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Abstract— This paper introduces the use of fluid-dynamic
modeling to determine the connectivity of overlapping venous
and arterial vessels in fundus images. Analysis of the retinal
vascular network may provide information related to systemic
and local disorders. However, the automated identification of
the vascular trees in retinal images is a challenging task due to
the low signal-to-noise ratio, nonuniform illumination and the
fact that fundus photography is a projection on to the imaging
plane of three-dimensional retinal tissue. A zero-dimensional
model was created to estimate the hemodynamic status of
candidate tree configurations. Simulated annealing was used
to search for an optimal configuration. Experimental results
indicate that simulated annealing was very efficient on test
cases that range from small to medium size networks, while
ineffective on large networks. Although for large networks the
nonconvexity of the cost function and the large solution space
made searching for the optimal solution difficult, the accuracy
(average success rate = 98.35%), and simplicity of our novel
approach demonstrate its potential effectiveness in segmenting
retinal vascular trees.

I. INTRODUCTION

Recent studies have shown that both systemic and local
disorders (e.g. diabetes, stroke and diabetic retinopathy) can
alter both geometry and hemodynamic conditions in the
retinal vasculature [1] [2] [3]. However, identification and
quantification of such changes are challenging tasks since the
retina is extremely heterogeneous and, as a consequence low
signal-to-noise ratio, nonuniform illumination and contrast
shifts in the images complicate the automated detection
and analysis of geometrical changes. The latest segmenta-
tion algorithms produce highly accurate vessel segmenta-
tions [4] [5] [6] [7]. Nevertheless, the identification of the
mutually overlapping venous and arterial trees is a nontrivial
problem. Some automated segmentation methods segment
vessels out as individual unconnected segments. It is not
uncommon to extract broken segments, and crossing between
vein and artery may be confused with a bifurcation of a single
vessel, particularly where several bifurcations and crossings
lie close together. Our novel approach determines the blood
vessel connectivity based on the estimation of hemodynamic
parameters, which cannot be directly measured from fundus
images. In this paper, a zero-dimensional (0-D) model and a
fluid-dynamics based cost function were created to simulate
the hemodynamics in the vascular network and reconnect
disconnected vascular segments (Sherman et al. [8]). To
the best of our knowledge, this is the first study to use
hemodynamic principles to determine vessels’ connectivity.
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Fig. 1: The proposed framework’s results for an exem-
plary fundus photography (DRIVE test set image 1). Top:
The correct configuration derived by visually inspecting
the artery/vein ground truth [9]. The green arrow points
towards a bifurcation and a vessels crossing that were not
correctly recognized in our optimal configuration (red arrow
in the image located at the bottom part). Bottom: The less
expensive configuration according to our cost function when
a set of manually generated configurations were evaluated.

A. LITERATURE REVIEW

Among the most recent and relevant studies, Favali et
al. [10] were inspired by the concept of association field that
is implemented in the primary visual cortex and presented
a connectivity algorithm based on the intuition that at the
arteriovenous crossing a continuity in vessels’ direction and



intensity exists. Estrada et al. [11] proposed a novel graph-
theoretic approach, in which first a planar graph represen-
tative of the vasculature is extracted. An efficient search
algorithm explores the solutions space and eventually pro-
vides the vascular topology and the final artery and vein
labeled trees. Hu et al. [12] proposed a global three-step
framework. It starts with the generation of an over-connected
vessels network. A graph-based meta-heuristic algorithm
disambiguates such network and, eventually, each tree is
classified as arterial or venous by calculating the likelihood
of each pixel of the centerline belonging to an artery or a
vein.

II. MATERIALS AND METHODS

Our method was created using the publicly available
DRIVE dataset [13]. This contains 40 fundus images ob-
tained in the course of a diabetic retinopathy screening
program in the Netherlands. Morphological skeletonization
was applied on the first manual vessel reference standards
to obtain the centerline of the vasculature. Our aim is to
reconnect disconnected vascular segments and reconstruct
the retinal vascular network. Each segment has two end-
points (Sendi with i ∈ {1, 2}). We assumed that a segment-
end can remain unconnected (terminal), or can be connected
to one or two other segment-ends to form a bridge or a
bifurcation respectively. All the segments-ends found within
a circular area with radius of 14 pixels were identified as the
end-candidates, to which a segment-end could be connected.

A. Retinal blood flow mechanics

The use of a fluid-dynamics based cost function provides
with a framework to reconstruct a graph representative of the
retinal vascular system. To simulate the fluid-dynamic con-
ditions within the network, a simple 0-D electrical lumped
elements model was designed (Fig. 2), and for simplicity the
blood treated as a Newtonian fluid. Under this assumption
the blood flow follows Hagen-Poiseuille’s law (H-P). H-P
flow expresses the relationship between pressure drop (∆P )
and blood flow through a tube (Eq. (1)).

∆P = R ·Q (1)

In Eq. (1), R = 8µL
πr4 is the resistance that the blood

encounters when flowing in a tube of radius r and length
L, with µ = 0.04P being the blood viscosity. G = 1

R is
the conductance of a vessel. The method devised in this
paper solves an optimization problem, which aims at finding
the best connection among segments. This is solved by
iteratively evaluating an objective function, which includes
fluid-dynamic terms. This framework is inspired by the
intuition that the global minimum of our cost function is
found with the correct network, since our cost function
follows the fluid-dynamic principles behind the generation
of vascular networks.

B. The objective function

The objective function was designed to replicate some
of the biological hypotheses that guide the generation of

a Murray’s system. These are branching networks where a
vessel splits into two branches and follows the principle of
optimality which ensures the ”fastest” transport, in terms of
e.g. amount of oxygen per unit time, by the least amount
of work needed as described by Murray’s law [14] [15].
Therefore, in an optimal system, the total flow is transported
by a set of vessels whose radii’s cube sum to a constant value
at each part of the network (Eq.( 2)).

r30 =

N∑
i=1

r3i (2)

Eq. (2) refers to a bifurcation, r0 is the radius of the parent
vessel, and ri the radius of the i-th child. Furthermore, with
regard to [14], volumetric flow through a tube is proportional
to the radius of that tube raised to the power of a constant
c that ranges between 2 and 3 (Q = Krc). In the special
case where c was equal to 3 (Murray’s law), a set of fluid-
dynamics consequences would derive. In particular, our cost
function reflects the concept that if c was equal to 3, wall
shear stress (WSS) would be constant along each individual
tree.

C. 0-D vascular model

A 0-D model was created to simulate the fluid-dynamics
within the network. At the branching nodes, the conservation
of mass was assumed. Therefore, at each bifurcation, the
inflow of blood at the inlet matched the outflow from the
outlet (

∑
(k=p,d1,d2)

Qj,kQj,kQj,k = 0), where p, d1, d2 refer to the
parent branch and the two child branches of the bifurcation
respectively. By adopting H-P’s law, QQQ was computed as
(Qjk = Gjk ·∆Pjk) in which the subscripts j and k refer to
the circuit’s nodes as shown in Fig. 2. The nodal pressure was
computed by applying the conservation law, and solving the
system of linear equationsQQQ = GGG·∆PPP (Eq. (3)). This system
is in the formAxAxAx = BBB, whereAAA is the conductance matrix of
size n×n, with n number of the circuit’s nodes, xxx and BBB are
both n× 1 vectors. The system can be solved if the matrix
AAA is invertible. Such reversibility is ensured by adding a
smoothing term ε = 1×10−20 toAAA. By solving this equation,
the pressure values at each node of the circuit are computed.
In this paper, each candidate tree was treated as arterial tree.
To compute the fluid-dynamic parameters, at the inlets a
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Fig. 2: An electric circuit of lumped elements. The numbers denote
the nodes, v denotes nodal voltages; i currents; G the conductances.
The red arrows point towards the current flow direction.



pressure value of 40 mmHg, which reflects the hydrostatic
and frictional pressure losses from the aorta to the Central
Retinal Artery (CRA) (Causin et al. [16]), was specified. To
prevent vessels from collapse, a pressure slightly higher than
the intraocular pressure in normal conditions (15 mmHg) was
enforced at the outlet.
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D. Optimization problem: connect the segments

The vascular segments were connected by solving an
optimization problem. A search for the optimal solution was
conducted using a simulated annealing (SA) algorithm. SA
is a meta-heuristic method commonly employed to solve
unconstrained and bound-constrained optimization problems
and find the global minimum of a function in large and
discrete search space, while avoiding local minima. The
following internal parameters were used:

• Probability of accepting a worse solution at the begin-
ning: Pstart = 0.5.

• Probability of accepting a worse solution at the end:
Pend = 0.001.

• Equation of the temperature (T) trend, related to the
probabilities of accepting a worse solution: Tstart =

−1
log(Pstart)

; Tend = −1
log(Pend)

.
• Number of steps performed during cooling: Ncycles =

50.
• Number of possible solutions evaluated at each cycle:
Ntrials = 50.

• Fractional temperature reduction at every cycle: ∆T =

( tend

tstart
)
( 1.0
Ncycles∗Ntrials−1.0 ).

III. RESULTS

The algorithm was tested on a subset of six images from
the DRIVE test set: two left eye macula centered (images
1 and 5), two right eye macula centered (images 7 and 8)
and two ONH centered (images 4 (right eye) and 15 (left
eye)). The performance was evaluated by calculating the
success rate in connecting each segment-end. We consider
that a failure occurs in a situation in which two of the three
members of a bifurcation were bridged, or a situation in
which two bridging segments in the reference dataset were
joined to a third segment-end to form a false bifurcation.

A. Evaluation

The evaluation of the connectivity success rate was evalu-
ated in networks of different sizes: small (including up to 5
segments), medium (including up to 20 segments) and large
(including more than 20 segments).

1) Small networks: In Fig. 3, 4 and 5, samples of solved
small disconnected networks are shown. In Fig. 3-left, a
crossing point is correctly identified and its cost is compared
to a wrong configuration (Fig. 3-right). Fig. 4 and 5 report
two samples of networks which consisted of 5 segments.
With regard to Fig. 4-top, which is the correct configuration,
we observed that the cost of this configuration, is more
expensive than one which is incorrect (bottom). While in
this sample the success rate of our algorithm was 0% in
Fig. 5 the success rate is 100%. This discrepancy in the
performance demonstrates that the fluid-dynamics, since it
is a global feature, can barely discriminate among correct
and wrong configurations in very small networks. In fact,
in these networks, the configuration is strictly influenced by
the diameter of the vessels of which the accuracy depends
on the segmentation at disposal.

2) Medium-size networks: In Fig. 6, we observe that
the correct configuration (top), does not always correspond
with the less expensive configuration (bottom). The overall
success rate is 85.2%.

Fig. 3: Green dashes represent the connection between seg-
ments; yellow dashes represent bifurcations. Left: Crossing
between 2 vessels. Right: A different configuration for the
same network. Our cost function recognized the correct
configuration (left) as the less expensive.

Fig. 4: Top: The correct configuration. Bottom: The less
expensive configuration according to our cost function.



3) Large networks: In large networks, we manually tested
our cost function by comparing the cost of the correct
configurations (Fig. 1-top) with some other plausible con-
figurations. The former were derived by visually inspecting
the artery and vein ground truth proposed by Qureshi et
al. [9]. The latter were obtained by connecting a number
of segment-ends to wrong end-candidates. For each image,
30 different plausible networks were generated. In Fig. 7

Fig. 5: Top: The correct configuration. Bottom: A different
configuration for the same network. Our cost function rec-
ognized the correct configuration (left) as the less expensive.

Fig. 6: Top: The correct configuration. The green arrow
points toward a bifurcation and a vessel crossing that were
not correctly recognized in the optimal configuration (red
arrow in the image located at the bottom). Bottom: The less
expensive configuration according to our cost function.

Fig. 7: a: A portion of the first manual vessel reference stan-
dard of the image 4 of DRIVE test set. b: Vessels’ centerlines
obtained by applying the morphological skeletonization to
(a). Some segments have already been connected to form a
bridge (green dash line) and a bifurcation (yellow line). The
arrows point towards the segments’ ends, of which the cor-
rect connectivity is difficult to be established. c: The correct
configuration ascertained by visually inspecting (f). Same
type of vessel should be joined together: artery with artery,
vein with vein. d: A plausible wrong configuration. The two
arrows point towards a wrong bridge and bifurcation. e: A
plausible wrong configuration. The arrow point towards a
wrong bifurcation. f: The artery/vein ground truth of (a)

an example of plausible solutions, related to the image 4
is shown. We use the adjective plausible because also a
human expert would find establishing the correct connectivity
difficult. As shown in Fig. 1-bottom, for the image 1, the
minimum cost was found on a network with success rate of
98.95%. With regard to images 4, 5, 7, 8 and 15, the costs of
the correct configurations were: 20.77, 11.89, 18.81, 31.54,
24.81. The minimum costs observed among the candidate
networks were: 16.37, 10.23, 18.74, 28.50, 24, 79. The
success rates were 98.8%, 98.7%, 97.7%, 97.5% and 98.8%
respectively. The increase of the success rate achieved on
large networks in all the tested images, demonstrates that
the connectivity is a global problem and our cost function,
which is based on fluid-dynamic concepts is able to capture
the global behaviors of the system.

IV. CONCLUSIONS

In this paper, a novel algorithm to reconstruct the retinal
vascular network from the segmentation of fundus images
was presented. A 0-D model was created to simulate the
fluid-dynamic conditions within each vascular network. Our
algorithm uses a novel fluid-dynamics based cost function
to derive fluid-dynamic terms, which are not directly retriev-
able from standard fundus images, and employs them, to
assess candidate configurations of retinal vascular trees. A
simulated annealing algorithm was implemented to search
for the optimal trees. Evaluation was performed on a subset



of DRIVE test set, nevertheless, we intend to extend the
validation of our methodology to other higher resolution
and publicly available datasets. The accuracy of the results
achieved shows that while increasing the size of the network,
the success rate of the framework increases, as the cost
function is targeted at studying the global behavior of the
network. A further development of the presented framework
would include an algorithm able to automatically classify the
extracted trees as either arterial or venous. To conclude, the
performance and simplicity of the presented model makes it
applicable in the automation of longitudinal studies in which
comparisons among hemodynamic conditions are required.
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