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Statistics of interacting optical solitons
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We examine statistics of two interacting optical solitons and describe timing jitter caused by spontaneous
emission noise and enhanced by pulse interaction. Dynamics of phase difference is shown to be of crucial
importance in determining the probability distribution function~PDF! of the distance between solitons. We find
analytically the non-Gaussian tail of the PDF to be exponential. The propagation distance that corresponds to
a given bit-error rate is described as a function of system parameters~filtering and noise level!, initial distance,
and initial phase difference between solitons. We find the interval of parameters where a larger propagation
distance can be achieved for higher density of information.
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The nonlinear Schro¨dinger equation~NLSE! is a canoni-
cal theoretical model governing propagation of the envel
of a quasimonochromatic wave in a weakly nonlinear disp
sive media. Dynamical properties of this generic nonlin
system describing a range of applications from Bose cond
sate to telecommunications has been thoroughly studied
ing past few decades. However, statistical problems ass
ated with NLSE are relatively less highlighted in th
literature. In this Brief Report we examine a classical pro
lem of soliton interaction in the presence of noise. Thou
results obtained in this paper can be applied in a variety
physical problems we focus our attention here on opt
soliton transmission as an important specific application
the general theory.

In fiber-optic communications, there are two main sour
of randomness: variations of system parameters~dispersive,
nonlinear and polarization fiber characteristics, amplifi
gains, fiber span lengths, and so on! and noise introduced by
system devices, the most important is amplified spontane
emission ~ASE! introduced by in-line optical amplifiers
Mathematically, random perturbations of a signal caused
a variety of physical phenomena can be splitted in two m
classes, additive and/or multiplicative noise. In tradition
optical soliton systems limitations on the error-free transm
sion are set mainly by stochasticity~and the corresponding
arrival jitter! due to the additive ASE noise. Since the no
is usually very weak compared to a signal, one can rea
find the ~small! deviations of soliton parameters using pe
turbation theory that is assuming the pulse to be weakly
turbed@1#. However, in general one cannot use perturbat
approach to describe the error probability because errors
cur when signal changes substantially@2,3#. A priori it is not
even clear whether one may still consider signal as solit
like or fluctuations with a substantial change of the wa
form determine the error probability. Large rare fluctuatio
in a nonlinear system are typically beyond the area of ap
cability of usual Gaussian statistics@2–4#. On the other hand
neither experiment nor direct numerical simulations are p
ently able to provide an adequate statistics of such rare e
so that theoretical methods are of utmost importance h
The maximum likelihood approach was suggested in@2# for
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finding an optimal fluctuation that provides a given lar
deviation of soliton parameters. The method is technicall
saddle-point approximation in the path integral for probab
ties and is indeed known to describe the tails of the proba
ity density function@5#. A consistent development of the op
timal fluctuation method for soliton-bearing systems h
been done in@6# where the conditions on the noise level a
propagation distance have been formulated for an opti
fluctuation to be close to a soliton with slowly varying p
rameters. That made possible to reduce the formally infin
dimensional problem to the analysis of the finite set of so
ton parameters and effectively find the error probability fo
single soliton transmission under different control schem
@6#. The probability density function~PDF! is essentially
Gaussian for timing jitter@7,8# in systems without contro
and may have substantially non-Gaussian tails in syst
with in-line filtering and amplitude modulation@6#.

In this Brief Report, we consider interaction of two so
tons in the presence of additive noise~action of multiplica-
tive noise has been investigated in@9#!. This problem~for
lines with filtering! has been first examined in the pioneeri
paper@2# where phase fluctuations were neglected and so
approximation of the optimal path was employed. Here
present a quantitatively accurate description based on
Fokker-Planck equation for the PDF. Such approach was
developed in@10# for systems with in-line filtering using the
simple model introduced in@11#. In this Brief Report, we
further develop and generalize results of@10# without re-
stricting analysis by lines with filtering. We examine a ge
eral problem of transmission both with and without filterin
and account for phase dynamics, which is shown below
have serious impact on the error probability. The quantitat
results obtained here have also rather transparent phy
interpretation. The PDF of the distance between solito
P(q) has a Gaussian form except for a non-Gaussian~expo-
nential! tail at small distances. Crossover in PDF corr
sponds to the distanceq̄ where interaction between soliton
is comparable to noise. In other words, since the initial d
tance is usually larger thanq̄ then at first stage fluctuation
caused by the noise bring solitons to the distanceq̄. Only
©2001 The American Physical Society02-1
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BRIEF REPORTS PHYSICAL REVIEW E 64 067602
those solitons will continue to approach each other that h
then their phase difference close to zero so that interactio
attractive. The probability density up to an order of un
factor is Gaussian value taken atq̄ multiplied by two factors.
The first one is the inverse relative speed of solitons~the
faster the soliton the smaller the probability to find it at
given point!. The second factor is the fraction of 2p occu-
pied by the interval of phase differences around zero
guarantees that attraction is not replaced by repulsion on
way from q̄ to the final q. Both the speed and the pha
interval are determined by interaction that exponentially
pends on the distance atq,q̄. We consider in this Brief
Report both a classical problem of two-soliton interaction
the pure nonlinear Schro¨dinger equation under the action o
an additive noise and statistics of interacting solitons in
specific line with a filtering control scheme. We show th
the non-Gaussian tail isP(q)}eq in the first case andP(q)
}e2q in the second one. The difference is due to the fact t
the relative speed and phase difference are determine
soliton inertia in the pure case and by drag in the filter ca
We numerically solve an exact Fokker-Planck equation
probability distribution and find the maximal transmissi
distance corresponding to a bit-error rate~BER! less than
required (,1029) level as a function of different system
parameters.

The distanceq and phase differencef between two soli-
tons satisfy the equations written in soliton units@11#

q̈1gq̇528 e2q cosf1j, ~1!

f̈1gḟ58 e2q sinf1jf . ~2!

All the derivatives are overz ~soliton coordinate along the
fiber line!, g describes the effect of filtering, the noise
white, ^j(0)j(z)&52Dd(z), ^jf(0)jf(z)&52Dfd(z),
andDf5D@31g2(11p2/12)#/(11p2g2/4) @1#. We apply
the path-average description valid when the distances
large compared to the amplifier spans. One can neglec
continuous spectrum of perturbations and consider o
variations of soliton parameters if noise is weak,D!Ag @6#.
For pure Schro¨dinger case~with g50) the continuous spec
trum can be neglected ifz is less thanD21/2 @6,9#. Since the
noise is white one can derive in a usual way the Fokk
Planck equation for the joint PDFP(q,v,f,v,z) with v
5q̇ andv5ḟ

@]z1v]q1v]f2]v~8e2q cosf1gv !

1]v~8e2q sinf2gv!2D]v
22Df]v

2 #P50. ~3!

The initial condition for Eq. ~3! is P(q,v,f,v,0)5d(q
2q0)d(f2f0)d(v)d(v). While we cannot determine ana
lytically P(q,v,f,v,z), the distance PDF P(q,z)
5*P(q,v,f,v,z)dv df dv can be effectively described.

Complexity of phase dynamics makes it tempting to co
sider, following@2#, the casef[0 neglecting phase fluctua
tions. Such model, albeit shown unrealistic below, allo
one to understand the basic physics involved, it is descri
06760
e
is

at
he

-

f

a
t

at
by
e.
r

re
he
ly

r-

-

s
d

in more details in@10#. At f[0, the Eq.~1! gives the fol-
lowing Fokker-Planck equation for the joint PDFP(q,v,z),

@]z1]qv2]v~8 e2q1gv !2D]v
2#P~q,v,z!50, ~4!

with the initial conditionP(q,v,0)5d(q2q0)d(v).
At a sufficiently long time,gz@1, the inertia termq̈ can

be neglected for all but rare realizations that correspond
the very fast approach of solitons. Neglectingq̈ gives the
correct PDF everywhere except a short~order unity! interval
of distances where the approximation of exponential inter
tion breaks anyway. That can be seen in Fig. 1 where cu
2 and 3 presents the solutions of Eqs.~4! and ~5! respec-
tively. Without inertia term, Eq.~1! gives the Fokker-Planck
equation forP(q,z)

@g2]z2g]q8e2q2D]q
2#P~q,z!50, ~5!

which is exactly solvable in terms of the Whittaker functio
@10#. For the initial conditionP(q,0)5d(q2q0), this solu-
tion is GaussianP(q)}exp@2g2(q2q0)

2/4Dz# at q.q̄(z)
[ ln(16z/gq0) and has an exponential left tailP(q)}eq at
q,q̄(z). Effects of noise and interaction are comparable
the distanceq̄(z) that can be estimated by substituting t
Gaussian distribution into Eq.~5! and equating the secon
and the third terms. Note that the larger the distanceq the
weaker the interaction and the closer the PDF to Gauss
On the contrary, the form of the PDF atq,q̄ is indeed
completely determined by the balance between filtering
interaction that givesq̇528 e2q/g. The probability to find a
soliton in the interval (q,q1dq) is proportional to time that
it spends there, i.e., to 1/q̇}eq. The shape of the PDFP(q,z)
at q,q̄ does not depend on time, while its amplitude gro
@as exp(2g2q0

2/4Dz)#. At q!22 lng the velocity is deter-

mined by the inertia term,q̇}e2q/2, and the tail isP(q,z)
}eq/2. The same tail starts fromq̄' ln z2/q0 at gz!1. Indeed,
considering Eq.~4! with g50 one sees that the advectin
terms ~the second and the third! requires P(q,v)5P(v2

24e2q) that after integration overv givesP(q,z)}eq/2.
The first important lesson we thus have learnt from E

~4! is that there are two completely different regimes depe
ing on the value ofgz. At gz!1, the effect of filtering can

FIG. 1. Distance PDFP(q). The parameters are as in@2#, q0

59, g50.4, D50.0002, Z5150.
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BRIEF REPORTS PHYSICAL REVIEW E 64 067602
be neglected and we have a case of pure nonlinear Sc¨-
dinger equation. Atgz@1, filtering dominates and the inerti
termsq̈ and f̈ can be neglected in Eqs.~1! and ~2! respec-
tively. The second observation is that the form of the left t
of P(q,z) can be found without the detailed knowledge
the whole PDF. We now apply both these ideas to the co
plete problem~3!. First of all note thatf50 is an unstable
fix point. Even if in-phase solitons are launched (f050), the
noise necessarily creates a phase difference during prop
tion, then interaction drivesf towards the stable pointf
5p that corresponds to soliton repulsion. This in particu
means that the phase dynamics plays the key role in
statistical analysis and cannot be neglected even in a sim
fied model. It is also clear that the effect of the phase dyna
ics must decrease the probability of solitons approach
each other.

We start from the pure case, settingg50. Without inter-
action, the PDF is GaussianP(q,v,f,v,z)}z2 exp$2@3(q
2qq)

223(q2q0)vz1v2z2#/Dt32 @3(f2f0)
223(f2f0)vz

1v2z2#/Dft3%. Substituting it into the interaction terms in E
~3! one finds that the Gaussian approximations forP(q,z) is
valid for q.q̄5 ln(z2/q0). We assume that, as in the previo
cases, noise is unimportant in determining the form of
left tail at q,q̄ ~it determines only the amplitude!. The form
of the left tail is determined by interaction. Neglecting t
~noise! terms with the second derivatives in Eq.~3! we get
the advection-type first-order equation. The characteristic
this equation require the left tail of the PDFP(q,v,f,v) to
depend on three~rather than four! variables,A54e2q cosf
2v21v2, B54e2q sinf1vv, and C5Im(A
1 iB)21/2 arcsinh(A1 iB)1/2eQ/2, where Q5q1 if. Note
that we exploit here the integrability of nonlinear Schr¨-
dinger equation without noise and filtering, in particular, t
two-soliton solution~similar to @3#!. Indeed, the Eqs.~1! and
~2! may be written in a complex formQzz52e2Q, the
aboveA,B,C are integrals of motion of this equation. Inte
grating, one gets

P~q,z!5E P~A,B,C,z!dv df dv}e2q. ~6!

Note that even though the velocity of the approaching s
tons behaves asv}e2q/2 ~as it did atf[0) the PDFis not
proportional to v21. The reason is that phase dynami
makes any nonzero phase difference to go beyond the in
val @2p/2,p/2# turning interaction into repulsion. That re
quires the phase difference to be close to zero when
distance passes throughq̄ in order to reach some smallerq

eventually. This brings extra small factor exp@(q2q̄)/2# into
the PDF. Formally, it comes because the domain of integ
tion overC in Eq. ~6! is exponentially restricted. As a resu
the left tail P(q)}eq does not correspond to a constant fl
q̇P as it was without accounting for phase dynamics.

Next we analyze systems with filtering in the limitgz
@1. Neglecting soliton inertia one obtains the followin
Fokker-Planck equation for the joint PDFP(q,f,z),
06760
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@g2]z1~]f sinf2]q cosf!8g e2q2D]q
22Df]f

2 #

3P~q,f,z!50. ~7!

As it was discussed above atq,q̄ interaction dominates and
one may disregard the two last~noise! terms and find out tha
P(q,f,z)}e2q turns the second~advective! term in Eq.~7!
into zero. One factoreq comes from velocity and anothe
from phase. Indeed, to pass fromq̄ to some smallerq, one
needs an attraction~in other termsf,p/2). This implies
that the phase atq.q̄ is exponentially small since the tra
jectories inf2q plane are exponential near zero phase,f

}e2q. That contributes the factor exp(q2q̄) to the probabil-
ity. At q.q̄, the PDF fits the Gaussian distribution. To veri
these results and to obtain quantitative description of
PDF we numerically solve Eq.~7!.

Figure 1 compares distance PDFs obtained by differ
methods. Curve 1 is Gaussian obtained without interact
Curve 2 presents an accurate computation of the model f
@2#, that is the numerical solution of Eq.~4!. It is seen that
the PDF is qualitatively similar but the error probability h
been substantially underestimated in@2#. This happened be
cause of two reasons: first, a true optimal fluctuation is d
ferent from suggested in@2# and, second, one needs the a
count of fluctuations around the optimal one to get a corr
form of the non-Gaussian PDF tail~more details can be
found in @10#!. Curve 3 presents the solution of Eq.~5!, one
can see that inertia can be indeed neglected for all prac
purposes. Account of phase fluctuations, that is solving
~7!, gives curves 4 and 5 for the initial phasesf050 and
f05p, respectively. They both followP(q)}e2q at q&6.
P(q) is equal tov21}eq multiplied by the width of the
phase interval starting from which atq05q̄ we reach coor-
dinate q. The latter factor is proportional toeq as can be
readily derived from the systemgq̇528e2q cosf, gḟ
58e2q sinf. Note that in this region curve 4 indeed givesP
that is exp(q2q̄) times smaller than that given by curve
We see that phase fluctuations dramatically decrease
probability of solitons approaching each other. Note also t
choosing initial phasef05p ~corresponding to repulsion!
allows one to reduce the probability even further. Note t

FIG. 2. Error-free distance as function of initial spacing.D
50.0002 andD50.0003 ~upper and lower curves!, f05p and
f050 ~solid and dashed curves!, g50.4.
2-3
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BRIEF REPORTS PHYSICAL REVIEW E 64 067602
in the filtering case the phase dynamics makes the left
fluxless as it does in the pure case. Indeed, the solution
Eqs. ~4! and ~5! do not conserve probability since their le
tails correspond to a constant fluxq̇P(q) towards smallq.
On the contrary, phase dynamics returns solitons back
large distances and the flux decreases asq decreases on th
solution of Eq.~7!.

To link our theoretical analysis with the practical issue
evaluation of the transmission system performance we ou
to estimate the contribution from the process considere
the so-called BER, defined as the probability of incorr
identification of a bit in the transmitted data stream. To c
culate BER one has to specify a receiver. Here we ass
that the signal-to-noise ratio is large enough and the m
contribution to BER results from soliton interaction. Mo
specifically, we assume that there is an error when the s
tons approach each other closer than the thresholdqZ , the
respective contribution to the bit-error ra
E(qT ,q0 ,f0 ,Z;g,D)5*0

qZdqP(q,Z) as a function of all six

FIG. 3. Error-free distance as function of initial phase diffe
ence.D50.0004, D50.0002, andD50.0001~from the bottom to
the top!. q058, g50.4.
m
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parameters was studied in@10#. In this Brief Report, we con-
sider without loss of generality the most ‘‘dangerous’’ ca
when two solitons are surrounded by empty~zero! slots. We
assume that the error occurs when the distance between
tons is either smaller thanq0/4 or larger than 7q0/4. Such
contribution to the BER~we call it here BER1) is calculated
according to the formula E(q0 ,f0 ,Z;g,D)51
2*q0/4

7q0/4dqP(q,Z).

For practical purposes, it is BER that imposes the rest
tions on the system parameters. We find here the propaga

distanceZ̄ ~error-free distance! that corresponds to the stan

dard value BER151029. Apparently, Z̄(q0 ,f0 ;g,D) de-
pends on four parameters. We present the results as the
pendencies on the initial parametersq0 ,f0 taken at different
values of the noise levelD; see Figs. 2 and 3. The mos
interesting are two upper curves in Fig. 2 that show the

pendenceZ̄(q0) for f05p. Note that the curves contain
part whereZ̄ increases whenq0 decreases. That is becau
the main contribution to BER1 at those parameters are ma
by the events that correspond to soliton approach. Sinc
the beginningf05p then it takes more time for noise t
overcome interaction and reachf,p/2 whenq0 is smaller.
Surprisingly, larger propagation distance can be achieved
higher density of information in this interval of parameter

To conclude, we have developed an original analyti
method to describe the non-Gaussian tail of the probab
distribution of the distance between interacting solitons a
numerically obtained the whole distribution. We have d
scribed how soliton interaction enhances the effect of no
and increases the probability of two solitons to approa
each other.

We thank V. Lebedev and I. Gabitov for useful discu
sions. This work was supported by Minerva Foundation.
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