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ABSTRACT 16 

Tephrochronology is a widely applied method recognized for its exceptional 17 

precision in geologic dating and stratigraphic correlation. Tephra from the ~7.6 kyr B.P. 18 

Mount Mazama caldera-forming (”climactic”) eruption have been widely identified and 19 

applied as stratigraphic isochrons sediments of northwestern North America, as well as in 20 

the Greenland ice core records. Recent findings of a microscopic tephra accumulation, or 21 

cryptotephra, from Mazama in Newfoundland indicated that this horizon should also be 22 
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found in Lake Superior sediments. We present findings that confirm the presence of 23 

Mazama ash in two sediment cores from the Lake Superior basin, which indicates its 24 

likely presence in the rest of the Laurentian Great Lakes and in deposits throughout much 25 

of eastern North America and beyond. The ubiquity of this stratigraphic horizon should 26 

be applicable to a higher resolution evaluation of climatological, ecological, and 27 

archaeological events during the early- to mid-Holocene thermal maximum throughout 28 

much of North America. 29 

INTRODUCTION 30 

The summit of Mount Mazama (Crater Lake, Oregon, 42.95°N, 122.10°W) 31 

collapsed in a series of pyroclastic eruptions at 7682–7584 cal. yr B.P. (Egan et al., 32 

2015). The eruptions released ~50 km3 of dominantly low-silica rhyolitic magma and 33 

created the Crater Lake caldera (Bacon and Lanphere, 2006). The Plinian eruption cloud 34 

from this caldera-forming (“climactic”) eruption is estimated to have risen to ~50 km, 35 

well into the stratosphere (Young, 1990) leaving deposits across the Pacific Northwest of 36 

North America that have been studied for their archaeologic, volcanic, environmental, 37 

and stratigraphic implications (e.g. Pyne-O’Donnell et al., 2012; Sarna-Wojcicki et al., 38 

1983). While the majority of these studies targeted macroscopically visible Mazama 39 

tephra horizons , recent advances in distal tephrochronology have highlighted the 40 

stratigraphic value of cryptotephra: horizons too fine-grained, or in too low 41 

concentration, to be seen with the naked eye (Lowe and Hunt, 2001). In this form, 42 

Mazama ash has been found as far afield as Newfoundland (Pyne-O’Donnell et al., 2012) 43 

and Greenland (Zdanowicz et al., 1999) and therefore must have been deposited widely 44 

across the North American continent. Widespread discovery of the Mazama ash as a 45 
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cryptotephra isochron, as illustrated by this study of the Lake Superior Basin, provides 46 

opportunities for stratigraphic correlation unsurpassed by other stratigraphic proxies, for 47 

precise correlation of sedimentary archives across the North American continent. 48 

Isochrons are much needed, in part, because of the limitations of other dating 49 

methods like radiocarbon. In the Lake Superior basin, biogenic carbonates are not 50 

preserved in the lake sediment, and there is a large and varying proportion of old, re-51 

suspended organic carbon that gets reworked into sediments that accumulate in the deep 52 

basins offshore (Zigah et al., 2014). Consequently, the primary approach to dating 53 

sediment cores from Lake Superior has been to measure the paleomagnetic secular 54 

variation (psv) in inclination and declination of the sediment and compare the resultant 55 

profiles to the magnetic field history established in well-dated cores from smaller lakes in 56 

the region (e.g., Breckenridge et al., 2004). Uncertainty arises in this approach of “wiggle 57 

matching”, which can be alleviated by accurately ascertaining the age of independently 58 

dated horizons in the sediment sequence. One such chronostratigraphic approach is 59 

tephrochronology, which, to this point, had not been applied to Holocene sediment 60 

sequences in the Laurentian Great Lakes. Tephra from the ~7.6 kyr B.P. Mazama 61 

eruption offer a precisely dated isochron for checking the psv chronologies for the Lake 62 

Superior sediments during the Holocene thermal maximum (HTM). Here we present our 63 

discovery of Mazama cryptotephra in two sediment cores from Lake Superior (Fig. 1). 64 

METHODS 65 

Two piston cores were recovered from Lake Superior in 2009 and 2011. In 2009 66 

the “KB core” was recovered in Keweenaw Bay (47.13°N, 87.82°W) in 127 m water 67 

depth (BH09K-1A-1K, International Geo Sample Number [IGSN]: IESUP0001) and in 68 
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2011 the “IR core” was recovered from  near Isle Royale (47.97°N, 88.47°W) at a water 69 

depth of 233 m  (BH11IR-SUP11–1A-1P, IGSN: IESUP0002) . PSV age models were 70 

developed for both cores using psv profiles and considering the transition depth in each 71 

core from glacial-lacustrine varves to post-glacial, more homogeneous sediment 72 

(O’Beirne, 2013). We determined from these age models that the Mazama cryptotephra, 73 

if present, would be found within 3.5–5.0 m below lake floor (mblf) in the core KB and 74 

2.6–3.5 mblf in the core IR (Fig. 2). 75 

We detected and extracted cryptotephra using the physical separation methods 76 

outlined in Blockley et al. (2005). Contiguous 10 cm sediment samples (~3 g wet weight) 77 

were extracted over the targeted intervals of each core. The samples were suspended in 78 

distilled water, disaggregated with a sonic dismembrator, and then digested in a 35% 79 

hydrogen peroxide solution at ~30 °C overnight. The cooled samples were each sieved 80 

through 25 µm meshes. Density separation of the >25 µm sediments utilized sodium 81 

polytungstate (SPT) to isolate sediments between  2.10 g cm-3 and 2.55 g cm-3. This 82 

density range was experimentally determined in this study as optimal for separating both 83 

less-dense diatoms and more-dense silicate minerals from the tephra grains. We routinely 84 

prepared slides of sample blanks (centrifuged aliquots of the SPT solution) in order to 85 

check for any contamination during laboratory processing. 86 

Each extracted sample was examined for tephra glass shards using a polarizing 87 

microscope. Shard counts were normalized by the original sample wet mass to determine 88 

the concentration of shards per gram (s/g) . The 10 cm increments found to have the 89 

highest concentrations were subsampled and processed again at a 1 cm interval to further 90 

resolve the depth of each cryptotephra horizon (Table DR1 in the GSA Data 91 
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Repository1). A homogenized portion of the subsample containing the highest 92 

concentration of shards from each core was examined by scanning-electron microscope 93 

(SEM) and another homogenized portion was mounted in a 25 mm epoxy resin block, 94 

which was then sectioned and polished for electron microprobe analysis, using 95 

wavelength dispersive spectrometry (WDS-EMPA) at the Research Laboratory for 96 

Archaeology and the History of Art, University of Oxford (UK). Eleven major- and 97 

minor-element oxides were measured on 24 tephra shards across the two sites (KB, n = 6; 98 

IR, n = 18), with intermittent analysis of secondary glass standards in order to monitor 99 

instrumental accuracy and analytical precision (Table DR2). Microprobe analytical 100 

conditions followed protocols established by the International focus group on 101 

Tephrochronology and Volcanism (INTAV; Kuehn et al., 2011; Table DR2). 102 

Glass shard compositions were compared to compatible tephra glass shard data 103 

sets from Holocene rhyolitic eruptions in northwestern North America (Carson et al., 104 

2002; Pyne-O’Donnell et al., 2012; Foit and Mehringer, 2016) (Fig. 4) and the 105 

Kamchatka Peninsula of Russia (Kyle et al., 2011), that are either known to be extremely 106 

widespread, or that occurred within a 2000 yr time window around the Mazama eruption 107 

(~9500–5500 yr B.P.).  108 

RESULTS 109 

We found significant amounts of tephra glass shards in each core of this study. 110 

The average background concentration of shards in the KB core was ~10 shards per gram 111 

(s/g) of 10 cm targeted sample and ~70 s/g of 1 cm targeted subsample (Fig. 3). The 112 

average background concentration in the IR core was ~2 s/g of 10 cm targeted sample 113 

and ~60 s/g of 1 cm targeted subsample. Shard concentrations were orders of magnitude 114 
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higher in the sediment intervals identified as tephra horizons. Ambiguous grains (e.g., 115 

grains that could resemble phytoliths or tephra) were minor, but when present, were not 116 

counted as tephra shards. We use the difference in tephra shard concentrations above 117 

background values to define each horizon, rather than the absolute number of shards 118 

alone. No tephra shards were found in our blank samples; therefore, we interpret the 119 

background tephra levels as a real contribution from the catchment or sediment sources 120 

upwind from Lake Superior. 121 

We identified one distinct horizon in the IR core at a depth of 2.914–2.924 mblf 122 

(Fig. 3; Table DR1). In this layer, shard concentrations reached a maximum of 3760 s/g 123 

(Fig. 3). We identified a more widely distributed horizon in KB at a depth of 4.40–4.44 124 

mblf (Fig. 3; Table DR1). The concentration in this horizon rose to 500 s/g, which is not 125 

as enriched above background concentrations as the more focused horizon in the IR core 126 

(Fig. 3). However the integrated number of shards over the sampled 1 cm-2 area was of 127 

the same order of magnitude, ~2000 to 4000 cm–2, in both cores (Fig. 3). 128 

The cryptotephra shards observed in the KB and IR cores are dominantly fluted 129 

and pumiceous with a minor number of cuspate shards (Fig. 4). Fluted shards were 130 

typically ~75 µm long by ~30 µm wide. Sub-rounded, pumiceous shards were generally 131 

~25 µm in diameter. Sub-angular, cuspate shards were up to ~40 µm in diameter. The 132 

largest shards found were ~125 µm long. These observed sizes may represent a 133 

distribution systematically skewed to a coarser size by our use of a 25 µm sieve. The 134 

shard morphotypes are similar to those of both proximal and distal Mazama ash from 135 

other studies (e.g., Enache and Cumming, 2006; Zdanowicz et al., 1999). 136 AUTHOR A
CCEPTED M

ANUSCRIP
T



Page 7 of 16 

Correlation of element oxide concentrations from the KB and IR core tephra 137 

layers confirms that they represent the same low-silica rhyolitic horizon (Fig. 4), 138 

composed of 73 ± 0.7 wt% SiO2, 14.22 ± 1.2 wt% Al2O3, 1.5 ± 0.1 wt% CaO, 4.8 ± 0.2 139 

wt% NaO2, and 3 ± 0.1 wt% K2O (mean values ± two standard deviations). Tephra from 140 

the Mount Mazama climactic eruption and the Llao Rock precursor (Foit and Mehringer, 141 

2016) event are the closest compositional matches to our Lake Superior tephra horizons. 142 

The Llao Rock tephra can be distinguished by a ~0.3 wt% difference in FeO content 143 

(Llao Rock wt% FeO ≈2.18; Lake Superior wt% FeO ≈1.87) (Table DR2; Fig. 4). 144 

Compositions of other major early- to mid-Holocene eruption sources from northwestern 145 

North America (Carson et al., 2002; Pyne-O’Donnell et al., 2012) do not match our 146 

results, confirming that Mazama tephra offer the only possible correlations (Table DR2; 147 

Fig. 4). Although work by Pearce et al. (2011) has shown that trace elements can also be 148 

useful for geochemical identification of cryptotephra, these data currently do not yet exist 149 

for Mazama ash records and are not required to confirm the major and minor element 150 

correlation. 151 

Many explosive eruptions can generate tephra deposits that are dispersed over 152 

intercontinental distances (Lane et al., 2017), so it is conceivable that rhyolitic tephra 153 

from eruptions in the Kamchatka Peninsula of northeastern Russia and southwestern 154 

Alaska could reach Lake Superior (Mackay et al., 2016). However, there are no 155 

compositional matches for our KB and IR tephra in datasets of Kamchatka (Kyle et al., 156 

2011) or southwestern Alaskan tephra (Carson et al., 2002). Our Lake Superior tephra 157 

shows a match only to tephra from the climactic eruption of Mount Mazama. 158 

DISCUSSION AND CONCLUSIONS 159 

AUTHOR A
CCEPTED M

ANUSCRIP
T



Page 8 of 16 

The segments of both the KB and IR cores that we examined in this study consist 160 

of brown homogenous muds. The difference in burial depths of the cryptotephra (KB 161 

core cryptotephra horizon = 4.42 mblf; IR core cryptotephra horizon = 2.92 mblf) simply 162 

reflects a faster sedimentation rate in Keweenaw Bay compared to that in the deep basin 163 

off Isle Royale (Fig. 1B). We attribute the more dispersed distribution of tephra in the KB 164 

core than in the IR core to more intense biological mixing of the sediment by benthic 165 

organisms in Keweenaw Bay, where the density of benthic organisms is likely greater 166 

than that in the deep basins of the open lake (Heuschele, 1982). 167 

The Mazama Llao Rock tephra were erupted between 7955 and 7610 cal yr B.P. 168 

(calibrated from Foit and Mehringer, 2016), and are considered a precursor to the 169 

climactic eruption of Mount Mazama at 7682–7584 cal yr B.P. (Egan et al., 2015). 170 

Despite a number of studies investigating the impact and occurrence of Holocene 171 

Mazama tephra on lacustrine systems in western North America (e.g., Adam et al., 1989; 172 

Starratt et al., 2003; Egan et al., 2016), the Llao Rock tephra has not previously been 173 

observed far to the east of the Cascades. The occurrence of a single and high-174 

concentration peak of tephra shards in both of our cores from Lake Superior leads us to 175 

conclude that our tephra layer correlates to the more voluminous and more powerful 176 

climactic eruption of Mount Mazama and that the Llao Rock precursor event either did 177 

not make it this far across the continent, or is not detectable above a background high 178 

abundance of climactic Mazama shards. 179 

The position of the Mazama climactic eruption in the IR and KB cores from Lake 180 

Superior appears to verify the less precise psv age assignment at ca. 8000–7500 yr B.P. 181 

(Fig. 2). The combination of geochemistry, age relations, and the location of this site 182 
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within the expected distribution area that all support identification of the tephra as 183 

belonging to the Mazama climactic deposit. Our results indicate the potential of further 184 

cryptotephra analyses in verifying existing chronologies for sediment cores from Lake 185 

Superior, as well as other key paleoenvironmental archives where age-modeling has been 186 

found challenging. At present, our detection of the Mazama cryptotephra in Lake 187 

Superior, coupled with its discovery in Newfoundland (Pyne-O’Donnell et al., 2012), 188 

implies that this important stratigraphic horizon and potentially others can be found in 189 

other basins throughout North America. This offers an opportunity for improving the 190 

temporal accuracy in studies addressing the climate, sedimentology, ecology, and 191 

archaeology of the early- to mid-Holocene. In particular, the climactic Mazama eruption 192 

occurred during the HTM, when temperatures in North America were ~2.5–5.0 °C 193 

warmer than preindustrial levels (Renssen et al., 2012). 194 

With measurable quantities of the Mazama cryptotephra present across much of 195 

North America, feedbacks between climate and vegetation, and environments of human 196 

occupation can be investigated at more precise spatial and temporal scales. The impact of 197 

the HTM in North America was spatially variable, with temperature anomalies ranging 198 

from 1 to 6 °C across the Northern Hemisphere (Renssen et al., 2012). The precisely-199 

dated Mazama tephra horizon could serve as the key stratigraphic marker for a synoptic 200 

study of the HTM across a broad swath of the North American continent (and beyond, 201 

including North Atlantic marine sediments and European lakes and peatlands) (e.g., 202 

Pyne-O’Donnell et al., 2016) at a time of unusual warmth and aridity, perhaps not unlike 203 

what we will face in the coming decades of this century. 204 
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FIGURE CAPTIONS 312 

Figure 1. Observed and inferred distribution of Mazama ash across North America and 313 

Greenland. Gray diamond depicts Nordan’s Pond Bog in Newfoundland (Pyne-314 

O’Donnell et al. (2012), asterisk depicts the Greenland Ice Sheet Project 2 (GISP2) 315 

(Zdanowicz et al., 1999). A: Areal distribution of readily visible Mazama ash in western 316 

North America (white shading; modified from Sarna-Wojcicki et al., 1983). B: Locations 317 

and depths of piston cores IR and in Lake Superior. Projection: WGS84. 318 

 319 
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Figure 2. Paleomagnetic inclination curves from the reference core LU83–8 320 

(Breckenridge et al., 2004) in northern Lake Superior and cores KB (Keweenaw Bay) and 321 

IR (Isle Royale). Numbered inflection points mark stratigraphic correlations between 322 

cores (O’Beirne, 2013). Vertical black bars indicate the depths searched for cryptotephra 323 

and asterisks mark the tephra position. Horizontal bar on LU83–8 inclination graph 324 

corresponds to the modeled Mazama climactic eruption age of 7682– 7584 cal yr B.P. 325 

(Egan et al., 2015). Lighter gray shading represents glacial-lacustrine varves, which 326 

ceased to accumulate in Lake Superior ca. 9000 cal. yr B.P. (Breckenridge et al., 2004). 327 

Paleomagnetic analyses performed at LacCore, National Lake Core Repository 328 

(Minneapolis, Minnesota, USA). 329 

 330 

Figure 3. Volcanic shard abundance versus depth (mblf) in Cores KB (Keweenaw Bay) 331 

and IR (Isle Royale). Light gray shading and upper x-axis refers to shard abundance per 332 

gram wet weight (Core KB) and shard counts (Core IR) in 10 cm increments down core. 333 

Dark bars and lower x-axis refers to 1 cm shard abundance within areas of highest tephra 334 

concentration. 335 

 336 

Figure 4. A: Scanning electron microscope image of Mount Mazama tephra from Core IR 337 

(Isle Royale). Note the distinctive fluted and pumiceous glass shards. B: Bi-plots of glass 338 

shard compositions determined by WDS-EPMA on cryptotephra from Cores KB and IR, 339 

alongside published values for several tephra from western North America (Pyne-340 

O’Donnell et al., 2012; Foit and Mehringer, 2016), with indicative envelopes for each 341 

volcanic region. There is good agreement between the compositions of tephra from Cores 342 
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KB and IR, and the reference Mazama ash (blue triangles vs. light green and yellow 343 

circles). Error bars (top-right) represent 2 standard deviations (2CVstd × x�Mazama ref). Full 344 

datasets provided in Table DR2 and are available online from the EarthChem data 345 

repository (http://dx.doi.org/10.1594/IEDA/100710). 346 

 347 

1GSA Data Repository item 2017xxx, xxxxxxxx, is available online at 348 

http://www.geosociety.org/datarepository/2017/ or on request from 349 

editing@geosociety.org. 350 

AUTHOR A
CCEPTED M

ANUSCRIP
T

http://dx.doi.org/10.1594/IEDA/100710


GISP2

Mt. Churchill
(White River 
Ash source)

Nordan’s Pond
Bog

B

A

*

100km
Depth

0 m

-404 m

KB

IR

B

A

1,000 km

Mt. St. Helens

Mt. Mazama
(Crater Lake)

Newberry Caldera

Fish Lake

AUTHOR A
CCEPTED M

ANUSCRIP
T



40 60 80

KB Inclination
(deg)

1

2

3

4

5

6

7

8

D
ep

th
 (m

bl
f)

5
6

7

8

9

10

11
12 *

40 60 80

1

2

3

4

5

6

IR Inclination
(deg)

4

5

6
9

10 11
12

*

40 50 60 70

LU83-8 Inclination 
(deg)

2

4

6

8

10

C
al

 k
yr

 B
P

2

4
5

6

7

8

9

10
11

12

D
ep

th
 (m

bl
f)

AUTHOR A
CCEPTED M

ANUSCRIP
T



D
ep

th
 (m

bl
f)

                                

Shards per gram 
(10 cm samples)

0      100    200    300     400    500
5.08

4.95

4.85

4.75

4.65

4.55

4.45

4.35

4.25

4.15

4.05

3.95

3.85

3.75

3.65

3.55

D
ep

th
 (m

bl
f)

0       50     100    150     200    250

0       1000     2000     3000    4000

3.33

3.23

3.13

3.03

2.93

2.83

2.73

2.63

0       50     100    150    200    250

Shards per gram
(1 cm subsamples)

Core KB

Core IR

Shard counts
(10 cm samples)

Shards per gram
(1 cm subsamples)

AUTHOR A
CCEPTED M

ANUSCRIP
T



71 72 73 74 75 76

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

SiO2 (wt %)

K
2O

 (w
t %

)

1.0 1.5 2.0 2.5

1.5

2.0

2.5

3.0

CaO (wt %)

Fe
O

 (w
t %

)

BA

Key to symbols
KB 
IR
Mazama Ash (UA 1573)
Fish Lake V Mazama climactic
Fish Lake VI Mazama Lao Rock
Mount St. Helens We (UA2149)
Mount St. Helens Wn (UA 2151)
White River Ash (UA 1119)
Newberry Pumice (UA 2158)
East Lake Tephra (UA 2157)

AUTHOR A
CCEPTED M

ANUSCRIP
T



TABLE DR1. LAKE SUPERIOR SEDIMENT CORE SAMPLE DEPTHS AND CRYPTOTEPHRA SHARD CONCENTRATIONS 

Site names, core sections, and sample 
names 

Average depth of sample in core 
section 

(cm) 

Average depth of sample, meters below 
lake floor 

(mblf) 

Sample sediment 
mass 

(g) 

Tephra 
shards 

(counts) 

Tephra shard concentrations 
(counts g-1) 

Keweenaw Bay (KB)      

   BH09K-SUP09-1A-1K-4 (10 cm samples)      
      LS 01 5 3.600 2.6447 3 1.1343 
      LS 02 15 3.700 1.4053 4 2.8463 
      LS 03 25 3.800 1.1099 22 19.821 
      LS 04 35 3.900 0.9645 11 11.404 
      LS 05 45 4.000 1.2741 6 4.7092 
      LS 06 55 4.100 1.1521 7 6.0758 
      LS 07 65 4.200 1.1103 5 4.5032 
      LS 08 75 4.300 1.4109 26 18.427 
      LS 09 85 4.400 0.8297 198 238.64 
      LS 10 95 4.500 1.2719 24 18.869 
      LS 11 105 4.600 0.9234 10 10.829 
      LS 12 115 4.700 1.1543 11 9.5295 
      LS 13 125 4.800 1.1986 15 12.514 
      LS 14 135 4.900 1.4921 23 15.414 
      LS 15 145 5.015 2.417 27 11.170 
   BH09K-SUP09-1A-1K-5 (10 cm samples)      
      LS 16 5 5.19 0.7506 5 6.6613 
      LS 17 15 5.29 0.8451 8 9.4663 
   BH09K-SUP09-1A-1K-4 (1 cm subsamples)      
      LS 18 80.50 4.355 0.8896 30 33.723 
      LS 19 81.50 4.365 0.8467 132 155.89 
      LS 20 82.50 4.375 1.1386 81 71.139 
      LS 21 83.50 4.385 0.9832 151 153.58 
      LS 22 84.50 4.395 1.1399 225 197.38 
      LS 23 85.50 4.405 1.4697 645 438.86 
      LS 24 86.50 4.415 1.7648 875 495.80 
      LS 25 87.50 4.425 1.5554 353 226.95 
      LS 26 88.50 4.435 1.3662 10 7.3195 
      LS 27 89.50 4.445 0.9802 17 17.343 

Isle Royale (IR)      
   BH11IR-SUP11-1A-1P-3 (10 cm samples)      
      LS 31 5 2.679 N.D.* 2 N.D.* 
      LS 32 15 2.779 N.D.* 2 N.D.* 
      LS 33 25 2.879 N.D.* 222 N.D.* 
      LS 34 35 2.929 N.D.* 5 N.D.* 
      LS 35 45 3.079 N.D.* 1 N.D.* 
      LS 36 55 3.179 N.D.* 1 N.D.* 
      LS 37 65 3.279 N.D.* 0 N.D.* 
   BH11IR-SUP11-1A-1P-4 (10 cm samples)      
      LS 38 107.5 5.239 N.D.* 0 N.D.* 
      LS 39 117.5 5.339 N.D.* 2 N.D.* 
      LS 40 127.5 5.439 N.D.* 3 N.D.* 
   BH11IR-SUP11-1A-1P-3 (1 cm 
subsamples)      

      LS 41 20.50 2.834 1.5000 5 3.3333 
      LS 42 21.50 2.844 2.0000 5 2.5000 
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      LS 43 22.50 2.854 2.8000 5 1.7857 
      LS 44 23.5 2.864 2.2 36 16.363 
      LS 45 24.5 2.874 2 79 39.500 
      LS 46 25.5 2.884 0.9 57 63.333 
      LS 47 26.5 2.894 0.7 119 170.00 
      LS 48 27.5 2.904 1.3 256 196.92 
      LS 49 28.5 2.914 1.5 5634 3756.0 
      LS 50 29.5 2.924 2 66 33.000 
*N.D. = no data.
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TABLE DR2. ELECTRON MICROPROBE ANALYSIS (EMPA) RESULTS* 
 SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O Cl P Total 

Keweenaw Bay (KB)             

   LS 024 (IGSN: IESUP000U)             
 73.23 0.49 13.87 1.91 0.04 0.50 1.65 5.13 2.88 0.22 0.07 95.24 
 73.04 0.45 14.35 1.80 0.09 0.42 1.66 5.10 2.81 0.23 0.05 99.16 
 72.86 0.41 14.80 1.89 0.09 0.45 1.49 4.99 2.73 0.18 0.10 98.36 
 72.87 0.44 14.58 1.75 0.08 0.47 1.63 5.14 2.79 0.18 0.07 99.79 
 74.23 0.42 14.97 1.76 0.10 0.43 1.71 3.26 2.85 0.22 0.05 97.61 
 72.90 0.40 14.80 1.82 0.04 0.42 1.56 4.99 2.81 0.21 0.06 98.05 
             
     Arithmetic mean 73.22 0.42 14.79 1.81 0.08 0.44 1.60 4.60 2.80 0.20 0.07 100.0 
     2SD 0.677 0.016 0.159 0.061 0.025 0.023 0.095 0.893 0.051 0.019 0.025 1.062 
Isle Royale (IR)             

   LS 049 (IGSN: IESUP001G)             
 73.00 0.43 14.25 1.88 0.04 0.45 1.64 5.18 2.83 0.22 0.08 97.59 
 73.86 0.47 13.91 1.74 0.03 0.46 1.53 5.01 2.73 0.20 0.06 98.69 
 72.60 0.48 14.48 1.98 0.01 0.46 1.65 5.19 2.80 0.25 0.10 99.87 
 72.72 0.44 14.16 1.88 0.14 0.50 1.64 5.26 2.96 0.21 0.08 97.18 
 72.55 0.41 14.27 2.05 0.07 0.47 1.55 5.53 2.83 0.20 0.09 98.72 
 72.82 0.45 14.24 1.80 0.04 0.49 1.64 5.47 2.75 0.21 0.08 99.55 
 73.36 0.42 14.20 1.84 0.00 0.43 1.46 5.21 2.78 0.23 0.07 97.76 
 73.15 0.39 14.29 1.87 0.09 0.49 1.60 5.08 2.80 0.19 0.06 99.29 
 73.19 0.47 14.25 1.69 0.11 0.45 1.49 5.25 2.82 0.21 0.07 98.89 
 72.94 0.49 14.42 1.74 0.05 0.43 1.58 5.20 2.86 0.21 0.08 96.35 
 73.27 0.43 14.08 1.96 0.06 0.48 1.58 4.95 2.90 0.21 0.08 95.68 
 73.14 0.42 14.30 1.73 0.04 0.47 1.60 5.24 2.78 0.23 0.05 95.04 
 72.99 0.48 14.40 1.78 0.00 0.43 1.57 5.18 2.86 0.23 0.07 97.11 
 73.02 0.44 14.26 1.95 0.09 0.48 1.65 4.96 2.86 0.23 0.08 98.43 
 72.76 0.47 14.54 1.89 0.07 0.44 1.57 5.12 2.86 0.23 0.04 96.24 
 72.97 0.43 14.19 1.79 0.09 0.44 1.63 5.43 2.81 0.20 0.03 98.62 
 73.06 0.47 14.15 2.13 0.00 0.46 1.60 4.95 2.86 0.22 0.09 96.35 
 72.76 0.43 14.86 1.92 0.08 0.45 1.61 4.88 2.77 0.22 0.02 96.75 
             
     Arithmetic mean 72.89 0.45 14.44 1.93 0.06 0.45 1.60 5.09 2.83 0.22 0.05 100.0 
     2SD 0.155 0.024 0.330 0.146 0.040 0.011 0.023 0.243 0.046 0.014 0.030 2.047 
Mazama Ash reference 
(Edmonton River valley), from Pyne-
O’Donnell et al. (2012) 

            

   UA 1573             
      Arithmetic mean 73.12 0.41 14.40 1.93 0.07 0.44 1.58 5.15 2.74 0.19 N.D.† 97.4 
      2SD 0.573 0.067 0.312 0.116 0.055 0.070 0.097 0.305 0.200 0.059 N.D.† 3.16 
Fish Lake V Mazama climactic 
reference, from Foit and Mehringer 
(2016) 

            

     Arithmetic mean 73.38 0.421 14.25 2.132 N.D.† 0.491 1.547 4.882 2.726 0.167 N.D.† 98.55 
     2SD 0.573 0.036 0.294 0.064 N.D.† 0.055 0.148 0.245 0.134 0.10 N.D.† 2.39 
Fish Lake VI Mazama Llao Rock 
reference, from Foit and Mehringer 
(2016) 

            

     Arithmetic mean 73.28 0.398 14.47 2.183 N.D.† 0.463 1.552 4.781 2.71549 0.148 N.D.† 98.60 
     2SD 0.478 0.038 0.315 0.127 N.D.† 0.094 0.149 0.385 0.123 0.057 N.D.† 1.150 
Mount St Helens We reference, from             
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Pyne-O’Donnell et al. (2012) 
   UA 2149             
      Arithmetic mean 75.65 0.23 13.50 1.57 -0.01 0.28 1.45 4.76 2.47 0.11 N.D.† 98.74 
      2SD 1.240 0.23 0.982 0.43 0.20 0.26 0.31 0.44 0.49 0.06 N.D.† 2.220 
Mount St Helens Wn reference, from 
Pyne-O’Donnell et al. (2012)             

   UA 2151             
      Arithmetic mean 74.78 0.21 13.99 1.65 0.02 0.33 1.69 4.88 2.35 0.09 N.D.† 96.94 
      2SD 1.694 0.30 0.989 0.56 0.33 0.29 0.45 0.57 0.41 0.07 N.D.† 4.24 
White River Ash (eastern lobe) 
reference, from Pyne-O’Donnell et al. 
(2012) 

            

   UA 1119             
      Arithmetic mean 73.79 0.21 14.47 1.62 0.06 0.35 1.88 4.11 3.18 0.34 N.D.† 97.38 
      2SD 0.837 0.07 0.449 0.37 0.05 0.08 0.30 0.21 0.27 0.08 N.D.† 3.26 
Newberry Pumice reference, from 
Pyne-O’Donnell et al. (2012)             

   UA 2158             
      Arithmetic mean 73.54 0.23 14.25 1.99 0.07 0.15 0.86 4.85 3.94 0.13 N.D.† 98.37 
      2SD 0.950 0.12 0.615 0.13 0.05 0.06 0.11 1.07 0.47 0.07 N.D.† 1.72 
East Lake Tephra reference, from 
Pyne-O’Donnell et al. (2012)             

   UA 2157             
      Arithmetic mean 73.72 0.21 13.97 1.72 0.06 0.21 0.97 4.86 4.14 0.13 N.D.† 97.53 
      2SD 1.39 0.25 1.03 0.68 0.37 0.35 0.29 0.39 0.93 0.06 N.D.† 3.7 
Kamchatka references, from Kyle et al. 
(2011)             

   Kizimen volcano             
     Arithmetic mean 77.07 0.24 12.75 1.31 0.03 0.24 1.59 3.48 3.04 0.16 0.03 100 
     2SD 0.6 0.08 0.5 0.12 0.06 0.18 0.12 N.D.† 0.18 0.04 0.06 1.94 
   Karymsky volcano             
     Arithmetic mean 74.69 0.39 13.47 1.86 0.04 0.36 1.49 4.33 3.01 0.22 0.05 100 
     2SD 0.56 0.06 0.32 0.2 0.06 0.18 0.16 N.D.† 0.18 0.2 0.06 1.98 
   Avachinsky volcano             
     Arithmetic mean 75.08 0.19 14.54 1.6 0.08 0.43 2.78 3.69 1.35 0.09 0.05 100 
     2SD 0.7 0.04 0.34 0.14 0.08 0.04 0.2 N.D.† 0.12 0.08 0.04 1.78 
   Ksudach volcano             
     Arithmetic mean 70.37 0.64 14.61 4.35 0.16 0.87 3.05 4.3 1.24 0.14 0.15 100 
     2SD 0.84 0.06 0.44 0.34 0.1 0.1 0.22 N.D.† 0.1 0.06 0.06 2.32 
   Kurile Lake caldera             
     Arithmetic mean 76.39 0.23 13.15 1.52 0.06 0.27 1.52 4.52 2.09 0.14 0.03 100 
     2SD 1.46 0.08 0.86 0.18 0.08 0.18 0.26 N.D.† 0.26 0.04 0.04 3.44 
Southwestern Alaskan references, 
from Carson et al. (2002)             

   Horizon A             
     Arithmetic mean 57.30 1.88 15.28 9.79 0.23 2.79 5.69 4.21 1.65 N.D.† N.D.† 99.66 
     2SD 2.02 0.32 1.88 1.76 0.24 1.22 1.02 1.27 0.52 N.D.† N.D.† 1.25 
   Horizon B             
     Arithmetic mean 77.22 0.11 13.58 1.69 0.13 0.15 1.41 4.11 1.55 N.D.† N.D.† 100.00 
     2SD 1.38 0.12 0.68 0.26 0.10 0.06 0.42 0.78 0.30 N.D.† N.D.† 0.00 
   Funk/Fisher ash 1             
     Arithmetic mean 68.80 0.55 15.32 4.21 0.24 0.60 2.24 4.86 2.43 N.D.† N.D.† 99.25 
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     2SD 1.36 0.14 0.74 0.48 0.22 0.14 0.28 0.80 0.26 N.D.† N.D.† 0.88 
   Funk/Fisher ash 2             
     Arithmetic mean 68.87 0.56 15.37 4.24 0.19 0.62 2.34 4.73 2.41 N.D.† N.D.† 99.33 
     2SD 1.04 0.12 0.54 0.58 0.12 0.14 0.24 0.66 0.22 N.D.† N.D.† 0.88 
   Funk/Fisher ash 3             
     Arithmetic mean 52.88 1.62 16.32 11.20 0.23 4.07 8.84 3.21 0.87 N.D.† N.D.† 99.24 
     2SD 1.27 0.24 0.92 1.6 0.16 1.44 0.86 0.60 0.24 N.D.† N.D.† 0.86 
   Funk/Fisher ash 4             
     Arithmetic mean 69.15 0.60 15.44 4.38 0.18 0.64 2.39 4.20 2.39 N.D.† N.D.† 99.37 
     2SD 1.96 0.66 0.44 0.60 0.16 0.22 0.96 0.72 0.18 N.D.† N.D.† 0.46 
ATHO-G standard             
      Arithmetic mean 75.47 0.257 12.36 3.188 0.107 0.092 1.680 4.038 2.751 0.036 0.018 99.74 
      2SD 0.398 0.034 0.226 0.246 0.090 0.025 0.150 0.242 0.104 0.028 0.024 1.95 
GOR132-G             
      Arithmetic mean 46.36 0.287 11.16 10.24 0.132 22.45 8.48 0.794 0.041 0.008 0.039 98.21 
      2SD 0.173 0.073 0.180 0.392 0.099 0.339 0.177 0.077 0.023 0.018 0.030 1.61 
StHs6/80-G standard             
      Arithmetic mean 63.84 0.703 17.85 4.39 0.066 1.968 5.297 4.384 1.329 0.009 0.165 99.24 
      2SD 0.776 0.079 0.282 0.250 0.099 0.096 0.113 0.843 0.087 0.021 0.037 2.38 
Microprobe operating conditions note: 
   EMPA for the Lake Superior samples and the fused volcanic glass standards ATHO-G, GOR132-G, and StHs6/80-G was conducted at the University of Oxford Research Laboratory for Archaeology and the 
History of Art with a JEOL JX8600 electron microprobe, in wavelength dispersive mode, with 15-keV accelerating voltage, 6-nA beam current, and a 10-μm defocused beam. On-peak count times were as 
follows: 10 s for Na; 30 s for Si, Al, K, Ca, Fe, Mg, Ti, and Mn; and 60 s for P. We applied a suite of characterized minerals and oxide standards to calibrate the electron probe while accuracy and precision were 
monitored by intermittent analysis of fused volcanic glass standards ATHO-G, GOR132-G, and StHs6/80-G from the Max-Planck-Institut für Chemie-Dingwell (MPI-DING) collection (Jochum et al., 2005; 
Jochum et al., 2006). 
   Llao Rock tephra reference material analyses from Foit and Mehringer (2016) were conducted at the GeoAnalytical Laboratory located in the Geology Department (School of the Environment) at Washington 
State University, WA, USA, using Cameca Camebax and JOEL JXA 8500F electron microprobes. Both instruments were operated with a 8-μm beam diameter, 12 nA beam current, and 15kV accelerating 
voltage. 
   Tephra reference material analyses from Pyne-O’Donnell et al. (2012) were conducted at the Electron Microprobe Laboratory, University of Alberta using a JEOL 8900 electron microprobe with a 10-μm beam 
diameter, 6-nA beam current and 15-keV accelerating voltage. Where analyses of smaller shards required a 5-μm beam diameter, a Cameca SX100 was employed with a reduced beam current of 3-nA and 
measurement of SiO2 by energy-dispersive spectrometry. 
   Kamchatka tephra reference material analyses from Kyle et al. (2011) were conducted at New Mexico Tech, Socorro, NM, USA, using a Cameca SX-100 electron microprobe with a 10 nA beam current and 
15-kV accelerating voltage. Peak counts were 20 seconds for all elements, except Na, Cl, S, and F which were counted for 40, 40, 60, and 100 seconds, respectively. Depending on the glass shard sizes, a 5, 
10, 15, 20, or 25 μm-diameter beam was used. 
   Aleutian tephra reference material analyses from Carson et al. (2002) were conducted at the University of Wisconsin-Madison, WI, USA, using a Cameca SX-51 electron microprobe with a 7-10-μm beam 
diameter, 6 nA Faraday beam current, and 15-keV accelerating voltage. 
Each analysis represents a single tephra grain. 
 
References in the “Microprobe operating conditions note” only: 
 
Jochum, K.P., Nohl, U., Herwig, K., Lammel, E., Stoll, B., and Hofmann, A.W., 2005, GeoReM: A new geochemical database for reference materials and isotopic standards: Geostandards and Geoanalytical 
 Research, v. 29, p. 333–338, doi:https://doi.org/10.1111/j.1751-908X.2005.tb00904.x. 
Jochum, K.P., et al., 2006, MPI-DING reference glasses for in situ microanalysis: New reference values for element concentrations and isotope ratios: Geochemistry Geophysics Geosystems, v. 7, Q02008, 
 doi:https://doi.org/10.1029/2005GC001060. 
 
*Glass shard data normalized to water-free compositions (100 wt %) and displayed alongside original analytical totals. 
† N.D. = no data. 
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