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Statistics of interacting optical solitons
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We examine statistics of two interacting optical solitons and describe timing jitter caused by spontaneous
emission noise and enhanced by pulse interaction. Dynamics of phase difference is shown to be of crucial
importance in determining the probability distribution functi®DF) of the distance between solitons. We find
analytically the non-Gaussian tail of the PDF to be exponential. The propagation distance that corresponds to
a given bit-error rate is described as a function of system paraniétensng and noise leve] initial distance,
and initial phase difference between solitons. We find the interval of parameters where a larger propagation
distance can be achieved for higher density of information.
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The nonlinear Schidinger equatioNLSE) is a canoni- finding an optimal fluctuation that provides a given large
cal theoretical model governing propagation of the envelopeleviation of soliton parameters. The method is technically a
of a quasimonochromatic wave in a weakly nonlinear dispersaddle-point approximation in the path integral for probabili-
sive media. Dynamical properties of this generic nonlineaties and is indeed known to describe the tails of the probabil-
system describing a range of applications from Bose condenty density function[5]. A consistent development of the op-
sate to telecommunications has been thoroughly studied dutimal fluctuation method for soliton-bearing systems has
ing past few decades. However, statistical problems assodbeen done 6] where the conditions on the noise level and
ated with NLSE are relatively less highlighted in the propagation distance have been formulated for an optimal
literature. In this Brief Report we examine a classical prob-luctuation to be close to a soliton with slowly varying pa-
lem of soliton interaction in the presence of noise. Thoughrameters. That made possible to reduce the formally infinite-
results obtained in this paper can be applied in a variety ofimensional problem to the analysis of the finite set of soli-
physical problems we focus our attention here on opticajon parameters and effectively find the error probability for a
soliton transmission as an important specific application ogjngle soliton transmission under different control schemes
the general theory. o , [6]. The probability density functioPDF) is essentially

In fiber-optic communications, there are two main SOUrtexsayssian for timing jittef7,8] in systems without control
of randomness: variations of system parametispersive, ~ 5n4 may have substantially non-Gaussian tails in systems
no_nlme_ar and polarization fiber charagter_lstlcs, amplifier,ith in-line filtering and amplitude modulatidi6].
gains, fiber span lengths, and so and noise introduced by |, this Brief Report, we consider interaction of two soli-
system devices, the most important is amplified spontaneoygs in the presence of additive noigetion of multiplica-
emission (ASE) introduced by in.-Iine opticgl amplifiers. e noise has been investigated [8]). This problem(for
Mathematically, random perturbations of a signal caused byneg with filtering has been first examined in the pioneering
a variety of physical phenomena can be splitted in two mairy ;56721 where phase fluctuations were neglected and some
classes, additive and/or multiplicative noise. In trad't'onalapproximation of the optimal path was employed. Here we
optical soliton systems limitations on the error-free transmis-present a quantitatively accurate description based on the
sion are set mainly by stochasticignd the corresponding  qyker-planck equation for the PDF. Such approach was first

arrival jitter) due to the additive ASE npise. Since the nOiS,edeveloped i 10] for systems with in-line filtering using the
is usually very weak compared to a signal, one can readilyjyqie model introduced ifil1]. In this Brief Report, we

find the (smal) deviations of soliton parameters using per-frther develop and generalize results [aD] without re-
turbation theory that is assuming the pulse to be weakly disgyicting analysis by lines with filtering. We examine a gen-
turbed[1]. However, in general one cannot use perturbation, | proplem of transmission both with and without filtering
approach to describe the error probability because errors oGy q account for phase dynamics, which is shown below to
cur when signal changes substantigy3]. A priori itis not  paye serious impact on the error probability. The quantitative
even clear whether one may still consider signal as solitongegjts obtained here have also rather transparent physical
like or fluctuations with a substantial change of the waveinerretation. The PDF of the distance between solitons

form determine the error probability. Large rare fluctuationsp(q) has a Gaussian form except for a non-Gaus&apo-
in a nonlinear system are typically beyond the area of applinentia) tajl at small distances. Crossover in PDF corre-

cability of usual Gaussian statistia—4]. On the other hand, . — ) . )
neither experiment nor direct numerical simulations are pres§p0nds o the distanap where interaction between solitons

ently able to provide an adequate statistics of such rare errof2 com_parable to noise. In_other WOI’-dS, since the |n|t|§1I dis-
so that theoretical methods are of utmost importance herdance is usually larger tham then at first stage fluctuations
The maximum likelihood approach was suggesteflinfor ~ caused by the noise bring solitons to the distaqc®©nly
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those solitons will continue to approach each other that have
then their phase difference close to zero so that interaction is
attractive. The probability density up to an order of unity

factor is Gaussian value takencgamultiplied by two factors.
The first one is the inverse relative speed of solit¢ife
faster the soliton the smaller the probability to find it at a
given poin}. The second factor is the fraction ofr2occu-

pied by the interval of phase differences around zero that
guarantees that attraction is not replaced by repulsion on the

way fromato the finalg. Both the speed and the phase
interval are determined by interaction that exponentially de-

pends on the distance qt<a We consider in this Brief )
Report both a classical problem of two-soliton interaction of ~FIG. 1. Distance PDFP(q). The parameters are as [iBl], do
the pure nonlinear Schdinger equation under the action of =9 ¥=0.4, D=0.0002, Z=150.
an additive noise and statistics of interacting solitons in a . - .
specific line with a filtering control scheme. We show that'" MOre details i 10]. At ¢%0' the Eq:(:!.) gives the fol-
the non-Gaussian tail iB(q)e in the first case an®(q) lowing Fokker-Planck equation for the joint POKq,v,2),
«e24 in the second one. The difference is due to the fact that
the relative speed and phase difference are determined by
soliton inertia in the pure case and by drag in the filter case,; - " _

: i ith the initial conditionP(q,v,0)= 8(q—qo) 6(v).
We numerically solve an exact Fokker-Planck equation for ficiently | P(q v.0) (ﬂ .qO) .(U) .
probability distribution and find the maximal transmission At a sufficiently long tlme,yz>;, the inertia terng can
distance corresponding to a bit-error r4RER) less than be neglected for all but rare realizations tha.t. correspond to
required €109 level as a function of different system the very fast approach of solitons. Neglectigggives the

log;P(q)

—10 +

[9,+dqu—3,(8€ 9+ yv)—DaZ]P(q,0,2)=0, (4)

parameters. correct PDF everywhere except a sh@nrder unity interval
The distancey and phase difference between two soli- of distances where the approximation of exponential interac-
tons satisfy the equations written in soliton urjitd] tion breaks anyway. That can be seen in Fig. 1 where curves
2 and 3 presents the solutions of E@¢4) and (5) respec-
q+ yqz —8e 9cosd+¢, (1) tively. Without inertia term, Eq(1) gives the Fokker-Planck

equation forP(q,z)
d+yp=8e Ising+é,. 2 [Y29,~ yd48e~ 9= D321P(q,2) =0, (5)

All the derivatives are over (soliton coordinate along the which is exactly solvable in terms of the Whittaker function
fiber ling), y describes the effect of filtering, the noise is [10]. For the initial condition(q,0)= 8(q—qo), this solu-
white,  (£(0)£(2))=2D&(2), (£4(0)£4(2))=2Dy5(2),  tion is GaussianP(q)=exd —1A(q—q,)¥4Dz] at q>q(2)
andD ,=D[3+ y*(1+7?/12)]/(1+ m*y*4) [1]. We apply  —|n(162/yq,) and has an exponential left tal(q)oe9 at
the path-average description valid when the distances are<—(z) Effects of noise and interaction are comparable at
large compared to the amplifier spans. One can neglect the - A ) _p _
continuous spectrum of perturbations and consider onlyl€ distanceg(z) that can be estimated by substituting the
variations of soliton parameters if noise is weBks 7 [6]. Gaussian <_j|str|but|on into Eq5) and equating t_he second
For pure Schrdinger caséwith y=0) the continuous spec- and the th'“ﬁ' terms.. Note that the larger the distagdbe .
trum can be neglected ffis less tharD ~¥2[6,9]. Since the weaker the interaction and the closer the PDF to Gaussian.
noise is white one can derive in a usual way the FokkerOn the contrary, the form of the PDF gt<q is indeed

Planck equation for the joint PDP(q,v, ¢, »,2) with v completely determined by the balance between filtering and

=qandw=¢ interaction that giveg= — 8 e~9/y. The probability to find a
soliton in the interval §,q+dq) is proportional to time that
[0, vdq+ wdy—d,(8e 9 cosd+ yv) it spends there, i.e., tod.¢< eY. The shape of the PDP(q,2)

19 (8e 9sind— —D&A—D.R1P=0. 3 atq<q does not depend on time, while its amplitude grows
o(8eTsSing—yw) v~ DyduIP ® [as expt1205/4Dz)]. At g<—2Iny the velocity is deter-

The initial condition for Eq.(3) is P(q,v,b,0,00=5(q  Mined by the inertia termge” %2, and the tail isP(q,2)

— Qo) 8(p— do) 5(v) (w). While we cannot determine ana- «e%2 The same tail starts fromIn Z/q, at yz<1. Indeed,

lytically P(q,v,¢,0,z), the distance PDF P(q,z) considering Eqg(4) with y=0 one sees that the advecting

=[P(q,v,$,»,z)dv dé dw can be effectively described.  terms (the second and the thirdrequires P(q,v)="P(v?
Complexity of phase dynamics makes it tempting to con-—4e %) that after integration over givesP(q,z)xe%?.

sider, following[2], the casep=0 neglecting phase fluctua- The first important lesson we thus have learnt from Eq.

tions. Such model, albeit shown unrealistic below, allows(4) is that there are two completely different regimes depend-

one to understand the basic physics involved, it is describeihg on the value ofyz. At yz<1, the effect of filtering can
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be neglected and we have a case of pure nonlinear Schro [7202+(ﬂ¢ sing—d, COS¢)8ye_q—D&§—D¢&§5]
dinger equation. Atyz> 1, filtering dominates and the inertia

termsq and ¢ can be neglected in Eqél) and (2) respec- XP(d,¢,2)=0. v
tively. The second observation is that the form of the left tail o

of P(q,z) can be found without the detailed knowledge of As it was discussed above @t g interaction dominates and
the whole PDF. We now apply both these ideas to the comene may disregard the two lastoise terms and find out that
plete problem(3). First of all note thaip=0 is an unstable P(q,¢,z)=e? turns the secondadvective term in Eq.(7)
fix point. Even if in-phase solitons are launcheg,&0), the into zero. One factoeY comes from velocity and another

noise necessarily creates a phase difference during propageom phase. Indeed, to pass frcﬁmo some smallen, one
tion, then interaction driveg) towards the stable poinp  needs an attractiofin other terms¢</2). This implies
= that corresponds to soliton repulsion. This in particulary, .+ the phase al:a is exponentially small since the tra-

means that the .phase dynamics plays the key role n th ctories in¢p—q plane are exponential near zero phage,
statistical analysis and cannot be neglected even in a simpfi-

fied model. It is also clear that the effect of the phase dynam9c e~ That contributes the factor exp(d) to the probabil-

ics must decrease the probability of solitons approachindy- At q>q, the PDF fits the Gaussian distribution. To verify

each other. these results and to obtain quantitative description of the
We start from the pure case, settipgr0. Without inter- ~PDF we numerically solve Ed7). _ _
action, the PDF is GaussiaR(q,v,$,,z)>z>exp{—[3(q Figure 1 compares distance PDFs obtained by different

—Go)?— 3(q— go)vz+ V22D — [3(d— do)>— (¢ — dp)wz ~ Methods. Curve 1 is Gaussian obtained without interaction.
+w?Z]/D 4%. Substituting it into the interaction terms in Eq. CuUrve 2 presents an accurate computation of the model from
(3) one finds that the Gaussian approximationsH¢g,z) is 2], that is the numerical solution of E¢4). It is seen that
valid for q>q=In(Zqy). We assume that, as in the previousthe PDF is qughtatlvely S|m|_lar but the error probability has
cases, noise is unimportant in determining the form of thé)een substantially underestimated ). This happened be-

_ — . _ ; cause of two reasons: first, a true optimal fluctuation is dif-
left tail atq<q (it determines only the amplitugleThe form  ¢orant from suggested if2] and, second, one needs the ac-

of the left tail is determined by interaction. Neglecting the ¢oynt of fluctuations around the optimal one to get a correct
(noisg terms with the second derivatives in B§) we get  t5m of the non-Gaussian PDF taimore details can be
the advection-type first-order equation. The characteristics o, ;nq in[10]). Curve 3 presents the solution of &), one

this equation require the left tail of the PDq,v,¢,0) 10 ¢an see that inertia can be indeed neglected for all practical
degendzon thre@rather than fourvariables A=4e~cos¢  ,rposes. Account of phase fluctuations, that is solving Eq.
Tuthen B=4e qs'”,‘f’J“f/“" " and C=Im(A  (7), gives curves 4 and 5 for the initial phasg=0 and
+iB) Y2 arcsinh@+iB) %%, where Q=q+i¢. Note ¢o= 1, respectively. They both followP(q)xe? at q=<6.

that we exploit here the integrability of nonlinear Schro P(q) is equal tov L=ed multiplied by the width of the
dinger equation without noise and filtering, in particular, thephase interval starting from which gg=g we reach coor-

two-soliton solution(similar to[3]). Indeed, the Eqg1) and . : ; q
(2) may be written in a complex forn@,,= —e <, the dinate g. The latter factor is proportional te9 as can be

aboveA,B,C are integrals of motion of this equation. Inte- réadily derived from the systemyq=—8e %cose, y¢
grating, one gets =8e %sin¢. Note that in this region curve 4 indeed gives
that is exp§—q) times smaller than that given by curve 3.
We see that phase fluctuations dramatically decrease the
probability of solitons approaching each other. Note also that
choosing initial phasep,= 7 (corresponding to repulsion
allows one to reduce the probability even further. Note that

P(q,z)zf P(A,B,C,2)dv d¢p dwxe™ 9. (6)

Note that even though the velocity of the approaching soli-
tons behaves asxe™ 9?2 (as it did at¢p=0) the PDFis not

proportional tov 1. The reason is that phase dynamics 200 |
makes any nonzero phase difference to go beyond the inter- R
val [ — 7/2,7/2] turning interaction into repulsion. That re- S
quires the phase difference to be close to zero when the N
distance passes throughin order to reach some smallgr 100 |

eventually. This brings extra small factor @(qp—a/Z] into
the PDF. Formally, it comes because the domain of integra-
tion overC in Eq. (6) is exponentially restricted. As a result,

the left tail P(q) <€ does not correspond to a constant flux 0 7 s 9 10
P as it was without accounting for phase dynamics. o

Next we analyze systems with filtering in the limjiz FIG. 2. Error-free distance as function of initial spacir.
>1. Neglecting soliton inertia one obtains the following =0.0002 andD=0.0003 (upper and lower curvés ¢o=m and
Fokker-Planck equation for the joint PO q, ¢,2), ¢o=0 (solid and dashed curvgsy=0.4.
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parameters was studied[ih0]. In this Brief Report, we con-
sider without loss of generality the most “dangerous” case
when two solitons are surrounded by emftgro slots. We
assume that the error occurs when the distance between soli-
tons is either smaller thaqy/4 or larger than @y/4. Such
contribution to the BERwe call it here BER) is calculated
according to the formula E(qg,¢q,Z;y,D)=1
— — ~J o 'daP(a,2).

For practical purposes, it is BER that imposes the restric-
3n/d . tions on the system parameters. We find here the propagation

do distancez (error-free distandethat corresponds to the stan-

FIG. 3. Error-free distance as function of initial phase differ- dard value BER=10"°. Apparently, Z(do,¢o;7v,D) de-
ence.D=0.0004, D=0.0002, andD =0.0001(from the bottom to  pends on four parameters. We present the results as the de-
the top. qo=8, y=0.4. pendencies on the initial parametegs ¢, taken at different

values of the noise levedD; see Figs. 2 and 3. The most
in the filtering case the phase dynamics makes the left tajhteresting are two upper curves in Fig. 2 that show the de-

fluxless as it does in the pure case. Indeed, the solutions %fendenci_(qo) for ¢bo=. Note that the curves contain a

Egs.(4) and(5) do not conserve probability since their left . .
as.(4) ©) P y part whereZ increases when, decreases. That is because

tails correspond to a constant flag>(q) towards smalld. 0 main contribution to BERat those parameters are made

on the_ contrary, phase dynamics retums solitons back tBy the events that correspond to soliton approach. Since at
large distances and the flux decreases| decreases on the the beginningde= then it takes more time for noise to

solution of EQ.(7). overcome interaction and reaeh< /2 whenqg is smaller.

Tlo I'tr.]k oufr ttﬁe?retlcal' aqalysns \tN'th thefpractlcal issue of urprisingly, larger propagation distance can be achieved for
evaluation ol the transmission Systém performance we oug igher density of information in this interval of parameters.

to estimate the contribution from the process considered to To conclude, we have developed an original analytical

Fhe s.o.-callled BER'. Qeflned as th_e probability of INCOMECt 1 othod to describe the non-Gaussian tail of the probability
identification of a bit in the trgnsmltted_data stream. To Cal'distribution of the distance between interacting solitons and
culate BER one has. to Sp?c'f.y a receiver. Here we assu .mumerically obtained the whole distribution. We have de-
that the signal-to-noise ratio is large enough and the MaR¢rihed how soliton interaction enhances the effect of noise

contr_lt_)utlon to BER results from s_ollton interaction. More and increases the probability of two solitons to approach
specifically, we assume that there is an error when the soli-

h other.
tons approach each other closer than the threshgldthe each other
respective  contribution to  the  bit-error rate  We thank V. Lebedev and |. Gabitov for useful discus-
E(97,90,%0,Z; y,D)=ngdq73(q,Z) as a function of all six  sions. This work was supported by Minerva Foundation.
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