, it is enough for us to show that

Q̃β,ε
x

( |Yε(x)|+ O(1)

f̃βε,2λε(x)

)3/2
 = O(1).

However, this follows by Cauchy–Schwarz, since

Q̃β,ε
x

( |Yε(x)|+ O(1)

f̃βε,2λε(x)

)3/2
2

≤ Q̃β,ε
x

[
(|Yε(x)|+ O(1))3

f̃βε,2λε(x)

]
Q̃β,ε
x

[
1

f̃βε,2λε(x)2

]

and

• Q̃β,ε
x [(f̃βε,2λε(x))−2] is bounded by Lemma 3.11, part (2);

• Q̃β,ε
x [|Yε(x)|p/f̃βε,2λε(x)] . E[|Yε(x)|p egε,2(x)] is bounded for p = 1, 2, 3.

�

Proof of Lemma 3.19. First, we make the simple bound

E[(Jβε )2] ≤
∫∫
O2

E
[
|fβε,2(x)||fβε,2(y)| egε,2(x) egε,2(y) 1Lε(x)1Lε(y)1GRε,ε0 (x)1GRε,ε0 (y)

]
dy dx

(3.13)

and fix some x ∈ O. For this fixed x, we will break the integral over y into two parts:

those with |x − y| > 3ε, and those with |x − y| ≤ 3ε. Let us begin with the first

case. For such a y, we set δ = δ(x, y) := |x− y|/3, so that the δ-balls around x and

y are disjoint. We are going to use the fact that the circle averages around x and y

decorrelate after this time. More precisely, if we let H be the σ-algebra generated

by h|D\(B(x,δ)∩B(y,δ), then we have the following observations, which we state as a

lemma.

Lemma 3.20. (1) Conditionally on H, the processes (h̃δ e−t(x) − h̃δ(x))t≥0 and

(h̃δ e−t(y)− h̃δ(y))t≥0) are independent Brownian motions.

(2) We can write Yε(x) = Y 1
ε (x) + Y 2

ε (x) and Yε(y) = Y 1
ε (y) + Y 2

ε (y) where:

• Y 1
ε (x) and Y 1

ε (y) are measurable with respect to H;

• Y 2
ε (x) is independent of H, Y 2

ε (y) and (h̃η(y)− h̃δ(y))η≤δ;

• Y 2
ε (y) is independent of H, Y 2

ε (x) and (h̃η(x)− h̃δ(x))η≤δ;

• Y i
ε (x), Y i

ε (y) for i = 1, 2 have bounded variance; and

• 2 cov(Y 2
ε (x), h̃η(x) − h̃δ(x)) = −ρεη(x) + ρεδ(x) (similarly if x is replaced

with y).
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(3) We have

E[f̃βε,2λε(x) egε,2(x) 1Lε(x) | H] = (f̃βδ,2λε − ρ
ε
δ(x))1{f̃η,2λε−ρεη(x)>0; ∀ η∈[δ,ε0]}

× eg̃δ,2λε (x) e2Y ε1 (x)−2var(Y 1
ε (x)) e2ρεδ(x) .

(4) We also have E[ |Y 2
ε (x)| egε,2(x) 1Lε(x) | H] ≤ C eg̃δ,2λε (x) e2Y 1

ε (x) where C is a

universal constant.

(5) Items (3) and (4) also hold when x is replaced by y.

Proof of Lemma 3.20. By the Markov property of the Gaussian free field, con-

ditionally on H we can write h = hH + hH where:

• hH is measurable with respect to H and harmonic when restricted to B(x, δ)∪
B(y, δ); and

• hH, independent of H, is a sum of two independent zero boundary GFFs: one

in B(x, δ) and one in B(y, δ).

We use this to prove the points in turn.

(1) This follows from the fact that hH(x) = h̃δ(x) and hH(y) = h̃δ(y) (by

harmonicity), and the fact that the circle average process of a Gaussian free field is

a Brownian motion.

(2) We have Yε(x) = hε(x) − λε(x)h̃ε(x) by definition and so we can write

Y 1
ε (x) = (hH, θε,x)− λε(x)(hH, θ̃ε,x) and Y 2

ε = (hH, θε,x)− λε(x)(hH, θ̃ε,x), where θ̃

is uniform measure on the unit circle. The claimed properties of this decomposition

are easy to see.

(3) We first take out the H-measurable parts from the conditional expectation

on the left-hand side. To this end we write for η < δ

f̃βη,2λε(x) = f̃βδ,2λε(x)− ρεδ − (h̃η(x)− h̃δ(x)) + 2 log(δ/η) + ρεδ

:= W − (h̃η(x)− h̃δ(x)) + 2 log(δ/η) + ρεδ

where W is H measurable. We can also write

Lε(x) = {f̃βη,2λε(x)− ρεη > 0∀ η ∈ [δ, ε0]} ∩ {f̃βη,2λε(x)− (ρεη − ρεδ) +W > 0 ∀ η ∈ [ε, δ]}
:= L1

ε ∩ L2
ε

where L1
ε is also H-measurable. Putting these together, and breaking up gε,2(x)
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using (3.11) and point (2), we see that

E[f̃βε,2λε(x) egε,2(x) 1Lε(x) | H] = e2ρεδ(x) eg̃δ,2λε (x) e2Y 1
ε (x)−2var(Y 1

ε (x)) 1L1
ε(x)×

(E[(W − (h̃η(x)− h̃δ(x)) + 2 log(δ/ε) + ρεδ)

× e2(h̃η(x)−h̃δ(x))−2 log(δ/η)−2ρεδ(x) e2Y 2
ε (x)−2var(Y 2

ε (x)) 1L2
ε(x) | H])

Now we can use Girsanov’s theorem, as in the proof of Lemma 3.18, to get rid

of the exp{2Y 2
ε (x) − 2var(Y 2

ε (x))} term. More precisely, changing measure by

exp{2Y 2
ε (x)−2var(Y 2

ε (x))} has the effect of shifting the law of (h̃η(x)− h̃δ(x))η∈[ε,δ]

by adding on the deterministic function ρεδ(x) − ρεη(x). We then see that the con-

ditional expectation above is nothing but the expectation of the Brownian motion

martingale (3.9), starting from W . The result follows.

(4) For this we bound the indicator above by 1, and take out the parts which are

measurable with respect to H as in part (3). Then we are left with the expectation

of |Y 2
ε (x)| under a shifted law, where Y 2

ε (x) is still a Gaussian with O(1) mean and

variance (since Y 2
ε (x) has bounded covariances with everything.) This proves the

claim.

�

This lemma allows us to deduce that the integrand of (3.13), in the case |x−y| >
3ε, is less than or equal to some constant, depending on β only, times

E
[
(f̃βδ,2λε(x)(x) + 1 + |Y 1

ε (x)|)(f̃βδ,2λε(y)(y) + 1 + |Y 1
ε (y)|)

× eg̃δ,2λε(x)(x) eg̃δ,2λε(y)(y) e2Y 1
ε (x) e2Y 1

ε (y) 1GRδ,δ(x)1GRδ,δ(y)

]
where δ = δ(x, y) = |x− y|/3. Here we used that ρεδ(·) and var(Y 1

ε (·)) are uniformly

bounded, and changed GRε,ε0(·) to the larger H-measurable event GRδ,δ(·), so that it

would not interfere with the conditioning step.

Now we can use the definition of GRδ,δ. This, together with the fact that Y 1
ε (·)

has bounded variance and covariance with everything, tells us that the above is

bounded by a constant times

δ−2FR(log(1/δ)) ; FR(z) := R2(1 +
√
z log(1 + z))2 e

− 2
√
z

R(log(2+z)) .

As in the sketch of this proof (given just after the statement of Lemmas 3.18 and

3.19) we have put deterministic bounds on f̃βδ,2λε(x)(x), f̃δ,2λε(y)(y) and eg̃δ,2λε(y)(y),

and integrated over eg̃δ,2λε(x)(x).

Hence we can bound the integral (3.13), restricted to the set x ∈ O, y ∈ O \

122



B(x, 3ε), by a multiple of∫
x∈O

∫
y/∈B(x,3ε)

1

|x− y|2FR(− log |x− y|) dy dx ≤ C
∫
x∈O

∫ log(1/ε)

0
FR(u)du dx.

Since FR is integrable we see that this is uniformly bounded in ε.

Finally, we must deal with the integral over the set x ∈ O, y ∈ B(x, 3ε). By

the same reasoning as above (although now we do not need to do any conditioning,

since δ(x, y) = ε) we see that the integrand on this region is less than some constant

times ε−2FR(log(1/ε)). That the integral is uniformly bounded in ε then follows

from that fact that FR(log(1/ε)) is bounded, and that the area of B(x, 3ε) is O(ε2).

�

3.3.2 Convergence

We now need to show that Dβ
ε (O) converges (in some sense) as ε → 0. To do this,

we define the change of measure

dQβ,ε

dP
=

Dβ
ε (O)

E[Dβ
ε (O)]

(3.14)

for each ε > 0. Note that this is not a martingale change of measure, but it is well

defined for each ε > 0. We will prove the following lemma (from now on we drop

the dependence on O from our notation for compactness.)

Proposition 3.21. For each fixed β and ε0, and for any δ > 0

Qβ,ε

[∣∣∣∣∣Mβ
ε

Dβ
ε

√
log(1/ε)−

√
2

π

∣∣∣∣∣ > δ

]
→ 0

as ε→ 0.

Remark 3.22. Since Dβ
ε and Mβ

ε are close to Dε and Mε for large β (Lemma

3.5) and Qβ,ε is defined by a uniformly integrable change of measure (Proposition

3.17) this is almost exactly what we need (recall that by Theorem 3.10 we have

Mε

√
log(1/ε) →

√
π/2µ′ as ε → 0.) Indeed, we will see that the proof of Theo-

rem 3.1 follows in a straightforward manner once we have completed the proof of

Proposition 3.21.

Remark 3.23. The proof of Proposition 3.21 follows the general outline of the main

proof in [AS14]. However, the details of each step are somewhat different, and rely

on the precise way we have constructed Dβ
ε . One of the main difficulties is to make
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exact statements about the behaviour of hε using what we know about the behaviour

of h̃ε.

Before starting the proof, we make a few remarks about the change of measure

(3.14). Define

Q̂β,ε(dx, dh) =
fβε,2(x) egε,2(x) 1{x∈O}1Lε(x)1{fβε,2(x)>1}dxP[dh]

E[Dβ
ε ]

to be the rooted measure on (h, x) where h is a field and x is a point inO. Introducing

this type of measure is a classical tool for dealing with branching processes, that

also comes in very useful in the context of Gaussian multiplicative chaos. We have

the following description of how the point x and the field h interact under Q̂β,ε:

• the marginal law of h under Q̂β,ε is E[Dβ
ε ]−1Dβ

ε dP (i.e. the same law as under

Qβ,ε);

• the marginal law of x under Q̂β,ε, that we shall call dmβ,ε(x), is proportional

to

Zβε (x) := 1{x∈O}E[fβε,2(x) egε,2(x) 1Lε(x)1{fβε,2(x)>1}].

• the conditional law of the field h given the point x is given by

Qβ,ε
x := Q̂β,ε(· | x) = (Zβε (x))−1fβε,2(x) egε,2(x) 1{x∈O}1Lε(x)1{fβε,2(x)>1} dP.

• the conditional law of the point x given the field h is proportional to

fβε,2(x) egε,2(x) 1{x∈O}1Lε(x)1{fβε,2(x)>1}dx.

Also note that
dQβ,ε

x

dQ̃β,ε
x

=
Z̃βε (x)

Zβε (x)

fβε,2(x)

f̃βε,2(x)
1{fβ

ε,2λε(x)
(x)≥1}

where we recall from the proof of Lemma 3.18 that under Q̃β,ε
x the process

{(f̃β
e−u,2λε

(x)− ρεe−u(x) ; u ∈ [log(1/ε0), log(1/ε)]}

has the law of a 3d Bessel process, whose starting point is also biased (and a.s.

positive.) In fact, one of the key ideas in the proof of Proposition 3.21 will be to say

that fβε (x) under Qβ,ε
x also behaves essentially like a Bessel process. As a warm up,

let us first prove the following:
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Lemma 3.24.
Zβε (x)

Z̃βε (x)
→ 1 (3.15)

uniformly in x as ε→ 0.

This justifies in some sense that the measures Qβ,ε
x and Q̃β,ε

x are similar for small

ε, and is a result we will use many times.

Proof. We consider the ratio

Zβε (x)/Z̃βε (x) = (Z̃βε )−1E[fβε,2(x) egε,2(x) 1Lε(x)1{fβε,2(x)>1}]

= Q̃β,ε
x

[
(fβε,2(x)/f̃βε,2λε(x))1{fβε,2>1}

]
.

To show this converges to 1 we write, using decomposition (3.11),

fβε,2(x)

f̃βε,2λε(x)
= 1 + o(1) +

O(1)− Yε(x)

f̃βε,2λε(x)
.

Then by exactly the same Cauchy–Schwarz argument as in the proof of Lemma

3.18, it is enough to show that

Q̃β,ε
x [fβε,2(x) ≤ 1]→ 0 (3.16)

uniformly in x. Since f̃βε,2λε(x) is close to
√

log(1/ε) with high probability under

Q̃β,ε
x , and fβε,2(x) = λε(x)f̃βε,2λε(x) + O(1) + Yε(x), it is sufficient to control the tails

of Yε(x) under Q̃β,ε
x . For this we observe that, by Cauchy–Schwarz again,

Q̃β,ε
x [1{Yε(x)>a}]

2 ≤ Q̃β,ε
x [f̃ε,2λε(x)]E[1{Yε(x)>a} eg̃ε,2λε (x) eg

Y
ε,2(x)] (3.17)

≤
√

log(1/ε) e−ka

for some k, since Yε(x) is Gaussian with bounded variance under P. This allows us

to conclude.

Proof of Proposition 3.21. Our strategy to prove Proposition 3.21 is to show the

following two things:

Qβ,ε

[
Mβ
ε

Dβ
ε

]
=

√
2

π log(1/ε)
+ o

(
1√

log(1/ε)

)
as ε→ 0; and (3.18)

Qβ,ε

(Mβ
ε

Dβ
ε

)2
 ≤ 2

π log(1/ε)
+ o

(
1

log(1/ε)

)
as ε→ 0. (3.19)
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The result then follows using Jensen’s and Markov’s inequalities. (4.12) is rel-

atively straightforward. Observe that, by the discussion preceeding this proof, we

have
Mβ
ε

Dβ
ε

= Q̂β,ε

[
1

fβε,2(x)
| h
]
. (3.20)

This means that

Qβ,ε
[
Mβ
ε /D

β
ε

]
= Q̂β,ε

[
Mβ
ε /D

β
ε

]
= Q̂β,ε[fβε,2(x)−1] =

∫
O

Qβ,ε
x [fβε,2(x)−1] dmβ,ε(x),

which is a useful representation, because we can write

Qβ,ε
x [fβε (x)−1] =

Z̃βε (x)

Zβε (x)
Q̃β,ε
x [f̃βε,2(x)−11{fβε,2(x)>1}]

for each x ∈ O. The first moment estimate then follows by (3.16), Lemma 3.15 and

Lemma 3.11, parts (1) and (2).

(3.19) is rather more difficult, and requires several steps.

Step 1: We show that restricting to an event of high probability under Q̂β,ε does

not affect our second moment too much. That is, we show that if we can find a

sequence of events Eε = Eε(x) with Q̂β,ε[Eε]→ 1 and

Q̂β,ε

[
Mβ
ε

Dβ
ε

1

fβε,2(x)
1Eε

]
≤ 2

π log(1/ε)
+ o

(
1

log(1/ε)

)
, (3.21)

then this will prove (3.19).

To see how this implies (3.19), take such an event Eε and write

Qβ,ε

(Mβ
ε

Dβ
ε

)2
 = Q̂β,ε

(Mβ
ε

Dβ
ε

)2


= Q̂β,ε

[
Mβ
ε

Dβ
ε

Q̂β,ε[fβε,2(x)−11Eε | h]

]
+ Q̂β,ε

[
Mβ
ε

Dβ
ε

Q̂β,ε[fβε,2(x)−11Ecε | h]

]

= Q̂β,ε

[
Mβ
ε

Dβ
ε

1

fβε,2(x)
1Eε

]
+ Q̂β,ε

[
Mβ
ε

Dβ
ε

Q̂β,ε[fβε,2(x)−11Ecε | h]

]
.

We would like to show that the second term in the final expression is o(log(1/ε)−1).

For this, it is enough by Cauchy–Schwarz, to show that

• Q̂β,ε
[
(Mβ

ε /D
β
ε )2
]

= O(log(1/ε)−1), and

• Q̂β,ε
[
ξ2
ε

]
= o(log(1/ε)−1) where ξε := Q̂β,ε

[
fβε,2(x)−11Ecε | h

]
.
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We deal with each point in turn. For the first point, note that by conditional

Jensen’s inequality we have

Q̂β,ε
[
(Mβ

ε /D
β
ε )2
]
≤ Q̂β,ε

[
fβε,2(x)−2

]
=

∫
O

Qβ,ε
x

[
fβε,2(x)−2

]
dmβ,ε(x)

and then by changing measure and rearranging as usual, we can write

Qβ,ε
x

[
fβε,2(x)−2

]
= (Z̃βε (x)/Zβε (x)) Q̃β,ε

x

[
1

f̃βε,2λε(x)fβε,2(x)
1{fβε,2(x)>1}

]
.

To show that this is O(log(1/ε)−1) we need to be a little bit careful, although

heuristically it is clear from the fact that f̃ is a Bessel process and Yε(x) is small.

The way to make this precise is to consider the expectation on the “good” event,

{f̃ε,2λε > log(1/ε)1/4} ∩ {Yε(x) < (1/2) log(1/ε)1/4}

and its complement separately. On the good event we have that fβε,2(x) ≥ cf̃βε,λε(x)

for some constant c, and so the expectation is O(log(1/ε)−1) by Lemma 3.11, part

(2). On the bad event, we use (3.16) and Lemma 3.11, part (5), to see that the

expectation is also O(log(1/ε)−1).

Now we treat the second point. By Jensen’s inequality, and for any a > 0, we

have

Q̂β,ε
[
ξ2
ε

]
≤ Q̂β,ε

[
fβε (x)−21Ecε

]
= Q̂β,ε

[
1Ecε

fβε,2(x)2
1{fβε,2(x)≥a

√
log(1/ε)}

]
+ Q̂β,ε

[
1

fβε,2(x)2
1{fβε,2(x)<a

√
log(1/ε)}

]
.

It is clear by definition that the first term is less than Q̂β,ε[Ecε]/(a
2 log(1/ε)),

and for the second term, we write it as

∫
O

Z̃βε (x)

Zβε (x)
Q̃β,ε
x

[
1

f̃βε,2λε(x)fβε,2(x)
1{fβε,2(x)>1}1{fβε,2(x)≥a

√
log(1/ε)}

]
dmβ,ε(x). (3.22)

Similarly to before, we consider the expectation on the event

{Yε(x) < a log(1/ε)1/4} ∩ {f̃β2,λε(x) > a log(1/ε)1/4}

and its complement separately. This allows us to bound (3.22) by some constant

times a log(1/ε)−1 + exp(−ak log(1/ε)1/4), where k > 0 is the constant from (3.17).

Thus, lim supε log(1/ε) Q̂β,ε
[
ξ2
ε

]
≤ Ca for any a > 0 and some fixed finite C. Taking
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a→ 0, this allows us to conclude step 1.

Step 2: We define the event Eε, and set up the scales for the multiscale argument

we will use.

To do this we let rε > ε be a sequence with

log(1/rε)

log(1/ε)1/3
→∞ and

log(1/rε)

log(1/ε)1/2
→ 0 (3.23)

as ε→ 0 (so rε is tending to 0 much slower than ε). Given this, we break up D and

M as

Dβ
ε = Dβ,in

ε +Dβ,out
ε and Mβ

ε = Mβ,in
ε +Mβ,out

ε

where the subscript in refers to the integral inside B(x, rε) and the subscript out

refers to the integral outside of it.

The basic idea is that Dβ,in
ε and Mβ,in

ε will be small with high probability (this

will be part of the definition of Eε) and on this event, Mβ
ε /D

β
ε will be close to

Mβ,out
ε /Dβ,out

ε . Heuristically, this occurs with high probability because the limits of

Mε and Dε should be atomless measures, and rε is tending to 0. Next, we claim

that Mβ,out
ε /Dβ,out

ε is essentially independent of fβε,2(x). This is because rε is much

larger than ε and f is approximately a (time changed) Bessel process, so its value at

time ε is basically independent of its value at time rε− ε. From here (3.21) follows,

since we already know that Mβ
ε /D

β
ε and fβε,2(x)−1 have (the same) expectation, of

the right order.

We now choose our event Eε, according to this plan. To do this, we first have to

observe that, by the Markov property of the field, Yε(x) = hε(x) − λε(x)h̃ε(x) can

be written as

Yε(x) := Y 1
ε (x) + Y 2

ε (x),

where Y 2
ε is independent of h|D\B(x,rε−ε) and Y 1

ε is measurable with respect to

h|D\B(x,rε−ε) (see the proof of Lemma 3.20 for a more detailed explanation.) Given

this definition, we set Eε = E1
ε ∩ E2

ε where

E1
ε = {Dβ,in

ε ≤ log(1/ε)−2}
E2
ε = {f̃βu,2λε(x) ∈ [ 3

√
log(1/u), log(1/u)] ∀u ∈ [rε − ε, rε]} ∩ {Y 1

ε (x) < (log(1/ε))1/4}

(we will prove that Q̂β,ε [Eε] → 1 later on.) We remark that the event E2
ε here is

needed for the “independence” step.

Step 3: We split the left hand side of (3.21) into two parts: one concerning the

measures restricted to O ∩ B(x, rε), and one concerning the measures restricted to
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O ∩ (B(x, ε) \ B(x, rε)). We show that the first of these is negligible compared to

log(1/ε).

More precisely, we write

Q̂β,ε

[
Mβ
ε

Dβ
ε

1

fβε,2(x)
1Eε

]
≤ Q̂β,ε

[
Mβ,in
ε

Dβ
ε

1

fβε,2(x)
1Eε

]
+ Q̂β,ε

[
Mβ,out
ε

Dβ,out
ε

1

fβε,2(x)
1E2

ε

]
.

(3.24)

Then by definition we have that Mβ,in
ε ≤ Dβ,in

ε , and so on the event Eε it holds that

Mβ,in
ε ≤ log(1/ε)−2. Moreover, we know that fβε,2(x) is greater than 1 under Q̂β,ε

and also that Q̂β,ε[1/Dβ
ε ] = E[Dβ

ε ]−1 = O(1). Thus, the first term is o(log(1/ε)−1)

and we need only treat the second term.

Step 4: We condition on the field outside of B(x, rε − ε) in order to factorise

the second term on the right-hand side of (3.24). We show that the conditional

expectation of fβε,2(x)−1 is of order
√

2/π log(1/ε)(1 + o(1)) uniformly on E2
ε .

More precisely, we condition on Frε−ε, the σ-algebra generated by the point

x and the field h restricted to D \ B(x, rε − ε). Then Mβ,out
ε , Dβ,out

ε and E2
ε are

measurable with respect to Frε−ε, meaning that the second term on the right-hand

side of (3.24) is equal to

Q̂β,ε

[
Mβ,out
ε

Dβ,out
ε

1E2
ε
Q̂β,ε

[
1

fβε,2(x)
| Frε−ε

]]
.

Now we write

Q̂β,ε

[
1

fβε,2(x)

∣∣∣Frε−ε
]

= Qβ,ε
x

[
1

fβε,2(x)

∣∣∣h|D\B(x,rε−ε)

]

=

Q̃β,ε
x

[
1

f̃βε,2(x)
1{fβε,2λε (x)≥1}

∣∣∣h|D\B(x,rε−ε)

]
Q̃β,ε
x

[
fβε,2λε (x)

f̃βε,2(x)
1{fβε,2(x)≥1}

∣∣∣h|D\B(x,rε−ε)

] .
We will show that, on the event E2

ε , the numerator in the final expression is less than

or equal to
√

2/(π log(1/ε)) + o(log(1/ε)−1/2) and the denominator is 1 + o(1). To

do this we observe that, on E2
ε and under the conditional law Q̃β,ε

x [ · | hD\B(x,rε−ε)]:

• f̃βε,2λε(x) has the law of a Bessel process started from a position in

[ 3
√

log(1/rε − ε), log(1/rε − ε)] and evaluated at time log(ε)− log(kε − ε);
• by choice of rε and Lemma 3.11 part (1), this implies that the conditional

expectation of (f̃βε,2λε(x))−1 is equal to
√

2/(π log(1/ε))(1 + o(1));

• the conditional expectation of |Y 2
ε |/f̃ε,2λε(x) is o(1), by Cauchy–Schwarz; and
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• |Y 1
ε (x)| times the conditional expectation of (f̃βε,2λε(x))−1 is also o(1), by the

second point, and definition of E2
ε .

Together these imply that, uniformly on E2
ε ,

Q̂β,ε
[
1/fβε,2(x) | Frε−ε

]
≤
√

2/(π log(1/ε))(1 + o(1)).

Step 5: We show that Q̂β,ε
[
Mβ,out
ε

Dβ,outε
1E2

ε

]
is also bounded above by√

2/(π log(1/ε))(1 + o(1)). This completes the proof of (3.21) for our choice of Eε.

This is the most delicate step. To do this, we define yet another event

E3
ε = {f̃βu,2λε(x) ≥ 6

√
log(1/rε) ∀u ∈ [ε, rε]}.

Step 5(i): We will first show that

Q̂β,ε

[
Mβ,out
ε

Dβ,out
ε

1E2
ε
1E3

ε

]
≥ Q̂β,ε

[
Mβ,out
ε

Dβ,out
ε

1E2
ε

]
(1 + o(1)) (3.25)

so we can instead consider the term on the left-hand side (which turns out to be

easier to deal with.) To see why (3.25) is true we again condition on Frε−ε. This

gives us that

Q̂β,ε

[
Mβ,out
ε

Dβ,out
ε

1E2
ε
1E3

ε

]
≥ Q̂β,ε

[
Mβ,out
ε

Dβ,out
ε

1E2
ε
Q̂β,ε

[
E3
ε | Frε−ε

]]

where by changing measure as in step 4 we have

Q̂β,ε
[
(E3

ε )c | Frε−ε
]

=

Q̃β,ε
x

[
fβε,2(x)

f̃βε,2λε (x)
1{fβε,2(x)≥1}1(E3

ε )c

∣∣∣h|D\B(x,rε−ε)

]
Q̃β,ε
x

[
fβε,2(x)

f̃βε,2λε (x)
1{fβε,2(x)≥1}

∣∣∣h|D\B(x,rε−ε)

] .

We already know that the denominator is 1 + o(1) uniformly on E2
ε by our previous

discussion. In fact, the numerator is also o(1) uniformly on E2
ε . To show this, again

using our observations from step 4, it is enough for us to prove that

Q̃β,ε
x

[
E3
ε | h|D\(B(x,rε−ε)

]
→ 1

uniformly on E2
ε . For this we again use the fact that, under this conditional law, the

process f̃βu,2λε(x) for u ≤ rε− ε is a time-changed Bessel process (plus a small deter-

ministic fluctuation ρεu(x)) starting from a position in [ 3
√

log(1/rε − ε), log(1/rε−ε)].
Thus we need to calculate the probability that such a Bessel process, and we can
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clearly forget about the fluctuations, remains greater than log(1/rε) up to time

log(1/ε) − log(1/rε − ε). It is clear that this probability is smallest if we take the

starting point x0 to be 3
√

log(1/rε − ε). In this case we have, writing Qy for the law

of a Bessel process started at y, and by scaling, that

Qx0(Xt ≥ 6
√

log(1/rε) ∀t ∈ [0, log(1/ε)− log(1/rε − ε)]) ≥ Q1(Xt ≥
6
√

log(1/rε)
3
√

log(1/rε − ε)
∀t ∈ [0,∞]).

Taking ε → 0 we see that this converges to 1: the probability that a 3d Bessel

process started at 1 never hits 0.

Step 5(ii): Having done this, we can now consider the left-hand side of (3.25) and

instead try to show that this is bounded above by
√

2/(π log(1/ε))(1 + o(1)). Again

this will require a few arguments. We write

Q̂β,ε

[
Mβ,out
ε

Dβ,out
ε

1E2
ε∩E3

ε

]
≤ Q̂β,ε

[
Mβ,out
ε

Dβ,out
ε

1E2
ε∩E3

ε
1E1

ε
1{Dβε>log(1/ε)−1}

]
+

Q̂β,ε

[
Mβ,out
ε

Dβ,out
ε

1E2
ε
1E1

ε
1{Dβε≤log(1/ε)−1}

]
+ Q̂β,ε

[
Mβ,out
ε

Dβ,out
ε

1E2
ε∩E3

ε
1(E1

ε )c

]

and will show that the first term is of the order we want, and the second and third

are negligible. Indeed, it is clear that the first term is less than or equal to

Q̂β,ε

[
Mβ
ε

Dβ
ε

]
(1 + o(1)) ≤

√
2

π log(1/ε)
(1 + o(1))

by definition of the events (these imply that Dβ
ε /D

β,out
ε = 1+o(1)) and our previous

estimate (4.12) for the first moment. Moreover by Markov’s inequality for (1/Dβ
ε ),

and the fact that Mβ
ε /D

β
ε ≤ 1, the second is o(

√
log(1/ε)

−1
).

Step 5(iii): So we are left to deal with the third term, which we would also like to

show is o(
√

log(1/ε)
−1

). To do this, we first observe that we can bound it above by

Q̂β,ε
[
E2
ε ∩ E3

ε ∩ (E1
ε )c
]
≤ Q̂β,ε

[
E3
ε ∩

{
Dβ,in
ε >

1

log(1/ε)2

}]
. (3.26)

Our strategy here will be to use Markov’s inequality for Dβ,in
ε . For this we have to

calculate the Q̂β,ε expectation of Dβ,in
ε , which by definition is the same as calculating

the P expectation of Dβ
ε ×Dβ,in

ε . Thus, we can use similar techiniques to those in the

proof of uniform integrability (Lemma 3.18), where we calculated the P expectation

of (Dβ
ε )2 on a “good” event.

As we did there, we will break up Dβ,in
ε into two parts: the integral over B(x, 3ε),
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and the rest. To deal with the integral over B(x, 3ε) we define a further event E4
ε

(which has high probability) and on which fβε,2 is close to
√

log(1/ε). Crude estimates

on this event, using that |B(x, 3ε)| = O(ε2), then give the desired expectation. To

deal with the integral over B(x, rε) \B(x, 3ε) we need to be more careful. Here we

use the definition of E3
ε , which allows us to control the value of f̃βε,2λε(x) at all times

between rε and ε. Applying a decorrelation argument similar that in the proof of

Lemma 3.18 then allows us to reach the desired conclusion.

Let us first define E4
ε , using the following lemma:

Lemma 3.25. There exists p ∈ (0, 1/2) such that

E4
ε = {fβε,2(x) ∈ [log(1/ε)1/2−p, log(1/ε)1/2+p]}

satisfies Q̂β,ε
[
(E4

ε )c
]

= o(log(1/ε)−1/2).

Proof of Lemma 3.25. This is possible because for any p > 0

(E4
ε )c ⊂ {f̃βε,2λε(x) /∈ [2 log(1/ε)1/2−p,

1

2
log(1/ε)1/2+p]} ∪ {|Yε(x)| > log(1/ε)1/2−p}

and then

Q̂β,ε
[
(E4

ε )c
]
≤
∫
O

Qβ,ε
x

[
|Yε(x)| > log(1/ε)1/2−p

]
+ Qβ,ε

x

[
f̃βε,2λε(x) /∈ [2 log(1/ε)1/2−p,

1

2
log(1/ε)1/2+p]

]
dmβ,ε(x).

It is easy to see (using the definition of the measure Qβ,ε
x ) that the first probability

inside the integral decays exponentially in ε. For the second, we can write it as

Zβε (x)

Z̃βε (x)
Q̃β,ε
x

[
fβε,2(x)

f̃βε,2λε(x)
1{f̃βε,2λε (x)/∈[2 log(1/ε)1/2−p, 1

2
log(1/ε)1/2+p]}

]
.

which by Cauchy–Schwarz is less than or equal to

λε(x)Q̃β,ε
x

[
1{f̃βε,2λε (x)/∈[2 log(1/ε)1/2−p, 1

2
log(1/ε)1/2+p

′
]}

]
+

Q̃β,ε
x

[
(Yε(x) + O(1))2

f̃βε,2λε(x)

]1/2

Q̃β,ε
x

[
1{f̃βε,2λε (x)/∈[2 log(1/ε)1/2−p, 1

2
log(1/ε)1/2+p]}

f̃βε,2λε(x)

]1/2

.

A standard Bessel calculation, plus the fact that

Q̃β,ε
x

[
(O(1) + Yε(x))2/f̃βε,2λε(x)

]
= O(1)
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(seen by changing back to the measure P), gives that this is o(log(1/ε)−1/2) for some

p < 1/2. �

Using this new event E4
ε , and Markov’s inequality, we next bound the right-hand

side of (3.26) above by

o(log(1/ε)−1/2) (3.27)

+2 log(1/ε)2 Q̂β,ε

[
1E4

ε

∫
w∈B(x,3ε)

fβε,2(w)1Lε(w)1{fβε,2(w)>1} egε,2(w) dw

]

+2 log(1/ε)2 Q̂β,ε

[
1E3

ε

∫
w∈B(x,rε)\B(x,3ε)

fβε,2(w)1Lε(w)1{fβε,2(w)>1} egε,2(w) dw

]

where the first term comes from the Q̂β,ε probability of E4
ε . Recall that, to con-

clude, we need to show this whole expression is o(log(1/ε)−1/2). Let us look at the

expectation in the second term. By definition of Q̂β,ε this is equal to

E[Dβ
ε ]−1

∫
O

∫
w∈B(x,3ε)

E
[
1E4

ε
fβε,2(w)1Lε(w)1{fβε,2(w)>1} egε,2(w) fβε,2(x)1Lε(x)1{fβε,2(x)>1} egε,2(x)

]
dw dx

≤ E[Dβ
ε ]−1

∫
O

∫
w∈B(x,3ε)

ε−2 log(1/ε)1/2+p e−2 log(1/ε)1/2−p E
[
fβε,2(w)1Lε(w)1{fβε,2(w)>1} egε,2(w)

]
dw dx

≤ O(1)× log(1/ε)1/2+p e−2 log(1/ε)1/2−p

where the second line follows from the definition of E4
ε . Hence, the second term of

(3.27) is o(log(1/ε)−1/2).

We finish by dealing with the third term of (3.27). Writing Aε = B(x, rε) \
B(x, 3ε), we have that the expectation in this term is equal to

E[Dβ
ε ]−1

∫
O

∫
Aε

E
[
1E3

ε
fβε,2(w)1Lε(w)1{fβε,2(w)>1} egε,2(w) fβε,2(x)1Lε(x)1{fβε,2(x)>1} egε,2(x)

]
dw dx.

Then, by exactly the same reasoning used in the proof of Lemma 3.18, we can deduce

that this is less than or equal to some constant times∫
O

∫
Aε

E
[
eg̃δ,2λε(x)(x) eg̃δ,2λε(w)(w) 1{f̃βδ,2λε (x)≥log(1/rε)1/6}(f̃

β
δ,2λε(x)(x) + 1)(f̃βδ,2λε(w)(w) + 1)

]
(3.28)

where δ(x, y) = |x − y|/3. The final observation to make is that, by orthogonal

projection, we have

h̃δ(w) = αδx,wh̃δ(x) + Zδx,w

for αδx,w = cov(h̃δ(x), h̃δ(w))/var(h̃δ(x)) where Zδx,w is independent of h̃δ(x); dis-

tributed as a centered normal random variable with variance (1−(αδx,w)2)var(h̃δ(w)).
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The proof of this is the same as the proof of Lemma 3.13. Moreover, by Lemma 3.3,

we have αδx,w = 1 + O(log(1/δ)−1) uniformly in x,w.

Thus, by conditioning on h̃δ(x), we can calculate that the integrand in (3.28) is

less than or equal to a constant times

E
[
1{f̃βδ,2λε (x)≥log(1/rε)1/6} e

g̃δ,λε(x)(x)+g̃
δ,2λε(w)αδx,w

(x)
(f̃βδ,2λε(x)(x) + 1)(αδx,wf̃

β
δ,2λε(w)αδx,w

(x) + 1)

]
which by a simple calculation can be bounded again by

e−(log(1/rε))1/6 δ−2E
[
eg̃δ,2λε(x)(x)(1 + |f̃βδ,λε(x)(x)|2)

]
times some constant. This last expectation can be estimated by observing that

changing measure by eg̃δ,2λε(x)(x) turns f̃βδ,λε(x)(x) into a Gaussian random variable

with mean β and variance log(1/δ)+O(1). Hence the integrand of (3.28) is less than

C e−(log(1/rε))1/6 δ−2(1 + log(1/δ))

for some constant C. Integrating over Aε gives that the third term of (3.27) is

. e− log(1/rε)1/6 log(1/ε)2, and so we conclude, using our assumption (3.23) on rε,

that (3.27) is of the correct order.

Step 6: We show that Q̂β,ε [Eε]→ 1 as ε→ 0.

Firstly, it is clear that Q̂β,ε[E2
ε ] → 1. Then since we have already shown, see

(3.26), that Q̂β,ε
[
E2
ε ∩ E3

ε ∩ (E1
ε )c
]
→ 0 and that

Q̃β,ε
x

[
E3
ε | h|D\(B(x,rε−ε)

]
→ 1

uniformly on E2
ε , the claim follows straight away. The proof is complete. �

It is now relatively simple to show the convergence of Dε(O). To use Proposition

3.21, we must first compare Mβ
ε (O) and Dβ

ε (O) with Mε(O) and Dε(O).

Lemma 3.26. We have

P(Cβ) := P
(
{inf
ε

inf
x∈D

(−h̃ε(x) + 2var(h̃ε(x))) > −(β + 10)}

∩ {inf
ε

inf
x∈D

(−hε(x) + 2var(hε(x))) > −(β + 10)}
)

converges to 0 as β → 0, uniformly in ε.

Proof. This is a consequence of Corollary 3.6.
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Remark 3.27. Note that on the event Cβ we have Mβ
ε (O) = Mε(O) and also

Dβ
ε (O) = Dε(O) + βMε(O) for all O ⊂ D.

We are now ready to prove the main result.

Proof of Theorem 3.1. It is enough to show that for O ⊂ D and δ > 0 fixed

P

[∣∣∣∣∣Mε(O)

Dε(O)

√
log(1/ε)−

√
2

π

∣∣∣∣∣ > δ

]
→ 0 (3.29)

as ε→ 0. Then since
√

log(1/ε)Mε(O)→
√

π
2µ
′(O) in probability, by Theorem 3.10,

we also have Dε(O)→ µ′(O) in probability. Let us prove (3.29). By Proposition 3.21

we know that for any β > 0

Q̂β,ε

[∣∣∣∣∣Mβ
ε (O)

Dβ
ε (O)

√
log(1/ε)−

√
2

π

∣∣∣∣∣ > δ

]
→ 0

as ε → 0, and we also know that, on the event Cβ, we can compare Mβ
ε , D

β
ε with

Mε, Dε by Remark 3.27. With this in mind, we bound (3.29) above by

P
[
A1
β,ε

]
+ P

[
A2
β,ε ∩ (A1

β,ε)
c
]

where

A1
β,ε =

{∣∣∣∣∣ Mε(O)

Dε(O) + βMε(O)

√
log(1/ε)−

√
2

π

∣∣∣∣∣ > δ

2

}
and

A2
β,ε =

{√
log(1/ε)

∣∣∣∣ Mε(O)

Dε(O) + βMε(O)
− Mε(O)

Dε(O)

∣∣∣∣ > δ

2

}
.

In fact, the event A2
β,ε∩(A1

β,ε)
c is deterministically non possible if ε is small enough.

Thus, it is enough to show that P(A1
β,ε) can be made arbitrarily small by choosing

β large, and then ε small. To do this, we observe by Remark 3.27 that

P(A1
β,ε) ≤ P[Ccβ] + P

[{∣∣∣∣∣Mβ
ε (O)

Dβ
ε (O)

√
log(1/ε)−

√
2

π

∣∣∣∣∣ > δ/2

}
∩ Cβ

]
.

Furthermore, by the definition of Q̂β,ε, the left-hand side for any η > 0, is less than

or equal to

P[Ccβ] + P[Cβ ∩ {Dβ
ε < η}] +

E[Dβ
ε ]

η
Q̂β,ε

[∣∣∣∣∣Mβ
ε (O)

Dβ
ε (O)

√
log(1/ε)−

√
2

π

∣∣∣∣∣ > δ

]
.
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Now note that by Markov’s inequality

P[Cβ∩{Dβ
ε < η}] ≤ P[

√
log(1/ε)Mε(O) < η1/4]+

√
η E[Dβ

ε ] Q̂β,ε

log(1/ε)

(
Mβ
ε

Dβ
ε

)2
 .

Hence using Proposition 3.21 and Lemma 3.26, together with the fact that√
log(1/ε)Mε(O) converges to

√
π/2µ′(O) (which is positive almost surely) and

that E[Dβ
ε ] =

∫
x Z

β
ε (x) is bounded, we can conclude by letting β →∞, then η → 0,

and finally ε→ 0. �

3.4 ?-scale invariant kernels

In this section we prove Theorem 3.2 using a simple adaptation of our arguments

from the previous section. Recalling the set-up, we have:

• θ : Rd → R a mollifier, supported in B(0, 1), with Hölder continuous density

and satisfying (3.2);

• k : [0,∞)→ R, a compactly supported and positive-definite C1 function with

k(0) = 1; and

• h a ?-scale invariant field on Rd with covariance kernel

K(x, y) =

∫ ∞
1

k(u|x− y|)
u

du.

We would like to prove that if hε(x) = h ? θε(x) is the θ-convolution approximation

to h, the signed measures

Dε(dx) := (−hε(x) +
√

2d log(1/ε)) e
√

2dhε(x) εd dx

converge weakly in probability to a limiting measure. Moreover, we would like to

show that this limiting measure is equal to the measure defined in [DRSV14a, JS17]

(see Theorems 3.8 and 3.9).

Proof. First pick g such that g ? g(u) = k(u) (we can do this by our assumptions on

k, [?]). Then we can define a field h with the correct covariance structure by setting

h(x) :=

∫ ∞
1

∫
Rd

g(y − xu)√
u

W (dy, du), (3.30)

where W (·, ·) is a standard space-time white noise. It is then proved in [DRSV14a]
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that if we let

h̃ε(x) :=

∫ 1
ε

1

∫
Rd

g(y − xu)√
u

W (dy, du),

the signed derivative measures D̃ε(dx) := (−h̃ε(x) +
√

2d log(1/ε)) e
√

2dh̃ε(x) εd dx

converge almost surely to a positive limiting measure µ′. It is further shown in

[DRSV14b] that

M̃ε(dx) :=
√

log(1/ε) e
√

2dh̃ε(x) εd dx

converges to
√

2/πµ′ in probability and in [JS17] that

Mε :=
√

log(1/ε) e
√

2dhε(x) εd dx

also converges to
√

2/πµ′ in probability.

To prove the convergence of Dε(dx) we use the same strategy as for the proof

of Theorem 3.1, now letting h̃ε play the role of the circle average. In particular we

need only prove Proposition 3.21 (the result then following by Corollary 3.6 and

Lemma 3.26 in exactly the same way.) We observe that:

• h̃ε(x) is a (time-changed) Brownian motion for each x ∈ Rd; and

• cov(hε(x), h̃δ(x)) = log(1/(ε ∧ δ)) + O(1), so we can define λε(x), Yε(x) and

ρεδ(x) as in Lemmas 3.13 and 3.15, and the statements of these lemmas will

still hold.

This is enough to prove (4.12) and step 1 of (3.19). For step 2 we need to explain how

we define a few things. We let rε be chosen as before, and without loss of generality

we assume that supp(k) ⊂ B(0, 1). It is then easy to check using the definition

of h that hε(z) and (h̃η(x) − h̃rε−ε(x))η≤rε−ε are independent for all z /∈ B(x, rε).

We let Fε = σ({h̃u(x) : u ≥ rε − ε}) ∨ σ({hε(z) : z ∈ D \ B(x, rε)}) so that

(h̃η(x)− h̃rε−ε(x))η≤rε−ε(x) is independent of Fε, and Mβ,out
ε /Dβ,out

ε is measurable

with respect to it. This is what we will use in place of Frε−ε from the original

proof. Using standard properties of Gaussian processes we see that we can also

write Yε(x) = Y 1
ε (x) + Y 2

ε (x) where Y 1
ε (x) is measurable with respect to Fε and

Y 2
ε (x) is independent of it. From this point onwards we can define everything in the

same way, and steps 3 and 4 follow, using only properties of the 3d Bessel process.

To conclude, we need only complete step 5, since step 6 is a straightforward

consequence of this (as in the original proof.) For this step we note that by our

assumption on supp(k), (h̃δ+η(x)− h̃δ(x))η≥0 and (h̃δ+η(y)− h̃δ(y))η≥0 are indepen-

dent as soon as |y − x| ≥ δ. Since this is the only extra property we used in this

step, the proof of Proposition 3.21 goes through.
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Remark 3.28. We remark here that the authors in [DRSV14a, DRSV14b] sug-

gest that their constructions should hold for more general kernels than the ?-

scale invariant ones. In particular, for any positive definite kernel of the form

K(x, y) = − log(|x − y|) + g(|x − y|) with g continuous, one has a white-noise

decomposition for the corresponding field h, analogous to (3.30). This means that

the theory in [DRSV14b, Appendix D] should go through, and as a consequence, the

result of Theorem 3.2 should also hold. More generally we conjecture that Theorem

3.2 should hold for any K satisfying (3.4).
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4 Approximating the Liouville measure using

local sets of the Gaussian free field

4.1 Introduction

Gaussian multiplicative chaos (GMC) theory, initiated by Kahane in the 80s [Kah85]

as a generalization of multiplicative cascades, aims to give a meaning to “exp(Γ)”

for rough Gaussian fields Γ. In a simpler setting it was already used in the 70s to

model the exponential interaction of bosonic fields [HK71], and over the past ten

years it has gained importance as a key component in constructing probabilistic

models of so-called Liouville quantum gravity in 2D [DS11, DKRV16].

One of the important cases of GMC theory is when the underlying Gaussian field

is equal to γΓ, for Γ a 2D Gaussian free field (GFF) [DS11] and γ > 0 a parameter.

It is then possible to define random measures with area element “exp(γΓ)dx ∧ dy”.

These measures are sometimes also called Liouville measures [DS11] and we will do

so for convenience in this article. Due to the recent work of many authors [RV10,

DS11, Ber15a, Sha16] one can say that we have a rather thorough understanding of

Liouville measures in the so-called subcritical regime (γ < 2). The critical regime

(γ = 2) is trickier, but several constructions are also known [DRSV14a, DRSV14b,

JS17, Pow17a].

Usually, in order to construct the GMC measure, one first approximates the

underlying field using either a truncated series expansion or smooth mollifiers, then

takes the exponential of the approximated Gaussian field, renormalizes it and shows

that the limit exists in the space of measures. In [Aid15] the author proposed a dif-

ferent way to construct measures of multiplicative nature using nested conformally

invariant loop ensembles, inspired by multiplicative cascades. He conjectured that

in the subcritical and critical regime, and in the case where these loop ensembles

correspond to certain same-height contour lines of the underlying GFF, the limiting

measure should have the law of the Liouville measure. In this paper we confirm

his conjecture. This is done by providing new constructions of the subcritical and

critical Liouville measures using a certain family of so called local sets of the GFF

[SS13, ASW15] and reinterpreting his construction as a special case of this gen-

eral setting. Some of our local-set based constructions correspond to simple multi-

plicative cascades, and others in some sense to stopping lines constructions of the

multiplicative cascade measures [Kyp00]. To our knowledge we provide a first “non-

Gaussian” approximation of Liouville measures that is both local and conformally

invariant. We also remark that our construction strongly uses the Markov property

of the GFF and hence does not easily generalize to other log-correlated fields.
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One simple, but important, consequence of our results is the simultaneous con-

struction of a GFF in a simply connected domain and its associated Liouville mea-

sure using nested CLE4 and a collection of independent coin tosses. Start with a

height function h0 = 0 on D and sample a CLE4 in D. Inside each connected com-

ponent of its complement add either ±π to h0 using independent fair coins. Call the

resulting function h1. Now repeat this procedure independently in each connected

component: sample an independent CLE4, toss coins and add ±π to h1 to obtain

h2. Iterate. Then it is known [MS11, ASW15] that these piecewise constant fields

hn converge to a GFF Γ. It is also possible to show that the nested CLE4 used in

this construction (we call the complement of the nth level loops An) is a measurable

function of Γ. Proposition 4.10 of the current article implies that one can construct

the Liouville measures associated to Γ by just taking the limit of measures

Mγ
n (dz) = eγhn(z) CR(z;D \An)

γ2

2 dz.

Here CR(z;D \An) is the conformal radius of the point z inside the n-th level loop.

Observe that the above approximation is different from taking naively the expo-

nential of hn and normalizing it pointwise by its expectation. In fact, it is not hard

to see that in this setting the latter naive procedure that is used for mollifier and

truncated series approximations would not give the Liouville measure.

In the critical case, and keeping to the above concrete approximation of the

GFF, regularized Liouville measures can be given by the so-called derivative ap-

proximations:

Dn(dz) =

∫
O

(
−hn(z) + 2 log CR−1(z,D \An)

)
e2hn(z) CR(z;D \An)2 dz.

As the name suggests, they correspond to the derivative of the above measure Mγ
n

w.r.t. to γ, taken at the critical parameter γ = 2. We show that these approximate

signed measures converge to a positive measure that agrees (up to a constant factor

2) with the limiting measure of [Aid15] described in Section 4.3.3, and also to the

critical Liouville measure constructed in [DRSV14b, Pow17a].

The connection between multiplicative cascades and the Liouville measure es-

tablished by our construction makes it possible to directly adapt many techniques

developed in the realm of branching random walks and multiplicative cascades to

the study of the Liouville measure. For example, this allows us to prove a “Seneta–

Heyde” rescaling result in the critical regime by following very closely the proof for

the branching random walk in [AS14] and doing minimal extra work. Finally, our

proofs are robust enough to study the Liouville measure in non-simply connected
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domains and also to study the boundary Liouville measure.

The rest of the article is structured as follows. We start with preliminaries on

the GFF, its local sets and Liouville measure. Then, we treat the subcritical regime

and discuss generalizations to non-simply connected domains and to the boundary

Liouville measure. Finally, we handle the critical case: we first show that our con-

struction agrees with both a construction by E. Aidekon (up to a constant factor 2)

and a mollifier construction of the critical Liouville measure; then, we consider the

case of Seneta-Heyde scaling.

4.2 Preliminaries on the Gaussian free field and its local

sets

Let D ⊆ R2 denote a bounded, open and simply connected planar domain. By con-

formal invariance, we can always assume that D is equal to D, the unit disk. Recall

that the Gaussian Free Field (GFF) in D can be viewed as a centered Gaussian

process Γ, indexed by the set of continuous functions in D, with covariance given

by

E [(Γ, f)(Γ, g)] =

∫∫
D×D

f(x)GD(x, y)g(y)dxdy. (4.1)

Here GD is the Dirichlet Green’s function in D, normalized such that GD(x, y) ∼
log(1/|x− y|) as x→ y for all y ∈ D.

Let us denote by ρεz the uniform measure on the circle of radius ε around z.

Then for all z ∈ D and all ε > 0, one can define Γε := (Γ, ρεz). We remark that this

concrete choice of mollifying the free field is of no real importance, but is just a bit

more convenient in the write-up of the critical case.

An explicit calculation then shows that:

E
[
ε
γ2

2 exp (γ(Γ, ρεz))

]{
= CR(z;D)γ

2/2 if d(z, ∂D) ≥ ε,
≤ 1 if d(z, ∂D) < ε,

(4.2)

where CR(z;D) is the conformal radius of z in the simply-connected domain D.

The Gaussian free field satisfies a spatial Markov property, and in fact it also

satisfies a strong spatial Markov property. To formalise this, the concept of local

sets was introduced in [SS13]. They can be thought as the generalisation of stopping

times to a higher dimension.

Definition 4.1 (Local sets). Consider a random triple (Γ, A,ΓA), where Γ is a GFF

in D, A is a random, relatively closed subset of D and ΓA a random distribution
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that is equal to a harmonic function, hA, when restricted to D \ A. We say that A

is a local set for Γ if conditionally on A and ΓA, ΓA := Γ− ΓA is a GFF in D \A.

Here, by a random closed set we mean a probability measure on the space of

relatively closed subsets of D, endowed with the Hausdorff metric and its corre-

sponding Borel σ−algebra. For simplicity, we will only work with local sets A that

are measurable functions of Γ and such that A ∪ ∂D is connected. In particular,

this implies that all connected components of D\A are simply-connected. We define

FA = σ(A) ∨ σ(ΓA).

Other than the Markov property apparent from the definition, we will use the

following simple properties of local sets. See for instance [SS13, Wer] for further

properties.

Lemma 4.2. Let (An)n∈N be an increasing sequence of local sets measurable w.r.t.

Γ. Then

1. FAn ⊂ FAn+1 ,

2.
⋃
An is also a local set and ΓAN → Γ⋃

An
in probability as distributions as

N →∞,

3. if
⋃
An = D, then the join of the σ-algebras FAn is equal to σ(Γ). Moreover,

Γn := ΓAn then converges to Γ in probability in the space of distributions.

The property (1) follows from the fact that our local sets are measurable w.r.t. Γ

and the characterization of local sets found in [SS13]. Properties (2) and (3) follow

from the fact that when An ∪ ∂D is connected we have that the Green’s functions

GD\An → GD\A.

In other words, one can approximate the Gaussian free field by taking an increas-

ing sequence of measurable local sets (An)n∈N and for each n defining Γn := ΓAn .

In some sense these give very intrinsic approximations to the GFF. For example,

one could intuitively think that An are the sets that discover the part of the surface

described by the GFF that is linked to the boundary and has height between −n
and n.

4.2.1 Two useful families of local sets

One useful family of local sets are the so-called two-valued local sets introduced in

[ASW15] and denoted by A−a,b. For fixed a, b > 0, A−a,b is a local set of the GFF

such that: the value of hA−a,b inside each connected component of D \A is constant

with value either −a or b; and that is thin in the sense that for all f smooth we have

(ΓA, f) =
∫
D\A f(z)hA(z) dz. Equivalently, ΓA is equal to hA as a distribution. The
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prime example of such a set is CLE4 coupled with the Gaussian free field as A−2λ,2λ,

where λ is an explicit constant equal to λ = π/2 in our case [MS11, ASW15]. In

analogy with stopping times, they correspond to exit times of Brownian motion

from the interval [−a, b]. We recall the main properties of two-valued sets:

Proposition 4.3. Let us consider −a < 0 < b.

1. When a+ b < 2λ, there are no local sets of Γ with the characteristics of A−a,b.

2. When a + b ≥ 2λ, it is possible to construct A−a,b coupled with a GFF Γ.

Moreover, the sets A−a,b are

• Unique in the sense that if A′ is another local set coupled with the same

Γ, such that for all z ∈ D, hA′(z) ∈ {−a, b} almost surely and A′ is thin

in the sense above, then A′ = A−a,b almost surely.

• Measurable functions of the GFF Γ that they are coupled with.

• Monotonic in the following sense: if [a, b] ⊂ [a′, b′] and −a < 0 < b with

b+ a ≥ 2λ, then almost surely, A−a,b ⊂ A−a′,b′.
• A−a,b has almost surely Lebesgue measure 0.

• For any z, log CR(z;D\A−a,b) − log CR(z;D) has the distribution of the

hitting time of {−a, b} by a standard Brownian motion.

Another nice class of local sets are those that only take one value in the comple-

ment of A. We call them first passage sets and denote them by Aa (if they only take

the value a). These correspond to one-sided hitting times of the Brownian motion:

hence the name. They are of interest in describing the geometry of the Gaussian free

field and are treated in more detail in [ALS17]. Here, we only provide one working

definition and refer to [ALS17] for a more intrinsic definition, uniqueness and other

properties not needed in the current paper.

Definition 4.4 (First passage set). Take a ≥ 0. We say that Aa is the first passage

set (FPS) of a GFF Γ, with height a, if it is given by
⋃
nA−n,a.

We need a few properties of these sets. The first follows from the definition, the

second and third from calculations in [ASW15] Section 6:

• We have that ΓAa = a− νa, where νa is a positive measure supported on Aa;

• Aa has zero Lebesgue measure;

• For any an →∞ we have that
⋃
Aan = D.

Note that because the circle-average of the GFF (Γ, ρεz) is a.s. well-defined for all

z ∈ D, ε > 0 simultaneously, it also means that (νa, ρ
ε
z) is a.s. well-defined and

positive for all z, ε as above.
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In fact these three properties characterize Aa uniquely [ALS17]. However, in

this paper we only need a weaker uniqueness statement that is a consequence of the

following lemma:

Lemma 4.5. Denote A1 = A−a,a with a ≥ λ and define iteratively An by exploring

copies of A−a,a in each connected component of the complement of An−1. Then,

almost surely for a dense countable set z ∈ D the following holds: for k ∈ N, let nz

be the first iteration when hAnz (z) = ak, the connected component D\Anz containing

z is equal to the connected component of D\Aak containing z.

Proof. The proof follows from the uniqueness of two-valued sets A−a,b. Indeed,

construct sets Bn by taking B1 = A1 and then repeating the construction of Ai

only in the components where the value of hBn is not yet ak. Thus, by construc-

tion Bn ⊂ An. Moreover, for any z up to and including the first iteration where

ΓBk(z) = ak, the connected component of the complement of An and Bn containing

z coincide.

Now, note that for a fixed z ∈ D, nz is almost surely finite. Thus it suffices to

prove that for all n ∈ N, the set Bn is contained in A−dane,ak and that all connected

components of D\Bn where hBn takes the value ak are connected components of

D\A−dane,ak where hA−dane,ak is equal to ak. To see this, first note that hBn ∈
{−an,−a(n−1), . . . , ak}. In particular, in each connected component where hBn =

c /∈ {−dane, ak} we can construct the two-valued sets A−dane−c,ak−c. This gives us a

local set B̃ s.t. hB̃ takes only values in {−dane, k}. It is also possible to see that B̃

is thin, by noting that inside each compact set its Minkowski dimension is smaller

than 2 (e.g. see [Sep16, Proposition 4.3]). Then, by uniqueness of the two-valued

sets, Lemma 4.3, B̃ is equal to Adane,k. To finish, notice that we the connected

components of D\Bn where hBn took the value ak are also connected components

of B̃ with the same value.

In particular, from this lemma it follows that we can also construct Aa in a

different way: denote A1 = A−a,a and define A2 by iterating independent copies of

A−a,a in each component of the complement of D \A1 where hA1 6= a. Repeat this

procedure again in all components of the complement for which the value still differs

from a. This iteration gives an increasing sequence of local sets An, whose limit is

equal to Aa. For a concrete example, one could take A−2λ,2λ to be equal to CLE4

in its coupling with the GFF, and the above procedure would yield A2λ. In fact the

sets (A2λn)n∈N are exactly the sets that the author [Aid15] proposes as a basis for

the construction of the Liouville measure.
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4.3 Overview of the Liouville measure and loop con-

structions of [Aid15]

There are many ways to define the Liouville measure in the subcritical case, the

differences amounting to how one approximates the underlying GFF. We will first

describe the approximations using circle averages in the subcritical case. Then we

will discuss the critical regime, and finally present the nested-loop based construc-

tions from [Aid15] that are conjectured to give the Liouville measure. From now on

we will set D = D for simplicity.

4.3.1 Subcritical regime

Let us recall that we denote Γε(z) = (Γ, ρεz) the ε-circle average of the GFF around

the point z as before. It is known that Γε(z) is a continuous Gaussian processes

that converge to Γ a.s. in the space of distributions as ε→ 0. Thus, one can define

approximate Liouville measures

µγε (dz) := ε
γ2

2 exp (γΓε(z)) dz.

In the subcritical regime we have the following result [DS11, Ber15a]:

Theorem 4.6. For γ < 2 the measures µγε converge to a non-trivial measure µγ

weakly in probability. Moreover, for any fixed Borel set O ⊂ D we have that µγε (O)

converges in L1 to µ(O).

In fact it is known that the measure is also unique, in the sense that the same

limit can be obtained using any sufficiently nice mollifier instead of the circle average.

We will show that the approximations using local sets give the same measure.

4.3.2 Critical regime

It is known that for γ ≥ 2, the measures µεγ converge to zero [RV10]. To define the

critical measures an additional renormalization is therefore required. One way to do

it is to use the so-called derivative martingale, originating from studies on branching

random walks. Define

νε(dz) :=
∂

∂γ

∣∣∣∣
γ=2

µγε (dz) = (−Γε(z) + 2 log(1/ε))ε2 exp (2Γε(z)) dz

It has been recently shown in [Pow17a, Theorem 1.1] that νε converges weakly in

probability to a non-trivial limiting measure µ′2 as ε → 0. Moreover, µ′2 coincides
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with the critical Liouville measure defined in [DRSV14a, DRSV14b]. We will again

show that the approximations using local sets converge towards the same measure.

Another way to define the critical measure is to use the so-called Seneta-Heyde

renormalization [AS14, DRSV14b]. In the case of the circle-average process the

approximating measures would be defined as:

ν̄ε(dz) :=
√

log 1/εµ2
ε(dz).

It has been shown [HRV15, JS17] that ν̄ε converges in probability to
√

2
πµ
′
2 as ε→ 0.

We will prove an analogous result in our setting.

4.3.3 Measures constructed using nested loops

In [Aid15] the author proposes a construction of measures, analogous to the Liouville

measure, using nested conformally-invariant loop ensembles. We will now describe

it in a concrete context that is related to this paper.

Consider a CLE4, and inside each loop toss an independent fair coin. Keep the

loops with heads on top, and sample new CLE4 loops in the others. Also toss new

independent coins inside these loops. Keep track of all the coin tosses for each

loop and repeat the procedure inside each loop where the number of heads is not

yet larger than the number of tails. Define the resulting set as Ã1. Now define Ãk

iteratively by sampling an independent copy of Ã1 inside each connected component

of D \ Ãk−1.

For any Borelian O ⊂ D we can now define

M̃γ
k (O) =

1

E
[
CR(0,D \ Ã1)γ2/2

]k ∫
O∩D\Ãk

CR(z,D \ Ãk) γ
2

2 dz (4.3)

It is shown in [Aid15] that for γ < 2 the measures defined by M̃γ
k converge

weakly almost surely to a non-trivial measure M̃γ . It is also conjectured there that

the limiting measures coincide with the Liouville measures µγ . We will prove this

statement below.

It is further proved in [Aid15] that for γ ≥ 2, these measures converge almost

surely to zero. In the critical case, however, one can again define a derivative mar-

tingale D̃γ
k by taking a derivative with respect to −γ. In other words one sets:

D̃γ
k(O) = −2

∂

∂γ
M̃γ
k (O)

(we include the factor 2 here to be consistent with the definition in [Aid15]). It is

shown in [Aid15] that the measures D̃k := D̃2
k converge to a non-trivial positive
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measure D̃∞. In this paper, we prove that D̃∞ = 2µ′2.

4.4 Local set approximations of the subcritical Liouville

measure

In this section we prove that one can approximate the Liouville measure of a GFF

in a simply connected domain using increasing sequences of local sets (An)n∈N with⋃
An = D. In particular, the measure constructed in [Aid15] will fit in our framework

and thus it agrees with the Liouville measure. In fact, for simplicity, we first present

the proof of convergence in this specific case.

First, recall that we denote by hA the harmonic function given by the restriction

of ΓA to D \ A. For any local set A with Lebesgue measure 0 and bounded hA, we

define for any Borelian set O ⊆ D:

Mγ(O, A) :=

∫
O
eγhA CR(z;D \A)γ

2/2 dz.

Notice that as hA is bounded, we can define it arbitrarily on the 0 Lebesgue measure

set A.

Proposition 4.7. Fix γ ∈ [0, 2). For a > 0, let Aa be the a-FPS of Γ and µγ be

the Liouville measure defined by Γ. Then for each Borelian set O ⊂ D,

Mγ
a (O) := Mγ(O, Aa) = eγa

∫
O
CR(z;D\Aa)γ

2/2dz

is a martingale with respect to FAa and converges a.s. to µγ(O) as a → ∞. Thus,

a.s. the measures Mγ
a converge weakly to µγ.

Before the proof, we make two remarks. First, we make the connection between

our martingale and the martingales of [Aid15]:

Remark 4.8. As a consequence of Lemma 4.5, the fact that A−2λ,2λ has the law

of CLE4 and the fact that the value of its corresponding harmonic function is in-

dependent in each connected component of D\A−2λ,2λ [MS11, ASW15], we see that

Ã1 of Section 4.3.3 is equal in law to A2λ. Furthermore, the sequence (Ãk)k∈N has

the same law has the sequence (A2λk)k∈N.

Now, by the iterative construction and conformal invariance the random variables

log CR(0,D \ Ãi)− log CR(0,D \ Ãi−1)

with A0 = ∅ are i.i.d. Thus, E
[
CR(0,D \ Ã1)

γ2

2

]k
= E

[
CR(0,D \ Ãk) γ

2

2

]
.

147



Moreover, it is known from [SSW09, ASW15] that − log CR(0,D \ Ãk) corre-

sponds precisely to the hitting time of kπ by a standard Brownian motion started

from zero. In our case, when 2λ = π, we therefore see that

eγ2λk = E
[
CR(0,D \ Ã1)

γ2

2

]−k
.

Furthermore, since Leb(A2λ) = 0 implies that Mγ
a (O∩A2λ) = 0, we have that Mγ

2λk

agrees with the measure M̃γ
k defined in (4.3). Hence Proposition 4.7 confirms that

the limit of M̃γ
k corresponds to the Liouville measure.

Remark 4.9. Second, in order to avoid repetition, we recall here as a remark the

standard argument showing that the almost sure weak convergence of measures is

implied by the almost sure convergence of Mγ
a (O) over all boxes O with dyadic coor-

dinates. This follows from two observations: first, the subspace of Radon measures

on D with bounded mass is compact and second, the boxes O with dyadic coordinates

generate the Borel σ-algebra. Notice that we do not show that we have strong con-

vergence of measures, i.e. we do not know whether almost surely µγ(O) is the limit

of Mγ
a (O) for all Borelian O.

Proof of Proposition 4.7. By Remark 4.9, it suffices to prove the convergence

statement for Mγ
a (O). When γ ∈ [0, 2), we know that µγε (O) → µγ(O), in L1 as

ε→ 0, where µγε is as in Theorem 4.6. Thus,

E [µγ(O) | FAa ] = lim
ε→0

E [µγε (O) | FAa ] .

The key is to argue that

lim
ε→0

E [µγε (O) | FAa ] = Mγ
a (O). (4.4)

Then Mγ
a (O) = E [µγ(O) | FAa ] and we can conclude using the martingale conver-

gence theorem and the fact that
⋃
Aa = D.

To prove (4.4), define Aεa as the ε-enlargement of Aa. By writing Γ = ΓAa + ΓAa

and using that (ΓAa , ρ
z
ε) = a for any z ∈ D\Aεa, we have

E

[∫
O\Aεa

eγ(Γ,ρzε) εγ
2/2 dz

∣∣∣∣∣FAa
]

=

∫
O\Aεa

eγa εγ
2/2E

[
e(ΓAa ,ρzε)

∣∣∣FAa] dz
Using (4.2) we recognize that the right hand side is just Mγ

a (O\Aεa).
But now for any fixed a, as CR(z,D) ≤ 1 and Aa has zero Lebesgue measure, we

have that Mγ
a (O∩Aεa) = oε(1). On the other hand, from the fact that (ΓAa , ρ

z
ε) ≤ a
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for any z, and (4.2), it follows that

E

[∫
O∩Aεa

eγ(Γ,ρzε) εγ
2/2 dz

∣∣∣∣∣FAa
]
≤ Leb(Aεa)eγa.

Thus, we conclude (4.4) and the proof. �

We now state a more general version of this result, which says that one can

construct the Liouville measure using a variety of local set approximations. The

proof is a simple adaptation of the proof above. We say that a generalized function

T on D, for which the circle-average process Tε(z) := (T, ρεz) can be defined, is

bounded from above by K if for all z ∈ D and ε > 0, we have that Tε(z) ≤ K.

Proposition 4.10. Fix γ ∈ [0, 2) and let (An)n∈N be an increasing sequence of local

sets for a GFF Γ with
⋃
n∈NA

n = D. Let (Kn)n∈N be a sequence of positive integers.

Suppose that almost surely for all n ∈ N, we have that Leb(An) = 0 and that ΓAn

is bounded from above by Kn.Then for any Borel O ⊂ D, Mγ
n (O) defined by

Mγ
n (O) =

∫
O
eγhAn (z) CR(z;D \An)γ

2/2 dz

is a martingale with respect to {FAn}n>0 and

lim
n→∞

Mγ
n (O) = µγ(O) a.s.

where µγ is the Liouville measure defined by Γ. Thus, almost surely the measures

Mγ
n converge weakly to µγ.

Let us mention two natural sequences of local sets for which this proposition

applies. The first is when we take an, bn ↗∞ and study the sequence (A−an,bn)n∈N.

The second is when we take the sequence (An−a,b)n∈N for some a, b > 0, where An−a,b
is defined by iteration 6. Note that in the case where a = b = 2λ, we recover the

result described in the introduction for the iterated CLE4.

Observe that whereas our martingale agrees with the one given in [Aid15] for the

case of first-passage sets, for any cases where hAn can take more than one value, the

martingales are in fact different. Yet, we can still identify the limit of the martingale

M̃γ
n (O) of [Aid15], corresponding to an iterated CLE4 (i.e. (CLEn4 )n∈N.) In this case

Aidekon’s martingale converges in distribution to ηγ(O) := E [µγ(O)|F∞], where

µγ is the Liouville measure and F∞ is the σ-algebra containing only the geometric

information from all iterations of the CLE4. This σ-algebra is strictly smaller than

6We set A1
−a,b = A−a,b and define An

−a,b by sampling the A−a,b of ΓAn−1
−a,b inside each connected

component of D\An−1
−a,b
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FAn−2λ,2λ
, which also contains information on the labels of CLE4 in its coupling with

the GFF. It is not hard to see that ηγ is not equal to µγ .

4.5 Generalizations

In this section, we describe some other situations where an equivalent of Proposition

4.10 can be proven using the same techniques as the proof of Proposition 4.7. In

the following we do not present any new methods, but focus instead on announcing

the propositions in context, so that they may be used in other works. We also make

explicit the places where the results are already, or may in the future, be used.

4.5.1 Non-simply connected domains and general boundary condi-

tions.

Here we consider the case when Γ is a GFF in an n-connected domain D ⊆ D (for

more context see [ALS17]). First, let us note that in this set-up (4.2) becomes

E
[
ε
γ2

2 exp (γ(Γ, ρεz))

]{
= e−

γ2

2
G̃D(z,z) if d(z, ∂D) ≥ ε,

≤ 1 if d(z, ∂D) < ε,

where we writeGD(z, w) = − log |z−w|+G̃D(z, w), i.e. for any z ∈ D, G̃D(z, ·), is the

bounded harmonic function that has boundary conditions log(|z −w|) for w ∈ ∂D.

Additionally, if we work with local sets A such that all connected components of

A ∪ ∂D contain an element of ∂D, then Lemma 4.2 will hold. All local sets we

refer to here are assumed to satisfy this condition. These facts and assumptions are

enough to prove the following proposition:

Proposition 4.11. Fix γ ∈ [0, 2) and let (An)n∈N be an increasing sequence of local

sets for a GFF Γ with
⋃
n∈NA

n = D. Suppose that almost surely for all n ∈ N, we

have that Leb(An) = 0 and that ΓAn is bounded from above by Kn for some sequence

of finite Kn. Then for any Borel O ⊂ D, Mγ
n (O) defined by

Mγ
n :=

∫
O
eγhAn (z)− γ

2

2
G̃D\An (z,z) dz, O ⊂ D

is a martingale with respect to {FAn}n>0 and

lim
n→∞

Mγ
n (O) = µγ(O) a.s.

where µγ is the Liouville measure defined by Γ. Thus, almost surely the measures

Mγ
n converge weakly to µγ.
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The equivalent of the sets A−a,b and Aa are defined in n-connected domains in

[ALS17] and it is easy to see that their iterated versions satisfy the hypothesis of

Proposition 4.11. In particular, the above construction allows the authors in [ALS17]

to prove that the measure ΓAa is a measurable function of Aa.

4.5.2 Dirichlet-Neumann GFF

In this section we take Γ to be a GFF with Dirichlet-Neumann boundary conditions

in D+ = D ∩ H. That is, Γ satisfies (4.1), with GD replaced by GD+ : the Green’s

function in D+ with Dirichlet boundary conditions on ∂D and Neumann boundary

conditions on [−1, 1]. To be more specific, we set GD+(x, y) = GD(x, y) +GD(x, ȳ),

with GD as in Section 4.2. Then GD+(x, y) ∼ log(1/|x− y|) as x→ y in the interior

of D+ and GD+(x, y) ∼ 2 log(1/|x− y|) when y ∈ (0, 1).

Let A be a closed subset of D̄+. Suppose that Γ is a Dirichlet-Neumann GFF

in D+\A with Neumann boundary conditions on [−1, 1]\A and Dirichlet boundary

conditions on the rest of the boundary. Let z ∈ [−1, 1] and define %εz to be the

uniform measure on ∂B(z, ε) ∩ D+. Then, in this set-up (4.2) becomes

E
[
εγ

2/4 exp
(γ

2
(Γ, %εx)

)]{ = CR(x;D\Ă)γ
2/4 if d(z, ∂(D\Ă)) ≥ ε,

≤ 1 if d(z, ∂(D\Ă)) < ε.
(4.5)

Here we set Ă := A ∪ Ā for Ā = {z ∈ C : z̄ ∈ A}.
There is also a notion of local sets for this Dirichlet-Neumann GFF. We say that

(Γ, A,ΓA) describes a local set coupling if, conditionally on (A,ΓA), ΓA := Γ−ΓA is

a GFF with Neumann boundary conditions on [−1, 1]\A and Dirichlet on the rest.

For connected local sets such ∂D+ ∪ A is connected, Lemma 4.2 still holds (by the

same proof given for the 0-boundary GFF).

We are interested in the boundary Liouville measure on [−1, 1]. Take γ < 2,

ε > 0 and a Borel set O ⊆ [−1, 1]. We define the approximate boundary Liouville

measures as follows:

υγε (O) := εγ
2/4

∫
O

exp
(γ

2
(Γ, %εx)

)
dx

where here dx is the Lebesgue density on [−1, 1]. It is known (see [DS11, Ber15a])

that υγε → υγ in L1 as ε→ 0. Moreover, it is also easy to see that υγ is a measurable

function of F[−1,1] - this just comes from the fact that the Dirichlet GFF contains no

information on the boundary. Thus, we have all the necessary conditions to deduce

the following Proposition using exactly the same proof as in Section 4.4.
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Proposition 4.12. Fix γ ∈ [0, 2) and let (An)n∈N be an increasing sequence of local

sets for a GFF Γ with
⋃
n∈NA

n ⊇ [−1, 1]. Suppose that almost surely for all n ∈ N,

we have that Leb[−1,1](An) = 0 and that ΓAn restricted to An is bounded from above

by Kn for some sequence of finite Kn. Then for any Borel O ⊂ [−1, 1], Mγ
n (O)

defined by

Mγ
n (O) :=

∫
O
e
γ
2
hAn (z) CR(z;D\Ăn)

γ2

4 dz

is a martingale with respect to {FAn}n>0 and

lim
n→∞

Mγ
n (O) = υγ(O) a.s.

where where µγ is the boundary Liouville measure defined by Γ. Thus, almost surely

the measures Mγ
a converge weakly to υγ.

It has recently been proven in [QW17] that sets satisfying the above hypothesis

do exist, and that they can be used to couple the Dirichlet GFF with the Neumann

GFF. Let us describe some concrete examples of these sets. If Γ is a Dirichlet-

Neumann GFF, then in [QW17] it is shown that there exists a (measurable) thin

local set Ã(Γ) of the GFF such that:

• Ã(Γ) has the law of the trace of an SLE4(0;−1) going from −1 to 1

• hÃ(Γ) is equal to 0 in the only connected component of D+\Ã(Γ) whose bound-

ary intersects ∂D ∩H

• in the other connected components, hÃ(Γ) is equal to ±2λ, where conditionally

on Ã(Γ) the sign is chosen independently in each component.

There are two interesting sequences of local sets we can construct using this

basic building-block. The first one is the boundary equivalent of (An−2λ,2λ)n∈N, and

the second is the boundary equivalent of (A2λn)n∈N. The first one is also described

in [QW17, Section 3]. The construction goes as follows: choose A1 = Ã(Γ) and

construct An by induction. In the connected components O of D\An that contain

an interval of R, we have that ΓAn restricted to O is a Dirichlet-Neumann GFF (with

Neumann boundary condition on R ∩ ∂O). Thus, by conformal invariance we can

explore the set Ã(Γ |O) in each such component O. We define An+1 to be the closed

union of An with Ã(Γ |O) over all explored components O. Note that hAn ∈ {2λk}
where k ranges between −n and n. It is also not hard to see that An is thin (it

follows from the fact that hA ∈ L1(D\A) and that for any compact set K ⊆ D+ the

Minkowski dimension of An ∩ K is a.s. equal to 3/2, see e.g. [Sep16, Proposition

4.3]). Thus we deduce that ΓAn ≤ 2λn. Additionally, note that by adjusting [MS11,

Lemma 6.4], we obtain from the construction of A1 that for any z ∈ (−1, 1) the
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law of 2(log(CR−1(z,D\Ă1)) − log(CR−1(z,D)) is equal to the first time that a

BM exits [−2λ, 2λ]. It follows that for all n ∈ N, LebR(An ∩ [−1, 1]) = 0 and also⋃
n∈NA

n ⊇ [−1, 1]. Hence we see that the sequence (An)n∈N satisfies the conditions

of Proposition 4.12.

For the second sequence of local sets, take B1 = Ã(Γ) and define Bn+1 to be the

closed union of Bn with all Ã(Γ |O) such that O is a connected component of D\Bn,

hBn |O≤ 2λ and ∂O contains an interval of R. Denote A1(Γ) the closed union of

all the Bn. Due to the fact that Bn are BTLS with hBn ≤ 2λ on [−1, 1], we have

that ΓA1 restricted to [−1, 1] is smaller than or equal to 2λ. Additionally, note that

2(log(CR−1(z,D\Ă1)) − log(CR−1(z,D)) is distributed as the first time a BM hits

2λ. Now, we iterate to define An(Γ) as the closed union of An−1(Γ) and A1(Γ |O),

where O ranges over all connected components of D+\A(n−1) containing an interval

of R. The sequence (An)n∈N satisfies the condition of Proposition 4.12. Note that in

this case the martingale simplifies and contains only information on the geometry

of the sets An:

Mγ
n := eγ2λn

∫
O
CR(z;D\Ăn)γ

2/4dz.

The fact that this martingale is a measurable function of An allows us to use the

same techniques as in [ALS17] to prove that the measure 2λn − ΓAn on R is a

measurable function of An.

It is also explained in [QW17] that the sets An we have just constructed, and the

definition of the boundary Liouville measure using them, might help to reinterpret

an SLE-type of conformal welding first studied in [She16].

4.6 Critical and supercritical regimes

In this section it is technically simpler to restrict ourselves to the simply connected

case and study a special family of sequences of local sets, though the results hold

in a more general setting. Namely, we assume that our sets An are formed by an

iterative procedure. That is, A1 = A(Γ) is some measurable local set coupled with

the GFF Γ, and An+1 is formed from An by, in each component O of D \ An,

exploring A(ΓA
n
). Notice, for example, that the iterated CLE4 coupling described

in the introduction is covered by this hypothesis, as are the couplings with Aan for

any a > 0.

We first show that the martingales defined in Section 4.4 converge to zero for

γ ≥ 2. Then, in the critical case γ = 2, we define a derivative martingale and

show it converges to the same measure as the critical measure µ′2 from [DRSV14a,
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DRSV14b, Pow17a], and 1/2 times the critical measure D̃∞ from [Aid15]. Finally,

we show that for An = Aan we can also construct the critical measure using the

Seneta-Heyde rescaling (analogous to the main theorem of [AS14].) More precisely,

for all Borelian O ⊂ D, we have that
√
anM2(O, An) converges in probability to

4√
π
µ′2(O) as n→∞.

4.6.1 (Super)critical regime.

Lemma 4.13. Set γ ≥ 2 and assume that An is formed by iteration as above and

that
⋃
nAn = D. Assume further that A is such that hA is constant in each connected

component of D \A almost surely. Then Mγ
n → 0 almost surely.

Remark 4.14. Due to the iterative nature of the construction, the condition⋃
nAn = D, i.e. that in the limit the iterated sets cover the whole domain, is im-

plied for example by a simple requirement on the local set A = A1 - it suffices to

have that there exists ε, δ > 0 such that for any point z ∈ D, the probability that

CR(z;D\A1) < (1− ε) CR(z;D) is bigger than δ.

In [Aid15], Aı̈dekon also considers the critical and supercritical cases for his

iterated loop measures. In particular, from his results one can read out that, with

the notation of Proposition 4.7, for any a > 0 and γ ≥ 2, we have Mγ
an → 0 almost

surely as n→∞.

The proof follows from a classical technique stemming from the literature on

branching random walks [Lyo97], but is based on the local set coupling with the

GFF.

Proof. From (4.2) and a direct calculation we see that Mγ
n (D)/Mγ

0 (D) is a mean

one martingale, where Mγ
0 (D) =

∫
D CR(z,D)γ

2/2 dz. Let us define a new probability

measure P̂ via the change of measure

dP̂
dP

∣∣∣∣∣
FAn

=
Mγ
n (D)

Mγ
0 (D)

. (4.6)

It is well known, see for example [Dur], that in order to show that Mγ
n (D) → 0

almost surely under P, it suffices to prove that lim supnM
γ
n (D) = +∞ a.s. under P̂.

To show this we actually consider a change of measure on an enlarged probability

space. Define a measure P∗ on (Γ, (An)n, Z) by sampling (Γ, (An)n) from P and then

independently, sampling a random variable Z ∈ D with law proportional to Lebesgue
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measure. Note that under P∗ the process

ξn = eγhAn (Z)+γ2/2 log CR(Z,D\An)

is a martingale with respect to the filtration F∗An = FAn ∨σ(Z). Thus we can define

a new probability measure P̂∗ by

dP̂∗

dP∗

∣∣∣∣∣
F∗An

:=
ξn

E[ξ0]
(4.7)

Then if P̂ is the restriction of P̂∗ to FAn , P̂ and P satisfy (4.6). Therefore it suffices

to prove that under P̂∗ and conditionally on Z, we have lim supnM
γ
n (D) = +∞

almost surely. By the Köebe-(1/4) Theorem and [Aid15, Lemma 2.4] we only need

to prove that under this law almost surely

lim sup
n

eγhAn (Z)+(γ2/2+2) log CR(Z,D\An) = +∞.

However we can calculate, using (4.2) that

γhAn(Z) + (γ2/2 + 2) log CR(Z,D \An)

is a random walk with non-negative mean (started from (γ2/2 + 2) log CR(Z,D))

under this law. This allows us to conclude.

4.6.2 The derivative martingale in the critical regime

We now show the convergence of the derivative martingale (when γ = 2, defined

below) for the particular case of iterated A−a,a, a ≥ λ. For any Borel set O ⊆ D
and local set A, we define

Dγ(O, A) :=

∫
O

(
−hA(z) + γ log CR−1(z,D \A)

)
eγhA(z) CR(z;D \A)γ

2/2 dz.

The rest of this section is devoted to proving the following proposition.

Proposition 4.15. Assume that An is formed by iterating A−a,a n times, for a ≥ λ.

Then for any Borel O ⊂ D we have that D̂n(O) := D2(O, An) is a martingale and

converges almost surely to a finite, positive limit D̂∞(O) as n → ∞. In particular

the signed measures D̂n(O) converge weakly to a limiting measure that is indepen-

dent of the choice of a > 0 and agrees with the critical measure µ′2 defined in

[DRSV14a, DRSV14b], and 1/2 times the critical measure D̃∞ defined in Theorem
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1.3 of [Aid15].

Before the proof, let us first comment on the case where the set we are going

to iterate is Aa; so n iterations gives Aan. In the case a = 2λ, observe that twice

the derivative martingale 2D2(O, A2λn) is equal to D̃n defined in (1.3) of [Aid15]

(see Remark 4.8). Thus, we know that when we iterate A2λ, its associated sequence

of measures converges to a limit D̃∞. In fact it follows from [Aid15], that for all

dyadic a ≥ 0, Dn(O) := 2D2(O, Aan) converges to the same limit. Doob’s maximal

inequality then implies that there exists a modification of 2D2(O, At) that also

converges to D̃∞ as t→∞.

These martingales are not uniformly integrable (U.I.) and thus, our previous

techniques do not apply directly. However, we will discuss how to pass through

certain U.I. martingales to get convergence in the case of Dn(O). We will then use

this case to show convergence for D̂n(O). We remark that these U.I. martingales,

given in the proof below, are similar but not exactly the same as the analogous U.I.

martingales introduced in [DRSV14a, Aid15].

We makeDn(O) uniformly integrable via localization. To do this, let us introduce

the following stopping times:

τβ := inf

{
n ∈ N : inf

z∈D\Aan
−hAan(z) + 2 log CR−1(z,D \Aan) ≤ −β

}
.

Notice that Aa(n∧τβ) is then also a local set of Γ and we can define Dβ
n(O) :=

2D2(O, Aa(n∧τβ)). As always, we include the factor 2 for comparison with martin-

gales in [Aid15]. Then Dβ
n(O) is a martingale, due to the fact that it is the derivative

with respect to −γ of the martingale 2Mγ(O, An∧τβa ).

Dβ
n(O) is uniformly integrable. Let us first show the following claim:

Claim 4.16. The martingale Dβ
n(O) is uniformly integrable for all β ≥ 0 and so

converges almost surely and in L1 to some limit L(O, β) as n→∞.

Proof. Indeed, for η > 0, let Eη(n, z) be the event that

{−am+ 2 log CR−1(z,D \Ama ) ≥ −η for all m ≤ n}.

Then Proposition 3.2. of [Aid15] implies that for all η > 0,

D̄η
n(O) :=

∫
O
h1

(
−2an+ 4 log CR−1(z,D \Ana) + 2η

)
1Eη(n,z)e

2an CR(z;D \Ana)2 dz

(4.8)
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is a U.I. martingale. Here h1(u) is a so-called renewal function, that satisfies h1(u) ≥
Ru for some R > 0. We conclude that the stopped martingale D̄η

n∧τβ (O) is also U.I.

Given that

−h
A
n∧τβ
a

(z) + γ log CR−1(z,D \An∧τβa ) ≥ −a− β

we can bound

|Dβ
n(O)| ≤ R−1|D̄2β+2a

n∧τβ |.

The claim follows.

Comparison with Aı̈dekon’s limit. We first show that our UI martingales converge to

Aı̈dekon’s limit, and then use this to treat the case where An is formed by iterating

A−a,a.

Claim 4.17. The martingales Dβ
n(O) converge to D̃∞(O) as first n→∞ and then

β →∞.

Proof. From the definition, Dβ
n(O) and 2D2(O, Aan) are equal on the event {τβ =

∞}. Additionally, P(τβ =∞) is equal to 1−o(β), due to the fact that almost surely

inf
z∈D

inf
n∈N

(
−2an+ 4 log CR−1(z,D \Aan)

)
> −∞. (4.9)

This is proved [Aid15] after the statement of Proposition 3.2 (see also Remark 4.8

of the current paper).

In particular, as 2D2(O, Aan) tends to D̃∞(O) by [Aid15] (together with the

comments after Proposition 4.15) we see that limβ→∞ L(O, β) is also equal to

D̃∞(O) in this case.

Now, let us come back to the case where An is formed by iterating A−a,a. To do

this, define D̂β
n(O) := D2(O, An∧τ̂β ), for

τ̂β := inf
n

{
n ∈ N : inf

z∈D\An
−hAn(z) + 2 log CR−1(z,D \An) ≤ −β

}
.

First, observe that when both An, the iterated A−a,a, and Aan are coupled with

the same GFF as local sets, Lemma 4.5 implies that a.s. {τ̂β =∞} = {τβ =∞} and

that for all n ≤ m, An∧τ̂β ⊆ Aa(m∧τβ). Thus, as long as the limit on the lefthand

side exists, we have

lim
β→∞

lim
n→∞

D̂β
n(O) = lim

n→∞
D̂n(O).

So, it suffices to argue that

2D̂β
n(O)1{τ̂β=∞} → L(O, β)1{τ̂β=∞}, as n→∞.
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To see this we will use the strategy of the proof of Proposition 4.7.

Namely, consider a local set A with zero Lebesgue measure, and such that (ΓA, f)

is bounded from above by K ≥ 0 (in the sense explained before Proposition 4.10).

Then from an explicit calculation similar to the key claim of Proposition 4.7 we

have that for any γ > 0, a.s. and in L1(Ω) as ε→ 0,

E
[∫
O

(γ log(1/ε)− Γε(z))e
γΓε(z)ε

γ2

2 dz | FA
]
→ Dγ(O, A).

Now, for n ≤ m let F̂n and Gm be the sigma-algebras corresponding to the local

sets An∧τ̂β and Aa(m∧τβ) respectively. Noting that a.s. An∧τ̂β ⊆ Aa(m∧τβ),

1

2
E
[
Dβ
m(O) | F̂n

]
= E

[
lim
ε→0

E
[∫
O

(γ log(1/ε)− Γε(z))e
γΓε(z)ε

γ2

2 dz | Gm
]
| F̂n

]
= lim

ε→0
E
[∫
O

(γ log(1/ε)− Γε(z))e
γΓε(z)ε

γ2

2 dz | F̂n
]

= D̂β
n(O).

Due to the fact that Dβ
m(O) → L(O, β) in L1 we have that E

[
L(O, β)|F̂n

]
=

2D̂β
n(O) and so 2D̂β

n(O) → E
[
L(O, β)|F̂∞

]
. However, the event {τ̂β = ∞} is F̂∞-

measurable and on this event the limit of An∧τ̂β is D (by Lemma 4.3 and Remark

4.14). Similarly to Lemma 4.2, it then follows that F (Γ)1{τ̂β=∞} is F̂∞ measur-

able for any measurable function of Γ. Thus, we have that 2D̂β
n(O)1{τβ=∞} →

L(O, β)1{τβ=∞}, as required.

Comparison with mollified measures. It remains to prove the latter claim of the

proposition, i.e. to show that the limiting measure D̂∞ = 1
2D̃∞ is equal to the

measure µ′2 from [DRSV14b, Pow17a], described in Section 4.3.3. We again mollify

our measures using the circle average, and choose a sequence εk → 0 such that

νε → µ′2 a.s. Whenever we write ε → 0, it means that we are converging to 0 via

(εk)k∈N. We set, for fixed O ⊂ D,

νβε (O) =

∫
O

(−Γε(z) + 2 log(1/ε))1{Tβ(z)≤ε} e2Γε(z)−2 log(1/ε)

where Tβ(z) = sup{ε ≤ ε0 : 2Γε(z)− 2 log(1/ε) ≤ −β} and ε0 is some fixed starting

point such that dist(z, ∂D) > ε0 for all z ∈ O. It is shown in [Pow17a, Proposition

3.6] that νβε (O) is uniformly integrable for fixed β ≥ 0. Additionally, define

Cβ := {−Γε(z) + 2 log(1/ε) + β > 0 for all z ∈ D, 0 < ε ≤ d(z, ∂D)}

then P(Cβ) = 1− o(1) thanks to [HRV15, Theorem 6.3].
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The strategy is to prove, for An the n-FPS of the GFF, that

lim
β→∞

lim
n→∞

lim
ε→0

E
[
νβε (O) | FAn

]
1{τβ=∞} (4.10)

is equal to both µ′2(O) and 1
2D̃∞(O) almost surely.

Let us first show that (4.10) is equal to µ′2(O). Observe that since νβε (O) is

uniformly integrable, we have by Fatou’s and reverse Fatou’s lemma that, if the

limit in ε exists (we will show that is does in the next step)

E
[
lim inf
ε→0

νβε (O) | FAn
]
≤ lim

ε→0
E[νβε (O) | FAn ] ≤ E

[
lim sup
ε→0

νβε (O) | FAn
]
.

Taking the limit as n, β →∞ we obtain that

lim
β→∞

lim inf
ε→0

νβε (O) ≤ lim
β→∞

lim
n→∞

lim
ε→0

E[νβε (O) | FAn ] ≤ lim
β→∞

lim sup
ε→0

νβε (O).

However, since νβε (O) = νε(O) on the event Cβ, and almost surely 1Cβ ↑ 1 as

β → ∞, the right and left hand sides of the above two expressions are equal to

µ′2(O). Since also almost surely 1{τβ=∞} → 1 as β → ∞, we deduce that (4.10) is

equal to µ′2(O).

We now show that (4.10) is equal to 1
2D̃∞(O). Write E[νβε (O) | FAn ] :=

E1(n, β, ε) + E2(n, β, ε) where

E1(n, β, ε) :=

∫
O\Aεn

EAn
[
(Γε(z) + 2 log(1/ε))1{Tβ(z)≤ε} e2Γε(z)−2 log(1/ε)

]
dz;

E2(n, β, ε) :=

∫
O∩Aεn

EAn
[
(Γε(z) + 2 log(1/ε))1{Tβ(z)≤ε} e2Γε(z)−2 log(1/ε)

]
dz;

and EAn is the regular conditional expectation w.r.t. FAn . Here we used that Γε(z) =

(ΓAn , ρ
ε
z) + ΓAnε (z), where conditionally on FAn (i.e. under PAn) ΓAn is a GFF in

D\An. This implies that limε→0E
2(n, β, ε) = 0 almost surely. To see why, note that

(ΓAn , ρ
ε
z) ≤ n and that when ε ≥ d(z,An), the variance of ΓAnε (z) is uniformly

bounded (independently of z and ε). This implies that the integrand is of order

ε2 log(1/ε) uniformly in z.

To deal with E1, observe that if ε ≤ d(An, z) then (ΓAn , ρ
ε
z) = n. Additionally,

due to the Markov property of the GFF and an explicit computation, we have that

conditionally on FAn , i.e., under the probability PAn ,(
−n− ΓAnδ (z) + 2 log(1/δ)

)
1{Tβ(z)≤δ} e2n+2ΓAnδ (z)−2 log(1/δ)

is a (reverse) martingale for 0 < δ ≤ δn(z) := d(z, ∂D \ An). Thus, we have that
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E1(n, β, ε) is equal to∫
O\Aεn

EAn
[
(−n− ΓAnδn(z)(z) + 2 log(1/δn(z)))1{Tβ(z)≤δn(z)} e

2n+2ΓAn
δn(z)

(z)−2 log(1/δn(z))
]
dz.

Since the integrand does not depend on ε, taking the limit in ε simply yields the

integral over the whole of O \An.

Now, we rewrite limε→0E
1(n, β, ε) as a difference between∫

O\An
EAn

[
(−n− ΓAnδn(z)(z) + 2 log(1/δn(z))) e

2n+2ΓAn
δn(z)

(z)−2 log(1/δn(z))
]
dz

and∫
O\An

EAn
[
(−n− ΓAnδn(z)(z) + 2 log(1/δn(z)))1{Tβ(z)>δn(z)} e

2n+2ΓAn
δn(z)

(z)−2 log(1/δn(z))
]
dz

Notice that the first of these terms is equal to Dn(O)/2. Let us further rewrite the

second term. First, we use Girsanov’s theorem. Since ΓAnδn(z) is a normal random

variable with mean 0 and variance log(1/δn(z))− log(1/CR(z,D\An)), we see that

this term is equal to∫
O\An

e2n−2 log CR−1(z,D\An) ẼAnz
[(
−n− ΓAnδn(z) + 2 log (1/δn(z))

)
1{Tβ(z)>δn(z)}

]
dz

where P̃Anz is the measure under which the process (ΓAnδ (z))δ has the same covariance

structure as under PAn but with means shifted by 0 ≤ cov(ΓAnδ (z),ΓAnδn(z)(z)) ≤ 2.

Next, we further decompose this as a sum of E3(n, β) and E4(n, β) with:

E3(n, β) :=

∫
O\An

e2n−2 log CR−1(z,D\An) ẼAnz
[(
−ΓAnδn(z) + 2 log

(
CR(z,D \An)

δn(z)

))
1{Tβ(z)>δn(z)}

]
dz;

E4(n, β) :=

∫
O\An

e2n−2 log CR−1(z,D\An)
(
−n+ 2 log CR−1(z,D \An)

)
P̃Anz (Tβ(z) > δn(z)) dz.

To bound E3, we notice that Γnδn(z)(z) has bounded variance under ẼAnz , and
CR(z,D\An)

δn(z) is uniformly bounded by the Köebe 1/4 Theorem. This means that the

whole expression is less than some constant times Mn(O), which we know converges

to 0 a.s. as n→∞.

For E4 first note that the law of ΓAnδ under P̃Anz is equal to its law under PAn up

to a shift that is uniformly bounded by 2. Thus we have that P̃Anz (Tβ(z) > δn(z)) ≤
PAn(Ccβ−2). Additionally, on the event {τβ =∞} we also have for all z ∈ O

−n+ 2 log CR−1(z,D \An) + β ≥ 0.
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This implies that

|E4(n, β)|1{τβ=∞} ≤ (|Dn(O)|/2 + βMn(O))E[Ccβ−2|FAn ]1{τβ=∞}.

But the limit of the RHS as n → ∞ is equal to 1
2D̃∞(O)1Ccβ−2

1{τβ=∞}. As this

tends to 0 as β →∞ we conclude.

4.6.3 Seneta-Heyde rescaling.

Finally, we show that one can also perform a so-called Seneta-Heyde rescaling for

the construction of the critical Liouville measure using local sets. While this result

itself is of interest, one of the other main objectives of this section is a proof to

demonstrate how simple it is in this framework to transfer techniques and methods

from multiplicative cascades and branching random walks to the study of the Liou-

ville measure. We plan to make further use of this in a follow-up paper. The proof

in this section follows very closely that of [AS14], so we only give an outline, point

to concrete analogies, and highlight some minor differences. It might be helpful to

have the article [AS14] on the side, although we aimed to make the section readable

on its own too.

Proposition 4.18 (Seneta-Heyde Rescaling). For all a ≥ 0, and Borelian O ⊂ D,

we have that
√
anM2(O, Aan) → 4√

π
µ′2(O) in probability as n → ∞. In particular

the measures
√
anM2

n converge weakly in probability to 4√
π
µ′2.

Again, by Remark 4.9, it suffices to prove the convergence statement for
√
anM2(O, Aan). For simplicity, we work in the case a = 1 and define Mn :=

M2(O,An). Before proving this proposition we need to define carefully a certain

family Q̂η of rooted measures. Recall that if (Γ, Z) has the law P̂∗(dΓ, dz) defined in

(4.7), then the process

Sn := −2n+ 4 log CR−1(Z,D \An)

is a random walk with mean-zero increments under the conditional law P̂∗(dΓ|Z).

Recall also the definition of D̄η
n given in (4.8):

D̄η
n(O) :=

∫
O
h1

(
−2n+ 4 log CR−1(z,D \An) + 2η

)
1Eη(n,z)e

2n CR(z;D \An)2 dz.

We already showed that D̄η
n is a positive martingale with respect to (FAn)n and our

initial probability measure P. Hence we can define a new probability measure Qη by

setting it, when restricted to FAn , to have Radon-Nikodym derivative D̄η
n(O)/D̄η

0(O)

with respect to P.
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Again we extend this to a rooted measure on the field Γ plus a distinguished

point Z by setting Q̂η(dΓ, dz) restricted to F∗An = FAn ∨ σ(Z) to be

h1(−2n+ 4 log CR−1(z,D \An) + 2η) e2n−2 log CR−1(z,D\An) 1Eη(z,n)
1O(z)

D̄η
0

dz P[dΓ].

We make the following observations:

1. The marginal law of Z under Q̂η is proportional to h1(4 log CR−1(z,D) +

2η) CR(z,D)21O(z)dz.

2. The marginal law of the field Γ under Q̂η is given by Qη.

3. Write Q̂η
z = Q̂η[· | Z = z] for the law of Γ given the point Z = z. The law

of the sequence (An)n under this measure can be described as follows. First

sample A1 with law weighted by

h1(−2 + 4 log CR−1(z,D \A1) + 2η)

h1(η + 4 log CR−1(z,D))
1Eη(z,1) e2−2 log CR−1(z,D\A1) .

Then given Ak for any k ≥ 1, construct an independent copy of (An)n inside

each component of D\Ak that does not contain the point z. Inside the compo-

nent containing z, let us call this Bk, construct the components of Ak+1 ∩ Bk
by weighting their laws by

h1(−2(k + 1)− 4 log CR(z,D \Ak+1) + 2η)

h1(−2k − 4 log CR(z,D \Ak) + 2η)
1Eη(z,k+1) e2+2 log CR(z,D\Ak+1)−2 log CR(z,D\Ak) .

This defines the law of the sets An, and hence also by iteration the law of Γ.

It follows directly from the above construction that the law of Sn = −2n +

4 log CR(z,D \ An) under Q̂η
z has the same as its law under P̂∗[· | Z = z], but

conditioned to stay above −2η.

Now, we note some useful properties of the renewal function see for example

[AS14, Section 2]):.

• First, recall from Claim 4.16 that h1(u) ≥ Ru for all u ≥ 0 for some positive

R.

• By the renewal theorem, c0 := limu→∞
h1(u)
u exists and lies in (0,∞).

• Let θ = 2/(
√
πc0) (in the case of Aan, θ = 2/(

√
πac0)). Then

P̂∗
[

min
1≤i≤n

Si ≥ −u | z
]
∼ θh1(S0 + u)√

n
(4.11)

as n → ∞, for any u ≥ 0. Moreover, the above holds uniformly in u ∈ [0, bn]
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for any sequence bn ∈ R+ such that limn→∞ bn/
√
n = 0.

Now set

M̄η
n(O) :=

∫
O
e2n CR(x;D \An)21Eη(x,n) dx.

Using the fact that D̄η
n converges a.s. to a positive measure and that D̄η

n = D̄n

for η large enough, one can show, following exactly [AS14, Proof of Theorem 1.1],

that in order to prove the Proposition 4.18 it suffices to establish the next claim:

Claim 4.19. For any η > 0,
√
nM̄

η
n

D̄ηn
→ θ in Qη probability as n→∞.

Proof. The overall strategy follows very closely [AS14] and is to control the first

and second moments of M̄η
n

D̄ηn
as n→∞:

Q̂η

[
M̄η
n

D̄η
n

]
=

θ√
n

+ o

(
1√
n

)
and Q̂η

[(
M̄η
n

D̄η
n

)2
]
≤ θ2

n
+ o

(
1

n

)
(4.12)

These estimates prove the result by Jensen and Chebyshev’s inequalities. The

key observation lies in rewriting the moments using the rooted measure. Indeed, we

can write for (Γ, Z) distributed under Q̂η

M̄η
n

D̄η
n

= Q̂η

[
1

h1(−2n+ 4 log CR(Z,D \An) + 2η)
| FAn

]
(4.13)

and thus we have Q̂η[M̄η
n/D̄

η
n] =

∫
z Q̂

η
z [1/h1(−2n+ 4 log CR(z,D \An))] dQ̂η[dz].

The first moment estimate (4.12) then follows easily using estimates on the renewal

function, as in [AS14, proof of Proposition 4.1, Equation (4.1)].

We now move on to the second moment claim. Using random walk estimates

and Jensen inequality, exactly as in [AS14, Lemmas 4.3-4.4], and (4.13), one can see

that

Q̂η
z

[(
M̄η
n

D̄η
n

)2
]

= Q̂η
z

[
M̄η
n

D̄η
n

1

h1(−2n+ 4 log CR−1(z,D \An) + 2η)

]
= O

(
1

n

)
.

(4.14)

Thus, to prove the second moment bound, it suffices to find a sequence of events

En with Q̂η(En)→ 1 as n→∞ so that

Q̂η
z

[
M̄η
n

D̄η
n

1En
h1(−2n+ 4 log CR−1(z,D \An) + 2η)

]
≤ θ2

n
+ o

(
1

n

)
(4.15)

holds uniformly in z. To do this, we pick a sequence kn →∞ such that kn/
√
n→ 0

and kn/(log n)6 →∞ as n→∞ (the reason for this choice will become clear later).
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We then decompose M̄η
n and D̄η

n by writing

M̄η
n = M̄η,[0,kn]

n + M̄η,[kn,n]
n ; D̄η

n = D̄η,[kn,n]
n + D̄η,[0,kn]

n

where the superscript [0, kn] refers to the integral over Bkn and the superscript [kn, n]

refers to the integral over O\Bkn , where Bkn is the connected component of D \An
containing z.

We now define our sequence of events En by setting En = E1
n ∩ E2

n, where

E1
n := {D̄η,[kn,n]

n ≤ 1/n2}; E2
n = {Skn ∈ [k1/3

n , kn]}.

Since under Q̂η
z , Sn is a centered random walk conditioned to stay above −2η, it is

clear at least that Q̂η
[
E2
n

]
→ 1 as n → ∞. Putting aside the issue of whether or

not Q̂η
[
E1
n

]
→ 1 for the moment, the next step is to bound (4.15) above by

Q̂η
z

[
M̄

η,[kn,n]
n

D̄η
n

1E1
n

h1(−2n+ 4 log CR−1(z,Bn) + 2η)

]
+Q̂η

z

[
M̄

η,[0,kn]
n

D̄
η,[0,kn]
n

1E2
n

h1(−2n+ 4 log CR−1(z,Bn) + 2η)

]
.

Then, using that RM̄
η,[kn,n]
n ≤ D̄

η,[kn,n]
n ≤ 1/n2, as in [AS14, Proof of Lemma 4.5],

it can be deduced that the first term is o(1/n). For the second term, we use that

the two products in the expectation are conditionally independent given F∗Akn . We

then have, by (4.11) and the assumption that kn/
√
n→ 0, that

1E2
n
Q̂η
z

[
h−1

1 (−2n+ 4 log CR−1(z,Bn) + 2η) | F∗Akn
]

= θ/
√
n+ o(1/

√
n)

uniformly in ω and z. Since E2
n is F∗Akn measurable, it therefore remains to prove

that

Q̂η
z

[
(M̄η,[0,kn]

n /D̄η,[0,kn]
n )1E2

n

]
≤ θ/√n+ o(1/

√
n). (4.16)

This is a consequence of our first moment estimate and the fact that

M̄
η,[0,kn]
n /D̄

η,[0,kn]
n is comparable to M̄η

n/D̄
η
n on the event E1

n. The details of this

claim are exactly as in [AS14, Lemma 4.5].

Thus, to finish the prove the proposition, it remains to establish that Q̂η
[
E1
n

]
→

1 as n→∞. In fact we need to prove a stronger slightly stronger statement to also

deduce (4.16) as described above:

Lemma 4.20. Suppose that kn/
√
n → 0 and kn/(log n)6 → ∞ as n → ∞. Then

there exists a deterministic sequence pn ↗ 1 such that 1E2
n
Q̂η
z

[
E1
n | F∗Akn

]
≥ pn.

It is only in the proof of this lemma that we need to do a bit of extra work. The

extra work comes from the fact that, unlike in the case of multiplicative cascades,
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in our setting the sets at the n−th level have different shapes and sizes.

Proof of Lemma 4.20. Define further events E3
n and E4

n by setting

E3
n = ∩kn≤j≤n{Sj ≥ k1/6

n }; E4
n = ∩kn≤j≤n{supw∈Bj |z − w| ≤ jc CR(z,Bj)}

where c is some fixed constant to be chosen just below (as in [Aid15, Lemma 3.5]).

We argue that:

(i) 1E2
n
Q̂η
z

[
E3
n | F∗Akn

]
≥ pn, where pn → 1 is deterministic;

(ii) 1E2
n
Q̂η
z

[
E4
n | F∗Akn

]
≥ qn, where qn → 1 is deterministic; and finally

(iii) Q̂η
z [D̄

η,[kn,n]
n 1E3

n∩E4
n
| F∗Akn ] ≤ rn where rn = o(1/n2) is deterministic.

This proves the lemma by conditional Markov’s inequality. For (i), one uses the fact

that under the given conditional law, (Sj − Skn ; j ≥ Skn) is a centered random

walk conditioned to stay above −Skn + 2η. The details rely on estimates for the

renewal function, and are as in [AS14, Proof of Lemma 4.7]. Claim (ii) follows from

the proof of [Aid15, Lemma 3.5]. This proof shows that, uniformly in z,

Q̂η
z

[
supw∈Bj |z − w| > jc CR(z,Bj) | F∗Akn

]
≤ c′

√
j − knj−c

′c,

for some positive constant c′ that does not depend on c (note the right-hand side is

deterministic.) Choosing c large enough gives (ii). For (iii), we condition further on

all the brother loops of the point z (that is, for each kn ≤ j ≤ n−1, the components

of D \Aj contained in Bj but not Bj+1). After applying this conditioning, and using

the description of (An)n given after the statement of Proposition 4.18, we see that

Q̂η
z

[
D̄
η,[kn,n]
n 1E3

n∩E4
n
| F∗Akn

]
is equal to

n−1∑
j=kn

sj + Q̂η
z

[∫
Bn
h1(−2n+ 4 log CR−1(w,Bn) + 2η) e2n−2 log CR−1(w,Bn) 1E3

n∩E4
n
dw | F∗Akn

]
,

where sj is

Q̂η
z

[
1E3

n∩E4
n

∫
Bj\Bj+1

h1(4 log CR−1(w,D \Aj+1) + 2η − 2(j + 1)) e2(j+1)−2 log CR−1(w,D\Aj+1) dw | F∗Akn

]

≤ CQ̂η
z

[
1E3

n∩E4
n

∫
Bj\Bj+1

h1(4 log CR−1(w,Bj) + 2η − 2j) e2j−2 log CR−1(w,Bj) dw | F∗Akn

]
,

for some constant C ∈ R. The inequality here follows because CR(w,D \ Aj) is

decreasing in j and h1 is bounded on either side by a linear function. Now, note

that on the event E3
n ∩ E4

n, thanks to Koebe’s theorem, 2j − 2 logCR−1(w,Bj)
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is smaller than Sj + 2c log(j) + 2 log CR−1(z,Bj), and the area of each Bj is also

O(CR(z,Bj)2). This means that each sj is O(exp(− 6
√
kn/2)n4c+1), and the assump-

tion that kn/(log n)6 →∞ therefore implies (iii). �
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5 Level Lines of the Gaussian free field with

general boundary data

5.1 Introduction

The relationship between Schramm–Loewner Evolution (SLE) and the two-

dimensional Gaussian free field (GFF) is at the heart of recent breakthroughs in

Liouville quantum gravity, imaginary geometry and more generally, random confor-

mal geometry. Starting with the seminal papers of [Dub09], [SS13], [SS09], one key

idea is to make sense of SLE-type curves as a level lines of an underlying Gaussian

free field h in a domain, which we take to be the upper half plane H without loss of

generality in the rest of the paper. When the field h is given the boundary values

λ := π/2 on R+ and −λ on R−, the corresponding level line is a chordal SLE4 curve.

A considerable extension of that theory is described in [MS16a], which introduced

the notion of flow lines and counter flow lines of the GFF. In this case it turns

out that the curves are given by SLEκ processes with κ ∈ (0, 4) and κ ∈ (4,∞)

respectively.

It is also natural to wonder for which sort of boundary data the notion of level

line makes sense. In [MS16a] and [WW16], the hypothesis on the boundary data is

extended from the above to any arbitrary piecewise constant function on the real

line. The goal of this paper will be to relax this assumption. Assuming solely that

the boundary data F is a regulated function, i.e., the left and right limits

F (t+) = lim
h→0+

F (t+ h); F (t−) = lim
h→0−

F (t+ h) (5.1)

exist and are finite for all t ∈ R, and that for some c > 0

F (x) ≤ λ− c, x < 0; F (x) ≥ −λ+ c, x ≥ 0 (5.2)

which roughly corresponds to the non existence of a continuation threshold, we can

show that the corresponding level line is well defined almost surely as a continuous

transient curve. Moreover, it is almost surely determined by the field.

This also allows us, for a zero boundary GFF h, to consider the set of level lines

of different heights. By this we mean the level lines of h+F , where F ranges over (the

bounded harmonic extensions of) all regulated functions on R. Strengthening the

results of [MS16a], [WW16], we are able to prove a general monotonicity principle

for the level lines, which is both a key tool in our existence proof, and an interesting

result in its own right. This is deeply intertwined with the reversibility property of
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the level lines, which we are also able to prove in general; see Theorems 5.4 and 5.5.

A further point of interest is that we obtain some continuity in the level lines

as a consequence of our proof. That is, if we take a sequence of piecewise constant

functions Fn converging monotonically uniformly to some F , then the level lines

of height Fn for a zero boundary GFF converge almost surely to the level line of

height F . This convergence is with respect to Hausdorff distance, after conformally

mapping everything to the unit disc.

We remark that our hypothesis on the boundary data is satisfied by a wide

range of functions, including the special class of functions of bounded variation.

Any such function can be described almost everywhere as the integral of a finite

Radon measure ρ, and this connection allows us to deduce that the marginal law of

a level line with such boundary data is given by what we call an SLE4(ρ) process.

This is the natural analogue of an SLE4(ρ) process, where the vector ρ is replaced

by a measure. Our results therefore demonstrate the existence of such processes, as

well as establishing some further properties.

We first recall the definition of what it means for a curve, and more generally

a Loewner chain, to be a level line. If we have a Loewner chain (Kt, t ≥ 0) in H,

with associated sequence of conformal maps gt : H \Kt → H, we will often want to

describe the image under gt of a point x on the real line. To do this, for any x ≤ 0

we define a process V L
t (x) by setting it equal to gt(x) if x /∈ Kt and if x ∈ Kt, taking

it to be the image of the leftmost point of R ∩ Kt under gt. We define a process

V R
t (x) for x ≥ 0 analogously. The process V L

t (x) for x ∈ R−, or V R
t (x) for x ∈ R+,

is what we define to be the image of x under gt.

Definition 5.1 ([MS16a, WW16]). Suppose that F is L1 with respect to harmonic

measure on R viewed from some point in H and that h is a zero boundary GFF in

H. If (Kt, t ≥ 0) is a Loewner chain and (gt, t ≥ 0) is the corresponding sequence

of conformal maps, set ft = gt −Wt, and let V R
t (x) (resp. V L

t (x)) be the image of

x ≥ 0 (resp. x ≤ 0) under gt. Let η0
t be the bounded harmonic function on H with

boundary values (see Figure 23)

F (f−1
t (x)), if x ≥ V R

t (0+)−Wt,

λ, if 0 ≤ x < V R
t (0+)−Wt,

−λ, if V L
t (0−)−Wt ≤ x < 0,

F (f−1
t (x)), if x < V L

t (0−)−Wt.

Define, for z ∈ H \Kt,

ηt(z) = η0
t (ft(z)).
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We say that K is a level line of h + F if there exists a coupling (h,K) such

that the following domain Markov property holds: for any finite K-stopping time τ ,

given Kτ , the conditional law of (h+ F )|H\Kτ is equal to the law of h ◦ fτ + ητ .

fτ

λ

−λ

0

λF F ◦ f−1τ−λF

0 V Rτ (0+)−Wτ

Kτ

V Lτ (0−)−Wτ

F ◦ f−1τ

Figure 23: The left hand side shows the boundary values of the harmonic function ητ in
H \Kτ . This is the image under f−1

τ of the harmonic function η0
τ in H, whose boundary

values are shown on the right hand side.

Note that this definition is the same for any two functions F1 and F2 which

are equal almost everywhere, since the harmonic extensions of such functions are

necessarily equal. From Definition 5.1, we can see that the so-called level lines of

the GFF have an intriguing property that distinguishes them from level lines of an

ordinary smooth function. Namely, once one conditions on a level line, the condi-

tional expectation of the field on one side of the curve differs by 2λ from the value

on the other side. In a sense, a level line is more like a “level cliff” where there is a

prescribed jump between the two sides of the curve.

More generally, we say that a Loewner chain (Kt, t ≥ 0) is a level line of a GFF

h in a domain D from a ∈ ∂D to b ∈ ∂D if (ϕ(Kt), t ≥ 0) is a level line of ϕ(h) as

in Definition 5.1, where ϕ is a conformal map from D → H sending a to 0 and b to

∞.

Theorem 5.2. [Coupling] Assume the same notations as in Definition 5.1. Suppose

that the function F is regulated and satisfies (5.2) for some c > 0. Then there exists

a coupling satisfying the conditions in Definition 5.1. Moreover, in this coupling, the

Loewner chain K is almost surely generated by a continuous and transient curve γ

with almost surely continuous driving function.

The inequality on F in Theorem 5.2 guarantees that the corresponding level line

will reach its target point∞ before “dying” at some continuation threshold. Indeed,

the level line of a GFF with piecewise constant boundary data is only defined until

the first time that it hits a section of R+ where the boundary data is less than −λ or

a section of R− where it is greater than λ. In our case, if we allowed F to approach

−λ (resp. λ) at some point in R+ (resp. in R−), then our current framework would
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not control the behaviour of the level line around this point (see discussion below.)

Thus, we do not treat this situation here.

Theorem 5.3. [Determination] If (h, γ) are coupled as in Theorem 5.2, then γ is

almost surely determined by h. Moreover, the curve γ is almost surely simple. We

call γ the level line of h+ F .

With this in hand, we can consider the collection of level lines determined by a

given field. The following two theorems describe the interactions between the curves;

corresponding to what one might expect from the level lines of a smooth function.

Theorem 5.4. [Monotonicity] Suppose that F,G are functions satisfying the con-

ditions in Theorem 5.2, and that F (x) ≥ G(x) for x ∈ R. Suppose that h is a zero

boundary GFF on H and γF (resp. γG) is the level line of h+F (resp. h+G). Then

γF lies to the left of γG almost surely.

Theorem 5.5. [Reversibility] Suppose that h is a GFF on H whose boundary value

satisfies the conditions in Theorem 5.2. Let γ be the level line of h from 0 to ∞ and

γ′ be the level line of −h from ∞ to 0. Then the two paths γ and γ′ (viewed as sets)

are equal almost surely.

Now we will explain the relevance of Conditions (5.1) and (5.2), which we need

for our approach to work. Although one can make sense of what it means to be a level

line of h+F for any F in L1 (as in Definition 5.1), before this work the existence of

the coupling was only known for piecewise constant boundary data. The assumption

that the boundary data F is regulated corresponds precisely to the fact that F can

be uniformly approximated by piecewise constant functions. Indeed, our argument

will use an approximation of F by such functions, and a limit of the corresponding

level lines. Thus with our current approach we are unable to say anything about

functions which are not regulated. However, since Definition 5.1 still makes sense

for a wider class of functions, it is an interesting question to determine the most

general restrictions under which a coupling exists. For example, if one takes a GFF

with boundary data which is −λ in a neighbourhood to the left of 0 and λ in a

neighbourhood to the right of 0 then one can allow much rougher boundary data

away from these neighbourhoods (for example, even Neumann boundary conditions,

see [KI13]), and construct a weaker form of “local coupling” with an SLE variant.

Whether these types of coupling can be extended to a strong coupling as in Definition

5.1, where the curve is also determined by the field, or whether the condition near

0 can be relaxed is currently unknown.

Concerning Condition (5.2); the key to the proof of Theorem 5.2 is the continuity

and transience of the approximating level lines (with piecewise constant boundary
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data). This allows us to use the results of [KS16] (see details in Section 5.2.2) to

obtain a continuous limiting curve. If Condition (5.2) failed, the approximating level

lines would only be defined up to a continuation threshold, and we would not be

able to obtain such a limit. The continuity of the limiting curve is absolutely crucial

to the proofs of Theorems 5.3 to 5.5. In fact, if the existence and the continuity

of level lines were obtained for other boundary data, one could use similar proofs

to get the corresponding theorems. However, whether continuity still holds in this

set up is also a difficult open problem. Although it is natural to conjecture that

for general regulated boundary data the level line will exist as a continuous curve

until hitting a point on the boundary where Condition (5.2) fails, a “continuation

threshold” as in [MS16a],[WW16], it is unclear whether or not the continuity will

break down around this point.

Finally, we identify the law of the level lines. It is proved in [MS16a, WW16] that

the level lines of GFF with piecewise constant boundary data are SLE4(ρ) processes

where ρ is a vector. In our context, when the boundary data is of bounded variation,

the level lines turn out to be SLE4(ρ) processes, where ρ is now a Radon measure.

With the help of the GFF, we are able to obtain the existence, the continuity,

and the reversibility of such processes, properties which are far from clear by the

definition of the process through Loewner evolution.

Theorem 5.6. Assume the same notations as in Theorem 5.2. Suppose further that

F is of bounded variation. Then in the coupling (h, γ) given by Theorem 5.2, the

marginal law of γ is that of an SLE4(ρL; ρR) process (see Section 5.2.5) where ρR

(resp. ρL) is a finite Radon measure on R+ (resp. on R−) andF (x) = λ(1 + ρR([0, x])), x ≥ 0;

F (x) = −λ(1 + ρL((x, 0])), x < 0

almost everywhere. In particular, we have the following properties of the

SLE4(ρL; ρR) process. Suppose that there exists c > 0 such that

ρL((x, 0]) ≥ −2 + c, x < 0, ρR([0, x]) ≥ −2 + c, x > 0.

Then

(1) There exists a law on continuous curves from 0 to ∞ in H with almost surely

continuous driving functions, for which the associated Loewner chain is an

arSLE4(ρL; ρR) process.

(2) The above continuous curve is almost surely simple and transient.
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(3) The time reversal of the above SLE4(ρL; ρR) process has the same law as

SLE4(ρ̃L; ρ̃R) ,where

ρ̃R([x,∞]) = ρL((x, 0]), x < 0; ρ̃L((x,∞]) = ρR([0, x]), x > 0.

Remark 5.7. Although Theorem 5.6 gives us existence of SLE4(ρL; ρR) processes,

we do not derive uniqueness in law. That is, we have not excluded the possibil-

ity that there exists another law on Loewner chains satisfying the definition of an

SLE4(ρL; ρR) process.

Remark 5.8. Item (3) is the so-called reversibility of SLE. The reversibility was

derived previously for SLEκ in [Zha08b], for SLEκ(ρ) where ρ is a vector in [Zha08a,

MS16b, MS16c, WW13]. In Theorem 5.6, we derive the reversibility of SLE4(ρ)

where ρ is a Radon measure.

Outline. The structure of the paper is as follows. In Section 5.2, we discuss briefly

the necessary background theory, and collect some results that will be important to

us. We also define the class of SLEκ(ρ) process and generalize some of the theory

from [MS16a, WW16] which will help us in the sequel. In Sections 5.3 and 5.4, we

set up a general framework for the level lines of a GFF, under the assumption that

they exist and are given by continuous transient curves. In particular, we show that

they are monotonic in the boundary data, and describe where they can and cannot

hit the boundary. Sections 5.5 and 5.6 address the existence of continuous transient

curves which can be coupled as level lines of a GFF, provided the boundary data

satisfies the conditions of Theorem 5.2. The proof of this is via an approximation

argument; using a general theory for the weak convergence of curves, as set out in

[KS16]. The key point in the proof is the monotonicity obtained in Section 5.4. In

Section 5.7 we prove Theorems 5.3 to 5.5 using the ideas from Sections 5.3 and 5.4.

Finally, we complete the proof of Theorem 5.6 in Section 5.8.
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5.2 Preliminaries

5.2.1 Regulated functions and functions of bounded variation

We say that a function F on R is regulated if it admits finite left and right limits

F (t+) = lim
h→0+

F (t+ h); F (t−) = lim
h→0−

F (t+ h)

at every point t ∈ R, including ∞. Equivalently, see [Die69, Secion 7.6], F is reg-

ulated if it can be uniformly approximated on R by piecewise constant functions

which change value only finitely many times. It is this formulation of the definition

that will be useful to us in the sequel.

Another type of function which is of particular interest in the current paper is the

class of functions of bounded variation. Let us consider the connection (5.5) between

pairs of Radon measures (ρL; ρR) and functions F on the real line. We saw above that

piecewise constant functions correspond to purely atomic measures. In general, finite

Radon measures are in one-to-one correspondence with right-continuous functions

of bounded variation.

The space of functions of bounded variation are those F which satisfy

sup
a<b

(
sup

{∑
i

|F (xi)− F (xi−1)| : {xi} a finite partition of [a, b]

})
<∞.

For a proof of this equivalence, see [Fol99, Theorem 3.29]. Note that these functions

are clearly regulated. So, provided they satisfy the correct bounds on R− and R+,

functions of bounded variation meet the conditions of Theorem 5.2.

Furthermore, if a bounded variation function is also absolutely continuous,

then the corresponding measures (ρL; ρR) are absolutely continuous with respect

to Lebesgue measure, and writing

ρL(dx) = fL(x) dx, ρR(dx) = fR(x) dx

we have that the function is differentiable almost everywhere with derivative equal

to fL(x) on R− and fR(x) on R+.

5.2.2 A result on the convergence of curves

To show existence of the level line of a GFF with general boundary data as given

in Theorem 5.2, we will attempt to approximate it by level lines of the field with

piecewise constant boundary data. For this, a result from [KS16] on the weak con-

vergence of curves, satisfying certain conditions on crossing probabilities, will be
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crucial.

In order to state the result, we need to define what we mean by crossings of

topological quadrilaterals.

Definition 5.9. A topological quadrilateral Q = (V ;Sk, k = 0, 1, 2, 3) consists of

a domain V , along with four boundary arcs S0, S1, S2, S3, which can be mapped

homeomorphically to a square in such a way that the boundary arcs are in coun-

terclockwise order and correspond to the edges of the square. For any topological

quadrilateral, there exists a unique positive L and a conformal map from Q onto the

rectangle [0, L] × [0, 1], such that the boundary arcs are mapped to the edges of the

quadrilateral and, in particular, S0 is mapped to {0} × [0, 1]. We call this unique L

the modulus of Q, denoted by m(Q).

Definition 5.10. We will often consider topological quadrilaterals in H which lie

on the boundary in the sense that S1, S3 ⊂ R and S0, S2 ⊂ H. If we have such

a quadrilateral, then we say that a curve γ : [T0, T1] → C crosses Q if there is a

subinterval [t0, t1] ⊂ [T0, T1], such that γ(t0, t1) ⊂ V but γ[t0, t1] intersects both S0

and S2.

Essentially, the condition that will be required for weak convergence will be the

following:

Condition 5.11. For any simple curve γ on H we say that Q is a topological

quadrilateral in Hτ := H \ γ[0, τ ] if it is the image of the square (0, 1)2 under a

homeomorphism ψ. We define the sides of Q: S0, S1, S2, S3, to be the images of

{0} × (0, 1), (0, 1)× {0}, {1} × (0, 1), (0, 1)× {1}

under ψ. We consider Q such that the opposite sides S1, S3 are contained in ∂Ht

and define a crossing of Q to be a curve in Ht which connects the two opposite sides

S0 and S2. Finally, we say that Q is avoidable if it doesn’t disconnect γ(τ) and ∞
inside Ht.

A family Σ of probability measures on simple curves from 0 to ∞ in H is said to

satisfy a conformal bound on an unforced crossing if there exists a constant M > 0

such that for any P ∈ Σ, for any stopping time τ , and any avoidable quadrilateral

Q of Hτ whose modulus m(Q) is greater than M ,

P (γ[τ,∞) crossesQ | γ[0, τ ]) ≤ 1/2.

Now we may state the result.
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(b)

Figure 24: In the left panel, the grey part is an avoidable quadrilateral of Hτ = H\γ[0, τ ];
in the right panel, the grey part is an unavoidable quadrilateral.

Proposition 5.12. Suppose that (W (n))n∈N is a sequence of driving processes of

random Loewner chains that are generated by continuous simple random cuves

(γ(n))n∈N in H, satisfying Condition 5.11. Suppose that the (γ(n))n∈N are param-

eterized by half plane capacity. Then

• (W (n))n∈N is tight in the metrisable space of continuous functions on [0,∞)

with the topology of uniform convergence on compact subsets of [0,∞).

• (γ(n))n∈N is tight in the metrisable space of continuous functions on [0,∞)

with the topology of uniform convergence on the compact subsets of [0,∞).

Moreover, if the sequence converges weakly in either of the topologies above, then it

also converges weakly in the other and the limits agree in the sense that the law of

the limiting random curve is the same as the that of the random curve generated

under the law of the limiting driving process. In particular, any subsequential limit

of the sequence of curves a.s. generates a Loewner chain with continuous driving

function.

Proof. This may be found in [KS16] cf. Theorem 1.5 and Corollary 1.7.

In fact, we will need to apply this theorem when the curves (γ(n))n∈N correspond

to certain SLE4(ρL; ρR) processes. In this case they may hit the real line, and so

are not necessarily contained in H, as required by the Proposition. However, as

discussed before the proof of Theorem 1.10 in [KS16], the result extends to curves

such as ours, and so we may apply it without concern.

175



5.2.3 The zero boundary Gaussian free field

In this section we will describe the zero boundary Gaussian free field (GFF) in an

arbitrary domain D ( C. We will always assume that the domain has harmonically

non-trivial boundary, meaning that a Brownian motion started from a point in the

interior will hit the boundary almost surely.

We start with the Green’s function GD in D, which is the unique function in D

such that

• ∆GD(z, ·) = 2πδz(·) for each z ∈ D, and

• GD(z, w) = 0 if z or w is in ∂D.

Explicitly,

GD(z, w) = − log |z − w| − G̃z(w)

where G̃z(w) is the harmonic extension of w 7→ − log |z − w| from ∂D to D. The

Green’s function is conformally invariant in the sense that for any conformal map

φ on D, and z, w ∈ D, we have

GD(z, w) = Gφ(D)(φ(z), φ(w)).

Roughly speaking, the GFF will be the random Gaussian “function” on D with

cov(h(z), h(w)) = GD(z, w). However, it can only be made sense of rigorously as

a random distribution on D. For Hs(D) the space of smooth compactly supported

functions on D, we let (·, ·) denote the normal L2 inner product on Hs(D). We may

also endow Hs(D) with the Dirichlet inner product defined by

(f, g)∇ =
1

2π

∫
D
∇f(z) · ∇g(z)d2z

and we denote its Hilbert space completion under Dirichlet inner product by H(D).

For {φn}n≥0 an orthonormal basis of H(D), we define the zero boundary GFF

h to be the random sum h :=
∑

n αnφn, where the αn’s are i.i.d. Gaussians with

mean 0 and variance 1. This almost surely diverges in H(D), but makes sense as a

distribution. That is, the limit
∑

n αn(φn, p) := (h, p) almost surely exists for each

p ∈ Hs(D), and p 7→ (h, p) is almost surely a continuous linear functional on Hs(D).

Note that for any f ∈ Hs(D) we have that −∆f = p is also in Hs(D) and so can

define

(h, f)∇ :=
1

2π
(h, p).
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Then (h, f)∇ is a Gaussian with mean 0 and variance

1

4π2

∑
n

(φn, p)
2 =

∑
n

(φn, f)2
∇ = (f, f)∇.

In fact, this characterizes the Gaussian free field. Furthermore, noticing that for

p ∈ Hs(D)

∆−1p :=
1

2π

∫
D
GD(·, w)p(w) dw

is a smooth function in D whose Laplacian is p and vanishes on ∂D, we see that for

any f, g, p, q ∈ Hs(D)

cov((h, f)∇, (h, g)∇) = (f, g)∇, cov((h, p), (h, q)) =

∫ ∫
D×D

p(z)GD(z, w)q(w)d2zd2w.

Proposition 5.13. [The Markov Property] Let W ⊂ D be open and h be a zero

boundary GFF on D. Then we can write

h = h1 + h2

where h1 and h2 are independent, h1 is harmonic in W , and h2 is a zero boundary

GFF in W .

This tells us that, given h|D\W , the conditional law of h|W is that of a zero

boundary GFF in W , plus the harmonic extension of h|D\W to W .

Suppose that F is L1 with respect to harmonic measure on R viewed from some

point (hence every point) in H; we also denote its bounded harmonic extension to

H by F . Then the GFF with mean F is defined to be the sum, h + F , of a zero

boundary GFF and F .

Proposition 5.14. Suppose that D1 and D2 are two simply connected domains with

non empty intersection, and hi is a zero boundary GFF on Di for i = 1, 2. Let Fi

be harmonic on Di, i = 1, 2 and U ⊂ D1 ∩D2 be a simply connected open domain.

Then

(1) If dist(U, ∂Di) > 0 for i = 1, 2, then the laws of

(h1 + F1)|U and (h2 + F2)|U

are mutually absolutely continuous.

(2) Suppose there is a neighbourhood Ū ⊂ U ′ such that D1 ∩ U ′ = D2 ∩ U ′ and

that F1 − F2 tends to 0 along sequences approaching points in ∂Di ∩U ′. Then
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the laws of

(h1 + F1)|U and (h2 + F2)|U

are mutually absolutely continuous.

Proof. [MS16a, Proposition 3.2].

5.2.4 Local sets for the GFF

The theory of local sets for the Gaussian free field was first introduced by Schramm

and Sheffield in [SS13], and we quote several of their results here. For D a simply

connected domain and A a random closed subset of D̄, we let

Aδ := {z ∈ D : d(z,A) ≤ δ}

and Aδ be the smallest σ-algebra for which A and the restriction of h to the in-

terior of Aδ are measurable. Setting A = ∩δ∈Q+Aδ we obtain a σ-algebra which

is intuitively the smallest such making A, and h restricted to some infinitesimal

neighbourhood of A, measurable. With this in mind, we will often refer to A as

(A, h|A).

Definition 5.15. Suppose that (h,A) is a coupling of a GFF in D and a random

closed subset A ⊂ D. Then we say that A is a local set for h if either of the following

equivalent statements hold:

(1) For any deterministic open subset U ⊂ D we have that, given the orthogonal

projection of h onto h⊥(U), the event {A∩U = ∅} is independent of the orthog-

onal projection of h onto H(U). This means that the conditional probability of

{A ∩ U = ∅} given h is a measurable function of the orthogonal projection of

h onto H⊥(U).

(2) Given A, the conditional law of h is that of h1 + h2, for h a zero boundary

GFF on D \ A and h1 an A-measurable random distribution which is almost

surely harmonic on D \A.

In this case, we let CA be the conditional expectation of h given (A, h|A), correspond-

ing to h1 in Item (2).

The interactions between local sets display some nice properties, which we will

describe in the following propositions.

Proposition 5.16. Suppose that A1, A2 are local sets for a GFF h, which are con-

ditionally independent given h. Then A = A1 ∪A2 is also local for h and moreover,
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given (A1, A2, A, h|A), the conditional law of h is given by CA plus an instance of

the zero boundary GFF in D \A.

Proof. [SS13, Lemma 3.10].

Proposition 5.17. Let A1, A2 be connected local sets which are conditionally inde-

pendent and A = A1 ∪ A2. Then CA − CA2 is almost surely a harmonic function in

D \A which tends to zero along any sequence converging to a limit in

• a connected component of A2 \A1 which is larger than a singleton, or

• a connected component of A1∩A2 which is larger than a singleton, if the limit

is at a positive distance from either A2 \A1, or A1 \A2.

Proof. [SS13, Lemma 3.11] and [MS16a, Proposition 3.6].

Proposition 5.18. Let A1, A2 be connected local sets which are conditionally inde-

pendent and A = A1 ∪A2. Suppose that C is a σ(A1)-measurable connected compo-

nent of D \ A1 such that {C ∩ A2 = ∅} almost surely. Then CA|C = CA1 |C almost

surely, given A1.

Proof. [MS16a, Proposition 3.7].

Proposition 5.19. Let h be a GFF and (Z(t), t ≥ 0) a family of closed sets such

that Z(τ) is local for every Z-stopping time τ . Suppose futher that for a fixed z ∈
D, CR(z,D \ Z(t)) is almost surly continuous and monotonic in t. Then, if we

reparameterise time by

log CR(z,D \ Z(0))− log CR(z,D \ Z(t)),

the process CZ(t)(z) − CZ(0)(z) has a modification which is Brownian motion until

the first time that Z(t) accumulates at z. In particular, CZ(t)(z) has a modification

which is almost surely continuous in t.

Proof. This is proved in [MS16a, Proposition 6.5]. Since we need the argument in

the proof later, we briefly recall the proof here. For s ≥ 0, set

τ(s) := inf{t ≥ 0 : log CR(z,D \ Z(0))− log CR(z,D \ Z(t)) = s}.

We need only show that the increments of the process CZ(τ(t))(z) are independent,

and stationary with Gaussian distribution. By [MS16a, Lemma 6.4], we know that

for any s < t, the conditional law of

CZ(τ(t))(z)− CZ(τ(s))(z),
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given (Z(τ(s)), h|Z(τ(s))), is a Gaussian with mean 0 and variance

log CR(z,D \ Z(τ(s)))− log CR(z,D \ Z(τ(t))) = t− s.

This means it must also be independent of (Z(τ(s)), h|Z(τ(s))), and so of CZ(τ(s))(z).

This completes the proof.

5.2.5 SLEκ(ρ) processes

We call a compact set K ⊂ H an H-hull if H := H \K is simply connected. For any

such hull one can show that there exists a unique conformal map φ from H → H
which is normalized at ∞ in the sense that

φ(z) = z +
2a

z
+ o(

1

z
), as z →∞,

for some constant a which we call the half-plane capacity of K. For a continuous

real-valued function (Wt, t ≥ 0) with W0 = 0 we can define the solution gt(z) to the

chordal Loewner equation

∂tgt(z) =
2

gt(z)−Wt
, g0(z) = z.

This is well defined for each z ∈ H until the first time, τ(z), that gt(z)−Wt hits 0.

Setting Kt = {z ∈ H : τ(z) ≤ t} and Ht = H \Kt we find that gt is the conformal

map from Ht to H normalized at ∞, and the half-plane capacity of Kt is equal to

2t. We call the family (Kt, t ≥ 0) the Loewner chain driven by (Wt, t ≥ 0). One class

of Loewner chains that we will be particularly interested in are those generated by

continuous curves; that is, those for which there exists a continuous curve γ such

that Kt is the hull generated by γ[0, t] for all t.

Chordal SLEκ is the Loewner chain driven byWt =
√
κBt, where Bt is a standard

one-dimensional Brownian motion. It is characterised by the special properties of

conformal invariance and the domain Markov property. Specifically, (µ−1Kµ2t, t ≥ 0)

has the same law as (Kt, t ≥ 0) for any µ > 0, and for any stopping time τ , the law

of (fτ (Kt+τ ), t ≥ 0) is the same as that of K. Here fτ := gτ −Wτ .

It is known that SLEκ is almost surely generated by a continuous curve for all κ.

In the special case κ ∈ [0, 4], it has also been shown that the curve is almost surely

simple. Moreover we know that limt→∞ γ(t) =∞ almost surely; a property we refer

to as transience. These facts were all proved in [RS05].

Definition 5.20. Let ρL and ρR be finite Radon measures on R− = (−∞, 0] and

R+ = [0,∞) respectively, and (Bt, t ≥ 0) be a standard one-dimensional Brownian
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motion. We say that

(
Wt, (V

L
t (x))x∈R− , (V

R
t (x))x∈R+

)
t≥0

describe an SLEκ(ρL; ρR) process, if they are adapted to the filtration of B and the

following hold:

(1) The processes Wt, Bt,
(
V L
t (x)

)
x∈R− and

(
V R
t (x)

)
x∈R+ satisfy the following

SDE on time intervals where Wt does not collide with any of the V L,R
t (x):

dWt =
√
κdBt +

(∫
R−

ρL(dx)

Wt − V L
t (x)

)
dt+

(∫
R+

ρR(dx)

Wt − V R
t (x)

)
dt (5.3)

and

dV L
t (x) =

2dt

V L
t (x)−Wt

, x ∈ R−; dV R
t (x) =

2dt

V R
t (x)−Wt

, x ∈ R+.

(5.4)

(2) We have instantaneous reflection of Wt off the V L,R
t (x), ie. it is almost surely

the case that for Lebesgue almost all times t we have that Wt 6= V L,R
t (x) for

each x ∈ R.

The SLEκ(ρL; ρR) process is then defined to be the Loewner chain driven by W .

Remark 5.21. Note that it is not immediate from the definition that such a process

exists. Indeed, we will only show the existence for κ = 4 and a specific subset of

(ρL; ρR).

We define the continuation threshold of the process to be the be the infinum of

values of t for which

either ρL
(
{x ∈ R− : V L

t (x) = Wt}
)
≤ −2 or ρR

(
{x ∈ R+ : V R

t (x) = Wt}
)
≤ −2.

Observe that the case ρL ≡ 0, ρR ≡ 0 corresponds simply to SLEκ. Another

special case is when the Radon measures are purely atomic. If this occurs we instead

consider (ρL; ρR) to be a pair of vectors

ρL = (ρLl , · · · , ρL1 ), ρR = (ρR1 , · · · , ρRr )

with associated force points

xL = (xLl < · · · < xL1 ≤ 0), xR = (0 ≤ xR1 < · · ·xRr )

in the obvious way. In this case, it is proved in [MS16a, Theorem 2.2] that a slightly
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stronger version of Definition 5.20 determines a unique law on SLEκ(ρL; ρR) pro-

cesses, defined for all time up until the continuation threshold. The additional condi-

tion they impose is that Wt, Bt,
(
V L
t (x)

)
x∈R− and

(
V R
t (x)

)
x∈R+ in fact must satisfy

(5.3) and (5.4) at all times. This ensures the uniqueness in law of these processes.

Through their connection with the GFF, which we will discuss in the next sec-

tion, it was shown in [MS16a] that SLEκ(ρL; ρR) processes are almost surely gener-

ated by continuous curves up to and including the continuation threshold. Moreover,

on the event that the continuation threshold is not hit before the curves reach∞, the

curves are almost surely transient. One can also show that the curves are absolutely

continuous with respect to SLEκ as long as they are away from the boundary.

5.2.6 Level lines of the GFF with piecewise constant boundary data

As discussed in the introduction, the theory of level lines and flow lines of a GFF

with piecewise constant boundary data has been studied previously in a number of

works, including [Dub09], [MS16a],[SS13] and [WW16]. We collect in this section

some results that will be useful in our article.

Suppose that F is a bounded harmonic function in H whose boundary value is

piecewise constant on R and changes only finitely many times. Then F can be de-

scribed almost everywhere in terms of a pair of purely atomic finite Radon measures

(ρL; ρR), corresponding to vectors (ρL; ρR), via the relation

F (x) = λ(1 + ρR([0, x])), x ≥ 0; F (x) = −λ(1 + ρL((x, 0])), x < 0. (5.5)

When κ = 4, which corresponds to level lines of the GFF, the following results are

known for any (ρL; ρR): (see [WW16, Theorems 1.1.1 and 1.1.2])

• There exists a coupling (K,h) where K is an SLE4(ρL; ρR) process and h is a

zero boundary GFF, such that K is a level line of h+ F .

• If h is a zero boundary GFF and K an SLE4(ρL; ρR) process, coupled such

that K is a level line of h+ F , then K is almost surely determined by h.

This allows us, for any such F and an instance of the zero boundary GFF h

in H, to define the level line, γ, of h + F . It has been shown in [WW16, Theorem

1.1.3] that γ is in fact almost surely continuous up to and including the continuation

threshold, and it is transient when the continuation threshold is not hit.

More generally, for any simply connected domain D and x, y in ∂D, we say that

γ is the level line of a GFF h in D started at x and targeted at y, if φ(γ) is the level

line of h ◦ φ−1, where φ is any conformal map from D to H which sends x to 0 and

y to ∞.
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One nice property of the level lines is what we call monotonicity. Suppose that

h is a GFF with piecewise constant boundary values, changing only finitely many

times. For u ∈ R, we define the level line of h with height u to be the level line of

h+ u, and denote it by γu. Then, for any u1 ≥ u2, the level line γu1 lies to the left

of γu2 almost surely, see [WW16, Theorem 1.1.4].

Another property of the level lines is their reversibility. Suppose that h is a GFF

with piecewise constant boundary values changing only finitely many times. Let γ

be the level line of h from 0 to ∞ and γ′ be the level line of −h from ∞ to 0. Then,

on the event that neither hit their continuation thresholds before reaching their

target points, we have γ = γ′ almost surely as sets. This implies the reversibility of

the SLE4(ρR; ρR) process: conditioned on the event that the continuation threshold

is not hit, the time reversal of the process is another SLE4(ρL; ρR) process, now

from ∞ to 0 in H with appropriate weights and force points, conditioned not to hit

its continuation threshold. See [WW16, Theorem 1.1.6]. Finally, we include a list of

results from [WW16] that will be useful for the later proofs.

Lemma 5.22. Suppose that h is a zero-boundary GFF and F is the bounded har-

monic extension of the piecewise constant boundary data which changes finitely many

times. Let γ be the level line of h+F . We already know that γ is almost surely con-

tinuous up to and including the continuation threshold.

(1) [WW16, Theorem 1.1.3] The curve γ is almost surely simple and is continuous

up to and including the continuation threshold.

(2) [WW16, Remark 2.5.15] For any open interval I of (−∞, 0)∪ (0,∞), assume

that

either F (x) ≥ λ, ∀x ∈ I, or F (x) ≤ −λ, ∀x ∈ I.

Then almost surely γ ∩ I = ∅.

(3) [WW16, Proposition 2.5.11] For any point x0 ∈ (0,∞), assume that there

exists c > 0 such that F ≥ −λ + c in a neighborhood of {x0}, then almost

surely γ does not hit {x0}. Symmetrically, for x0 ∈ (−∞, 0), assume that

there exists c > 0 such that F ≤ λ− c in a neighborhood of {x0}, then almost

surely γ does not hit {x0}.

5.2.7 First generalizations to the GFF with general boundary data

In this section, we generalize some results concerning level lines with piecewise

constant boundary data to general boundary data. In fact, the ideas in the proof

for Lemma 5.24 when the boundary condition is piecewise constant [SS13, Lemmas
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2.4-2.6] work for general boundary data with proper adjustment. In order to be

self-contained, we still give a complete proof here.

Lemma 5.23. Suppose that (Kt, t ≥ 0) is a Loewner chain driven by a continuous

process (Wt, t ≥ 0). Denote by (gt, t ≥ 0) the corresponding sequence of conformal

maps and ft = gt −Wt the centered conformal maps. For any fixed z ∈ H, define

Ct(z) = log CR(z,H)− log CR(z,H \Kt).

Then, we have that

dCt(z) =
4=(ft(z))

2

|ft(z)|4
dt.

Proof. The conformal radius CR(z,H\Kt) is equal to 2/|φ′t(z)| for φt any conformal

map from H \Kt to H which sends z to i, an example of which is given by mt ◦ ft,
where mt : H→ H is the Möbius transformation defined by

mt(w) =
=(ft(z))w

<(ft(z))2 + =(ft(z))2 −<(ft(z))w
.

This gives us that

Ct(z)− C0(z) = − log 2 + <(logm′t(ft(z))) + <(log g′t(z)).

However, in this case we can calculate m′t(ft(z)) explicitly, and find that

−<(logm′t(ft(z))) = log=ft(z). Since we also know that

dg′t(z) =
−2g′t(z)

ft(z)2
dt, d=(ft(z)) =

−2=(ft(z))

|ft(z)|4
dt,

we can compute

dCt(z) =
4=(ft(z))

2

|ft(z)|4
dt,

and this implies the result.

Lemma 5.24. Assume the same notations as in Definition 5.1. Suppose that the

Loewner chain K is almost surely generated by a random continuous curve γ on H
from 0 to ∞ whose driving function W is almost surely continuous. For z ∈ H and

t ≥ 0, set

τ(t) = inf{s : log CR(z,H)− log CR(z,H \Ks) = t}.

Then the pair (h,K) can be coupled as in Definition 5.1 if and only if (ητ(t)(z), t ≥ 0)

is a Brownian motion with respect to the filtration generated by (Wτ(t), t ≥ 0) for

any z ∈ H.
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Proof. If (h,K) is coupled as in Definition 5.1, by Proposition 5.19, we know that

(ητ(t)(z), t ≥ 0) is a Brownian motion. Moreover, by the proof of Proposition 5.19, we

see that, for s < t, the variable ητ(t)(z)−ητ(s)(z) is independent of Kτ(s) and has the

law of Gaussian with mean zero and variance t−s. This implies that (ητ(t)(z), t ≥ 0)

is a Brownian motion with respect to the filtration generated by (Wτ(t), t ≥ 0).

For the converse, assume that, for each z ∈ H, the process (ητ(t)(z), t ≥ 0) is

a Brownian motion with respect the filtration generated by (Wτ(t), t ≥ 0). We will

begin by showing that there exists a Brownian motion (Bt, t ≥ 0) (with respect to

the filtration of (Wt, t ≥ 0)) such that, for all z, we have

dηt(z) = = 2

ft(z)
dBt. (5.6)

Define

Ut(z) = ηt(z) + arg(ft(z)). (5.7)

We have the following observations.

• By the definition of ηt(·), we know that Ut(·) is the bounded harmonic function

on H \Kt with the boundary values given by F + 2λ on R− \Kt, λ along the

boundary of Kt, and F on R+ \Kt. Therefore, for fixed z, process (Ut(z), t ≥
0) is of bounded variation and is measurable with respect to the filtration

generated by (Wt, t ≥ 0).

• By the assumption, for fixed z, the process (ηt(z), t ≥ 0) is a Brownian motion

when parameterized by

Ct(z) = log CR(z,H)− log CR(z,H \Kt).

Thus, by Lemma 5.23, we see that

d〈ηt(z)〉 = dCt(z) = 4

(
= 1

ft(z)

)2

dt.

Moreover, since (ητ(t)(z), t ≥ 0) is a Brownian motion with respect to the

filtration of (Wτ(t), t ≥ 0), we know that, for any s < t, the variable ηt(z)−ηs(z)
is independent of (Wu, u ≤ s) (we implicitly use the fact that K is a Loewner

chain generated by a continuous curve with continuous driving function), thus

the process (ηt(z), t ≥ 0) is a local martingale with respect to the filtration of

(Wt, t ≥ 0).

Combining these two facts, we know that arg(ft(z)) = arg(gt(z) −Wt) is a semi-

martingale, and hence Wt is a semimartingale at least up to the first time that z is
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swallowed by Kt. Note that

d arg(ft(z)) = = −1

ft(z)
dWt + =

(
2dt

(ft(z))2
− d〈Wt〉

2(ft(z))2

)
,

and therefore, we have d〈Wt〉 = 4dt for all such t. Note however that the process

W does not depend on z, and since we can always choose z far away as we want,

we can argue that (Wu, 0 ≤ u ≤ t) is a semimartingale up to time t for any t > 0,

with d〈Wt〉 = 4dt. Thus, there exists a Brownian motion (Bt, t ≥ 0) and a process

of bounded variation (Vt, t ≥ 0) such that Wt = 2Bt − Vt. We emphasize that the

processes B and V do not depend on z. Plugging in Equation (5.7), we have that

dηt(z) = = 2

ft(z)
dBt, dUt(z) = = 1

ft(z)
dVt, (5.8)

as desired.

With (5.6) in hand, we know that for z, w ∈ H, we have

d〈ηt(z), ηt(w)〉 = =
(

1

ft(z)

)
=
(

1

ft(w)

)
dt.

We know that, for each z, ηt(z) is a continuous martingale. We can also extend the

definition of ηt(z) by setting it equal to its limit as s ↑ τ(z) at all times after τ(z).

We further define for z, w ∈ H and t ≤ τ(z) ∧ τ(w),

Gt(z, w) := GH(ft(z), ft(w))

where we again extend this to all times after τ(z)∧ τ(w), by setting it constant and

equal to its limit as t ↑ τ(z) ∧ τ(w). Observe that, in each connected component of

H \ γ[0, t], the function ηt is the bounded harmonic function with boundary values

shown in Figure 25. We also know that Gt(z, w) is non-decreasing in t for any fixed

0
FF

λ
−λ

F

λ
−λ

−λ
γ[0, t]

Figure 25: The function ηt(·) is a harmonic function in each connected component of
H \ γ[0, t] with boundary values as above.

z, w.

Putting all of the above together, we can deduce by stochastic calculus that for
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any p ∈ Hs(H), (ηt, p) is a continuous martingale with

d〈(ηt, p)〉 = −dEt(p), where Et(p) :=

∫ ∫
p(z)p(w)Gt(z, w) d2zd2w.

Now we are ready to show that the pair (h,K) is coupled as in Definition 5.1.

Since for each z, w ∈ H and non-negative p ∈ Hs(H) we have that ηt(z) is a mar-

tingale and Gt(z, w), Et(p) are non-decreasing, it must be that all the limits η∞(z),

G∞(z, w) and E∞(p) exist. We let h̃ be equal to η∞− η0 plus a sum of independent

zero boundary GFF’s; one in each connected component of H \ γ. To show that

(K, h̃) are coupled in the correct way we must verify that the marginal law of h̃

is that of a zero boundary GFF in H, and that (K, h̃) satisfies the correct domain

Markov property. This amounts to showing that for each non-negative p ∈ Hs(H):

• (h̃, p) is a Gaussian with mean 0 and variance E0(p).

• For any K-stopping time τ , the conditional law of
(

(h̃+ η0)|H\Kτ , p
)

given Kτ

is a Gaussian with mean (ητ , p) and variance Eτ (p).

To see the first point, for any µ > 0 we calculate

E[exp(−µ(h̃, p))] = E[E[exp(−µ(h̃, p))|K]]

= E
[
exp

(
−µ(η∞ − η0, p)−

µ2

2
E∞(p)

)]
= E

[
exp

(
−µ(η∞ − η0, p) +

µ2

2
(E0(p)− E∞(p)

)]
exp

(
−µ

2

2
E0(p)

)
= exp

(
−µ

2

2
E0(p)

)
,

where the last line follows from the fact that (ηt, p) is a continuous bounded

martingale with mean η0(p) and quadratic variation E0(p) − E∞(p). The second

point follows similarly, replacing the initial expectation with a conditional one.

5.3 Non-boundary intersecting regime

All the conclusions in Sections 5.3 and 5.4 are proved in [MS16a, WW16] for level

lines with piecewise constant boundary data and constant height difference. Al-

though many of the ideas from these papers are fundamental to our proofs, there

are several places where they fail for general boundary data. Therefore, we treat the

general case here and give complete proofs in the next two sections.

Lemma 5.25. Suppose that γ is a random continuous curve from 0 to some γ-

stopping time T with almost surely continuous driving function. Assume that γ is
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coupled with a zero boundary GFF h as a level line of h+ F up to time T where

F (x) ≥ −λ, ∀x < 0; F (x) ≥ λ, ∀x ≥ 0.

Then almost surely γ[0, T ] ∩ (0,∞) = ∅.

Proof. Assume the same notations as in Definition 5.1. First, for any z ∈ H, define

Ut(z) in the same way in Equation (5.7), and we will explain that the process

(Ut(z), 0 ≤ t ≤ T ) is non-increasing. By the definition of ηt(z), we know that

Ut(·) − λ is the harmonic function on H \ Kt with the boundary values given by

F + λ ≥ 0 on R− \Kt, zero along the boundary of Kt, and F − λ ≥ 0 on R+ \Kt.

This harmonic function is non-increasing in t, and thus Ut(z) is non-increasing.

Next, we will show that the process

Zt := V R
t (0+)−Wt

cannot hit zero. By the proof of Lemma 5.24, we know that there exist a Brownian

motion B and a process of bounded variation V such that W = 2B−V and Equation

(5.8) holds. Since Ut(z) in non-increasing in t, the process Vt is non-decreasing in

t up to the time that z is swallowed. However, the process V does not depend on

z, and since we can always choose z far away, we have that (Vu, 0 ≤ u ≤ t) is

non-decreasing in u for any t > 0. Then we have, for all t,

dZt ≥ −2dBt +
2dt

Zt
.

We can compare Zt/2 with a Bessel process of dimension 2, and so may conclude

that Zt cannot hit 0. This implies that the curve cannot hit (0,∞).

Remark 5.26. The proof of Lemma 5.25 also applies to the case when

F (x) ≤ −λ, x < 0; F (x) ≤ λ, x ≥ 0

by symmetry. In this case we see that for γ satisfying the same conditions as in

Lemma 5.25, we have γ[0, T ] ∩ (−∞, 0) = ∅ almost surely.

Lemma 5.27. Suppose that γ is a random continuous curve from 0 to some γ-

stopping time T with almost surely continuous driving function. Assume that γ is

coupled with a zero boundary GFF h as a level line of h+ F up to time T where

F (x) ≤ −λ, ∀x < 0; F (x) ≥ λ, ∀x ≥ 0.
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0

C ≥ λ

γ[0, Tε]

λ+F−G≥λ

−λ+F−G≥−λ

−λ

I=(a, b)

(a) The boundary value of −h − G given
γ[0, Tε].

0

C ≥ λ

γ[0, Tε]

λ+F−G≥λ

−λ+F−G≥−λ

−λ

I=(a, b)

γ′G

(b) γ′G cannot hit the left side of γ[0, Tε] or
R−.

Figure 26: Explanation of the boundary values in the proof of Lemma 5.27.

Then, almost surely, the curve (γ(t), 0 ≤ t ≤ T ) does not hit the boundary except

the two end points.

Proof. It is sufficient to show that, for any 0 < a < b <∞, the curve γ does not hit

the interval I = (a, b). We prove by contradiction.

Suppose that γ does hit I with positive probability, and on this event, define

Tε to be the first time that γ gets within ε of I. Since F is bounded, suppose that

F ≥ −C for some finite C ≥ λ. Let G be the bounded harmonic extension of the

function which is equal to −C on R− and is equal to λ on R+. Note that F ≥ G.

Let γ′G be the level line of −h − G from ∞ to 0. By Lemma 5.22(1) and (2), we

know that γ′G is almost surely continuous and transient; and that γ′G almost surely

does not hit I.

Let h̃ be h restricted to the unbounded connected component of H\γ[0, Tε], then

conditionally on γ[0, Tε], the field −h̃ − G is a GFF with boundary data as shown

in Figure 26(a). Moreover, given γ[0, Tε], the curve γ′G is coupled with h̃ so that it

is a level line of −h̃−G up until the first time that γ′G hits γ[0, Tε] (by Propositions

5.16 to 5.18). Since F −G is positive on H, we see from Lemma 5.25 that γ′G cannot

hit the left side of γ[0, Tε] or (−∞, 0] before hitting the right side of γ[0, Tε] or the

tip γ(Tε), see Figure 26(b). In any case, this implies that γ′G has to get within ε of

I. Since this holds for any ε > 0 on the event that γ hits I and γ′G is continuous,

we can conclude that γ′G hits I with positive probability, contradiction.

Lemma 5.28. Assume the same notations as in Lemma 5.27. Then γ is almost

surely simple.

Proof. First, we argue that, for any γ-stopping time τ , we have γ[0, τ)∩γ(τ, T ) = ∅
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almost surely. Given γ[0, τ ], denote by h̃ the restriction of h+F to H\γ[0, τ ] (since

γ does not hit the boundary, this set only has one connected component). By the

domain Markov property in Definition 5.1, we know that, given γ[0, τ ], the curve

γ|[τ,T ) is coupled with h̃ as its level line. Note that the boundary value of h̃+ F is

F ≤ −λ on R−, is −λ along the left side of γ[0, τ ], is λ along the right side of γ[0, τ ],

and is F ≥ λ along R+. By Lemma 5.27, we know that γ(τ, T ) cannot hit γ(0, τ).

Next, we show that γ is almost surely simple. For any q > 0, define Aq to be the

event that γ(0, q) ∩ γ(q, T ) 6= ∅. If γ has double point, then Aq happens for some

positive rational q, since γ is continuous. However, by the above argument, we know

that ∪q∈Q+Aq has zero probability. Therefore, γ is almost surely simple.

Proposition 5.29. Suppose that h is a zero boundary GFF and that F is bounded

and satisfies

F (x) ≤ −λ, ∀x < 0; F (x) ≥ λ, ∀x ≥ 0.

Suppose that γ (resp. γ′) is a random continuous transient curve from 0 to ∞ (resp.

from ∞ to 0) with almost surely continuous driving function.

Assume that γ is coupled with h as a level line of h+ F , that γ′ is coupled with

h as a level line of −h−F , and that the triple (h, γ, γ′) are coupled so that γ and γ′

are conditionally independent given h. Then almost surely γ′ equals γ. In particular,

this implies that γ is almost surely determined by h.

Proof. First, we argue that, for any γ′-stopping time τ ′, given γ′[0, τ ′], the curve γ

almost surely first exits H \ γ′[0, τ ′] at γ′(τ ′). Denote by h̃ the restriction of h to

H \ γ′[0, τ ′]. Given γ′[0, τ ′], the curve γ is coupled with h as a level line of h̃ + F .

The boundary value of h̃+F is F ≤ −λ on R−, is −λ along the left side of γ′[0, τ ′],

is λ along the right side of γ′[0, τ ′], and is F ≥ λ on R+. Thus, by Lemma 5.27, we

know that γ must exit H \ γ′[0, τ ′] at γ′(τ ′).

Next, we show that γ and γ′ are equal. Since γ hits γ′[0, τ ′] for the first time at

γ′(τ ′) for any γ′-stopping time τ ′, we know that γ hits a dense countable set of points

along γ′ in reverse chronological order. By symmetry, γ′ hits a dense countable set

of points along γ. Since both γ and γ′ are continuous simple curves, the two curves

(viewed as sets) are equal.

5.4 Monotonicity

Lemma 5.30. Suppose that h is a zero boundary GFF and that F is bounded.

Suppose that γ is a random continuous curve from 0 to some γ-stopping time T

with almost surely continuous driving function. Assume that γ is coupled with h as

a level line of h+ F up to time T .
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(1) Then the curve (γ(t), 0 ≤ t ≤ T ) almost surely does not intersect any open

interval I of (0,∞) such that

F (x) ≥ λ ∀x ∈ I.

Symmetrically, it does not intersect any open interval of (−∞, 0) where F (x) ≤
−λ.

(2) In addition, if (γ(t), 0 ≤ t ≤ T ) is almost surely simple, then it does not hit

any open interval I of (−∞, 0) where F (x) ≥ λ. Symmetrically, it does not

intersect any open interval of (0,∞) where F (x) ≤ −λ.

Proof of Lemma 5.30, Item (1). We first show the conclusion when I = (a, b) for

0 < a < b and F (x) ≥ λ,∀x ∈ I. Pick ã, b̃ such that a < ã < b̃ < b. It is sufficient

to show that, for any such ã, b̃, the curve (γ(t), 0 ≤ t ≤ T ) does not hit the interval

Ĩ = [ã, b̃]. We prove by contradiction. Suppose that the curve (γ(t), 0 ≤ t ≤ T ) hits

Ĩ with positive probability. Since F is bounded, we have that F ≥ −C for some

C ≥ λ. Let G be the bounded harmonic extension of the function which is equal to

−C on R− ∪ (0, a) ∪ (b,∞) and λ on (a, b). Note that F ≥ G. Let γ′G be the level

line of −h − G from b to a. Note that since G is piecewise constant we know by

Lemma 5.22(1) that the curve γ′G is continuous from b to a, and the boundary data

also means, by Lemma 5.22(2), that it does not hit Ĩ. This means we can repeat the

same argument as in the proof of Lemma 5.27 to show that γ′G hits Ĩ with positive

probability and obtain a contradiction.

Proof of Lemma 5.30, Item (2). Now, let I = (a, b) for a < b < 0, and suppose that

F (x) ≥ λ,∀x ∈ I and (γ(t), 0 ≤ t ≤ T ) is almost surely simple. It will be sufficient

for us to prove that γ does not hit Ĩ = [ã, b̃] for any a < ã < b̃ < b. First note

that if γ hits [−∞, a] before hitting I, since γ grows towards ∞, it can never hit Ĩ

thereafter and we are done. If not, let ϕ be the Möbius transform of H that sends

the triplet (b, 0,∞) to (∞, 0, 1). Then (ϕ(γ(t)), 0 ≤ t ≤ T ) is a continuous curve,

coupled with a zero-boundary GFF h̃ as a level line of h̃ + F ◦ ϕ−1 until the first

time it hits [1,∞]. By Item (1), we know that (ϕ(γ(t)), 0 ≤ t ≤ T ) cannot hit the

interval (ϕ(a),∞) before this time. Thus (γ(t), 0 ≤ t ≤ T ) cannot hit Ĩ without first

hitting the point b. Let τ be the time at which γ hits b, setting τ = T if this never

happens, and τ ′ be the first time at which γ hits Ĩ, again setting τ ′ = T if necessary.

By the previous reasoning, if we do not have {τ < τ ′ < T} then we are done, so

assume this occurs with positive probability. On this event, since γ is a continuous

curve with continuous Loewner driving function, we see that {τ ≤ t ≤ τ ′ : γ(t) ∈ R}
has Lebesgue measure 0, and so there exists a time τ < σ < τ ′ with γ(σ) /∈ R. Let
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w be the left-most point in (γ(t), 0 ≤ t ≤ σ) ∩ (−∞, 0). Then applying the same

argument as above, now to (γ(t), σ ≤ t ≤ T ) in the domain H \ (γ(t), 0 ≤ t ≤ σ)

with (a, b) replaced by (a,w), we see that (γ(t), σ ≤ t ≤ T ) must first hit w before

it can hit Ĩ. This is a contradiction to the simplicity of γ.

Lemma 5.31. Suppose that h is a zero boundary GFF and that F is bounded.

Suppose that γ is a random continuous curve from 0 to some γ-stopping time T

with almost surely continuous driving function. Assume that γ is coupled with h as

a level line of h+ F up to time T .

(1) For any fixed point x0 ∈ (0,∞), if there exists c > 0 such that F ≥ −λ+ c in

a neighborhood of x0, then the curve (γ(t), 0 ≤ t ≤ T ) almost surely does not

hit {x0}. Symmetrically, for any fixed point x0 ∈ (−∞, 0), if there exists c > 0

such that F ≤ λ− c in a neighborhood of x0, then the curve (γ(t), 0 ≤ t ≤ T )

almost surely does not hit {x0}.

(2) If there exists X ∈ (0,∞) and c > 0 such that

F (x) ≥ λ, ∀x ∈ (−X,∞); F (x) ≥ −λ+ c, ∀x ∈ (X,∞)

and in addition the curve (γ(t), 0 ≤ t ≤ T ) is almost surely simple, then

(γ(t), 0 ≤ t ≤ T ) almost surely does not hit ∞. Symmetrically, if there exists

X ∈ (0,∞) and c > 0 such that

F (x) ≤ −λ, ∀x ∈ (X,∞); F (x) ≤ λ− c, ∀x ∈ (−X,∞)

and the curve (γ(t), 0 ≤ t ≤ T ) is almost surely simple, then (γ(t), 0 ≤ t ≤ T )

almost surely does not hit ∞

We point out that Item (2) is not a consequence of Item (1) in Lemma 5.31. In

fact, if F is piecewise constant and F (x) ∈ (−λ+ c, λ− c) on (−∞,−X) ∪ (X,∞)

for c ∈ (0, λ), then the level line of h + F is transient, and hence hits ∞ almost

surely.

Proof of Lemma 5.31, Item (1). We may assume that F ≥ −λ + c on (a, b) where

0 < a < x0 < b and again prove by contradiction. Suppose that the curve (γ(t), 0 ≤
t ≤ T ) does hit {x0} with some positive probability. Since F is bounded, suppose

that F ≥ −C for some C ≥ λ. Let G be the function which is equal to −C on

R− ∪ (0, a) ∪ (b,∞), and is (−λ + c) ∧ λ on (a, b). Note that F ≥ G. Let γ′G be

the level line of −h − G from b to a. Note that γ′G is continuous and does not the

point {x0} by Lemma 5.22(3). Thus we can repeat the same argument as in the
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proof of Lemma 5.27 and show that γ′G hits {x0} with positive probability, which is

a contradiction.

0

C ≥ λ γF

λ+F−G≥λ

(λ−c) ∨ (−λ)

X

−X ∞

(a) Suppose that γF hits∞ with positive prob-
ability. Let Tε be the first time that it enters
{z : |z| > 1/ε}. Since F ≥ λ on (−∞,−X),
the curve γF can never hit (−∞,−X). Given
γF [0, Tε], the boundary data of −h − G is
shown in this figure.

0

C ≥ λ γF

λ+F−G≥λ

X

−X ∞

γ′G

(b) By the choice of G, we see that γ′G cannot
hit the union of (−X, 0) and the left side of
γF [0, Tε] before hitting γF [0, Tε]. Therefore, γ′G
has to enter {z : |z| > 1/ε}. This holds for all
ε > 0, thus γ′G hits ∞ with positive chance,
contradiction.

Figure 27: Explanation of the boundary values in the proof of Lemma 5.31, Item (2).

Proof of Lemma 5.31, Item (2). We prove by contradiction. Suppose that γ does

hit∞ with positive probability. Since F is bounded, suppose that F ≥ −C for some

C ≥ λ. Let G be the function which is equal to −C on (−X, 0) ∪ (0, X) and is

(−λ + c) ∧ λ on (X,∞) ∪ (−∞,−X). Note that F ≥ G. Let γ′G be the level line

of −h − G from −X to X. Since G is piecewise constant, we know the curve γ′G
is continuous and does not hit the point ∞. By Lemma 5.30(2), since γ is almost

surely simple, we know that γ cannot hit (−X,∞) before it hits ∞. Thus, we can

repeat the same argument as in the proof of Lemma 5.27 and show that γ′G hits ∞
with positive probability, contradiction. See more details in Figure 27.

Lemma 5.32. Suppose that h is a zero boundary GFF and that F is bounded and

satisfies Condition (5.2). Suppose that γ is a random continuous transient curve

from 0 to∞ with almost surely continuous driving function. Assume that γ is coupled

with h as a level line of h+ F . Then γ is almost surely simple.

Proof. We can repeat the same argument as in the proof of Lemma 5.28 replacing

Lemma 5.27 by Lemmas 5.30(1) and 5.31(1).
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Lemma 5.33. Suppose that F and G are bounded, F satisfies Condition (5.2), and

that

F (x) ≥ G(x), ∀x ∈ R.

Suppose that γF (resp. γ′G) is a random continuous transient curve from 0 to ∞
(resp. from ∞ to 0) with almost surely continuous driving function.

Assume that γF is coupled with a zero boundary GFF h as a level line of h+ F

from 0 to∞ and that γ′G is coupled with h as a level line of −h−G from∞ to 0, and

that the triple (h, γF , γ
′
G) is coupled so that γF and γ′G are conditionally independent

given h. Then almost surely γF stays to the left of γ′G.

Proof. Note that, by Lemma 5.32, γF is almost surely simple. It is sufficient to show

that, for any γ′G-stopping time τ ′, the point γ′G(τ ′) is to the right of γF .

Let h̃ be h restricted to H \ γ′G[0, τ ′]. Then we know that, given γ′G[0, τ ′], the

conditional law of h̃ + F is that of a GFF with boundary data as shown in Figure

28(a). Moreover, γF is coupled as a level line of h̃+ F up until the first time it hits

γ′G[0, τ ′]. Given γ′G[0, τ ′], let τ be the first time that γF hits γ′G[0, τ ′].

Consider the set γ′G[0, τ ′], there are two possibilities for the intersection γ′G[0, τ ′]∩
(0,∞): Case (a), the intersection is nonempty, and in this case we denote by xG the

last point in the intersection; Case (b), the intersection is empty and in this case

we set xG = +∞ ie. to the right of γ′G[0, τ ′].

0
F

F

−λ+F−G

λ+F−G

xG
γ′G[0, τ

′]

(a)

0
F

F

−λ+F−G

λ+F−G

xG
γ′G[0, τ

′]

γF

(b)

Figure 28: The curve γF cannot hit the blue section in the figure.

Since the boundary data on the right hand side of γ′G[0, τ ′] is greater than λ and

the boundary data is bounded away from −λ in a neighborhood of xG, by Lemma

5.30 we know that γF cannot hit the right hand side of γ′G[0, τ ′] before hitting the

left side of γ′G[0, τ ′] or exiting H at ∞, approaching from the left. We also know

that γF cannot hit {xG} before this time, by Lemma 5.31(1) in Case (a) and by
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Lemma 5.31(2) in Case (b). Therefore γF cannot hit the union of the right hand side

of γ′G[0, τ ′] and {xG} (i.e. the blue section in Figure 28(a)) of the boundary before

hitting the left hand side of γ′G[0, τ ′] or exiting H at ∞, approaching from the left.

In the latter case, we are done. In the former case, γF first hits γ′G[0, τ ′] from its left

hand side at time τ . If γ′G(τ ′) is strictly to the left of γF , then it must be the case that

after time τ , γF wraps around γ′G[0, τ ′] and then hits the right hand side of γ′G[0, τ ′]

or exits at xG. Let τδ be the first time after τ that γF is in the right connected

component of H \ (γF [0, τ ] ∪ γ′G[0, τ ′]) and dist(γF (t), γ′G[0, τ ]) ≥ δ, setting τδ =∞
if this never happens. If γ′G(τ ′) is strictly to the left of γF (so in particular not on the

curve γF ) with positive probability then we know that {τδ <∞} occurs with strictly

positive probability. However, given γ′G[0, τ ′]∪γF [0, τδ], the conditional law of h+F

is that of a GFF with boundary values as shown in Figure 28(b), and (γF (t), t ≥ τδ)
is a level line of this field (by Propositions 5.16 to 5.18.) Therefore, by Lemmas 5.30

and 5.31 again, we know that it cannot hit the right hand side of γ′G[0, τ ′] or exit

at xG, and hence cannot reach ∞. Thus we obtain a contradiction.

Lemma 5.34. Suppose that F is bounded and satisfies Condition (5.2). Suppose

that γF (resp. γ′F ) is a random continuous transient curve from 0 to ∞ (resp. from

∞ to 0) with almost surely continuous driving functions.

Assume that γF is coupled with a zero boundary GFF h as a level line of h+ F

from 0 to ∞, that γ′F is coupled with h as a level line of −h− F from ∞ to 0, and

that the triple (h, γF , γ
′
F ) is coupled so that γF and γ′F are conditionally independent

given h. Then almost surely γF = γ′F . In particular, γF is almost surely determined

by h.

Proof. By Lemma 5.33, we know that γF almost surely stays to the left of γ′F and (by

the same arguments) that γF almost surely stays to the right of γ′F . Combining with

the fact that γF , γ
′
F are simple by Lemma 5.32, we know that almost surely γF = γ′F .

Since γF and γ′F are coupled with h so that they are conditionally independent given

h, γF = γ′F implies that γF must be almost surely determined by h.

Lemma 5.35. Suppose that F and G are bounded, and satisfy Condition (5.2).

Suppose further that

F (x) ≥ G(x), x ∈ R.

Suppose that γF , γG (resp. γ′G) are random continuous transient curves from 0

to ∞ (resp. from ∞ to 0) with almost surely continuous driving functions.

Assume that γF (resp. γG) is coupled with a zero boundary GFF h as a level line

of h + F (resp. h + G), that γ′G is coupled with h as a level line of −h − G from
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∞ to 0, and that (h, γF , γG, γ
′
G) is coupled so that γF , γG and γ′G are conditionally

independent given h. Then almost surely γF stays to the left of γG.

Proof. We have the following observations.

• By Lemma 5.33, we know that γF stays to the left of γ′G.

• By Lemma 5.34, we know that γG = γ′G.

Combining these two facts, we see that γF stays to the left of γG.

Corollary 5.36. Suppose that F and G are piecewise constant functions changing

value only finitely many times and that they satisfy Condition (5.2). Suppose further

that

F (x) ≥ G(x), x ∈ R.

Let γF (resp. γG) be the level line of h+F (resp. h+G) for h a zero boundary GFF

as in Section 5.2.6. Then almost surely γF stays to the left of γG.

Proof. From the results in Section 5.2.6, we have the existence, the continuity and

transience of γF and γG, and also γ′G which is the level line of −h − G from ∞ to

0. Moreover, we know that each of γF , γG and γ′G is almost surely determined by h.

By Lemma 5.35, we know that γF stays to the left of γG almost surely.

5.5 Estimates on crossing probabilities

In this section, we will consider SLE4(ρL; ρR) processes for vectors

ρL = (ρLl , · · · , ρL1 ), ρR = (ρR1 , · · · , ρRr ),

with associated force points

xL = (xLl < · · · < xL1 ≤ 0), xR = (0 ≤ xR1 < · · ·xRr ),

such that for some c > 0, C <∞,

−2+
c

λ
≤

j∑
i=1

ρLi ≤ −1+
C

λ
, 1 ≤ j ≤ l, −2+

c

λ
≤

k∑
i=1

ρRi ≤ −1+
C

λ
, 1 ≤ k ≤ r.

(5.9)

We will show that if (γ(n))n∈N are a family SLE4(ρL; ρR) processes as above (with

the same c, C), then they satisfy Condition 5.11. Here, we know that the processes

are generated by continuous curves, due to the results of [MS16a, WW16].

Note that these processes correspond to level lines of (h + Fn)n∈N for h a zero

boundary GFF, where Condition (5.9) means that the Fn’s are uniformly bounded
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(lying in (−C,C)) and satisfy, for all n ≥ 0,

Fn(x) ≤ λ− c, x < 0; Fn(x) ≥ −λ+ c, x ≥ 0.

These are the same conditions we require on F in Theorem 5.2. Therefore, the tactic

will be to approximate such an F by piecewise constant functions Fn on R, and show

that the laws of the corresponding SLE4(ρL,n; ρR,n) processes converge weakly using

Proposition 5.12. This limiting law will be our candidate for the level line of h+F .

Lemma 5.37. Suppose that (γ(n))n∈N are a family of SLE4(ρL, ρR) processes satis-

fying Condition (5.9) for some c > 0, C <∞ and all n. Then they satisfy Condition

5.11.

Proof. Recall, we would like to show that our family satisfies a conformal bound on

an unforced crossing. That is, that there exists a constant M > 0, such that for

any of our processes γ(n), any stopping time τ and any avoidable quadrilateral of

Hτ = H \K(n)
τ whose modulus m(Q) is greater than M ,

P
(
γ(n)[τ,∞) crossesQ | γ(n)[0, τ ]

)
≤ 1/2.

Here (K
(n)
t , t ≥ 0) denotes the sequence of hulls generated by γ(n).

For n ≥ 0, the law of γ(n) is that of an SLE4(ρL,n; ρR,n) process with force

points located at (xL,n;xR,n). Denote its driving function by W (n), its sequence of

conformal mappings by g(n), and set f (n) = g(n)−W (n). By the results of [WW16],

we know that γ(n) can be coupled with h a zero boundary GFF in H, as the level

line of h+ Fn, for

Fn(x) =

−λ
(

1 +
∑
{i:xL,ni ≥x} ρ

L,n
i

)
, x < 0

λ
(

1 +
∑
{i:xR,ni ≤x} ρ

R,n
i

)
, x ≥ 0.

Moreover, for any stopping time τ , we know by the domain Markov property that,

conditionally on γ(n)[0, τ ], the curve evolves from time τ onwards as a level line of

a GFF with boundary conditions η
(n)
τ in the remaining domain. Here η(n) is defined

corresponding to Fn as in Definition 5.1. The important thing to notice is that, as

a result of the condition (5.9), we have

η(n)
τ ◦ (f (n)

τ )−1 ≥ −C, on (−∞, 0); η(n)
τ ◦ (f (n)

τ )−1 ≥ −λ+ c on [0,∞)
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for any τ and n. Therefore, if we set

G1(x) :=

−C, x < 0

−λ+ c, x ≥ 0

we have that

G1 ≤ η(n)
τ ◦ (f (n)

τ )−1, on R.

Similarly if we set

G2(x) :=

λ− c, x < 0

C, x ≥ 0

then

G2 ≥ η(n)
τ ◦ (f (n)

τ )−1, on R.

Now, consider an avoidable topological quadrilateral Q of Hτ . The avoidability

assumption means that, when we map it to H via f
(n)
τ , its image Q′ is a topological

quadrilateral in H as in Definition 5.9 with S′1, S′3 (the arcs touching the boundary)

either both lying in [0,∞), or both in (−∞, 0].

Suppose we are in the first case. We would like to bound above the probability

of γ(n)[τ,∞) crossing Q, where Q has modulus greater than M for some positive

M . Equivalently, we must bound the probability of f
(n)
τ (γ(n)[τ,∞)) crossing Q′,

noting by conformal invariance that Q′ also has modulus greater than M . If Q′ =

(V ′, (S′k)1≤k≤4), we let Q′′ = (V ′′, S′′0 , S
′′
2 ) be the doubly connected domain where V ′′

is the interior of the closure of V ′∪V ′∗ (V ′∗ the reflection of V ′ in the real line) and

S′′0 , S
′′
2 are it’s inner and outer boundary. Following the arguments in the proof of

[KS16, Theorem 1.10], we let x = min(R∩S′′0 ) > 0 and r = max{|z−x| : z ∈ S′′0} > 0.

We see that Q′′ is a doubly connected domain separating x and a point on ∂B(x, r)

from 0 and∞ (see Figure 29.) However, [Ahl73, Thoerem 4.7] tells us that among all

such domains, the one with the largest modulus (here defined as the extremal length

of the curve family connecting S′′0 and S′′2 in V ′′, which satisfies m(Q′′) = m(Q′)/2)

is the domain formed by removing (−∞, 0]∪ [x, x+ r] from the complex plane. This

modulus is also calculated explicitly in [Ahl73] and so we may deduce that

exp(2πm(Q′′)) ≤ 16
(x
r

+ 1
)
.

Since

m(Q′′) =
m(Q)

2
≥ M

2
,
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this means that r ≤ νx for

ν =

(
1

16
exp(πM)− 1

)−1

. (5.10)

Note that ν can be made as small as we like by choosing M large.

B(x, r)Q′′ = Q ∪Q′

x0

Q

Q′

S2

S ′
2

S0

S ′
0

S3

S ′
3

S1

S ′
1

Figure 29: Since Q′′ separates x and a point on ∂B(x, r) from∞, we obtain a lower bound
on m(Q′′) = m(Q)/2. Since m(Q) ≥ M this gives us an upper bound on r/x. Moreover,
we know that for a curve to cross Q it must necessarily intersect B(x, r).

It is also clear that for f
(n)
τ (γ(n)[τ,∞)) to cross Q′, it must necessarily intersect

B(x, r). However, the law of f
(n)
τ (γ(n)[τ,∞)) is that of the level line of h̃ + η

(n)
τ ◦

(f
(n)
τ )−1, for h̃ a zero boundary GFF in H. By the monotonicity result Corollary

5.36, we see that this level line lies to the left of the level line of h̃ + G1 almost

surely (see Figure 30.) Thus, the probability of f
(n)
τ (γ(n)[0, τ ]) intersecting B(x, r)

is less than the probability of an SLE4(ρL; ρR) process with

ρL = −1 +
C

λ
; ρR = −2 +

c

λ
(5.11)

(left and right force points at the origin), intersecting it.

Therefore, we have

P
(
γ(n)[τ,∞) crosses Q | γ(n)[0, τ ]

)
≤ P

(
f (n)
τ (γ(n)[τ,∞)) crosses Q′ | γ(n)[0, τ ]

)
≤ P

(
f (n)
τ (γ(n)[τ,∞)) intersects B(x, r) | γ(n)[0, τ ]

)
≤ P

(
SLE4(ρL; ρR) intersects B(x, r)

)
(ρL, ρR are defined in Equation (5.11))

= P
(

SLE4(ρL; ρR) intersects B(1, r/x)
)

(by scaling invariance)

≤ P
(

SLE4(ρL; ρR) intersects B(1, ν)
)
. (ν is defined in Equation (5.10))
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f (n)
τ

0

∞

0

∞

γ(n)[0, τ ]
f
(n)
τ (γ(n)[τ,∞])

B(x, r)
−λ λ

−C ≤ Fn Fn ≥−λ+c
−λ λ

≥−C ≥−λ+c

Figure 30: The boundary values of h+Fn given γ(n)[0, τ ] are marked in the left panel. Thus

f
(n)
τ (γ(n)[τ,∞]) is the level line of a zero boundary GFF h̃ + boundary data as depicted in

the right panel. By monotonicity, it must therefore lie to the left of the level line of h̃+G1

(marked in red.) Consequently, the probability that f
(n)
τ (γ(n)[τ,∞]) intersects B(x, r) is

less than the probability that the red level line does.

Since we know that the SLE4(ρL; ρR) process with left and right force points

at 0 almost surely does not hit the point 1 (in fact, there is exact estimate on this

event, see for instance [MW16, Theorem 1.8]), we see that by choosing M large

enough, and so ν small enough, we can make the right hand side less than 1/2.

Thus there exists an M such that the left hand side is bounded above uniformly by

1/2 whenever m(Q) ≥M .

For the second case, when the boundary arcs S′1, S
′
3 of Q′ both lie on the negative

real line, we may use symmetrical arguments, replacing G1 by G2.

Corollary 5.38. Suppose that (γ(n))n∈N are a family of SLE4(ρL; ρR) processes

satisfying Condition (5.9) for all n. Suppose further than they are all parameterised

by half plane capacity and that (W (n))n∈N are the corresponding family of driving

functions. Then

• (W (n))n∈N is tight in the metrisable space of continuous functions on [0,∞)

with the topology of uniform convergence on compact subsets of [0,∞).

• (γ(n))n∈N is tight in the metrisable space of continuous functions on [0,∞)

with the topology of uniform convergence on the compact subsets of [0,∞).

Moreover, if the sequence converges weakly in either of the topologies above, then it

also converges weakly in the other and the limits agree in the sense that the law of

the limiting random curve is the same as the that of the random curve generated

under the law of the limiting driving process.

Proof. This is a direct consequence of Proposition 5.12 and the remarks in Theorem

1.10 of [KS16].
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5.6 Existence of the coupling—proof of Theorem 5.2

In this section we will show existence of the coupling described by Theorem 5.2.

Recall we would like to prove that for F on R which is regulated, so can be approxi-

mated uniformly by piecewise constant functions changing value only finitely many

times, and which satisfies Condition (5.2), there exists a coupling of a Loewner chain

K with a zero boundary GFF h, such that K is a level line of h+ F . Moreover, we

will show that K is almost surely generated by a continuous and transient curve γ.

To do this we will take a sequence of piecewise constant functions Fn (changing

value only finitely many times), which uniformly approximate F , and consider the

level lines, denoted by γ(n), of h + Fn for a zero boundary GFF h. Observe that

we can choose the Fn so that the level lines are a family of SLE4(ρL; ρR) processes

satisfying the conditions of Corollary 5.38. Thus, the tightness given by the corollary

will allow us to extract a subsequential limit.

Proposition 5.39. Let F satisfy the conditions of Theorem 5.2. Suppose that

(Fn)n∈N are piecewise constant functions on R, changing value only finitely many

times. Let h be a zero boundary GFF and γ(n) be the level line of h + Fn for each

n. Suppose further that they are all parameterized by half plane capacity and that

(W (n))n∈N are the corresponding family of driving functions.

Then, if the (Fn) converge uniformly to F on R, we have that:

(1) There exists a subsequence of the γ(n) which converges weakly in the space of

continuous functions on [0,∞) with the topology of uniform convergence on

compact subsets of [0,∞).

(2) The limiting law describes a continuous curve from 0 to ∞ in H which gener-

ates a Loewner chain with a.s. continuous driving function.

(3) The limiting curve can be coupled with a zero boundary GFF h, as a level line

of h+ F .

Remark 5.40. We will later see that this limiting law does not depend on the

choice of approximation, as any continuous curve which can be coupled with a zero

boundary GFF as a level line of h + F must have a unique law: see Remark 5.44.

In particular, this tells us that we actually have convergence of the whole sequence

in distribution.

Proof of Theorem 5.2. Theorem 5.2 is a direct consequence of Proposition 5.39.

Proof of Proposition 5.39, Items (1), (2). Note that the weak convergence directly

follows from Corollary 5.38, as does the fact that the limiting law corresponds to a
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continuous curve generating a Loewner chain with almost surely continuous driving

function.

Definition 5.41. Suppose that F is L1 with respect to harmonic measure on R and

that γ is a continuous curve with continuous Loewner driving function. We set η0
t

in the same way as in Definition 5.1. Then for any z ∈ H we can define, for t less

than the first time that γ swallows z,

ηt(F, γ, z) = η0
t (ft(z))

as in Definition 5.1, emphasising the dependence on F and γ. Let

Ct(γ, z) = log CR(z,H)− log CR(z,H \Kt),

η̃t(F, γ, z) = ητ(t)(F, γ, z), where τ(t) := inf{s ≥ 0 : Cs(γ, z) = t}.

Finally, define (W̃t(γ, z))t≥0 for γ to be the driving function of γ reparameterised

by Ct(γ, z).

To prove Proposition 5.39, Item (3), i.e. to see that the limiting curve can be

coupled as a level line in the way we want, we will use Lemma 5.24. This tells us

that if we define η̃t(F, γ, z) as above for our limiting curve γ, we need only show that

for each z ∈ H, the process (η̃t(F, γ, z), t ≥ 0) is a Brownian motion with respect to

the filtration generated by (W̃t(γ, z), t ≥ 0).

Lemma 5.42. Let (γ(nk)) be a subsequence of the random curves in Proposition

5.39, parameterised by half plane capacity, which converge weakly to some γ in the

space of continuous functions on [0,∞) with the topology of uniform convergence on

compacts. Then for every z ∈ H,(
W̃ (γ(nk), z), η̃(F, γ(nk), z)

)
d−→
(
W̃ (γ, z), η̃(F, γ, z)

)
in C([0,∞);R) × C([0,∞);R) with respect to the product topology of uniform con-

vergence on compacts.

We postpone the proof of Lemma 5.42 and first tell the readers how we obtain

Proposition 5.39 from Lemma 5.42.

Lemma 5.43. Let (γ(nk)) be a subsequence of the random curves in Proposition

5.39, parameterised by half plane capacity, which converge weakly to some γ in the

space of continuous functions on [0,∞) with the topology of uniform convergence on
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compacts. Then for every z ∈ H,(
W̃ (γ(nk), z), η̃(Fnk , γ

(nk), z)
)

d−→
(
W̃ (γ, z), η̃(F, γ, z)

)
in C([0,∞);R) × C([0,∞);R) with respect to the product topology of uniform con-

vergence on compacts.

Proof. By Lemma 5.42, we have that(
W̃ (γ(nk), z), η̃(F, γ(nk), z)

)
d−→
(
W̃ (γ, z), η̃(F, γ, z)

)
(5.12)

with respect to the product topology of uniform convergence on compacts. It is also

clear that, for all t, z and any curve γ′

∣∣η̃t(Fnk , γ′, z)− η̃t(F, γ′, z)∣∣ ≤ sup
x∈R
|F (x)− Fnk(x)|.

Indeed, η̃t(Fnk , γ
′, ·) and η̃t(F, γ

′, ·) are by definition harmonic extensions of

functions whose boundary values differ by at most the right hand side. Since

supx∈R |F (x) − Fnk(x)| → 0 by assumption, we may conclude that, for any T > 0,

almost surely as k →∞,

sup
t∈[0,T ]

∣∣∣η̃t(Fnk , γ(nk), z)− η̃t(F, γ(nk), z)
∣∣∣→ 0. (5.13)

Combining Equations (5.12) and (5.13), we obtain the conclusion.

Proof of Proposition 5.39, Item (3). Fix z ∈ H. Since γ(nk) is coupled as a level

line of h+Fnk we know by Lemma 5.24 that
(
η̃t(Fnk , γ

(nk), z), t ≥ 0
)

is a Brownian

motion for each k, with respect to the filtration of
(
W̃t(γ

(nk), z), t ≥ 0
)

. Therefore,

by the weak convergence in Lemma 5.43, we have that if γ is the limiting law of

the γ(nk)’s, the process η̃t(F, γ, z) must also have the law of Brownian motion, with

respect to the filtration of
(
W̃t(γ, z), t ≥ 0

)
. Applying Lemma 5.24 again proves the

proposition.

Proof of Lemma 5.42. Fix z ∈ H. We will show that the laws of

(W̃ (γ(nk), z), η̃(F, γ(nk), z)) converge weakly in k to the law of (W̃ (γ, z), η̃(F, γ, z)).

To do this, we begin by showing that this family of laws is tight in

C([0,∞);R) × C([0,∞);R) with respect to the product topology of uniform

convergence on compacts. This allows us to extract a further subsequence along

which the (W̃ (γ(nk), z), η̃(F, γ(nk), z))’s converge. We then argue that the limit of

this subsequence must be equal to that of (W̃ (γ, z), η̃(F, γ, z)), so in fact our whole
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original subsequence converged, and the limit is (W̃ (γ, z), η̃(F, γ, z)). Note that

the proof of this lemma would be trivial if (W̃ (·, z), η̃(F, ·, z)) was a continuous

function on the set of curves, however, this is not quite the case. It is essentially

a continuous function when restricted to a set in which the γ(nk)’s lie with high

probability.

By the proof of [KS16, Theorem 1.5], we know that for every M > 0 we can find

a subset E of the space of continuous curves in H such that

inf
k
P(γ(nk) ∈ E) ≥ 1− 1

M
(5.14)

when the (γ(nk)) are parameterised by half plane capacity, and

• E is relatively compact with respect to the topology of uniform convergence

on compacts,

• curves in E correspond to Loewner chains with continuous driving functions

parameterised by half plane capacity, and

• if a sequence of curves in E converges with respect to uniform convergence on

compacts, then their driving functions also converge uniformly on compacts

along a further subsequence, and the limits agree.

For the construction of such an E, see Section 3.5 of [KS16], in particular the

definition (60) and the discussion in the closing paragraphs. See also the opening

paragraph of Section 3.6.

We argue that the set {(W̃ (γ′, z), η̃(F, γ′, z)) : γ′ ∈ E} is a relatively compact

subset of C([0,∞);R)×C([0,∞);R) with respect to the product topology of uniform

convergence on compacts. Thus by (5.14) the laws of the(
W̃ (γ(nk), z), η̃(F, γ(nk), z)

)
are tight in this topology. It is sufficient to verify the following claim: if γ′n → γ′

is any convergent sequence of curves in E, whose driving functions also converge

uniformly on compacts, then for any T > 0, as n→∞,

sup
t∈[0,T ]

∣∣η̃t(F, γ′n, z)− η̃t(F, γ′, z)∣∣→ 0 (5.15)

and

sup
t∈[0,T ]

∣∣∣W̃t(γ
′
n, z)− W̃t(γ

′, z)
∣∣∣→ 0. (5.16)

Relative compactness then follows because the choice of E means that any sequence

of curves in E has a convergent subsequence along which the driving functions also
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converge.

We will prove the above claim now. We let Kt (resp. Kn
t ) be the hull generated

by γ′ (resp. γ′n) in the capacity parameterisation and Wt, gt (resp. Wn
t , g

n
t ) be the

corresponding driving functions, and functions H\Kt (resp. H\Kn
t ) to H, normalised

at ∞. We define ft = gt−Wt and fnt = gnt −Wn
t as usual, and consider these to be

extended to the boundary, also writing ft(0
+) for V R

t (0+)−Wt. Write

Ct = Ct(γ
′, z), Cnt = Ct(γ

′
n, z);

τ(t) := inf{s ≥ 0 : Cs = t}, τn(t) := inf{s ≥ 0 : Cns = t}.

First, we will show that for any T > 0 before the first time that γ′ swallows z,

as n→∞,

sup
t∈[0,T ]

|Ct − Cnt | → 0. (5.17)

We have the following observations.

• By Lemma 5.23, and since C0 = Cn0 = 0, we have

Ct =

∫ t

0

−4=(fs(z))
2

|fs(z)|4
ds; Cnt =

∫ t

0

−4=(fns (z))2

|fns (z)|4 ds.

• Wn
t →Wt uniformly on [0, T ].

• gnt → gt uniformly on {(t, z) ∈ [0, T ] × H : d(z,Kt) > δ} for any δ > 0. (See

for instance [KS16, Lemmas A.3 and A.4])

Combining these three facts, we obtain Equation (5.17).

Second, we show that, for any T > 0 before γ′ swallows z, as n→∞,

sup
t∈[0,T ]

∣∣ητn(t)(F, γ
′, z)− ητ(t)(F, γ

′, z)
∣∣→ 0. (5.18)

By Equation (5.17), we have that [0, τn(T ) ∨ τ(T )] ⊂ [0, τ(S)] for n large enough,

where S > T , and τ(S) is a time before z is swallowed by γ′. By (5.17) again, we

therefore have that, as n→∞

cn := sup
t∈[0,T ]

|Cτn(t) − t| ≤ sup
t∈[0,τn(T )∨τ(T )]

|Ct − Cnt | → 0.

Since

sup
t∈[0,T ]

∣∣ητn(t)(F, γ
′, z)− ητ(t)(F, γ

′, z)
∣∣ ≤ sup

s,t∈[0,S],|s−t|≤cn

∣∣η̃t(F, γ′, z)− η̃s(F, γ′, z)∣∣ ,

205



and η̃t(F, γ
′, z) is uniformly continuous on [0, S], we see that it must converge to 0.

Third, we show that, for any T > 0 before γ′ swallows z, as n→∞,

sup
t∈[0,T ]

∣∣ητn(t)(F, γ
′
n, z)− ητn(t)(F, γ

′, z)
∣∣→ 0. (5.19)

We need only show that, on any time interval [0, S] such that S is strictly less than

the time γ′ swallows z, the quantity |ηt(F, γ′n, z)− ηt(F, γ′, z)| converges uniformly

to 0. We have the following observations.

• By Definition 5.41, we know that ηt(F, γ
′, ·) (resp. ηt(F, γ

′
n, ·)) is the bounded

harmonic function with boundary values equal F on R \Kt (resp. on R \Kn
t ),

−λ on the left side of Kt (resp. Kn
t ), and λ on the right side of Kt (resp. Kn

t ).

• Wn
t →Wt uniformly on [0, S].

• gnt → gt uniformly on {(t, z) ∈ [0, S] × H : d(z,Kt) > δ} for any δ > 0. Same

reason as above.

Combining these three facts, we have that the quantity |ηt(F, γ′n, z)− ηt(F, γ′, z)|
converges uniformly to 0 on t ∈ [0, S], implying Equation (5.19).

Combining Equations (5.17), (5.18) and (5.19), we obtain Equation (5.15) by

noting that

sup
t∈[0,T ]

∣∣ητn(t)(F, γ
′
n, z)− ητ(t)(F, γ

′, z)
∣∣ ≤ sup

t∈[0,T ]

∣∣ητn(t)(F, γ
′
n, z)− ητn(t)(F, γ

′, z)
∣∣

+ sup
t∈[0,T ]

∣∣ητn(t)(F, γ
′, z)− ητ(t)(F, γ

′, z)
∣∣ . (5.20)

We obtain Equation (5.16) by the same method as above, which is much simpler

in this case, and so we omit the details.

Finally, we show that if (γ(nk))k∈N converges weakly, and there exists a further

subsequence along which (W̃ (γ(nk), z), η̃(F, γ(nk), z)) converges, then the limit must

be (W̃ (γ, z), η̃(F, γ, z)). To do this, for any M ∈ N take E relatively compact such

that (5.14) holds, and note that by the above claim we have that

AE :=
{

(γ′, W̃ (γ′, z), η̃(F, γ′, z)) : γ′ ∈ E
}

is relatively compact in C([0,∞);C)×C([0,∞);R)×C([0,∞);R) , and its closure

is equal to {
(γ′, W̃ (γ′, z), η̃(F, γ′, z)) : γ′ ∈ E

}
.

This means that the joint laws of (γ(nk), W̃ (γ(nk), z), η̃(F, γ(nk), z)) are also tight,
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and thus we can extract an even further subsequence along which we have joint

convergence. If P∗ is the law of this joint limit then,

P∗
(
AE
)
≥ inf

k
P
(
γ(nk) ∈ E

)
≥ 1− 1

M

and so we see that the probability of our marginal laws agreeing in the sense we

want must be greater than 1 − 1
M . Since this holds for every M , agreement must

hold almost surely, and as these marginal laws are equal to the limiting laws of the

individually convergent sequences, the result follows.

5.7 Proof of Theorems 5.3 to 5.5

Proof of Theorem 5.4. Suppose that γF and γG are continuous transient curves from

0 to∞ in H, coupled with a zero-boundary GFF h as level lines of h+F and h+G

respectively. Suppose further that γ′G is a continuous transient curve from ∞ to

0 and is coupled with h as a level line of −h − G from ∞ to 0, such that the

four objects h, γF , γG, γ
′
G are coupled with γF , γG, γ

′
G are conditionally independent

given h. From Theorem 5.2, we have the existence of γF , γG and γ′G. By Lemma

5.35, we know that γF stays to the left of γG almost surely.

Proof of Theorems 5.3 and 5.5. Suppose that γF is a continuous transient curve

which is coupled with h as a level line of h + F from 0 to ∞, as in Theorem 5.2.

Let γ′F be a continuous curve coupled with h as a level line of −h − F from ∞ to

0, such that γF and γ′F are conditionally independent given h. The existence of γ′F
is given by Theorem 5.2. Lemma 5.34 then tells us that γF = γ′F almost surely. In

particular, γF is almost surely determined by h.

Remark 5.44. By applying Theorem 5.3, we see that if γ is the weak limit of any

sequence of level lines as in Proposition 5.39, then γ can be coupled as the level line

of a GFF and is moreover determined by the GFF in this coupling. Thus, the law

of γ is uniquely determined. In particular, it does not depend on the sequence of

approximating level lines.

Lemma 5.45. Let F be as in Theorem 5.2. Suppose that Fn ↓ F approximate F

uniformly on the real line, where the Fn are decreasing, and are piecewise constant

with value changing only finitely many times.

Let h be a zero boundary GFF in H, γn be the level line of h + Fn for each n,

and γ be the level line of h + F . Denote by Hn the open sets corresponding to the

strict right hand sides of γn. By monotonicity these are almost surely decreasing.

207



Define

H = ∩nHn.

Then ∂H coincides with γ almost surely. In other words, the sequence of curves γn

converges to γ almost surely.

Proof. First, we show that ∂H has the same law as γF . We use a conformal mapping

to take everything to the unit disc, as it will be more convenient to work in a space

where our sets are compact. We endow H with the metric it inherits from the unit

disc U via the map ϕ(z) = (z − i)/(z + i). Namely, let d∗(·, ·) denote the metric on

H given by

d∗(z, w) = |ϕ(z)− ϕ(w)|.

We write H for the completion of H with respect to d∗. For compact sets A,B ⊂ H,

we have the d∗-induced Hausdorff distance

dH∗ (A,B) = inf{ε > 0 : A ⊂ B(ε), B ⊂ A(ε)},

where A(ε) denotes the open ε-neighborhood of A with respect to the metric d∗.

Note that dH∗ makes the set of all non-empty compact subsets of H (with metric d∗)

into a compact metric space. We have the following observations.

• The sets Hn form an almost surely decreasing sequence of compact subsets

of H, which therefore converge to H with respect to dH∗ . This implies that

γn = ∂Hn almost surely converges to ∂H with respect to dH∗ .

• By the assumptions on Fn, we know that the laws of γn fall in to the framework

of Proposition 5.39. This means that we can extract a subsequence which

converges weakly in the space of continuous functions on [0,∞) with respect

to uniform convergence on compacts. Moreover, the limiting curve can be

coupled with a zero boundary GFF h̃ as the level line of h̃+ F . Furthermore,

the subsequence converges weakly, to the same limit, in the space of curves

from [0, 1] → H with respect to the topology of uniform convergence modulo

reparameterisation, where the metric on H is given by d∗. This requires a slight

extension of Proposition 5.12, which was stated here, but is nonetheless still

true, by the extended version given in [KS16, Corollary 1.7]. By continuity, we

therefore have that along this subsequence the curves also converge weakly to

the same limit with respect to dH∗ . Thus ∂H has the law of a continuous curve

which can be coupled with a zero boundary GFF h̃ as the level line of h̃+ F .

• By Theorem 5.3, we know that the law on continuous curves which can be

coupled with a GFF h̃ as a level line of h̃+ F , is unique.
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Combining these three facts, we may conclude that ∂H has the same law as γF .

Next, we show that ∂H coincides with γ almost surely. We have the following

observations.

• By the above analysis, we know that ∂H has the same law as γ.

• By Theorem 5.4, we know that ∂H lies to the left of γ almost surely.

Combining these two facts, we obtain that ∂H coincides with γ almost surely.

5.8 Proof of Theorem 5.6 and concluding remarks

In this section, we prove Theorem 5.6: the key ingredient being the proof of Lemma

5.46. This lemma is proved in [MS16a, WW16] for SLE4(ρ) process when ρ is a

vector. The proof given in these papers will work with minor modifications for the

case when ρ is a Radon measure but, to be self-contained, we still give a complete

proof here.

Lemma 5.46. Suppose we are given a random continuous curve in H from 0 to

∞ whose Loewner driving function W is almost surely continuous. If (ρL; ρR) are

a pair of finite Radon measures on R−,R+ and F is the corresponding function of

bounded variation, define (ηt, t ≥ 0) as in Definition 5.1. For z ∈ H and t ≥ 0,

define

τ(t) = inf{s : log CR(z,H)− log CR(z,H \Ks) = t}.

Then
(
W, (V L(x))x∈R− , (V

R(x))x∈R+

)
can be coupled with a standard Brownian mo-

tion to describe an SLE4(ρL; ρR) process if (ητ(t)(z), t ≥ 0) evolves as a Brownian

motion with respect to the filtration generated by (Wτ(t), t ≥ 0) for any z ∈ H.

Proof. Suppose that (ητ(t)(z), t ≥ 0) is a Brownian motion with respect to the

filtration generated by (Wτ(t), t ≥ 0) for each z ∈ H. This implies that (ηt(z), t ≥ 0)

is a local martingale with respect to the filtration generated by (Wt, t ≥ 0). Our

first step will be to show that Wt is a continuous semi-martingale. By the definition

of ηt(·), we know that, for each z ∈ H,

2ηt(z) =−
∫
R−

arg(gt(z)− V L
t (x)) ρL(dx)− arg(gt(z)−Wt)

+ (π − arg(gt(z)−Wt)) +

∫
R+

(
π − arg(gt(z)− V R

t (x))
)
ρR(dx). (5.21)

This follows from the integration by parts formula for functions of bounded varia-

tion, and the integral expression for the harmonic extension of a bounded function

on the real line. Note here that the integrals are well defined, since for each fixed
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t, z the integrands are continuous, bounded functions in x, and ρL, ρR are assumed

to be finite measures. Indeed, gt(z) and (V L,R
t (x))x∈R are adapted and differen-

tiable, and we may also differentiate under the integral in (5.21) by finiteness of

ρL, ρR. Therefore, we can deduce that all the terms in (5.21) apart from the only

one, arg(gt(z) −Wt), involving Wt, are semi-martingales. Since ηt(z) is itself a lo-

cal martingale, this means that arg(gt(z) − Wt) must also be a semi-martingale.

Now, note that by Schwartz’s formula, we can write log(gt(z) −Wt), up to a con-

stant, as a linear functional (an integral against a test function) of arg(gt(z)−Wt).

So log(gt(z) −Wt) is also a semi-martingale, and thus it’s exponential, and conse-

quently Wt itself, must be a semi-martingale also. Hence we can write Wt := Mt−Vt
for M a local martingale and V of bounded variation.

Substituting this into the expression (5.21) we see that, on intervals where Wt

does not collide with the V L,R
t , the drift of 2ηt is equal to the imaginary part of

∫
R−

2ρL(dx)

V Lt (x)−Wt

gt(z)−Wt
dt+

−2dVt
(gt(z)−Wt)

+
d〈Wt〉 − 4dt

(gt(z)−Wt)2
+

∫
R+

2ρR(dx)

V Rt (x)−Wt

gt(z)−Wt
dt,

which of course must vanish. Therefore, multiplying by (gt(z)−Wt)
2 and evaluating

at z such that gt(z)−Wt is arbitrarily close to 0, we can deduce that d〈Wt〉 = 4dt.

On subsequently removing the third term, we also find an expression for dVt, and

can conclude that Wt satisfies (5.3) in Definition 5.20 on intervals where Wt does

not collide with the V L,R
t .

All that remains is to show that we have instantaneous reflection of Wt off the

V L,R
t (x). It suffices to show that the number of times the curve γ hits the real line

has Lebesgue measure 0. However, this is always the case for a continuous curve

with continuous driving function, which we know for example by [MS16a, Lemma

2.5].

Remark 5.47. We believe that Lemma 5.46 could be made into an if and only

if statement if we strengthened Definition 5.20 of an SLEκ(ρL; ρR) process to also

require that, almost surely,

V L
t (x) = x+

∫ t

0

2ds

V L
s (x)−Ws

, x ∈ R−; V R
t (x) = x+

∫ t

0

2ds

V R
s (x)−Ws

, x ∈ R+

(5.22)

and

Wt =
√
κBt +

∫ t

0
ds

∫
R−

ρL(dx)

Ws − V L
s (x)

+

∫ t

0
ds

∫
R+

ρR(dx)

Ws − V R
s (x)

, (5.23)

as in [WW16] and [MS16a].
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That is, using the stronger definition, we could show that any such process

can always be coupled with the Gaussian Free Field as generalized level line. This

would also give us uniqueness in law for the SLE4(ρL; ρR) process among continuous

curves. However, it seems that (5.22) and (5.23) are hard to verify assuming only

that (ητ(t)(z), t ≥ 0) evolves as a Brownian motion.

Proof of Theorem 5.6. Combining Theorem 5.2 with Lemmas 5.24 and 5.46 in the

case that F is of bounded variation, we know that in the coupling (h, γ) given by

Theorem 5.2, the marginal law of γ is that of an SLE4(ρL; ρR) process. This gives us

existence of the process. Moreover, we know the curve γ is almost surely continuous

and transient and also satisfies the reversibility property (3) of Theorem 5.6, by

Theorem 5.5.

Remark 5.48. We can also generalize the construction of flow lines and counter-

flow lines to GFF with general boundary data. A similar approximating idea works

for flow lines and counterflow lines. Since the flow lines and counterflow lines have

a duality property, instead of reversibility as for level line case, some extra work

is neeeded for the proof of monotonicity as in Section 5.4. The details are left to

interested readers.

Remark 5.49. As explained in the introduction, we restrict to boundary values

satisfying Condition (5.2) throughout the paper. This condition guarantees that there

is no continuation threshold. The continuity of the level lines when there does exist

a continuation threshold is still open.
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[Bañ99] R. Bañuelos. Intrinsic ultracontractivity and eigenfunction estimates

for Schrödinger operators. Journal of Functional Analysis, 100:181–

205, 1999.

[BBI01] D. Burago, Y. Burago, and S. Ivanov. A course in metric geometry.

AMS, Boston MA, 2001.

[BBS11] J. Berestycki, N. Berestycki, and J. Schweinsberg. Survival of near-

critical branching Brownian motion with absorption. Journal of Sta-

tistical Physics, 143:833–854, 2011.

[BBS14] J. Berestycki, N. Berestycki, and J. Schweinsberg. Critical branching

Brownian motion with absorption: survival probability. Probability

Theory and Related Fields, 160:489–520, 2014.

[Bef08] V. Beffara. The dimension of the SLE curves. Ann. Probab.,

36(4):1421–1452, 2008.

[Ber15a] N. Berestycki. An elementary approach to Gaussian multiplicative

chaos. Preprint, 2015.

[Ber15b] N. Berestycki. Introduction to the Gaussian free field and Liouville

quantum gravity. Lecture Notes, available on the webpage of the au-

thor, 2015.

[Bil95] P. Billingsley. Probability and Measure. John Wiley and Sons, New

York, 3rd edition, 1995.

[BK77] J.D. Biggins and A.E. Kyprianou. Martingale convergence in the

branching random walk. J. Appl. Probability, 14(1):25–37, 1977.

212



[BK04] J.D. Biggins and A.E. Kyprianou. Measure changes in multitype

branching. Adv. in Appl. Probab., 36:544–581, 2004.

[BN] N. Berestycki and J. Norris. Lectures on Schramm-Loewner evolutions.

Lecture notes, available on the webpages of the authors.

[CDCH+14] D. Chelkak, H. Duminil-Copin, C. Hongler, A. Kempainnen, and

S. Smirnov. Convergence of Ising interfaces to Schramm’s SLE curves.

C.R. Math. Acad. Sci. Paris, 352(2):157–161, 2014.

[CN07] F. Camia and C.M. Newman. Critical percolation exploration path

and SLE6: a proof of convergence. Probability Theory and Related

Fields, 139(3-4):473–519, 2007.

[CR88] B. Chauvin and A. Rouault. KPP equation and supercritical branching

Brownian motion in the subcritical speed area. Application to spatial

trees. Probability Theory and Related Fields, 80:299–314, 1988.

[CS12] D. Chelkak and S. Smirnov. Universality in the 2D Ising model and con-

formal invariance of fermionic observables. Invent. Math., 189(3):515–

580, 2012.
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