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S y n o p s i s  

The introduction of the Eurocodes for Concrete design will alter the way that shear is approached for 

concrete structures.  BS EN 1992-1-11 has adopted the variable angle truss model for shear, a more 

theoretically consistent approach than that used in BS8110-12.  The model is confidently applied to 

rectangular sections, but its applicability to irregular sections is less clear.  In particular, the behaviour 

of circular concrete sections is not well defined. 

This paper is intended to satisfy a requirement for design guidance on this topic that has been 

recognised by key BSI Committees.  Using both experimental and theoretical data, the Eurocode 

variable angle truss model for shear design is assessed and extended to circular columns. 
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S y m b o l s  
Asv Cross sectional area of the legs of a link (BS 5400-43) 
Asw Cross sectional area of shear reinforcement 
Bw Web width of equivalent rectangle for circular sections 
D Circular section outer diameter 
Fb,c,i Force in longitudinal bar i in compression 
Fb,t,i Force in longitudinal bar i in tension 
Fc Stress block compression force  
Fcd Force in the compression chord 
Ftd Force in the tension chord 
∆Fcd Additional tension in the compression chord 
∆Ftd Additional tension in the tension chord 
I Second moment of area (= πD4/64 for circular sections) 
MEd Design value of the applied moment 
NEd Design value of the applied axial force 
S First moment of area above and about the centroidal axis 
VEd Design shear force 
VRd Design shear resistance 
VRd,c Design shear resistance of the member without shear reinforcement 
VRd,max Design value of the maximum shear force which can be sustained by the member, limited by crushing of the 

compression struts 
VRd,s Design value of the shear force which can be sustained by yielding the shear reinforcement 
a Shear span 
bw Web width of the section. 
c Depth of the compression chord 
d Effective depth 
fc,max Maximum permissible compressive stress in concrete 
fcd Design value of concrete compressive strength 
fctd Design value of concrete tensile strength 
ft,max Maximum permissible tensile stress in concrete  
fyv Characteristic strength of link reinforcement (BS5400-43) 
fywd Design yield strength of the shear reinforcement 
p Spiral pitch 
r Radius to extreme fibre of circular section 
rs Radius to centre of longitudinal bars 
rsv Radius to shear steel 
s Stirrup spacing 
sv Spacing of links along the member (analysis to BS5400-43) 
yc Distance from the neutral axis to the centroid of the compression chord 
yt Distance from the neutral axis to the centre of the tension chord 
z Lever arm corresponding to the bending moment in the element under consideration 
z0 Distance from the centroid of the tensile forces to the centre of mass of the section 
α Angle between shear reinforcement and the beam axis 
θ Compression strut angle 
σcp Compressive stress from axial load 
ω Internal angle of circular segment 
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1. INTRODUCTION 

The circular concrete section is widely used in piling and bridge pier design, and its constant strength 

in all directions makes it useful in seismically active regions.  Shear design in the UK has historically 

been based on Mörsch’s 45º-truss model4, while BS EN 1992-1-11 uses the more theoretically 

consistent variable angle model.  The use, limitations, and application of this lower bound model to the 

design of circular sections in shear provides the basis for this paper. 

2. SHEAR BEHAVIOUR 

Analysing shear behaviour is widely recognised as one of the more difficult aspects of reinforced 

concrete design.  Shear failures are characterised by brittle action and are thus particularly critical 

when ductility at the ultimate limit state is a key design requirement.  The design shear resistance of a 

concrete section can be considered as a synthesis of six contributing factors, as illustrated in Figure 1.  

When present, shear reinforcement carries stress over cracks as they open under loading and confines 

the section.  Aggregate interlock is estimated5 to carry significant shear force (up to 50% of the 

capacity of the uncracked section), yet as cracks open the capacity to transfer stresses via aggregate 

interlock reduces.  Finally, longitudinal reinforcement provides dowel action across shear cracks as 

they open. 

The influence of axial load on shear capacity is complex, yet is critical for columns.  Axial 

compression can be considered to flatten shear cracks, which then intersect more shear stirrups, 

increasing the section’s shear capacity.  Conversely, axial tension reduces the number of links 

intersected, and reduces the beneficial effects of aggregate interlock.  However, it has been shown6 that 

above a compressive stress of approximately 17MPa, the rate of increase in shear capacity due to axial 

compression reduces (and in some cases becomes negative) making linear relationships between shear 

capacity and axial load potentially non-conservative at high values of compressive stress. 
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A further important consideration for shear design is the size effect, first described by Kani7, which 

highlights a reduction in strength of concrete members as they increase in size .  Illustrated in Figure 

2, it is best explained by considering that, regardless of member size, shear failures typically occur 

once shear cracks reach about 1mm in width, implying that larger elements are more brittle, albeit that 

the behaviour of an RC member is quasi-brittle, and does not follow a perfectly plastic – brittle linear-

elastic path. 

Shear failures typically occur over a relatively short region of the beam span, with a critical load 

position located at approximately 2.5a/d7, where a is the shear span of the element under consideration.  

This area, sometimes referred to as the ‘shear valley’, is illustrated in Figure 3, where the relative 

beam strength (ru, given by Kani7 as the ultimate moment in the cross section at failure divided by the 

calculated flexural capacity of the cross section) is plotted against ratios of shear span to effective 

depth (a/d).  A zone of shear enhancement occurs close to the supports (a/d<2.5) whilst full flexural 

failure can only be achieved at higher values of a/d.  In low span/depth ratio sections, the ‘transition 

point’ from shear to flexural failure may be unobtainable and thus the section is likely to fail in shear. 

2.1. Truss analogy 

Modelling shear flow in a reinforced concrete section as a truss was first proposed by Ritter8 and 

Mörsch4 as a convenient design method, and is used in both BS8110-12 and BS EN 1992-1-11.  The 

basic premise of the model is that cracked concrete in the web of the section resists shear by a diagonal 

uniaxial compressive stress in a concrete strut which pushes the flanges apart and causes tension in the 

stirrups which are then responsible for holding the section together.  The Mörsch model assumes that 

the angle from the shear reinforcement to the beam axis is 90º and the angle of the compression strut 

from the beam axis is 45º.  Early researchers9 found that shear strength predictions according only to 

the force in the stirrups underestimated section shear strength by a fairly consistent value.  To correct 
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this, an empirically determined ‘concrete contribution’ to shear resistance was added, Figure 4, with 

this method being employed in BS8110-1. 

In the Eurocode model, a simplification is made such that once cracked, the section shear capacity 

comes solely from the links.  However, the BS EN 1992-1-1 model allows the designer to select the 

angle of the compression strut (θ, Figure 5), with a flatter strut leading to more links being intersected, 

thereby increasing shear capacity.  As θ decreases the compressive stress in the strut increases and the 

strut angle must therefore be limited to prevent concrete crushing, as illustrated by the Mohr’s circle in 

Figure 6, where an increase in circle diameter corresponds to a decrease in the strut angle, θ. 

Without a concrete contribution factor, the BS EN 1992-1-1 model can show appreciable step changes 

in capacity predictions as link spacing is increased, whereas in BS8110-1 the concrete contribution 

tends to reduce the relative influence of the stirrups on overall shear capacity10.  However, the variable 

angle model is generally considered to be a more consistent approach to shear design, as compression 

strut angles observed at failure in tests are generally flatter than 45º, as seen in the tests undertaken by 

Capon11. 

2.2. Alternative design methods 

Recognising that the truss analogy is a simplified model of shear behaviour, new methods for shear 

design have been developed.  Compression field theory (and its modified derivative, MCFT) is 

perhaps the most developed, originating from work by Wagner12 on the post-buckling behaviour of 

metal beams with very thin webs where it was determined that post-buckling, the web of the metal 

beam no longer carries compression but instead resists shear by a field of diagonal tension.  In 

concrete, the behaviour is reversed such that post-cracking the section no longer carries tension, 

instead resisting shear by a field of diagonal compression13.  The method, which has been adopted in a 

simplified form by the Canadian Standards Association for the design of concrete structures and is 
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detailed fully elsewhere14, has been shown to be successful in the analysis of circular sections10.  

However, it is computationally more complex than the truss analogy and, to date, has generally not 

been adopted by code writing committees. 

2.3. Circular sections 

Following the earthquakes of Mexico City (1957) and Coatzacoalcos-Jaltipan (1959), where a large 

number of circular columns were found to have failed in shear15, Capon11 undertook some of the 

earliest shear tests on circular concrete columns.  However, of the 21 specimens tested, just four were 

transversely reinforced and only two of these failed in shear. 

This work was later followed by Clarke16 who undertook 97 separate tests on 50 circular specimens in 

shear to produce one of the largest available sets of experimental data for static loading.  More 

recently, Jensen et al17 tested 16 circular specimens, twelve of which were heavily reinforced with 

closed links (Asw/s ranging from 1.01 to 4.52).  There is thus a clear deficit of available test data for 

statically loaded shear reinforced circular sections and additional experimental research would be 

advantageous to further verify the proposed design method for circular sections that is described 

below. 

3. CODIFIED DESIGN 

In BS EN 1992-1-1, shear reinforcement is required when the design shear force (VEd) is greater than 

the shear resistance of a section without stirrups (VRd,c).  When VEd>VRd,c the design shear resistance of 

the section is typically based on providing sufficient shear reinforcement (VRd,s), although the truss 

angle may be limited by crushing in the inclined concrete strut (VRd,max). 

The truss analogy, as a lower bound approach, should satisfy equilibrium at all locations. Uniaxial 

compression in the inclined concrete strut must therefore be considered in terms of both its horizontal 
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and vertical components, resulting in horizontal tension in the top and bottom chords of the truss 

model, in addition to the forces associated with flexure. 

Such an approach requires that longitudinal reinforcement designed for flexure only (in accordance 

with BS EN 1992-1-1 §6.1) cannot also be used to resist the horizontal forces generated by the 

inclined compression struts.  The Eurocode approach therefore differs from methods that consider the 

whole member as a truss for all loading cases, in which the forces in all the web and chord members 

may be determined by statics. 

The design of shear reinforced circular sections can thus be considered to depend on 1) the capacity of 

the transverse steel, 2) the crushing capacity of the inclined struts (VRd,max) and 3) the additional tensile 

force in the distributed longitudinal steel (∆Ftd).  These three criteria, which form the basis of the 

proposed design approach, are analysed in further detail below. 

3.1. Flexural analysis 

For rectangular sections without axial load, BS EN 1992-1-1 the assumption that z = 0.9d may 

normally be made.  However, this is not necessarily conservative for circular sections and a more 

accurate value for the internal lever arm may be determined by sectional analysis. 

By first assuming a sensible neutral axis depth, the strain in the concrete at each layer of reinforcement 

is determined, from which the compression or tension forces in the reinforcement are obtained.  

Taking the BS EN 1992-1-1 stress block (Figure 7) the compression force in the concrete is given by 

Eq.(1) (note that the value of ηfcd is reduced by 10% to satisfy BS EN 1992-1-1 cl.3.1.7(3)). 

Fc = 0.9η fcd 0.5r2 ω − sinω( )⎡⎣ ⎤⎦  (1)   

Where 0.5r2 ω − sinω( )  is the area of the truss model compression chord, and cos ω 2( ) = r − λx( ) r , 
Figure 7. 
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The compressive and tensile forces in the section are balanced to achieve equilibrium by iterating the 

neutral axis depth, x.  The forces Fcd and Ftd are located at distances yc and yt respectively from the 

neutral axis, with these values determined by moment equilibrium, Eq.(2) and Eq.(3).  The internal 

lever arm, z, is then given by Eq.(4). 

Fcd yc( ) = Fc yci + Fb,c,i yci∑  (2)   

Where yci is the distance between the neutral axis and the compression force under consideration. 
Fct yc( ) = Fb,t ,i∑ yti  (3)   

Where yti is the distance between the neutral axis and the tension force under consideration 
z = yt + yc  (4)   

The internal lever arm should be calculated for each section under consideration.  For a member 

loaded by a single point load, the critical section is likely to coincide with the position of maximum 

moment, while for a member under uniform load a section taken some distance from the supports may 

be more appropriate (cf. Figure 3 and Brown et al.18).  Determining a value for z at the position of 

maximum moment and applying it along the entire length of the section is a conservative approach as 

this provides the largest compression chord area and hence the smallest value for z. 

The sectional method described above thus ensures that the position of the truss model tension chord is 

determined based on all the steel below the section’s neutral axis.  This contrasts to previous 

approaches11, 16, 19 in which the effective depth of the circular section was calculated by assuming the 

neutral axis to be coincident with the centroidal axis of the section. 

By analysing 38 of the circular sections tested by Clarke16, it was found that the assumption of z = 0.9d 

(where d is the distance from the extreme compression fibre to the tension chord) consistently 

overestimates the lever arm of a circular section.  An average value of z = 0.77d (standard deviation, 

σ = 0.021, coefficient of variation, cv = 0.027) was found using the method described above. 
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3.2. Transverse reinforcement 

For geometric reasons, only a component of the force in a closed or helical link can resist applied shear 

forces, reducing their efficiency when compared to a rectangular link, as illustrated in Figure 8.  

Feltham19 determined equations for both closed and spiral links, with the force component in spiral 

links also being resolved along the length of the member. 

Priestley et al.20 assumed the links to be effective over the full depth of the column, while Kowalsky21 

and Feltham19 both assume that only a portion of the links are effective.  Turmo et al.22 considered a 

Eurocode based approach for both solid and hollow circular sections, obtaining more general results by 

allowing the stirrups to be effective over a variable depth.  The proposed22 efficiency factor for circular 

sections, λ1, modifies the BS EN 1992-1-1 equation for VRd,s as shown below: 

VRd ,s = λ1
Asw
s
zfywd cotθ  (5)   

The value of λ1, which is independent of the chosen truss angle (θ), is determined by numerical 

integration and depends only on the section geometry: 

λ1 = 1− z0 − zX( ) / rsv( )2 dX
0

1

∫  (6)   

Making the assumption that the centroid of compression and centroid of tension in the section are 

equidistant from the centroidal axis, a further simplification is obtained by disregarding possible 

variations in effective depth along the length of the member22.  Assuming a constant lever arm of 0.8D 

and taking rsv as 0.45D an effectiveness factor of λ1 = 0.85 was obtained22, resulting in a BS EN 1992-

1-1 equation for circular sections with closed links, Eq.(7): 

VRd ,s = 0.85
Asw
s
zfywd cotθ  

(7)   
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However, the assumption that the compression and tension forces are equidistant from the centroidal 

axis does not reflect the behaviour of the circular section as determined above and it is therefore 

recommended that λ1 be determined using Eq.(6). 

3.2.1. Spiral links 

Turmo et al.22 further analysed spirally reinforced circular sections, determining a second efficiency 

factor, λ2, that is also applied to VRd,s: 

VRd ,s = λ1λ2
Asw
s
zfywd cotθ  (8)   

Where λ2 is given by: 

λ2 = p 2πrsv( )2 +1( )−0.5  (9)   

When the pitch, p, is set to zero (as for closed links), λ2 is equal to unity and Eq.(8) is therefore 

applicable to both closed and spirally reinforced circular sections.  Eq.(8) disregards the contribution 

to the shear capacity of the section by the longitudinal steel, which may be significant due to its 

distributed nature, and is therefore likely to represent a lower bound on the shear strength of a circular 

section. 

3.3. Concrete crushing 

The truss angle (θ) is limited in BS EN 1992-1-1 by crushing of the inclined concrete strut, Eq.(14), 

which is dependent on the state of stress in the compression chord (αcw), the web width of the section 

(bw), the lever arm between compression and tension zones (z) and the design strength of concrete that 

is cracked in shear (ν1fcd).  Crushing in circular sections is considered here using an ‘equivalent 

rectangle’ approach to facilitate the use of the existing BS EN 1992-1-1 equations and a method to 

determine the equivalent web width for circular sections is presented. 
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The web width (Bw) of the equivalent rectangle is given by the minimum of the width of the section at 

the centroid of the compression chord, Bw,c (Eq.(10)), and the width of the section inside the shear 

reinforcement at the centroid of tension, Bw,t (Eq.(12)), both of which are illustrated in Figure 9. 

Bw,c = 2 c 2r − c( )  (10)   

where c = x − yc = d − z  (11)  

Bw,t = 2 e 2rsv − e( )  (12)  

where e =
D + 2rsv
2

⎛
⎝⎜

⎞
⎠⎟
− d  (13)  

The minimum of Bw,c and Bw,t is then used to analyse VRd,max for circular sections, where the variables 

αcw, ν1, fcd and cot(θ) are given by BS EN 1992-1-1 §6.2.3: 

VRd ,max =
α cwBwzν1 fcd
cotθ + tanθ  (14)   

where Bw = min Bw,c ,Bw,t{ }  

3.4. Additional tensile force, ∆Ftd  

The inclined concrete struts of the truss model are in uniaxial compression, resulting in a horizontal 

component of force which must be resisted by the longitudinal steel to satisfy equilibrium.  In BS EN 

1992-1-1, this force is applied at a position equidistant from the tension and compression chords of the 

truss model and each chord thus carries half the total horizontal force, equal to 0.5Vcot(θ) (Figure 10). 

The truss model chord forces should then be adjusted (Eq.(15)), with the result that the previously 

determined value for z should be modified to ensure equilibrium is satisfied. 

Fcd =
M
z
− 0.5V cotθ  (15)   

Theoretically, lower bound plasticity theory allows the additional tensile force to be distributed in any 

manner so long as the arrangement satisfies equilibrium at all points, balances the external loads and 

does not violate the yield condition (which defines the onset of plastic deformation).  These conditions 

may be satisfied by increasing the force in all the longitudinal bars by a uniform amount in tension to 
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account for shear.  This method has the advantage that the resulting shift in neutral axis is likely to be 

small and could have a negligible effect on moment equilibrium. 

3.5. Unreinforced section capacity 

In sections where VEd < VRd,c, BS EN 1992-1-1 does not require the provision of design shear links.  For 

rectangular sections that are cracked in bending, VRd,c is determined by empirical formulae which have 

not been verified for use in the design of circular sections.  For sections that are uncracked in bending 

the principal tensile stress in the section should be limited to the tensile strength of the concrete, 

Eq.(16). 

VRd ,c =
Ibw
S

fctd( )2 +σ cp fctd  (16)   

This approach is modified for use in circular sections as Eq.(17): 

VRd ,c =
3πr2

4
fctd( )2 +σ cp fctd  (17)   

For sections under high axial compressive stress, calculating VRd,c using Eq.(17) is a sensible approach 

that is widely used in prestressed concrete design.  Where applied axial loads are low, calculation of 

VRd,c by this method will be conservative, since the contribution from the longitudinal steel is 

disregarded. 

4. DESIGN 

The design process described by this paper for the design of shear reinforced circular sections using 

the variable angle truss model is presented in Figure 11, to be read in conjunction with Figure 12.  

The approach verifies that sufficient transverse links are provided, that the crushing limit is not 

exceeded, and that the additional tensile force is distributed according to the requirements of the lower 

bound theorem. 
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In the approach summarised in Figure 11, shear reinforcement should be provided such that VRd,s ≥  VEd.  

The calculation of VRd,s for circular sections with closed or spiral links is undertaken by Eq.(18), where 

λ1 is given by Eq.(6) and λ2 by Eq.(9): 

VRd ,s = λ1λ2
Asw
s
zfywd cotθ  (18)   

The compression strut angle, θ, may initially be taken as 21.8º (cotθ = 2.5).  Should the section be 

found to fail by crushing of the inclined strut, θ may be increased within the limits of BS EN 1992-1-1 

cl.6.2.3(2). 

4.1. Application of the design method 

The use Eq.(18) was compared to the experimental data provided by both Clarke16 and Jensen et al.17, 

with the results shown in Figure 13.  The two analyses are discussed in the following. 

Thirty-eight columns tested by Clarke16, ranging in diameter from 152-500mm that failed in shear and 

were reinforced with closed links, were assessed using the proposed design method.  All partial safety 

factors were set to 1.00 and a strut angle of cot(θ) = 2.5 was taken in all cases as VRd,max was not found 

to be the limiting factor.  The transverse reinforcement yield stress was taken as fywd = 250MPa (J. 

Clarke, pers. comm., 9th March 2009).  A ratio of theoretical to actual failure load of 3.32:1, with a 

standard deviation of 0.87, was found. 

Clarke16 presented test data for seventeen 300mm diameter sections reinforced with 8mm diameter 

closed links at 150mm centres.  Longitudinal reinforcement percentages ranged from 2.3% - 5.6%, 

while concrete strengths of between 24.10MPa and 48.40MPa were recorded.  Shear capacity 

predictions using the proposed method range from 58.04kN to 58.80kN, while the recorded failure 

loads ranged from 145kN to 262kN16. 
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The results therefore show that whilst the proposed method is conservative, it is unable to account for 

variations in the concrete strength and percentage of longitudinal reinforcement in specimens with the 

same diameter and transverse reinforcement ratio. 

For the tests undertaken by Clarke16, the proposed design method is compared to an equivalent 

BS5400-4 analysis in Figure 14, where the components of shear resistance arising from both the 

transverse reinforcement (Vs, Eq.(19)) and the concrete (Vc) (BS5400-4, cl.5.3.3) are plotted. 

Vs =
Asv fyvd
sv  (19)   

Taking cot(θ) = 2.5, the Eurocode model would be expected to provide a shear capacity prediction 

approaching 2.5 times that predicted by the steel term (Vs) of BS5400-4.  However, it should be noted 

that while Eq.(19) calculates Vs based on the effective depth of the section, Eq.(18) uses the smaller 

value of the lever arm between compression and tension chord forces. 

Figure 14 shows that in an analysis to BS5400-43 of the data presented by Clarke16, Vs accounts on 

average for 30% of the total predicted shear capacity of sections with closed links that failed in shear 

(assuming fy = 250MPa).  The same analysis to BS EN 1992-1-1 (assuming cot(θ) = 2.5) may then be 

expected to provide a shear capacity prediction of approximately 0.3 x 2.5 = 75% of that predicted by 

BS5400-4. 

For the sections analysed it was found that the value of VRd,s as determined in BS EN 1992-1-1 was on 

average 1.60 times the value of the Vs term given by BS5400-4 (σ = 0.04, cv = 0.025).  This is 

somewhat less than might be expected, but is explained in the proposed model by considering that if z 

= 0.77d, λ1 ≤ 0.85 and cot(θ) = 2.5 for circular sections, then VRd,s will be approximately 0.77 x 0.85 x 

2.5 = 1.64 times the value determined for Vs in a BS5400-4 analysis. 
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The BS EN 1992-1-1 equation for VRd,s is linearly dependent on the yield strength of the transverse 

reinforcement used and thus greater accuracy may have been obtained if full steel coupon data was 

available for the transverse reinforcing steel used by Clarke16.  This relationship is illustrated by 

considering the fictional analysis of two circular sections that vary only in the yield strength of their 

transverse reinforcement.  Analysis to BS EN 1992-1-1, assuming cot(θ) = 2.5 and VRd,max not to be a 

limiting factor, will predict a linear relationship between fywd and VRd,s.  In the same analysis undertaken 

to BS5400-4, an increase in fyv results only in an increase in the relative contribution of Vs to the total 

shear capacity of the section, which remains partially dependent on the concrete contribution, Vc. 

Although more limited in size, the tests undertaken by Jensen et al17 provide a useful data set of 

circular sections with high transverse reinforcement ratios (Asw/s ranging from 1.01 to 4.52).  Twelve 

tests were carried out on 250mm diameter, 1800mm long circular sections, all of which were 

transversely reinforced with closed links and were loaded in shear at 425mm from their supports.  All 

sections had the same concrete strength (31.70MPa) and longitudinal reinforcement (eight 10mm 

diameter high yield deformed bars (fy = 500MPa) and eight 20mm diameter DYWIDAG bars (fy = 

900MPa)).  The recorded yield strength of the transverse reinforcement ranged from 573MPa to 

584MPa.  

The specimens tested by Jensen et al17 were analysed using the method proposed in Figure 11.  For 

eleven specimens, VRd,max was found to be the limiting condition and the model truss angle was 

increased within the limits of BS EN 1992-1-1.  The resulting shear capacity predictions are shown in 

Figure 13, and an average ratio of theoretical to actual failure load of 1.84:1 with a standard deviation 

of 0.27 was found.  The results of this analysis suggest that the proposed method remains conservative 

in sections with higher transverse reinforcement ratios. 
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5. CONCLUSIONS 

The introduction of the variable angle truss model in BS EN 1992-1-1 has changed the way that shear 

design is approached for concrete structures.  This paper provides a logical extension to the Eurocode 

model for shear, which is confidently applied to rectangular sections, for the design of circular 

sections, as summarised in Figure 11.  Methods for the analysis of 1) transverse steel capacity, 2) the 

additional tensile force in the longitudinal steel and 3) the limiting crushing capacity of the inclined 

compression struts are presented to satisfy equilibrium of the truss model. 

It has been shown that whilst these methods provide a suitable lower bound analysis, care must be 

taken in any assumptions made.  The ‘equivalent rectangle’ model for crushing in circular sections 

suggests that crushing failures are unlikely, although complete verification is not possible without test 

data.  The proposed equation for VRd,s is shown to provide reasonable accuracy, giving safe results 

when analysed against a wide range of experimental data. 
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Figure 1 - Six contributing factors for shear capacity 

 
 

 
Figure 2 - The size effect 

 
 

 
Figure 3 - Kani’s Shear Valley 

 
 

 
Figure 4 - Components of shear resistance in BS8110-1 

 
 

 
Figure 5 - Simplified truss model 
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Figure 6 - The effect of a variable strut angle 

 
 

 
Figure 7 - Flexural analysis to determine ‘z’ 

 
 

 
Figure 8 - Shear across a circular section 

 
 

 
Figure 9 - Crushing analysis geometry 

 
 

 
Figure 10 - ∆F in circular sections 
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Figure 11 - Design Flowchart 

 
 

 
Figure 12 - Circular section dimensions, vertical links (left); spiral reinforcement (right) 
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Figure 13 - Effectiveness of design equations for circular sections 

 
 

 
Figure 14 - BS5400-4 and proposed BS EN 1992-1-1 comparison 


