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Genome-wide analysis of health-
related biomarkers in the UK 
Household Longitudinal Study 
reveals novel associations
Bram P. Prins1, Karoline B. Kuchenbaecker1, Yanchun Bao2, Melissa Smart2, Delilah Zabaneh3, 
Ghazaleh Fatemifar4, Jian’an Luan5, Nick J. Wareham5, Robert A. Scott5, John R. B. Perry5, 
Claudia Langenberg5, Michaela Benzeval2, Meena Kumari2 & Eleftheria Zeggini  1

Serum biomarker levels are associated with the risk of complex diseases. Here, we aimed to gain 
insights into the genetic architecture of biomarker traits which can reflect health status. We performed 
genome-wide association analyses for twenty serum biomarkers involved in organ function and 
reproductive health. 9,961 individuals from the UK Household Longitudinal Study were genotyped 
using the Illumina HumanCoreExome array and variants imputed to the 1000 Genomes Project and 
UK10K haplotypes. We establish a polygenic heritability for all biomarkers, confirm associations of 
fifty-four established loci, and identify five novel, replicating associations at genome-wide significance. 
A low-frequency variant, rs28929474, (beta = 0.04, P = 2 × 10−10) was associated with levels of 
alanine transaminase, an indicator of liver damage. The variant is located in the gene encoding serine 
protease inhibitor, low levels of which are associated with alpha-1 antitrypsin deficiency which leads 
to liver disease. We identified novel associations (rs78900934, beta = 0.05, P = 6 × 10−12; rs2911280, 
beta = 0.09, P = 6 × 10−10) for dihydroepiandrosterone sulphate, a precursor to major sex-hormones, 
and for glycated haemoglobin (rs12819124, beta = −0.03, P = 4 × 10−9; rs761772, beta = 0.05, 
P = 5 × 10−9). rs12819124 is nominally associated with risk of type 2 diabetes. Our study offers insights 
into the genetic architecture of well-known and less well-studied biomarkers.

Serum biomarker levels are associated with the risk of complex diseases and are therefore increasingly used in 
clinical practice to assist with diagnosis, status monitoring and disease management. Well-known examples 
include the measurement of lipid levels in the context of cardiovascular disease or liver enzymes and albumin to 
assess liver function.

Serum biomarker levels have a polygenic basis. As demonstrated in the case of lipids, identifying genetic 
associations can provide new insights into disease aetiology which can in turn guide drug discovery and be use-
ful for diagnosis and risk stratification1–3. However, the genetic architecture of most health-related biomarkers 
has not been studied as extensively as for lipids. Alleles identified to be associated with protein biomarkers to 
date are predominantly common (minor allele frequency (MAF) >5%). This is primarily driven by genotyping 
technology and composition of arrays or imputation reference panels used to date4–6. Systematically evaluating 
the association of low frequency and rare variants can provide new insights regarding the genetic architecture of 
protein biomarkers.

The importance of studying the joint impact of genetic and non-genetic factors on health has been recog-
nised by the UK Household Longitudinal Study (UKHLS, www.understandingsociety.ac.uk), also known as 
Understanding Society. Involving a total of 40,000 households representative of the UK population, UKHLS is 
the largest panel survey in the world to support social research. A wide range of social, economic, environment, 
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behavioural, attitudinal, physiological and biomedical variables, including a large panel of the most commonly 
used clinical biomarkers, have been measured for a representative selection of the sample. This study represents 
a large sample with very homogenous biomarker measurements, in which recruitment and processing have been 
carried out consistently and following strict protocols.

Here we describe genome-wide investigation of associations with 20 biomarkers relevant to blood clot forma-
tion (fibrinogen), diabetic status (glycated haemoglobin [HbA1c]), insulin-like growth factor 1 [IGF-1]), inflam-
mation (C-reactive protein [CRP]), iron homeostasis (ferritin, haemoglobin), lipid metabolism (HDL-, LDL- and 
total cholesterol, triglycerides), liver function (alanine and aspartate transaminase, alkaline phosphatase, gamma 
glutamyl transferase [GGT]), liver and kidney function (albumin, creatinine, eGFR, urea), and reproductive 
health (dihydroepiandrosterone sulphate [DHEAS], testosterone) in 9,961 individuals from UKHLS. We also 
leverage the homogeneity of the sample and its size to estimate the narrow sense heritability which has not yet 
been quantified for many of these biomarkers.

Results
Imputation and genomic coverage. After quality control, genotype data for 525,314 variants were avail-
able for 9,961 individuals (Table 1). Following imputation based on the combined reference panel of UK10K 
and 1000 Genomes Project phase 3, we analysed 23,756,480 variants with imputation accuracy >0.4. Of those, 
14,364,872 were rare (MAF <1%, minor allele count (MAC) >10) (2,237,400 of which had imputation accuracy 
>0.9), 2,732,394 low-frequency (1%≤ MAF <5%) and 6,659,214 common (MAF ≥5%).

Heritability and genetic overlap analyses. For all biomarkers except overall and LDL-cholesterol, ala-
nine transaminase and ferritin there was significant (p < 3.6 × 10−3) evidence for a heritable polygenic compo-
nent (Table 2). Alkaline phosphatase and testosterone had the highest array heritability estimates with h2 = 27.7% 
(standard error (SE): 0.040) and h2 = 27.1% (SE: 0.084), respectively. Creatinine, GGT, HbA1c, HDL, IGF1, and 
triglycerides all had estimates larger than 0.20 while the lowest estimate was observed for ferritin (h2 = 6.1%, SE: 
0.037). We found statistically significant (p < 5.5 × 10−4) evidence of genome-wide pleiotropy between different 
biomarkers (Fig. 1). There was genetic correlation between lipid biomarkers: triglyceride and HDL-cholesterol 
levels (genetic correlation rg = −0.67, p = 9.9 × 10−18). Triglyceride levels were also inversely genetically linked 
with DHEAS (rg = −0.53 p = 4.0 × 10−4). The genetic correlation between two markers of inflammation, 
C-reactive protein and fibrinogen, was also significant (rg = 0.60 p = 3.2 × 10−8). Finally, the genetic factors for 
creatinine and urea were positively correlated (rg = 0.56 p = 1.2 × 10−5).

Genome-wide association analyses. The genome-wide significance threshold of P < 3.56 × 10−9 for this 
study was derived by taking the conventional genome-wide significance threshold (P < 5 × 10−8) divided by the 
effective number of independent traits analysed (N = 14.05, details in Methods). Across fifteen biomarkers, we 
observed associations of 54 previously reported loci at this threshold (Fig. 2). This includes a low frequency vari-
ant, rs148685782 at 4q31 in the fibrinogen gamma chain gene (weighted effect allele frequency [WEAF] = 0.4%, 
beta[SE] = −0.18[0.02], P = 4.0 × 10−21), associated with levels of fibrinogen, a glycoprotein that assists in the 

Variable units N missing

Female Male

N mean IQR* min max N mean IQR* min max

Age years 0 5574 52.1 25 16 99 4387 52.82 25 16 97

BMI 285 5416 28.02 7.4 14.5 75.7 4260 28.09 5.6 15.8 66.5

Albumin G/L 137 5501 46.24 4 36 57 4323 47.48 4 36 57

Alkaline Phosphatase lu/L 228 5451 70.99 26 22 191 4282 71.86 24 22 217

Alanine Transaminase lu/L 230 5458 23.66 10 5 152 4273 32.23 16 5 150

Aspartate Transaminase lu/L 498 5321 28.09 8 13 84 4142 32.12 9 12 82

Fibrinogen G/L 199 5468 2.87 0.7 1.5 5.2 4294 2.76 0.7 1.5 5.2

Total Cholesterol Mmol/L 144 5495 5.49 1.5 2.2 10 4322 5.29 1.6 2 10

Dihydroepiandrosterone Sulphate Umol/L 239 5414 3.76 3.3 0.4 19 4308 5.67 4.9 0.4 25.3

Creatinine Umol/L 158 5497 68.27 14 33 173 4306 85.9 17 44 178

Gamma Glutamyl Transferase lu/L 214 5467 27.33 16 5 382 4280 39.75 25 5 368

Glycated haemoglobin Mmol/mol 525 5288 36.05 6 15 57 4148 36.56 6 18 57

HDL cholesterol Mmol/L 165 5482 1.68 0.5 0.5 3.4 4314 1.37 0.5 0.4 3.4

Haemoglobin G/L 294 5392 130.49 13 82 174 4275 145.62 14 84 185

C-Reactive Protein (hs assay) Mg/L 420 5350 3.53 3 0.2 115.5 4191 3 2.2 0.2 104.9

Insulin-like growth factor 1 Nmol/L 229 5455 17.74 8 2 47 4277 18.43 8 3 47

Ferritin G/L 143 5499 92.93 82 3 1292 4319 189.11 143 7 3044

Testosterone (for males only) Nmol/L 5702 NA NA NA NA NA 4259 15.59 7.3 2.9 40.1

Triglycerides Mmol/L 216 5482 1.58 1 0.3 6.3 4263 1.99 1.3 0.3 6.3

Urea Mmol/L 143 5498 5.94 2 2.2 16.5 4320 6.53 2 2.1 16.5

Table 1. Descriptive statistics for the sample and the measured biomarkers. *IQR = inter quartile range.
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blood clot formation. This variant is a missense mutation and has been previously reported to be associated with 
fibrinogen levels7 as well as with hypofibrinogenemia and haemorrhage8–10.

From the discovery phase we carried forward 573 independent (pairwise r2 < 0.01) variants that were associ-
ated with biomarker levels at P < 1 × 10−5 and were located more than 500 kb away from any known index variant 
for the respective biomarker. Using data from up to 25,897 samples from 4 independent studies (Supplementary 
Table S1), five loci provided evidence of replication and reached P < 3.6 × 10−9 for the combined analysis of dis-
covery and replication data (Table 3).

rs28929474 at 14q32 (WEAF = 2%, beta[SE] = 0.04[0.01], P = 1.7 × 10−10), a low-frequency variant associated 
with alanine transaminase (ALT), resides in the serpin family A member 1 (SERPINA1) gene (Figs 3A and 4). 

biomarker name h2 standard error p-value

Albumin 0.15 0.04 8.9 × 10−6

Alkaline Phosphatase 0.28 0.04 2.2 × 10−13

Alanine Transaminase 0.09 0.04 6.8 × 10−3

Aspartate Transaminase 0.09 0.04 2.9 × 10−3

Fibrinogen 0.17 0.04 6.5 × 10−6

Total Cholesterol 0.07 0.04 0.023

Dihydroepiandrosterone Sulphate 0.17 0.04 4.7 × 10−6

in men 0.14 0.08 0.045

in women 0.20 0.07 1.6 × 10−3

Creatinine 0.21 0.04 5.2 × 10−9

eGFR 0.12 0.04 9.0 × 10−4

Gamma Glutamyl Transferase 0.22 0.04 2.4 × 10−9

Glycated haemoglobin 0.22 0.04 2.8 × 10−9

HDL cholesterol 0.23 0.04 5.9 × 10−10

LDL cholesterol 0.08 0.04 0.013

Haemoglobin 0.17 0.04 5.5 × 10−7

C-Reactive Protein (hs assay) 0.16 0.04 1.1 × 10−5

Insulin-like growth factor 1 0.20 0.04 4.6 × 10−9

Ferritin 0.06 0.04 0.043

Testosterone (for males only) 0.27 0.08 4.8 × 10−4

Triglycerides 0.23 0.04 3.6 × 10−10

Urea 0.14 0.04 2.1 × 10−4

Table 2. Array heritability (h2) estimates and standard errors for 20 biomarkers.

Figure 1. Genetic correlations between different biomarker levels. Colour-coding indicates the strength of 
the correlations. The lower triangle uses only the red color-coding to make it easier to compare the strength 
of all correlations. Stars indicate statistically significant associations. Albumin: alb, Alkaline Phosphatase: 
alkp, Alanine Transaminase: alt, Aspartate Transaminase: ast, Fibrinogen: cfib, Total Cholesterol: chol, LDL 
cholesterol: ldl, Dihydroepiandrosterone Sulphate: dheas, Creatinine: ecre, Gamma Glutamyl Transferase: ggt, 
Glycated haemoglobin: hba1c, HDL cholesterol: hdl, Haemoglobin: hgb, C-Reactive Protein: hscrp, Insulin-like 
growth factor 1: igfi, Ferritin: rtin, Testosterone: testo, Triglycerides: trig, Urea: ure.

http://S1
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SERPINA1 encodes alpha-1-antitrypsin (AAT), which is a serine protease inhibitor produced in the liver11. Low 
levels of this protein are the hallmark of a genetic disorder called alpha-1 antitrypsin deficiency (A1AD), which 
leads to liver disease12.

We identified two novel replicating associations for DHEAS (Fig. 3B,C). DHEAS is the sulphated form of 
DHEA, a precursor to major sex-hormones such as testosterone and oestrogen, and is synthesized in the adrenal 
glands. It is an important marker of adrenal gland function. rs78900934 at chromosome 1p21 (WEAF = 30.9%, 
beta[SE] = 0.05[0.01], P = 5.9 × 10−12) is located 1 kb upstream of a pseudogene, peptidylprolyl isomerase A 
pseudogene 7 (PPIAP7). This gene shows a high degree of similarity to cyclophilin A (PPIA), the product of 
which is involved in a number of biological processes including signal transduction13, inflammation14 and apop-
tosis15. At the second novel locus associated with DHEAS the index variant, rs2911280 at 16q13 (WEAF = 7.5%, 
beta[SE] = 0.09[0.01], P = 6.0 × 10−10), is located in an intron of the gene encoding c-Maf inducing protein 
(CMIP), thought to play a role in the T-cell signalling pathway.16

Two novel replicating associations with HbA1c levels were identified (Fig. 3D,E). HbA1c represents the 
three-month average plasma glucose concentration and is used to diagnose as well as manage type 2 diabetes. 
The index variant at 12q13, rs12819124 (WEAF = 46.7%, beta[SE] = −0.03[0.01], P = 4.2 × 10−9) lies in an 
intron of RP1-228P16.4, a long non-coding RNA. The index variant of the second novel locus, rs761772 at 17q25 
(WEAF = 12.4%, beta[SE] = 0.05[0.01], P = 4.9 × 10−9), lies within a non-coding exon in the transmembrane 
channel-like 6 (TMC6) gene and has been shown to affect the expression of TMC6, as well as TNRC6C antisense 
RNA 1 (TNRC6C-AS1) and transmembrane channel like 8 (TMC8), in cardiac, thyroid, and vascular tissue, as 
well as whole blood in the GTEx database17.

Discussion
We identify five new biomarker loci, across common and low frequency variants, associated with DHEAS, HbA1c 
and ALT. We demonstrate polygenic heritability of the majority of biomarkers included in this study and observe 
large differences in their polygenic component. To our knowledge this is the first report of SNP-based heritability 
estimates for DHEAS, insulin-like growth factor 1, testosterone and urea. The large sample set with homogeneous 
biomarker measurements afforded by UKHLS enables reliable estimation for this population. We also identify 
genetic correlations between several of the biomarkers. Genetic correlation between two traits is an indicator of 
shared genetic factors and consequently genome-wide pleiotropy. The patterns of heritability and genetic corre-
lations we observe for lipid biomarkers are consistent with previous reports in independent samples18. For total 
and LDL cholesterol, the SNP-based heritability is less than 10% whilst for HDL it is higher at 23.2%. All these 
estimates represent a lower bound for the narrow sense heritability. Our estimate of the negative genetic correla-
tion between levels of HDL-cholesterol with triglycerides of rg = −0.67 is similar to the estimate derived from an 
independent study (rg = −0.61)19. High levels of triglycerides are mechanistically related to low levels of HDL20, 21,  
which could explain the reverse influence of the shared genetic factors on the biomarkers. We show for the first 
time that polygenic factors for triglyceride are also negatively correlated with DHEAS. There is a statistically 
significant genetic correlation between CRP and fibrinogen levels, which could be due to shared inflammation 
pathways. Finally, the genetic correlation we observe between creatinine and urea is a previously unreported 

Figure 2.  Scatter plot of effect size by frequency of genome-wide significant variants. Effect sizes and 95% 
confidence intervals (absolute value of beta, expressed in standard deviation units) as a function of minor 
allele frequencies (MAF), based on the discovery stage of this study. Novel variants (Table 1) are displayed 
as diamonds, whilst known variants that reach genome-wide significance (P<3.56 × 10−9, two-sided) in the 
discovery stages are display as circles. Alkaline Phosphatase: alkp, Alanine Transaminase: alt, Fibrinogen: 
cfib, Total Cholesterol: chol, LDL cholesterol: ldl, Dihydroepiandrosterone Sulphate: dheas, Gamma Glutamyl 
Transferase: ggt, Glycated haemoglobin: hba1c, HDL cholesterol: hdl, Haemoglobin: hgb, C-Reactive Protein: 
hscrp, Insulin-like growth factor 1: igfi, Ferritin: rtin, Testosterone: testo_m, Triglycerides: trig.



www.nature.com/scientificreports/

5Scientific RepoRts | 7: 11008  | DOI:10.1038/s41598-017-10812-1

and highly biologically plausible finding as both markers are increased in blood when glomerular filtration rate 
declines, reflecting impaired kidney function. Characterising the genetic architecture of health-related biomark-
ers in this way is informative with respect to their biology as well as the design of future association studies. While 
each known locus individually explains only a small proportion of the variance in biomarker levels, these analyses 
demonstrate that the joint effect of many variants can be much larger.

We examined less-well studied health-related biomarkers in addition to routine blood measures used in clin-
ical practice. This made it possible to identify novel associations of common and low frequency variants with 
DHEAS, HbA1c and ALT. These associations could provide novel biological insights. rs2911280, which we found 
to be associated with DHEAS, is located in an intron of the gene encoding c-Maf inducing protein (CMIP). CMIP 
is a highly pleiotropic gene, and is associated with several metabolic traits such as adiponectin and HDL choles-
terol levels. Cholesterol is a precursor of DHEA in its synthesis process22.

rs28929474 at 14q32 is associated with levels of ALT, which is used in clinical practice to assess liver damage. 
This variant is located in SERPINA1, encoding the serine protease inhibitor alpha-1-antitrypsin (AAT), which 
is largely produced in the liver. Associations of variants in this gene were previously found for cortisol23 and 
height24. Mutations of this gene can cause alpha-1 antitrypsin deficiency (A1AD) which can lead to an accumula-
tion of aberrant proteins in hepatocytes causing liver damage25. This in turn may elevate levels of ALT, warranting 
future assessment of the association between this signal and liver-related clinical endpoints.

We identify two novel associations with HbA1c levels. In a lookup using published data from an independ-
ent large-scale meta-analysis by the MAGIC consortium26, rs12819124 was associated with HbA1c levels with 
P = 1.8 × 10−6. The direction of effect was consistent with our findings. rs12819124 was also nominally asso-
ciated with risk of type 2 diabetes at P = 0.025 using data from the DIAGRAM study27. Moreover, association 
results from published cohorts suggest a possible pleiotropic association with mental disorders and wellbeing 
(P = 9.0 × 10−6 for bipolar disorder and schizophrenia28, P = 6.4 × 10−5 for subjective wellbeing29). No HbA1c 
association results were available for rs761772 in MAGIC. For a proxy SNP, rs429216 (r2 = 0.75), the p-value for 
the association with HbA1c was in the same direction and reached P = 2.7 × 10−3.

The UKHLS sample size is modest compared to some of the previous large-scale GWAS meta-analysis efforts 
(e.g., >45,000 individuals for HbA1c levels26). The relative gain in power leading to novel locus identification 
in this study can be attributed to several factors. Two of the newly reported signals have relatively low allele fre-
quency (2% and 7.5%, respectively). These were captured here through use of the Illumina HumanCoreExome 
array and imputation to a comprehensive reference panel consisting of 1000 Genomes combined with the UK10K 
haplotypes30. A further power advantage was afforded by the homogeneous measurement of biomarkers in 
UKHLS and in two of the replication studies. Each biomarker was measured using the same assay for each sample, 
and processed on the same machine, avoiding loss of information due to diverse biomarker assays with different 
sensitivity, dynamic range and detection limit, potentially leading to power reductions31.

Larger-scale homogeneous studies and synthesis in massive-scale meta-analyses will help further elucidate the 
genetic architecture of medically-relevant biomarker traits. Insights into the genetic determinants of population 
variation in biomarker levels can help us to understand basic processes involved in maintaining health.

Methods
Ethics. Participants gave informed written consent for their blood to be taken and stored for future scientific 
analysis. The UKHLS has been approved by the University of Essex Ethics Committee and the nurse data collec-
tion by the National Research Ethics Service (10/H0604/2).

Study population. The United Kingdom Household Longitudinal Study, also known as Understanding 
Society (https://www.understandingsociety.ac.uk) is a longitudinal panel survey of 40,000 UK households from 
England, Scotland, Wales and Northern Ireland). Participants are surveyed annually since 2009 and contribute 
information relating to their socioeconomic circumstances, attitudes, and behaviours via a computer assisted 

biomarker rs-id function
nearest 
gene cytoband EA/NEA

discovery replication combined

EAF
beta (SE), 
p-value N r2 imputed EAF

beta (SE), 
p-value N EAF

beta (SE), 
p-value N

Alanine Transaminase rs28929474 missense SERPINA1 14q32 T/C 0.02 0.04 (0.01), 
2.61 × 10−6 9731 1.00 no 0.02 0.04 (0.01), 

1.47 × 10−5 9881 0.02 0.04 (0.01), 
1.72 × 10−10 19612

Dihydroepiandrosterone 
Sulphate rs78900934 upstream 

gene PPIAP7 1p21 A/C 0.31 0.05 (0.01), 
7.95 × 10−8 9722 1.00 yes 0.31 0.08 (0.02), 

4.32 × 10−6 3630 0.31 0.05 (0.01), 
5.88 × 10−12 13352

Dihydroepiandrosterone 
Sulphate rs2911280 intron CMIP 16q23 A/G 0.08 0.09 (0.02), 

2.25 × 10−8 9722 0.97 yes 0.07 0.08 (0.03), 
8.63 × 10−3 3630 0.08 0.09 (0.01), 

5.97 × 10−10 13352

Glycated haemoglobin rs12819124 intron RP1-
228P16.4 12q13 A/C 0.47 −0.04 (0.01), 

5.94 × 10−8 9436 0.99 yes 0.47 −0.02 (0.01), 
1.12 × 10−3 7970 0.47 −0.03 (0.01), 

4.20 × 10−9 17406

Glycated haemoglobin rs761772 non-coding 
exonic TMC6 17q25 C/T 0.13 0.06 (0.01), 

5.94 × 10−8 9436 0.92 yes 0.12 0.03 (0.01), 
3.83 × 10−3 5190 0.12 0.05 (0.01), 

4.86 × 10−9 14626

Table 3. Association results of replicating novel signals. function: variant functional consequence; nearest gene: 
gene nearest to lead variant with 500Kb from either side; chr: chromosome; EA/NEA: effect allele/non-effect 
allele; EAF; effect allele frequency; beta(SE), p-value: effect size (standard error) and p-value; N: total number of 
individuals analysed for this variant; r2: imputation accuracy.

https://www.understandingsociety.ac.uk
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interview. As recruitment was household based, the study contains related individuals. The study includes phe-
notypical data for a representative sample of participants for a wide range of social and economic indicators 
as well as a biological sample collection encompassing biometric, physiological, biochemical, and haematolog-
ical measurements and self-reported medical history and medication use (https://www.understandingsociety.
ac.uk/d/100/7251_User_Guide_Health_Assmt_w2_w3.pdf?1392855567). For each participant non-fasting blood 
samples were collected through venepuncture, were centrifuged to separate plasma and serum, aliquoted and 
frozen at −80 °C. DNA has been extracted and stored for genetic analyses.

For replication, data were available for 5533 individuals from ELSA32, 9888 from Fenland33 (Supplemental 
Table 1), 7621 from HRS (http://hrsonline.isr.umich.edu)34, 2859 from NCDS35. These studies have been 
described in detail elsewhere. Sample collection were carried out consistently and analysed by the same laborato-
ries for UKHLS, ELSA and NCDS.

Biomarker measurements. In total, biomarker data were successfully obtained from 13,107 eligible indi-
viduals who gave consent to give blood samples to be stored for future analysis (https://www.understanding-
society.ac.uk/d/154/7251-UnderstandingSociety-Biomarker-UserGuide-2014.pdf?1418057881). All biomarkers 
were measured from serum (non-fasting), using a variety of suitable assays, and the majority analysed on a single 
Roche P module analyser36. On each machine Internal Quality Controls (IQC) were at regular intervals per day. 
External Quality Assurance (EQA) systems were in place to monitor all tests.

Figure 3. Regional association plots of novel genome-wide significant loci. Panel A–E : Regional association 
plots for replicating lead variants for alanine transaminase (A), DHEAS (B,C), HbA1c (D,E) respectively. 
Pairwise LD (r2) with the index variant is indicated following a color-coded scale. Both the p-values for the 
discovery as well as the combined discovery + replication are plotted for the index variant, results for all other 
variants were based on discovery-only data.

https://www.understandingsociety.ac.uk/d/100/7251_User_Guide_Health_Assmt_w2_w3.pdf?1392855567
https://www.understandingsociety.ac.uk/d/100/7251_User_Guide_Health_Assmt_w2_w3.pdf?1392855567
http://hrsonline.isr.umich.edu
https://www.understandingsociety.ac.uk/d/154/7251-UnderstandingSociety-Biomarker-UserGuide-2014.pdf?1418057881
https://www.understandingsociety.ac.uk/d/154/7251-UnderstandingSociety-Biomarker-UserGuide-2014.pdf?1418057881
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Phenotype transformations and exclusions. The measurements for biomarkers used in the associa-
tion analyses were prepared according to protocols from the largest genetic association study published for each 
specific trait at the time when analyses commenced, details for which are available in Supplementary Table S2.

Genotyping. In total, 10,484 UKHLS samples have been typed using the Illumina Infinium 
HumanCoreExome BeadChip Kit® (12v1-0). This array contains a set of >250,000 highly informative 
genome-wide tagging single nucleotide polymorphisms as well as a panel of functional (protein-altering) exonic 
markers, including a large proportion of low-frequency (MAF 1–5%) and rare (MAF <1%) variants. Genotype 
calling was performed with the gencall algorithm using GenomeStudio (Illumina Inc.). For quality control (QC) 
we excluded individuals based on the following criteria: sample call rate <98%, autosomal heterozygosity outliers 
(>3SD), gender mismatches, duplicates as established by identity by descent (IBD) analysis (PI_HAT > 0.9). 
Individuals with non-European ancestry were also excluded. For this we estimated the genomic kinship between 
all pairs of individuals along with 1000 Genomes Project data. These were converted to distances and subjected 
to multidimensional scaling. Prior to variant QC, we first mapped all 538,448 variants to the human reference 
genome build 37. Variants with Hardy-Weinberg equilibrium p-value < 1 × 10−4, call rate below 98% or poor 
genotype clustering values (<0.4) were excluded, leaving 525,314 variants passing QC. For typed variants in our 
GWAS analyses that were brought forward for replication we inspected cluster plots manually using Scattershot 
0.75 beta (Supplementary Fig. S1). All QC procedures were carried out using PLINK (v1.07) and R.

Imputation. We imputed our genotype data using a combined reference panel consisting of 7,562 haplotypes 
from the UK10K project and 2,184 haplotypes from 1000 Genomes phase 3. Details regarding the creation of this 
combined imputation panel are described elsewhere37. Prior to imputation, we first pre-phased using SHAPEIT 
(v2.r). Data were then imputed using IMPUTE2 (v2.3.0), resulting in an initial set of 38,310,212 variants. Variants 
with an IMPUTE info score <0.4, and variants with a Hardy-Weinberg p-value < 1 × 10−4 were excluded, leaving 
26,851,013 variants for analysis.

Data availability. The UKHLS EGA accession number is EGAD00010000918. ELSA EGA accession number 
is EGAC00001000270. NCDS accession number is EGAC00000000001. HRS is available through dbGAP, Study 
Accession number phs000428.v1.p1. Genotype-phenotype data access for UKHLS, ELSA and NCDS is available 
by application to Metadac (www.metadac.ac.uk).

Statistical analysesh. Heritability analyses and genetic correlations. The proportion of trait variance 
explained by the genotyped and imputed variants was estimated using the GREML method as implemented in 
the GCTA software38, 39 (v1.26). We included all variants with minor allele frequency (MAF) > 0.01. We excluded 
variants with imputation accuracy less than 0.4. We computed the genetic relationship matrix (GRM) for each 
autosome and then used GCTA to combine them into one matrix. We excluded relatives from the estimation by 
filtering based on the GRM using a threshold of 0.1 after inspecting the distribution. This led to the exclusion of 
672 individuals for this analysis. We also performed bivariate REML analysis in order to estimate genetic correla-
tions between different biomarkers40. We applied a Bonferroni adjusted significance threshold using the effective 
number of traits for the heritability analyses and using the number of pairs based on the effective number of traits 
for the genetic correlation analyses.

Association analyses. The association analyses were carried out using a multivariate linear mixed model to 
account for relatedness as implemented in GEMMA (v0.95). QQ plots and genomic inflation factors, as well 
as Manhattan plots for traits where we identified novel associations are displayed in Supplementary Fig. S2. 
Replication analyses were carried out in R and PLINK, following the same trait preparation protocols as used 
in the discovery stage. The association summary statistics from the replication analyses, as well as the combined 
discovery and replication stage were meta-analysed using a fixed-effects inverse variance weighted approach 

Figure 4. Power calculations. Power calculations for individual variants selected for replication per trait, 
number of samples needed to reach 80% power to reach genome-wide significance (P<3.56 × 10−9, two-sided). 
The size of the circles represents the relative effect size (standardised) compared amongst all traits.

http://S2
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implemented in METAL (v2011-03-25). We calculated an adjusted genome-wide significance threshold, for the 
effective number of traits, as several of our biomarkers have correlated levels. The effective number of traits was 
derived by computing the eigenvalues for the correlation matrix of the 20 biomarkers (effective number: 14.05). 
The routinely used GWAS threshold of p < 5 × 10−8 was then adjusted for this using the Bonferroni approach: 
5 × 10−8/14.05 = 3.56 × 10−9.

Power calculations. We carried out power calculations using Quanto (v1.2.4), for discrete per-variant frequency 
and (standardised) effect sizes combinations, representative of variants identified in the discovery. Per-trait and 
per selected variant power analyses showed that we would minimally need 5,000 to 15,000 samples to replicate 
our variants with P < 3.56 × 10−9, two-sided, for testosterone levels, whereas the largest replication sample of 
25,000 to 60,000 would be needed for eGFR (Fig. 4).

Selection of replication SNPs, and criteria for novel loci. For replication we selected independent SNPs (LD 
r2 < 0.1), with MAF > 0.01 and a discovery p-value of P < 1 × 10−5 and at least > 500 Kb away from the nearest 
known reported index SNP for a given trait. We also took forward independent rare variants with a MAF ≤ 0.01 
that were typed and reached P < 1 × 10−5, regardless whether they represented known associations for a given 
trait. Known index SNPs for all biomarkers analysed in this study were obtained through the GWAS catalog41 
(accessed August 4, 2016) > , supplemented by manual searches in PubMed.

Annotation. For annotation of our lead variants we used an in-house annotation script that automatically 
retrieves variant annotations from ENSEMBL42, including variant function, the nearest gene IDs within < 500Kb 
from a given variant, transcript and protein IDs for these genes, as well as conservation scores. It also calculates 
GWAVA43 scores for non-genic variants amongst other annotations.

All methods were performed in accordance with the relevant guidelines and regulations.
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