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Main Points: 71	

PGE2 generated by COX2 directly inhibits OPC maturation in an EP1 receptor-dependent 72	

manner.  In human NWMI, astrocytes develop “A2” reactivity and induce COX2.  Using an 73	

inflammation-induced model of NWMI, systemic COX2 inhibition protected myelination and 74	

preserved motor function.    75	

76	
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ABSTRACT  77	

Inflammation is a major risk factor for neonatal white matter injury (NWMI), which is associated 78	

with later development of cerebral palsy.  Although recent studies have demonstrated maturation 79	

arrest of oligodendrocyte progenitor cells (OPCs) in NWMI, the identity of inflammatory 80	

mediators with direct effects on OPCs has been unclear.  Here, we investigated downstream 81	

effects of pro-inflammatory IL-1β to induce cyclooxygenase-2 (COX2) and prostaglandin E2 82	

(PGE2) production in white matter.  First, we assessed COX2 expression in human fetal brain 83	

and term neonatal brain affected by hypoxic-ischemic encephalopathy. In the developing human 84	

brain, COX2 was expressed in radial glia, microglia, and endothelial cells.  In human term 85	

neonatal hypoxic-ischemic encephalopathy cases with subcortical WMI, COX2 was strongly 86	

induced in reactive astrocytes with “A2” reactivity.  Next, we show that OPCs express the EP1 87	

receptor for PGE2, and PGE2 acts directly on OPCs to block maturation in vitro. Pharmacologic 88	

blockade with EP1-specific inhibitors (ONO-8711, SC-51089), or genetic deficiency of EP1 89	

attenuated effects of PGE2. In an IL-1β-induced model of NWMI, astrocytes also exhibit “A2” 90	

reactivity and induce COX2.  Furthermore, in vivo inhibition of COX2 with Nimesulide rescues 91	

hypomyelination and behavioral impairment.  These findings suggest that neonatal white matter 92	

astrocytes can develop “A2” reactivity that contributes to OPC maturation arrest in NWMI 93	

through induction of COX2-PGE2 signaling, a pathway that can be targeted for neonatal 94	

neuroprotection.   95	

96	
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INTRODUCTION 97	

Extremely low birth weight (ELBW) preterm infants show high rates of neurological 98	

impairment including cognitive, behavioral, neurosensory, and motor dysfunction as well as 99	

cerebral palsy (Moore et al., 2012; Serenius et al., 2013). Indeed, the prevalence of these 100	

conditions is increasing due to enhanced survival of ELBW preterm infants in the modern 101	

neonatal intensive care unit (Boyle et al., 2011; Guillen et al., 2015). Cerebral palsy in preterm 102	

infants is associated with neonatal white matter injury (NWMI), pathologic disturbances in 103	

myelination that can be focal or diffuse (Woodward et al., 2006; Northam et al., 2011; Fern et 104	

al., 2014) and often associated with gray matter abnormalities (Pierson et al., 2007).  Magnetic 105	

resonance imaging (MRI) has aided detection of NWMI and is predictive of preterm infants at 106	

high risk of developing cerebral palsy during childhood (Woodward et al., 2006).  Despite 107	

interventions that have dramatically improved ELBW infant survival, no neuroprotective therapy 108	

exists to prevent rising rates of cerebral palsy in developed countries.  109	

The predominant form of NWMI is a diffuse injury to myelin tracts (Counsell et al., 110	

2003) that involves inflammation and gliosis, a reactive response by microglia and astrocytes 111	

(Inder et al., 2005; Pekny and Nilsson, 2005; Riddle et al., 2011; Verney et al., 2012; 112	

Supramaniam et al., 2013) that can be triggered by systemic processes such as infection (Malaeb 113	

and Dammann, 2009; Deng, 2010; Deng et al., 2014; Hagberg et al., 2015).  Increased markers 114	

of inflammation in the neonatal period are strongly associated with the development of cerebral 115	

palsy, NWMI and poor neurological outcomes (Dammann and Leviton, 1997; Leviton et al., 116	

2016).  While it had been thought that inflammation led to NWMI by depleting the 117	

oligodendrocyte progenitor cell (OPC) pool (Back, 2006), more recent histologic studies using 118	

markers of discrete stages of OPC development in NWMI reveal that OPCs are present but 119	

arrested in a pre-myelinating and immature state (Billiards et al., 2008; Buser et al., 2012; 120	

Verney et al., 2012). 121	

Reactive astrogliosis is a hallmark of human NWMI (Khwaja and Volpe, 2007; Back and 122	

Miller, 2014; Back and Rosenberg, 2014) and can have either protective or deleterious effects 123	

(Williams et al., 2007; Sofroniew, 2015).  While factors induced by reactive astrocytes such as 124	

hyaluronic acid (Back et al., 2005), BMP (Wang et al., 2011), endothelin-1(Hammond et al., 125	

2014) can impair OPC maturation, STAT3-dependent astrocyte reactivity is also protective 126	

(Nobuta et al., 2012), suggesting functional hetereogeneity among reactive astrocytes. Reactive 127	
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astrocytes have recently been subtyped as “A1” or “A2” based on distinct molecular markers 128	

(Liddelow et al., 2017).  Reactive astrocytes expressing “A1” markers are found in multiple 129	

adult human neurodegenerative conditions and are thought to confer neurotoxic effects.   In 130	

transcriptional assessments of reactive astrocyte subtypes in mouse models, induction of Cox2 131	

was associated with the “A2” phenotype (Zamanian et al., 2012; Liddelow et al., 2017).  132	

However, the role of “A2” astrocytes in neuroinflammatory injury is unclear and human 133	

neuropathologic conditions associated with “A2” astrocytes have not been reported.   134	

The pro-inflammatory cytokine IL-1β induces cyclooxygenase type 2 (COX2) and 135	

prostaglandin E2 (PGE2) production, and systemic IL-1β administration is sufficient to induce 136	

NWMI in a rodent model (Favrais et al., 2011). Prostaglandin E2 (PGE2) is a pro-inflammatory 137	

mediator that is derived from arachidonic acid through the rate-limiting cyclooxygenase (COX) 138	

enzymes and signals to the EP family of cell surface receptors (Legler et al., 2010). PGE2 can be 139	

released by activated microglia and reactive astrocytes in the immature brain (Molina-Holgado et 140	

al., 2000; Xu et al., 2003; Xia et al., 2015).  PGE2 is elevated in the CSF of term and preterm 141	

neonates with culture-verified sepsis and meningitis (Siljehav et al., 2015), as well as neonates 142	

afflicted by perinatal asphyxia (Björk et al., 2013).  Relevant to the observations of 143	

oligodendrocyte maturation arrest is that PGE2 can alter the fates of progenitor cell populations 144	

(Castellone et al., 2005; Goessling et al., 2009). In this study, we asked whether PGE2 could 145	

directly inhibit oligodendrocyte progenitor maturation and possibly be a therapeutic target to 146	

reduce inflammation-induced NWMI?  147	

Here, we show that astrogliosis in human neonatal white matter injury is associated with 148	

“A2” astrocytes that express COX2.  In vivo systemic IL-1β treatment in a mouse model of 149	

neonatal hypomyelination also induces “A2” astrocyte reactivity.  IL-1β upregulates COX2 and 150	

the production of PGE2, which directly inhibits OPC maturation in an EP1-receptor dependent 151	

manner.  Moreover, systemic inhibition of COX2 in vivo reduced IL-1β−mediated effects on 152	

hypomyelination and OPC maturation arrest, suggesting a potential therapeutic approach.     153	

154	
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MATERIALS AND METHODS 155	

Animals and treatments. 156	

Animal husbandry, protocols, and ethics were approved by the University of California, San 157	

Francisco and the Bichat and Robert Debre Hospital ethics committees; protocols were approved 158	

by and adhere to the European Union Guidelines for the Care and Use of Animals, and the 159	

Institutional Animal Care and Use Committee in the USA.  EP1 (B6.129P2-160	

Ptger1tm1Dgen/Mmnc) mice were obtained from the Mutant Mouse Resource and Research 161	

Centers at the University of North Carolina(MMRC/UNC); frozen sperm from a mixed strain 162	

background (129 and C57/Bl6) was re-derived onto the C57/BL6 background; all experiments 163	

involving EP1 mice utilized littermate controls.  EP1 deficiency did not grossly affect brain 164	

morphology (data not shown).  IL-1β (R&D Systems, Minneapolis, MN) injections at postnatal 165	

dates 1-5 (P1-P5) were conducted with male Swiss Webster mice as previously described 166	

(Favrais et al., 2011).  Because the IL-1β-induced white matter model was conducted in male 167	

pups only, sex differences were not assessed.  Briefly, on P1, litters were culled to approximately 168	

10 pups, and all pups in a litter were allocated to a group (PBS or IL-1β). Mice received twice a 169	

day (morning and evening) from P1 to P4 and once on P5 (morning) a 5 µl intra-peritoneal 170	

injection of 10µg/kg/injection recombinant mouse IL-1β in phosphate buffered saline (PBS; 171	

R&D Systems) or PBS alone.  Nimesulide (Sigma-Aldrich), a selective COX2 inhibitor, was 172	

intraperitoneally injected following the same schedule as IL-1β protocol. Nimesulide was diluted 173	

in a solution of DMSO (0.1%, Sigma) to achieve a dose of 1mg/kg/injection and injected at the 174	

same time with PBS or IL-1β, as previously described (Favrais et al., 2007).  0.1% DMSO alone 175	

had no effects (data not shown). 176	

 177	

Oligodendrocyte progenitor cell and mixed glial cell cultures and treatments 178	

Oligodendrocyte precursor cell cultures were obtained from mouse and rat pups through two 179	

separate methods. Mouse OPCs were immunopanned from P6-P8 mouse cortices as previously 180	

described (Fancy et al., 2011), plated on poly-D-lysine coverslips (Neuvitro; Vancouver, WA), 181	

and maintained in proliferation media containing the following growth factors: platelet-derived 182	

growth factor-AA (PDGF-AA), ciliary neurotrophic factor (CNTF), and neurotrophin-3(NT3) 183	

(Peprotech, Rocky Hill, NJ) at 10% CO2 and 37°C.  Purified cell preparations were >95% 184	

Olig2+, <1% Iba1+ and <4% GFAP+ as assessed by IHC (data not shown). After 1-2 days in 185	
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proliferation media, differentiation was induced by changing media to contain CNTF and 186	

triiodothyronine (T3; Sigma, St. Louis, MO).  PGE2 (Sigma), Wnt3a (Peprotech), IL-1β (R&D 187	

systems), ONO-8711 (Cayman Chemicals, Ann Arbor, MI), and DMOG (Sigma) were added 188	

with differentiation media.   189	

Rat OPC cultures were obtained from the McCarthy and DeVellis’ modified protocol (McCarthy 190	

and de Vellis, 1980). Briefly, cortices from P0-P2 Sprague-Dawley rat pups were used to obtain 191	

mixed glial cultures for 10 days in MEM medium (Sigma) with 20% Fetal Bovine Serum (FBS). 192	

At day 11, a 2-step-shaking (260 RPM, 37°C, ambient air) was performed with a first short 193	

shaking for 1.5 hours to remove microglial cells and a second one for 18 hours to harvest 194	

oligodendrocytes. Then, OPC proliferation was induced by a medium enriched in PDGF-AA (10 195	

ng/ml; Peprotech) and basic Fibroblastic growth factor (bFGF, 10 ng/ml; Sigma) for 5 days. OPC 196	

purity had been assessed > 90% at day 4 (data not shown). At day 4 of proliferation phase, PGE2 197	

(Sigma) was added to the medium diluted in 0.1% DMSO (Sigma) from 1nM to 1mM for 24 198	

hours.  SC-51089 (10 µM, Tocris Biosciences), a selective EP1 receptor antagonist, was applied 199	

to rat OPC cultures with or without 10 µM PGE2. At day 5, PDGF-AA, b-FGF, PGE2 and SC-200	

51089 were removed of the medium to initiate OPC differentiation.  Myelin basic protein (MBP) 201	

immunostaining was performed at day 3 of maturation phase. Counting of MBP+ cells was based 202	

on counting in 5 random fields in duplicate and from at least 3 independent experiments.  Mixed 203	

glial cultures were prepared as previously described (Schildge et al., 2013) and plated on poly-D-204	

lysine (EMD Millipore, Darmstadt, Germany) coated plates.  Cells were stimulated with IL-1β 205	

and Nimesulide for assays 7-10 days after plating. Cells were collected for western blot analysis 206	

or medium was collected for measurement of PGE2 concentration.   207	

 208	

Antibody-coupled magnetic cell isolation of glia 209	

Cells positive for CD11b (microglia and macrophages), O4 (pan-oligodendrocytes) or GLAST 210	

(astrocytes), were extracted using the antibody-coupled magnetic bead system (MACS) 211	

following the manufacturer’s recommendations (Miltenyi Biotec, Bergisch Gladbach, Germany) 212	

and as previously reported (Schang et al., 2014). Cells were from cortices isolated at P5, 4 hours 213	

after the final injection of PBS or IL-1β.  The purity of fractions was verified using qRT-PCR for 214	

glial fibrillary acid protein (Gfap), neuronal nuclear antigen (Rbfox3, NeuN), ionizing calcium 215	

binding adapter protein (Aif1, Iba1), and oligodendrocyte differentiation factor 2 (Olig2). 216	
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 217	

RNA isolation and quantitative real-time PCR 218	

RNA was extracted from samples in Trizol (Life Technologies, Carlsbad, CA) with phenol-219	

chloroform followed by RNeasy Mini Kit (Qiagen, Hilden, Germany), and cDNA generated by 220	

High-Capacity RT-PCR kit (Applied Biosystems, Foster City, CA) or iScript cDNA synthesis kit 221	

(Bio-Rad, Hercules, CA).  qPCR using Sybr Green (Roche, Basel, Switzerland; or Biorad) was 222	

conducted on a LightCycler480 (Roche) or a CFX384 (Biorad).  Primers for qPCR include: Hprt 223	

(forward – TGGTGAAAAGGACCTCTCGAA, reverse – TCAAGGGCATATCCAACAACA), 224	

EP1/Ptger1 (forward – GGGCTTAACCTGAGCCTAGC, reverse – 225	

GTGATGTGCCATTATCGCCTG), EP2/Ptger2 (forward - GGAGGACTGCAAGAGTCGTC, 226	

reverse – GCGATGAGATTCCCCAGAACC), EP3/Ptger3 (forward – 227	

CCGGAGCACTCTGCTGAAG, reverse – CCCCACTAAGTCGGTGAGC), and EP4/Ptger4 228	

(forward – ACCATTCCTAGATCGAACCGT, reverse – CACCACCCCGAAGATGAACAT), 229	

Rpl13 (forward - ACA GCC ACT CTG GAG GAG AA, reverse - GAG TCC GTT GGT CTT 230	

GAG GA), Ptgs2 (forward – TCATTCACCAGACAGATTGCT, reverse – 231	

AAGCGTTTGCGGTACTCATT), Cd109 (forward – TCCCACTGTGAGAGACTACAAA, 232	

reverse - ACCTGGGTGTTGTAGCTTCG), S100a10 (forward – 233	

GTTTGCAGGCGACAAAGACC, reverse - ATTTTGTCCACAGCCAGAGG), Emp1 (forward 234	

– CTCCCTGTCCTACGGCAATG, reverse - GAGCTGGAACACGAAGACCA), Fbln5 235	

(forward – AGCAACAACCCGATACCCTG, reverse - GGCACTGATAGGCCCTGTTT), 236	

Amigo2 (forward – CCGATAACAGGCTGCTGGAG, reverse - 237	

AGAATATACCCCGGCGTCCT), Serping1 (forward – GCCTCGTCCTTCTCAATGCT, 238	

reverse - CGCTACTCATCATGGGCACT), Cxcl10 (forward – 239	

GCTGCAACTGCATCCATATC, reverse - GGATTCAGACATCTCTGCTCAT), Sphk1 240	

(forward – TCCAGAAACCCCTGTGTAGC, reverse - CAGCAGTGTGCAGTTGATGA), and 241	

Gfap (forward – AAGCCAAGCACGAAGCTAAC, reverse - 242	

CTCCTGGTAACTGGCCGACT). 243	

 244	

Rodent immunohistochemistry and immunofluorescence 245	

Coverslips were fixed in 4% PFA and immunostained with rabbit anti-Olig2 (EMD Millipore, 246	

Billerica, MA), rat anti-MBP (Biorad), mouse anti-phospho-histone 3 (Cell Signaling, Danvers, 247	
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MA), or mouse anti-Nkx2.2 (Developmental Hybridoma Bank, University of Iowa).  Secondary 248	

fluochrome-tagged antibodies were obtained from (Invitrogen/Thermo Fisher, Waltham, MA).  249	

Images were obtained on an Axioimager Z1 microscope (Zeiss, Oberkochen, Germany).  250	

Concerning ex-vivo experiments, P5 and P30 mouse brains were collected in the 4 experimental 251	

groups designed (PBS, Nimesulide, IL-1β, IL-1β+Nimesulide) and fixed to obtain 10µm thick 252	

coronal sections. Immunostainings with rabbit anti-NG2 (Millipore) on P5 brains to quantify 253	

OPCs and mouse anti-MBP (Millipore) antibodies on P30 brains for myelinated axons were 254	

performed as previously described (Favrais et al., 2011). NG2+ cells were counted within the 255	

white matter tracts of the external capsule using ImageJ software (NIH, Bethesda, MD). MBP 256	

immunostaining intensity was assessed by ImageJ densitometry analysis at the level of the 257	

sensory-motor cortex. 258	

 259	

Human tissue and immunofluorescence 260	

All human post-mortem tissue was acquired with prior ethical approval from The French Agency 261	

of Biomedicine (Agence de Biomédicine; approval PFS12-0011) or in accordance with 262	

guidelines established by the University of California, San Francisco Committee on Human 263	

Research (H11170-19113-07).  All tissues were collected following the provision of informed 264	

consent.   265	

Post-mortem fetal human brain sections were obtained from three cases of 27-, 30- and 31-weeks 266	

gestational age that did not have overt brain damage (Supplementary Table 1). Tissue was 267	

fixed with 4% paraformaldehyde, frozen and sections cut at 12 µm.  Staining was performed for 268	

goat anti-Iba1 (Abcam, Cambridge, UK), rabbit anti-Nestin (EMD Millipore), mouse anti-CD34 269	

(Biorad) and rabbit anti-COX2 (Abcam). Sections mounted on glass slides were rehydrated in 270	

PBS and pre-incubated in PBS with 0.2% gelatin and 0.25% Triton X-100 (PBS-T-gelatin) for 271	

15 minutes followed by overnight incubation with primary antibodies diluted in PBS-T-gelatin. 272	

The sections were rinsed with PBS-T-gelatin and incubated with secondary antibodies diluted in 273	

PBS-T-gelatin for 1.5 hours.  In order to perform COX2/Nestin double labeling, we employed 274	

the Tyramide Signal Amplification (TSA) Systems (PerkinElmer). Briefly, Nestin labeling was 275	

revealed with TSA-Cy3 as described by manufacturer’s instructions. Then, sections were treated 276	

at 94 °C in buffer citrate (1.8 mM acid citric, 8.2 mM sodium citrate, pH6) for 15 minutes. After 277	

three washes in PBS sections were incubated overnight with anti-COX2 antibody and revealed as 278	
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described above. Sections were then rinsed with PBS and incubated with DAPI for 5 minutes for 279	

nuclear counterstaining.  All incubations were performed at room temperature, protected from 280	

light in a humidified chamber. Finally, the sections were rinsed with PBS, coverslipped with 281	

Fluoromount (Southern Biotech) and stored at 4°C for subsequent confocal microscopic analysis. 282	

Tissue from term hypoxic-ischemic encephalopathy and control cases (Table 1) were immersed 283	

in PBS with 4% paraformaldehyde for 3 days.  On day 3, the brain was cut in the coronal plane 284	

at the level of the mammillary body and immersed in fresh 4% paraformaldehyde/PBS for an 285	

additional 3 days.  After fixation, all tissue samples were equilibrated in PBS with 30% sucrose 286	

for at least 2 days. Following sucrose equilibration, tissue was placed into molds and embedded 287	

with OCT for 30 – 60 minutes at room temperature or 4°C followed by freezing in dry ice-288	

chilled ethanol or methyl butane. The diagnosis of hypoxic ischemic encephalopathy (HIE) 289	

requires clinical and pathological correlations. With respect to the pathological features, all HIE 290	

cases in this study showed consistent evidence of diffuse white matter injury, including 291	

astrogliosis and macrophage infiltration using GFAP and CD68 staining.  All brain samples were 292	

examined and classified by an experienced neuropathologist.  While some control samples 293	

included infants with congenital diaphragmatic hernia, which may result in hypoxemia, all brain 294	

samples were examined and classified by an experienced neuropathologist and control samples 295	

did not exhibit evidence of astrogliosis or macrophage infiltration.    Slides were blocked with 296	

avidin and biotin (Vector Labs Burlingame, CA), and 10% goat serum, then permeabilized with 297	

TritonX-100 0.05%, and incubated overnight with primary antibodies at room temperature: 298	

mouse anti-S100A10 (Invitrogen; MA5-15326), rat anti-GFAP (Invitrogen; MA5-12023), or 299	

rabbit anti-COX2 (Abcam). COX2 was signal amplified with biotinylated goat anti-rabbit 300	

secondary followed by avidin-peroxidase complex (Vectastain ASBC, Vector).  Fluorescence 301	

staining was performed with fluorochromes tagged to streptavidin or goat secondary antibodies 302	

(Invitrogen). 303	

 304	

BrdU, LDH and PGE2 measurements 305	

Oligodendrocyte proliferation or death were observed just after the PGE2 or vehicle removal by 306	

BrdU (Cell Signaling) or Lactate Dehydrogenase (LDH) (Sigma) colorimetric assays 307	

(absorbance 450 nm), respectively. Proliferation immunoassay was performed on cells 308	

previously coated in 96 well-plate, whereas cell death was assessed through the measurement of 309	
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LDH release in the medium following the manufacturer’s instructions. Measurements were been 310	

performed in duplicate and counts collected from at least from 2 independent experiments.  311	

PGE2 levels in mixed glial culture media were measured by ELISA (Abcam). 312	

 313	

Signaling pathway ELISAs 314	

To explore PGE2 signaling pathway, cellular inflammation proteins were measured using a 315	

multi-target sandwich ELISA focusing on phospho-p38MAPK, phospho-p65NFκB, phospho-316	

SAPK/JNK, phospho-IκBα and phospho-STAT3 (Cell Signaling, PathScan inflammation). Total 317	

cell proteins were extracted at the end of PGE2 24h-exposure. Lysis buffer contained 4-318	

hydroxybutyl-acrylate with 1% Triton-X (Sigma), 1% protein inhibitor cocktail (Sigma) and 5 319	

nm sodium fluoride (Sigma). OPCs were lysed on ice and froze at -20°C until use. After 320	

defrosting on ice, 10 second-sonication was performed followed by a centrifugation (14000 rpm) 321	

for 15 minutes at 4°C. Then, the supernatant was collected, and protein concentration was 322	

measured based on Bradford method using Bovine Serum Albumin (BSA) standard curve and 323	

colorimetric assay (Biorad, Bradford protein assay). Then, ELISA assay was performed on a 96 324	

pre-coated well-plate with 4 samples per experimental groups (DMSO 0.1% for 24 hours versus 325	

PGE2 10 µM for 24 hours) in duplicate following the manufacturer’s instructions. 326	

 327	

Western blot  328	

Cells were lysed with RIPA buffer directed on tissue culture plates, scraped, vortex and 329	

centrifuged to clarify lysates.  Lysate protein concentrations were measured by BCA (Biorad).  330	

Lysates were resolved on Bolt gels (Invitrogen) using MOPS buffer, transferred to PVDF-F 331	

(EMD Millipore) and imaged with Odyssey luminescence (LI-COR Biosciences, Lincoln, NE).  332	

Primary antibodies: rabbit COX2 (Abcam), rabbit HIF1α (Cayman Chemicals), mouse active β-333	

catenin (EMD Millipore), phospho-Akt (Cell Signaling), pan-Akt (Cell Signaling) and GAPDH 334	

(Sigma) and rabbit total β-catenin (Cell Signaling).  IRDye-conjugated secondary antibodies 335	

were from Licor. Fluorimetric analysis and imaging were performed with Odyssey luminescence 336	

(LI-COR Biosciences, Lincoln, NE). 337	

 338	

Behavioral Assessment 339	
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Temporal and spatial memory functions were assessed at P29 and P30 through the novel object 340	

recognition (NOR) and the object location memory (OLM) tests, respectively.  For these tests, 341	

the exploration time of two objects placed in 36 x 36 x 10 cm box arena was measured twice for 342	

4 minutes and 3 minutes apart.  First, two identical objects were placed in two distinct corners of 343	

the box.  Second, one of the two objects were either displaced or replaced by a new one for OLM 344	

or NOR assessments, respectively.  Exploration time was defined as the duration an animal 345	

spend either pointing its nose towards the object at a distance of <1 cm and/or touching it with 346	

the nose; turning around, climbing, and sitting on the object were not considered as exploration.  347	

Recognition of the familiar object was scored by preferential exploration of the novel object 348	

using a discrimination index (novel object interaction/total interaction with both objects, range 349	

from 0 to 100%; 50% = no preference). 350	

 351	

Statistics 352	

Data are presented as means +/- SEM.  Unpaired two-tailed t-tests or Mann Whitney U tests 353	

were performed for two group analyses based on the outcome of normality testing, or a one-way 354	

Anova for 3 or more group analyses, as indicated in the text and figure legends. Analyses were 355	

performed using Graphpad Prism (Graphpad Software, San Diego, CA) and Excel (Microsoft, 356	

Redmond, WA) 357	

358	
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RESULTS 359	

COX2 protein is expressed in glial cells of the 3rd trimester human fetal brain. 360	

To determine whether COX2 was normally expressed in the developing human brain, we 361	

undertook immunohistochemical (IHC) analysis using a collection of human fetal brain samples  362	

(27, 30, and 31 gestational week cases; Supplementary Table 1). In the three cases, IHC 363	

staining revealed COX2 expression in Iba1-positive microglia (Fig. 1 A), Nestin-positive 364	

putative radial glia (including a subset of immature astrocytes) (Fig. 1 B), and CD34-positive 365	

endothelial cells (Fig. 1 C) within the sub-ventricular zone. 366	

 367	

COX2 protein is induced by human reactive astrocytes in neonatal white matter 368	

To further investigate the expression of COX2 in neonatal white matter pathology, we performed 369	

immunohistochemistry on subcortical white matter samples of the cingulate cortex (Fig. 2 A) 370	

from post-mortem samples in a collection of term infant cases that suffered from hypoxic-371	

ischemic encephalopathy (HIE) and matched controls (Table 1). We found that COX2 372	

expression was substantially increased in reactive GFAP+ white matter astrocytes (Fig. 2 B and 373	

C).  When we enumerated the number of GFAP+ astrocytes and CD45+ immune cells 374	

expressing COX2 in control and HIE cases, we found that GFAP+ astrocytes exhibited a 375	

significant increase in total numbers and COX2 expression.  In comparison, CD45+ cells were 376	

unchanged in total numbers or COX2 expression (Fig. 2 D).  While the total number of COX2+ 377	

cells also includes endothelial cells (see above and Fig. 1 C) and immune cells (including 378	

microglia and peripherally-derived myeloid cells), the increase within GFAP+ cells accounts for 379	

the overall rise in COX2+ cells in HIE cases. 380	

Reactive astrocytes have recently been delineated as “A1” or “A2” subtypes based on distinct 381	

expression patterns of molecular markers (Liddelow et al., 2017).  In transcriptional assessments 382	

of these reactive astrocyte subtypes, COX2 (Ptgs2) upregulation was reported to be associated 383	

with the “A2” phenotype (Zamanian et al., 2012; Liddelow et al., 2017).  Therefore, we also 384	

looked for expression of the “A2” associated marker, S100A10, and found strong co-expression 385	

within GFAP+ white matter astrocytes in HIE cases (Fig. 2 E and F).  These findings show that 386	

COX2 is strongly induced in human HIE white matter within reactive astrocytes of an “A2”-387	

associated phenotype, and suggests that “A2” reactive astrocytes may be an important source of 388	

PGE2 in human NWMI. 389	
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 390	

Astrocytes exhibit “A2” reactivity with systemic IL-1β  treatment.  391	

We have previously reported that P1-P5 systemic administration of IL-1β impairs OPC 392	

maturation and results in myelination defects that mimic human preterm deficits (Favrais et al., 393	

2011).  To further investigate the ability of microglia and/or astrocytes to generate prostaglandin 394	

in vivo, we isolated these cells from mouse pups treated with systemic IL-1β. As shown (Fig. 3 395	

A), both CD11b+ microglia and GLAST+ astrocytes isolated from IL-1β treated animals 396	

expressed elevated levels of COX2 transcript compared to controls.   397	

Our findings in human NMWI indicate that robust COX2 induction occurs in reactive astrocytes 398	

with an “A2” phenotype.  Therefore, we asked whether reactive astrocytes following systemic 399	

IL-1β exposure also exhibit an “A2” transcriptional profile of reactivity.  GLAST+ cells were 400	

isolated at P5 following P1-P5 systemic IL-1β treatment and assessed for markers of pan 401	

reactivity (Fig. 3 B), A1-associated reactivity (Fig. 3 C), and A2-associated reactivity (Fig. 3 D).  402	

Together, the expression pattern shows a differential increase the A2-associated markers 403	

S100a10 and Emp1 but lack of induction for A1-associated markers (Fbln5, Amigo2, Serping1).  404	

These findings indicate that astrocytes in the IL-1β model of NWMI develop an A2-associated 405	

reactivity, reflecting the white matter astrocyte phenotype seen in neonatal human pathology. 406	

 407	

IL-1β  induces COX2-dependent production of Prostaglandin E2  408	

We next confirmed that IL-1β induction of COX2 results in PGE2 production. Mixed glial 409	

cultures containing microglia and astrocytes were stimulated with IL-1β.  As shown 410	

(Supplementary Figure. 1 A), IL-1β stimulation of mixed glial cultures resulted in elevated 411	

COX2 protein consistent with previously published work that COX2 could be induced by 412	

astrocytes or microglia (Katsuura et al., 1989; Molina-Holgado et al., 2000).  IL-1β-stimulated 413	

mixed glial cultures also produced PGE2 and this was inhibited by Nimesulide, which 414	

specifically targets COX2 (Supplementary Figure. 1 B).    In contrast, we found that direct IL-415	

1β treatment of purified OPCs did not induce COX2 or lead to OPC maturation arrest 416	

(Supplementary Figure. 1 A and C), consistent with a previous study (Vela, 2002). Taken 417	

together, these findings indicate that IL-1β activates astrocytes and microglia, but not OPCs, to 418	

produce PGE2 in a COX2-dependent manner.  419	
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 420	

Prostaglandin E2 arrests OPC maturation.  421	

To test whether PGE2 had a direct effect on OPCs, cells were isolated from neonatal mouse 422	

cortices using anti-PDGFRα immunopanning (Emery and Dugas, 2013).  Upon T3 hormone 423	

maturation treatment, OPCs differentiate and express MBP while expression of the immature 424	

OPC marker Nkx2.2+ decreases (Qi et al., 2001) (Fig. 4 A). PGE2 treatment resulted in a robust 425	

and dose-dependent suppression of this T3 induced MBP expression (Fig. 4 B and C).  We 426	

confirmed that PGE2 blocked OPC maturation by monitoring persistent expression of immature 427	

OPC marker Nkx2.2 (Fig. 4 D).  PGE2 had no effect on overall Olig2+ cell numbers, consistent 428	

with an alteration of OPC differentiation as compared to proliferation or OPC death (Fig. 4 E).  429	

In parallel, purified rat OPCs were also treated with PGE2 and found to have a dose dependent 430	

blockade in MBP expression at maturation day 3 (Fig. 4 F and G).  An assessment of BrdU 431	

incorporation (Fig. 4 H) and histone-3 phosphorylation (Fig. 4 I) showed no difference between 432	

PGE2 and control treated cells.  Furthermore, a cytotoxicity assay also showed no difference in 433	

LDH release (Fig. 4 J).  Thus, PGE2 is a potent inhibitor of mouse and rat OPC maturation in 434	

vitro, but does not affect OPC proliferation or survival. 435	

 436	

PGE2 inhibits oligodendrocyte progenitor cell maturation through the 437	

prostaglandin E receptor 1 (EP1 receptor)  438	

Prostaglandin E2 signals through four G-protein coupled receptors: EP1-EP4. RNA 439	

transcriptome profiling of cellular subsets in culture (Sharma et al., 2015) and from the postnatal 440	

mouse cortex (Zhang et al., 2014) indicated that EP1 is the predominant receptor in the 441	

oligodendrocyte lineage.  We confirmed by qPCR that EP1 is expressed on immunopanned 442	

mouse OPCs (Fig. 5 A).   We also performed transcriptional analysis of O4+ oligodendrocyte 443	

lineage cells isolated from of P5 and P10 mouse cortices and found that EP1 was the 444	

predominantly expressed receptor at these two separate time points (Fig. 5 B).   445	

To determine whether PGE2 acts through EP1 to interfere with OPC maturation, we 446	

employed both pharmacologic and genetic approaches.  ONO-8711 is an EP1-specific inhibitor 447	

(Watanabe et al., 1999) and co-treatment of ONO-8711 reversed effects of PGE2 on MBP 448	

expression and maintained Nkx2.2 (Fig. 5 C and D). In parallel, similar result was observed 449	

with rat OPC cultures in presence of SC-51089 (Hallinan et al., 1993), another specific EP1 450	
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inhibitor (Fig. 5 E). Secondly, we compared the effects of PGE2 on OPCs purified from EP1-/- 451	

or littermate EP1+/- control pups.  In contrast to control cells, EP1-/- OPCs were resistant to the 452	

effects of PGE2 (Fig. 5 F and G).   453	

While PGE2 effects have been associated with interactions with Wnt or HIF1α signaling 454	

(Goessling et al., 2009; Ji et al., 2010), we found no evidence of β-catenin activation or HIF1α 455	

stabilization in OPCs following PGE2 exposure (Supplementary Figure. 2 A and B).  In 456	

addition, we found no evidence for activation of p38MAPK, which has been reported to 457	

modulate OPC maturation (Chew et al., 2010).  We also found no differences in inflammatory 458	

pathway effectors JNK, p65NFκB, IκBα, or STAT3 (Supplementary Figure. 2 C). We also 459	

assessed Akt, which regulates oligodendrocyte maturation (Luo et al., 2014) and brain 460	

inflammation with reports PGE2 interactions, albeit through the EP4/PI3K pathway (Shi et al., 461	

2010).  Akt exhibited no change in protein expression between 6 hours and 4 days following 24 462	

hours of PGE2 exposure in rat culture (Supplementary Figure. 2 D). These results demonstrate 463	

that PGE2 directly inhibits OPC maturation in vitro through EP1 receptor engagement. 464	

 465	

Inhibition of COX2 attenuates systemic IL-1β  induced hypomyelination.  466	

To investigate whether COX2 inhibition could prevent the effects of neonatal exposure to IL-1β, 467	

we co-treated mice with IL-1β and Nimesulide between P1 and P5 (Fig. 6 A).  Notably, we 468	

observed a significant increase of Ep1 transcript at P5 in cerebral tissue of mice following 469	

systemic administration of IL-1β (Fig. 6 B).  Nimesulide prevented the IL-1β-induced increase 470	

of NG2 + cells at P5 and the decrease in MBP staining density within the sensory-motor cortex 471	

at P30 (Fig. 6 D-F).  In addition, we performed testing of treated mice to determine whether 472	

COX2 inhibition could reverse behavioral deficits we had previously observed in mice exposed 473	

to neonatal IL-1β (Favrais et al., 2011).  In novel object recognition and object location memory 474	

tests performed at P29 and P30, animals co-treated with IL-1β and Nimesulide performed as 475	

controls while animals treated with IL-1β alone showed memory deficits (Fig. 6 G). These 476	

findings suggest that inhibition of COX2 is protective against IL-1β mediated effects on neonatal 477	

brain. 478	

479	
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DISCUSSION 480	

Despite interventions that have dramatically improved ELBW infant survival, no 481	

neuroprotective therapy exists for preterm infants in the neonatal intensive care unit to prevent 482	

rising rates of cerebral palsy.  In this study, we find that PGE2 can act directly on OPCs to 483	

inhibit their maturation and, using both genetic and pharmacologic methods, we show that its 484	

effects are mediated through the EP1 receptor.  We also show that in the developing human 485	

brain, COX2 is expressed by microglia, endothelial cells and maturing astrocytes.  In human 486	

neonatal white matter pathology, reactive astrocytes with an “A2” phenotype strongly induce 487	

COX2, and treatment with a COX2-specific inhibitor is protective in a mouse model of 488	

inflammation-induced NWMI with preserved myelination and attenuated cognitive impairment.  489	

Taken together, our findings support a model (Fig. 7) in which systemic inflammation and 490	

perinatal insults can induce “A2” reactive astrocytes to produce PGE2 that directly impairs OPC 491	

maturation and myelination.   492	

 493	

 There are four receptors for PGE2, and differential expression patterns for these receptors 494	

and specific effects of these have been reported across species and injury models (Legler et al., 495	

2010). Using transgenic EP1-/- mice, we purified OPCs and demonstrated that PGE2 directly 496	

inhibits OPC maturation in an EP1-dependant manner.  Pharmacologic blockade with EP1-497	

specific inhibitors (ONO-8711 or SC-51089) also attenuated effects of PGE2 to inhibit OPC 498	

maturation. What is downstream of EP1 signaling in OPCs? Interestingly, EP2 specific 499	

activation by PGE2 has been reported to modulate cellular differentiation through the activation 500	

of Wnt pathway signaling (Castellone et al., 2005; Goessling et al., 2009), which is capable of 501	

causing OPC maturation arrest (Fancy et al., 2009; 2011; Guo et al., 2015). However, we did not 502	

find any evidence for Wnt pathway activation.  Also, a survey of multiple kinase pathways did 503	

not reveal significant changes with PGE2 treatment in OPCs. Thus, further work is needed to 504	

identify potential downstream pathways of EP1 in OPCs. 505	

 506	

 Reactive astrogliosis is a pathological hallmark of human NWMI (Khwaja and Volpe, 507	

2007) but its role in the maturation arrest of OPCs in the neonatal brain is unclear.  Reactive 508	

astrocytes subtypes “A1” and “A2” (Liddelow et al., 2017) have been suggested to demarcate 509	

neurotoxic vs. regenerative forms (Sofroniew, 2015).  While reactive astrocytes expressing “A1” 510	
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markers are found in multiple adult human neurodegenerative conditions and are thought to 511	

confer neurotoxic effects, however, not much is known about the downstream effects of “A2” 512	

reactive astrocytes.  In our study examining neonatal tissue from human white matter, we find 513	

that astrocytes predominantly express the “A2” marker S100A10 with COX2.   These findings 514	

are consistent with the association of “A2” reactive astrocytes with the middle cerebral artery 515	

occlusion injury (Zamanian et al., 2012), a model of human neonatal HIE in early postnatal 516	

rodents.  Our control cases included infants with diaphragmatic hernia, who may have been 517	

exposed to some milder degree of hypoxia that did not induce gliosis or inflammatory 518	

infiltration. We also find that astrocytes respond to systemic IL-1β with upregulation of “A2” 519	

markers, which is in agreement with in vitro findings that IL-1β can promote “A2” astrocyte 520	

reactivity associated with COX2 (Ptgs2) upregulation (Liddelow et al., 2017).   Our findings 521	

indicate that COX2 is not only a marker of “A2” reactivity, but may also function to promote 522	

OPC maturation arrest through PGE2 production.  Future studies may define whether “A1” or 523	

“A2” subtypes of reactive astrocytes are also associated with other astrocytic factors known to 524	

modulate OPC maturation, such as hyaluronan (Back et al., 2005), endothelin-1 (Hammond et 525	

al., 2014), BMP (Wang et al., 2011), or tenascin C (Nash et al., 2011). 526	

  527	

Our study is in general agreement with observations that blocking PGE2 production 528	

prevents systemic IL-1β from exacerbating the extent and distribution of lesions in white matter 529	

injury (Favrais et al., 2007).  Inhibition of PGE2 signaling also attenuates an in vitro model of 530	

excitotoxic OPC death (Carlson et al., 2015). Thus, in variable neurologic insults, PGE2 likely 531	

contributes to neuroglial damage through intrinsic and extrinsic pathways, and might exhibit 532	

detrimental effects on cell survival (Palumbo et al., 2011).   However, the neuropathology in 533	

preterm infants exposed to systemic inflammation leads to hypomyelination, OPC maturation 534	

arrest, and typically occurs without increased cell death (Billiards et al., 2008; Favrais et al., 535	

2011; Verney et al., 2012).  As such, this role for PGE2 as a modulator rather than a toxic 536	

mediator in leading to OPC maturation arrest may be more consistent with today’s predominant 537	

form of neonatal brain injury with diffuse NWMI. 538	

 539	

Previous studies using nonspecific COX inhibitors, such as indomethacin or ibuprofen, to 540	

promote patent ductus arteriosus (PDA) closure in preterm infants showed benefit for the 541	
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prevention of severe intraventricular hemorrhage (Ment et al., 1994; Schmidt et al., 2001) but 542	

they were not powered or designed to evaluate NWMI.  A recent meta-analysis correlates 543	

maternal use of indomethacin as a tocolytic with poor neonatal outcomes (Hammers et al., 2015), 544	

but postnatal use of indomethacin have not demonstrated worse neurologic outcomes. On the 545	

contrary, a retrospective analysis PreMRI clinical trial data in preterm infants exposed to 546	

prolonged (less than three, but greater than seven days) courses of indomethacin showed 547	

decreased evidence of NWMI (Gano et al., 2014) suggesting a similar neuroprotective effect to 548	

what we report here. Indeed, our findings suggest a mechanism for white matter neuroprotection 549	

through indomethacin’s anti-inflammatory inhibition of PGE2 production by reactive glia (Fig. 550	

7).  551	

 552	

In conclusion, this study identifies that COX2 mediated neuroinflammatory PGE2 553	

production can impair the maturation of OPCs through engagement of EP1 receptor. We were 554	

able to demonstrate this association in vivo and prevent inflammation induced NMWI with the 555	

COX2 inhibitor nimesulide, and provide evidence for the expression of COX2 in human “A2” 556	

reactive astrocytes. This is an important mechanistic and proof-of-concept therapeutic support 557	

that targeting PGE2 production might be a viable therapeutic strategy in humans at risk for 558	

NWMI. 559	

560	
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Figure Legends 788	

Figure 1. COX2 immunohistochemistry in the human third trimester brain. Representative 789	

images from the dorsal cortex of a 30-week human fetal brain.  A. In the subplate, red COX2, 790	

green IBA1+ microglia and an overlay panel including DAPI positive nuclear staining. B. in the 791	

subventricular zone, red COX2, green nestin+ putative radial glia and astrocytes and an overlay 792	

panel including DAPI+ nuclear staining.  C. In the subventricular zone, red COX2, green CD34+ 793	

endothelia cell and an overlay panel including DAPI positive nuclear staining. Scale bar = 10µm.   794	

 795	

Figure 2. COX2 immunohistochemistry of subcortical white matter from human hypoxic 796	

ischemic encephalopathy (HIE) cases.  A. Cartoon illustrating affected white matter areas in 797	

human term HIE.  Black box represents cingulate region used for analysis.  Red boxes are 798	

examples of subcortical white matter regions used for analysis.  HIE cases exhibit increased 799	

GFAP (white) immunoreactivity. B. Representative images from term infants with or without 800	

HIE, stained for COX2 (red) and GFAP (white).  Arrowheads mark COX2+ GFAP+ astrocytes.  801	

C. Representative images of white matter expression of COX2 in GFAP+ astrocytes.  Arrows 802	

mark COX2+ GFAP+ astrocytes.  Arrowhead marks a COX2- CD45+ microglia/myeloid cell.  803	

D. Quantification of indicated cell types in control and HIE white matter.  E & F. Representative 804	

images (E) and quantification (F) of S100A10 co-expression with COX2 in white matter GFAP+ 805	

astrocytes.  Arrows mark GFAP+ astrocytes co-expressing S100A10 and COX2.  Arrowhead 806	

marks a GFAP+ astrocytes expressing only S100A10.  Data from n=4 control and n=3 HIE 807	

cases.  p-values calculated from two-tailed unpaired t-tested. * p <0.05, ** p<0.01, *** p<0.005, 808	

**** p<0.001 809	

 810	

Figure 3. GLAST+ astrocytes isolated from IL-1β  treated mice induce Cox2 (Ptgs2) and 811	

express markers of “A2” reactivity.  Transcriptional analysis of cells isolated by magnetic 812	

bead purification from P5 mice treated with PBS or IL-1β.   A. Transcriptional induction of Cox2 813	

in GLAST+ astrocytes and CD11b+ microglia isolated. B. Expression of pan-reactive markers 814	

(Gfap, Cxcl10) in GLAST+ astrocytes.  C. Expression of A1-associated markers (Fbln5, 815	

Amigo2, Serping1) in GLAST+ astrocytes. D. Expression of A2- associated markers (Ptgs2, 816	

S100a10, Emp1, Cd109, Sphk1) in GLAST+ astrocytes.   Data representative of n=13 per group. 817	

* p<0.05, ** p<0.01, **** p<0.001; analysis by Mann-Whitney test. 818	
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 819	

 820	

Figure 4. Prostaglandin E2 inhibits oligodendrocyte progenitor cell maturation.  A. 821	

Schematic of oligodendrocyte maturation assay.  Nkx2.2 marks immature progenitors and MBP 822	

marks maturing oligodendrocytes.  B.  Representative images of cells, stained for Olig2 and 823	

MBP, after 3 days of differentiation with or without PGE2 (scale bar, 25 µm). C & D. 824	

Quantification of MBP+ (C) and Nkx2.2+ cells (D) exposed to indicated doses of PGE2.  E. 825	

Total Olig2+ cell numbers following exposure to indicated doses of PGE2. F & G. 826	

Representative images (scale bar, 100µm) and quantification of MBP staining following 827	

treatment of rat OPC cells with or without PGE2 from 100nM to 1mM (n=6 per group). H. BrdU 828	

incorporation in OPCs exposed to PGE2 from 1nM to 1mM for 24 hours (n=4 per group). I. 829	

Phospho-histone 3 expression in OPCs exposed to PGE2. J.  LDH release from OPCs exposed to 830	

PGE2 from 1nM to 1mM for 24 hours (n=3 per group). * p-value <0.05,  ** p-value <0.01, *** 831	

p-value <0.005  Data shown compiled from at least 3 independent experiments.  832	

 833	

Figure 5. PGE2 maturation arrest of oligodendrocyte progenitor cells through EP1 834	

receptor. A. Quantitative PCR expression of PGE2 EP1-EP4 receptors in immunopurified 835	

mouse OPCs. B. Microarray transcript levels of EP1-EP4 in O4+ isolated cells from P5 and P10 836	

mouse cortices.  C & D. Quantification of MBP+ (C) and Nkx2.2+ cells (D) exposed to PGE2 837	

and EP1-specific inhibitor ONO-8711. E. Quantification of MBP+ cells after exposure to vehicle 838	

(0.1% DMSO), PGE2 10µM, or PGE2 10µM and EP1 inhibitor (SC-51089 10µM) in rat 839	

oligodendrocyte culture (n=10 per group). F & G. Representative images (F) and quantification 840	

of (G) OPC isolated from EP1-/- or control pups treated with PGE2 (scale bar, 20 µm).  * 841	

indicates p-value <0.05 and **** p values <0.001.  Data shown compiled from at least 3 842	

independent experiments. 843	

 844	

Figure 6.  Cyclooxygenase-2 inhibition prevents hypomyelination and memory deficits.  A. 845	

Timeline of postnatal intraperitoneal treatment by PBS (PBS + Veh.) or IL-1β (IL-1β + Veh.) or 846	

PBS with nimesulide (PBS + nim.) or IL-1β with nimesulide (IL-1β + nim.) from P1 to P5 and 847	

assessments performed. White bars correspond to PBS treatment, black bars to IL-1β treatment 848	

and grey bars to postnatal day 0 previous to i.p. injections B. Ep1 expression measured by RT-849	
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PCR at P5 (n=5 per group).  C & D. Representative images and graph of NG2 staining within 850	

external capsule at P5. (scale bar, 25µm; n=5 per group). E. Image of anatomical areas where 851	

NG2 (green box) and MBP (yellow box) were quantified. F. Representative images of MBP 852	

immunostaining within the sensory-motor cortex of P30 aged mice (scale bar, 100µm). G.  853	

Optical densities of MBP staining within the sensory-motor cortex of P30 mice (n=6 per group).   854	

H. Mice were subjected to NOR and OLM tests at P30 (n=10-18 per group).  First round = T0 855	

(gray bar), second round = T30.  Results are expressed in means +/- SEM. Asterisks indicate 856	

statistically significant differences from white bar, ** p<0.01, **** p< 0.001 in Mann-Whitney 857	

or One-Way ANOVA tests and ### p< 0.001 in comparison with IL-1β group. 858	

 859	

Figure 7. Model of COX2-PGE2 signaling pathway in human neonatal white matter injury 860	

and oligodendrocyte progenitor cell maturation arrest.  Systemic inflammation from 861	

perinatal insults can induce COX2 in reactive glia such as “A2” reactive astrocytes.  PGE2 862	

production from COX2 leads to EP1-receptor mediated maturation arrest of OPCs.  863	

Indomethacin or COX2-specific inhibitors such as Nimesulide may provide neuroprotection 864	

through inhibition of PGE2 production.   865	
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