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Abstract— Many problems in control theory can be formu-
lated as semidefinite programs (SDPs). For large-scale SDPs, it
is important to exploit the inherent sparsity to improve the
scalability. This paper develops efficient first-order methods
to solve SDPs with chordal sparsity based on the alternating
direction method of multipliers (ADMM). We show that chordal
decomposition can be applied to either the primal or the dual
standard form of a sparse SDP, resulting in scaled versions of
ADMM algorithms with the same computational cost. Each
iteration of our algorithms consists of a projection on the
product of small positive semidefinite cones, followed by a
projection on an affine set, both of which can be carried
out efficiently. Our techniques are implemented in CDCS, an
open source add-on to MATLAB. Numerical experiments on
large-scale sparse problems in SDPLIB and random SDPs with
block-arrow sparse patterns show speedups compared to some
common state-of-the-art software packages.

I. INTRODUCTION

Semidefinite programs (SDPs) are a type of convex op-
timization problems over the cone of positive semidefinite
(PSD) matrices. Given b ∈ Rm, C ∈ Sn, and matrices
A1, . . . , Am ∈ Sn that define the operators

A(X) =

 〈A1, X〉
...

〈Am, X〉

 , A∗(y) =
m∑
i=1

Aiyi,

SDPs are typically written in the standard primal form

min
X

〈C,X〉

subject to A(X) = b,

X ∈ Sn+,

(1)

or in the standard dual form

max
y,Z

〈b, y〉

subject to A∗(y) + Z = C,

Z ∈ Sn+.

(2)

In the above and throughout this work, Rm is the m-
dimensional Euclidean space, Sn is the space of n × n
symmetric matrices, Sn+ is the subspace of PSD matrices,
and 〈·, ·〉 denotes the inner product in the appropriate space.
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SDPs have applications in control theory, machine learn-
ing, combinatorics, and operations research [1]. Moreover,
linear, quadratic, and second-order-cone programs, are partic-
ular instances of SDPs [2]. Small to medium-sized SDPs can
be solved in polynomial time [3] using efficient second-order
interior-point methods (IPMs) [4], [5]. However, many real-
life problems are too large for the state-of-the-art interior-
point algorithms, due to memory and CPU time constraints.

One approach is to abandon IPMs, in favour of faster first-
order methods (FOMs) with modest accuracy. For instance,
Wen et al. proposed an alternating-direction augmented La-
grangian method for large-scale SDPs in the dual standard
form [6]. More recently, O’Donoghue et al. developed a first-
order operator-splitting method to solve the homogeneous
self-dual embedding (HSDE) of a primal-dual pair of conic
programs, which has the advantage of being able to provide
primal or dual certificates of infeasibility [7]. A second
approach relies on the fact that large-scale SDPs are often
structured and/or sparse [1]. Exploiting sparsity in SDPs is
an active and challenging area of research [8], one main
difficulty being that the optimal solution is typically dense
despite the sparsity of the problem data. If, however, the
sparsity pattern of the data is chordal or has sparse chordal
extensions, Grone’s and Agler’s theorems [9], [10] allow re-
placing the PSD constraint with a set of smaller semidefinite
constraints, plus an additional set of equality constraints. In
some cases, the converted SDP can then be solved more
efficiently than the original problem. These ideas underly the
domain- and range-space conversion techniques [11], [12],
implemented in SparseCoLO [13].

However, adding equality constraints often offsets the
benefit of working with smaller PSD cones. One possible
solution is to exploit chordal sparsity directly in the IPMs:
Fukuda et al. used Grone’s theorem [9] to develop a primal-
dual path-following method for SDPs [11]; Burer proposed
a nonsymmetric primal-dual IPM using Cholesky factors of
the dual variable and maximum determinant completion of
the primal variable [14]; and Andersen et al. developed fast
recursive algorithms for SDPs with chordal sparsity [15].
Alternatively, one can solve the decomposed SDP with
FOMs: Sun et al. proposed a first-order splitting method for
decomposable conic programs [16]; Kalbat & Lavaei applied
the alternating-direction method of multipliers (ADMM) to
SDPs with fully decomposable constraints [17]; Madani et
al. developed a highly-parallelizable ADMM algorithm for
sparse SDPs with inequality constraints with optimal power
flow applications [18].

In this work we adopt the strategy of exploiting sparsity
using first-order algorithms in the spirit of [16]–[18], and
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develop efficient ADMM algorithms to solve large-scale
sparse SDPs. Our contributions are:

1) We combine ADMM and chordal decomposition to
solve sparse SDPs in primal or dual standard form. The
resulting algorithms are scaled versions of each other.
This gives a conversion framework for the application
of FOMs, analogous to that of [11], [12] for IPMs.

2) In each iteration, the PSD constraint is enforced via
parallel projections onto small PSD cones. The affine
constraints are imposed by a quadratic program with
equality constraints, and its KKT system matrix can be
factorized before iterating the ADMM algorithm since
it only depends on the problem data.

3) We implement our methods in the open-source
MATLAB solver CDCS (Cone Decomposition Conic
Solver) [19]. Numerical simulations on random SDPs
with block-arrow sparsity patterns and on four large-
scale sparse problems in SDPLIB [20] demonstrate the
efficiency of our algorithms compared to other solvers.

The rest of this paper is organized as follows. Section II
reviews chordal sparsity and decomposition techniques. We
show how to apply the ADMM to primal and dual standard-
form SDPs in Sections III–IV, respectively, and report our
numerical experiments in Section V. Finally, Section VI
offers concluding remarks.

II. PRELIMINARIES: CHORDAL DECOMPOSITION AND
THE ADMM ALGORITHM

A. Chordal graphs

Let G(V, E) be an undirected graph with vertices V =
{1, 2, . . . , n} and edges E ⊆ V × V . A clique C ⊆ V is a
subset of vertices such that (i, j) ∈ E for any distinct vertices
i, j ∈ C, and the number of vertices in C is denoted by |C|.
If C is not a subset of any other clique, then it is referred
to as a maximal clique. A cycle of length k in G is a set
of pairwise distinct vertices {v1, v2, . . . , vk} ⊂ V such that
(vk, v1) ∈ E and (vi, vi+1) ∈ E for i = 1, . . . , k−1. A chord
is an edge joining two non-adjacent vertices in a cycle.

Definition 1 (Chordal graph): An undirected graph is
chordal if all cycles of length four or higher have a chord.

Note that if G(V, E) is not chordal, it can be chordal
extended, i.e., we can construct a chordal graph G′(V, E ′) by
adding edges to E such that G′ is chordal. Finding the chordal
extension with the minimum number of additional edges is
an NP-complete problem [21], but good chordal extensions
can be computed efficiently using several heuristics [22].

B. Sparse matrices defined by graphs

Let G = (V, E) be an undirected graph such that (i, i) ∈ E ,
i.e., each node has a self-loop. We say that X is a sparse
symmetric matrix defined by G if Xij = Xji = 0 whenever
(i, j) /∈ E . The spaces of sparse and PSD sparse symmetric
matrices defined by G are

Sn(E , 0) ={X ∈ Sn | Xij = Xji = 0 if (i, j) /∈ E},
Sn+(E , 0) ={X ∈ Sn(E , 0) | X � 0}.

Similarly, we say that X is a partial symmetric matrix defined
by G if Xij = Xji are given when (i, j) ∈ E , and arbitrary
otherwise. Moreover, we say that M is a PSD completion of
the partial symmetric matrix X if M � 0 and Mij = Xij

when (i, j) ∈ E . We can then define the spaces

Sn(E , ?)={X∈ Sn | Xij = Xji given if (i, j) ∈ E},
Sn+(E , ?)={X∈ Sn(E , ?) |∃M � 0, Mij=Xij ∀(i, j)∈ E}.

Finally, given a clique Ck of G, Ek ∈ R|Ck|×n is the matrix
with (Ek)ij = 1 if Ck(i) = j and zero otherwise, where
Ck(i) is the i-th vertex in Ck, sorted in the natural ordering.
The submatrix of X ∈ Sn defined by Ck is EkXETk ∈ S|Ck|.

C. Chordal decomposition of PSD matrices

The spaces Sn+(E , ?) and Sn+(E , 0) are a pair of dual
convex cones for any undirected graph G(V, E) [15], [22].
If G is chordal, Sn+(E , ?) and Sn+(E , 0) can be expressed in
terms of several coupled smaller convex cones:

Theorem 1 (Grone’s theorem [9]): Let {C1, C2, . . . , Cp}
be the set of maximal cliques of a chordal graph G(V, E).
Then, X ∈ Sn+(E , ?) if and only if Xk := EkXE

T
k ∈ S|Ck|+

for all k = 1, . . . , p.
Theorem 2 (Agler’s theorem [10]): Let {C1, C2, . . . , Cp}

be the set of maximal cliques of a chordal graph G(V, E).
Then, Z ∈ Sn+(E , 0) if and only if there exist matrices
Zk ∈ S|Ck|+ for k = 1, . . . , p such that Z =

∑p
k=1E

T
k ZkEk.

These results can be proven individually, but can also can
be derived from each other using the duality of the cones
Sn+(E , ?) and Sn+(E , 0) [22].

D. ADMM algorithm

The ADMM algorithm solves the optimization problem

min f(x) + g(y)

subject to Ax+By = c,

where f and g are convex functions, x ∈ Rnx , y ∈ Rny , A ∈
Rnc×nx , B ∈ Rnc×ny and c ∈ Rnc . Given a penalty
parameter ρ > 0 and a dual multiplier z ∈ Rnc , the ADMM
algorithm minimizes the augmented Lagrangian

Lρ(x, y, z) = f(x) + g(y) +
ρ

2

∥∥∥∥Ax+By − c+ 1

ρ
z

∥∥∥∥2
with respect to the variables x and y separately, followed by
a dual variable update:

x(n+1) = argmin
x
Lρ(x, y

(n), z(n)), (3a)

y(n+1) = argmin
y
Lρ(x

(n+1), y, z(n)), (3b)

z(n+1) = z(n) + ρ(Ax(n+1) +By(n+1) − c). (3c)

The superscript (n) indicates that a variable is fixed to its
value at the n-th iteration. ADMM is particularly suitable
when the minimizations with respect to each of the variables
x and y in (3a) and (3b) can be carried out efficiently through
closed-form expressions.



III. ADMM FOR SPARSE PRIMAL-FORM SDPS

A. Reformulation and decomposition of the PSD constraint
Let the primal-standard-form SDP (1) be sparse with an

aggregate sparsity pattern described by the graph G(V, E),
meaning that (i, j) ∈ E if and only if the entry ij of at
least one of the data matrices C, A0, . . . , Am, is nonzero.
We assume that G is chordal (otherwise it can be chordal
extended) and that its maximal cliques C1, . . . , Cp are small.
Then, only the entries of the matrix variable X corresponding
to the graph edges E appear in the cost and constraint
functions, so the constraint X ∈ Sn+ can be replaced by X ∈
Sn+(E , ?). Using Theorem 1, we can then reformulate (1) as

min
X,X1,...,Xp

〈C,X〉

subject to A(X) = b,

Xk − EkXETk = 0, k = 1, . . . , p,

Xk ∈ S|Ck|+ , k = 1, . . . , p.

(4)

In other words, we can decompose the original large semidef-
inite cone into multiple smaller cones, at the expense of intro-
ducing a set of consensus constraints between the variables.

To ease the exposition, we rewrite (4) in a vectorized form.
Letting vec : Sn → Rn2

be the usual operator mapping
a matrix to the stack of its column, define the vectorized
data c := vec(C), A :=

[
vec(A0) . . . vec(Am)

]T
, the

vectorized variables x := vec(X), xk := vec(xk), k =
1, . . . , p, and the matrices Hk := Ek ⊗ Ek such that
xk = vec(Xk) = vec(EkXE

T
k ) = Hkx. In other words,

the matrices H1, . . . , Hp are “entry-selector” matrices of 1’s
and 0’s, whose rows are orthonormal, that project x onto the
subvectors x1, . . . , xp, respectively. Denoting the constraints
Xk ∈ S|Ck|+ by xk ∈ Sk, we can rewrite (4) as

min
x,x1,...,xp

〈c, x〉

subject to Ax = b,

xk = Hkx, k = 1, . . . , p,

xk ∈ Sk, k = 1, . . . , p.

(5)

B. The ADMM algorithm for primal SDPs
Moving the constraints Ax = b and xk ∈ Sk in (5) to the

objective using the indicator functions δ0(·) and δSk(·) gives

min
x,x1,...,xp

〈c, x〉+ δ0 (Ax− b) +
p∑
k=1

δSk(xk)

subject to xk = Hkx, k = 1, . . . , p.

(6)

This problem is in the standard form for the application of
ADMM. Given a penalty parameter ρ > 0 and a Lagrange
multiplier λk for each constraint xk = Hkx, we define

L := 〈c, x〉+ δ0 (Ax− b)

+

p∑
k=1

[
δSk(xk) +

ρ

2

∥∥∥∥xk −Hkx+
1

ρ
λk

∥∥∥∥2
]
, (7)

and group the variables as X := {x}, Y := {x1, . . . , xp},
and Z := {λ1, . . . , λp}. As in (3), in each ADMM iteration,
we minimize (7) with respect to X and Y , then update Z .

Algorithm 1 ADMM for decomposed primal form SDPs

1: Input: ρ > 0, εtol > 0, initial guesses x(0),
x
(0)
1 , . . . , x

(0)
p , λ(0)1 , . . . , λ

(0)
p

2: Setup: Chordal decomposition, KKT factorization.
3: while max(εp, εd) ≥ εtol do
4: Compute x(n) with (9).
5: for k = 1, . . . , p: Compute x(n)k with (11).
6: for k = 1, . . . , p: Compute λ(n)k with (12).
7: Update the residuals εp, εd.
8: end while

1) Minimization over X : Minimizing (7) over X is
equivalent to the equality-constrained quadratic program

min
x

〈c, x〉+ ρ

2

p∑
k=1

∥∥∥∥x(n)k −Hkx+
1

ρ
λ
(n)
k

∥∥∥∥2
subject to Ax = b.

(8)

Define D :=
∑p
k=1H

T
k Hk and let ρy be the multiplier

for the equality constraint. We can write the optimality
conditions for (8) as the KKT system[
D AT

A 0

] [
x
y

]
=

[∑p
k=1H

T
k

(
x
(n)
k + ρ−1λ

(n)
k

)
− ρ−1c

b

]
.

(9)
Note that D is a diagonal matrix, because the rows of each

matrix Hk are orthonormal, so (9) can be solved efficiently,
e.g., by block elimination. Moreover, the coefficient matrix
is the same at every iteration, so its factorization can be pre-
computed and cached before starting the ADMM iterations.

2) Minimization over Y: Minimizing (7) over Y is
equivalent to the p independent problems

min
xk

∥∥∥xk −Hkx
(n+1) + ρ−1λ

(n)
k

∥∥∥2 subject to xk ∈ Sk.
(10)

In terms of the original matrix variables X1, . . . , Xp, this
amounts to a projection on the PSD cone. More precisely, if
Pk denotes the projection onto S|Ck|+ we have

x
(n+1)
k =vec

{
Pk
[
vec−1

(
Hkx

(n+1) − ρ−1λ(n)k

)]}
. (11)

Since computing Pk amounts to an eigenvalue decomposition
and each cone S|Ck|+ is small by assumption, we can compute
x
(n+1)
1 , . . . , x

(n+1)
p efficiently and in parallel.

3) Updating the multipliers Z: Each multiplier λk, k =
1, . . . , p, is updated with the usual gradient ascent rule,

λ
(n+1)
k = λ

(n)
k + ρ

(
x
(n+1)
k −Hkx

(n+1)
)
. (12)

This computation is cheap, and can be parallelized.
The ADMM algorithm is stopped after the n-th iteration if

the relative primal/dual error measures εp and εd are smaller
than a specified tolerance, εtol; see [23] for more details on
stopping conditions for a generic ADMM algorithm. Algo-
rithm 1 summarizes the the steps to solve a decomposable
SDP in standard primal form (5).



IV. ADMM FOR SPARSE DUAL-FORM SDPS

A. Reformulation of decomposition of the PSD constraint
Similar to Section III, suppose the aggregate sparsity

pattern of an SDP in standard dual form (2) is described
by the chordal graph G(V, E). The equality constraint in (2)
implies that the PSD variable Z has the same sparsity pattern
as the aggregate sparsity pattern of the problem data, i.e.,
Z ∈ Sn+(E , 0), so using Theorem 2 we can rewrite (2) as

min
y,Z1,...,Zp

− 〈b, y〉

subject to A∗(y) +
p∑
k=1

ETk ZkEk = C,

Zk ∈ S|Ck|+ , k = 1, . . . , p.

(13)

While the original PSD constraint has been replaced by mul-
tiple smaller PSD constraints, it is not convenient to apply
ADMM to this problem form because the PSD variables
Z1, . . . , Zk in the equality constraint are weighted by the
matrices Ek. Instead, we replace Z1, . . . , Zk in the equality
constraint with slack variables V1, . . . , Vp such that Zk = Vk,
k = 1, . . . , p. Defining zk := vec(Zk) and vk := vec(Vk) for
all k = 1, . . . , p, and using the same vectorized notation as in
Section III we then reformulate (13) in the vectorized form

min
y,z1,...,zp,v1,...,vp

− 〈b, y〉

subject to AT y +

p∑
k=1

HT
k vk = c,

zk − vk = 0, k = 1, . . . , p,

zk ∈ Sk, k = 1, . . . , p.

(14)

Remark 1: Although we have derived (14) by applying
Theorem 2, (14) is exactly the dual of the decomposed primal
SDP (5). Consequently, our analysis provides a decomposi-
tion framework for the application of FOMs analogous to
that of [11], [12] for IPMs. This elegant picture, in which
the decomposed SDPs inherit the duality between the original
ones by virtue of the duality between Grone’s and Agler’s
theorems, is shown in Fig. 1.

B. The ADMM algorithm for dual SDPs
Using indicator functions to move all but the equality

constraints zk = vk, k = 1, . . . , p, to the objective gives

min −〈b, y〉+ δ0

(
c−AT y −

p∑
k=1

HT
k vk

)
+

p∑
k=1

δSk(zk)

subject to zk = vk, k = 1, . . . , p. (15)

Given a penalty parameter ρ > 0 and a Lagrange multiplier
λk for each constraint zk = vk, k = 1, . . . , p, we define

L := −〈b, y〉+ δ0

(
c−AT y −

p∑
k=1

HT
k vk

)

+

p∑
k=1

[
δSk(zk) +

ρ

2

∥∥∥∥zk − vk + 1

ρ
λk

∥∥∥∥2
]
, (16)

and group the variables as X := {y, v1, . . . , vp}, Y :=
{z1, . . . , zp}, and Z := {λ1, . . . , λp}.

Primal SDP (1) Dual SDP (2)

Decomposed
Primal SDP (5)

Decomposed
Dual SDP (14)

Algorithm 1 Algorithm 2

Grone’s Theorem Agler’s Theorem

Duality

Duality

ADMM ADMM
Scaling

Fig. 1. Duality relationships between primal and dual SDPs, and the
decomposed primal and dual SDPs.

1) Minimization over X : Minimizing (16) over block X
is equivalent to the equality-constrained quadratic program

min
y,v1,...,vp

− 〈b, y〉+ ρ

2

p∑
k=0

∥∥∥∥z(n)k − vk +
1

ρ
λ
(n)
k

∥∥∥∥2
subject to c−AT y −

p∑
k=1

HT
k vk = 0. (17)

Let ρx be the multiplier for the equality constraint. After
some algebra, the optimality conditions for (17) can be
written as the KKT system[

D AT

A 0

] [
x
y

]
=

[
c−

∑p
k=1H

T
k

(
z
(n)
k + ρ−1λ

(n)
k

)
−ρ−1b

]
,

(18)
plus a set of p uncoupled equations for the variables vk,

vk = z
(n)
k +

1

ρ
λ
(n)
k +Hkx, k = 1, . . . , p. (19)

The KKT system (18) is the same as (9) after rescaling
x 7→ −x, y 7→ −y, c 7→ ρ−1c and b 7→ ρb, and as in
Section III-B.1 the factors of the coefficient matrix required
to solve (18) can be pre-computed and cached. Consequently,
updating X has the same the cost as in Section III-B.1 plus
the cost of (19), which is cheap and can also be parallelized.

2) Minimization over Y: As in Section III-B.2, z1, . . . , zp
are updated with p independent and efficient projections

z
(n+1)
k = vec

{
Pk
[
vec−1

(
v
(n+1)
k − ρ−1λ(n)k

)]}
. (20)

3) Updating the multipliers Z: The multipliers λk, k =
1, . . . , p, are updated with the usual gradient ascent rule

λ
(n+1)
k = λ

(n)
k + ρ

(
z
(n+1)
k − v(n+1)

k

)
. (21)

As in Section III-B, we stop the ADMM algorithm when
the relative primal/dual error measures εp and εd are smaller
than a specified tolerance, εtol. Algorithm 2 summarizes the
full ADMM algorithm for sparse dual-standard-form SDPs.

Remark 2: The computational cost of (19) is the same
as (12), so the ADMM iterations for the decomposed dual-
standard-form SDP (14) have the same cost as those for
the decomposed primal-standard-form SDP (5), plus the cost
of (21). However, if one minimizes (16) over Y before
minimizing it over X , substituting (19) into (21) gives

λ
(n+1)
k = ρHkx

(n+1), k = 1, . . . , p. (22)



Algorithm 2 ADMM for decomposed dual form SDPs

1: Input: ρ > 0, εtol > 0, initial guesses y(0),
z
(0)
1 , . . . , z

(0)
p , λ(0)1 , . . . , λ

(0)
p

2: Setup: Chordal decomposition, KKT factorization.
3: while max(εp, εd) ≥ εtol do
4: for k = 1, . . . , p: Compute z(n)k with (20).
5: Compute y(n), x with (17).
6: for k = 1, . . . , p: Compute v(n)k with (19)
7: Compute λ(n)k with (22) (no cost).
8: Update the residuals εp and εd.
9: end while

Since H1x, . . . , Hpx have already been computed to update
v1, . . . , vp, updating λ1, . . . , λp requires only a scaling
operation. Consequently, the ADMM algorithms for the
primal- and dual-standard-form SDPs can be considered as
scaled versions to each other, with the same leading-order
computational cost at each iteration.

V. NUMERICAL SIMULATIONS

We have implemented our techniques in CDCS (Cone De-
composition Conic Solver) [19], an open-source MATLAB
solver. CDCS supports cartesian products of the following
cones: Rn, non-negative orthant, second-order cone, and the
PSD cone. Currently, only chordal decomposition techniques
for semidefinite cones are implemented, while the other cone
types are not decomposed. Our codes can be downloaded
from https://github.com/OxfordControl/CDCS .

We tested CDCS on four sparse large-scale (n ≥
1000,m ≥ 1000) problems in SDPLIB [20], as well as on
randomly generated SDPs with block-arrow sparse pattern,
used as a benchmark in [16]. The performance is compared
to that of the IPM solver SeDuMi [24] and of the first-order
solver SCS [25] on both the full SDPs (without decomposi-
tion) and the SDPs decomposed by SparseCoLO [13].

The comparison has two purposes: 1) SeDuMi computes
accurate optimal points, which can be used to assess the
quality of the solution computed by CDCS; 2) SCS is a high-
performance first-order solver for general conic programs,
so we can assess the advantages of chordal decomposition.
SeDuMi should not be compared to the other solvers on
CPU time, because the latter only aim to achieve moderate
accuracy. In the experiments reported below, the termination
tolerance for CDCS and SCS was set to εtol = 10−3, with a
maximum of 2000 iterations. All experiments were carried
out on a PC with an Intel(R) Core(TM) i7 CPU, 2.8 GHz
processor and 8GB of RAM.

A. SDPs with block-arrow pattern

SDPs with the block-arrow sparsity pattern shown in
Fig. 2—which is chordal—are used as a benchmark in
[16]. The SDP parameters are: the number of blocks, l; the
block size, d; the size of the arrow head, h; the number of
constraints, m. Here, we consider the following cases: 1) Fix
l = 40, d = 10, h = 20, vary m; 2) Fix m = 1000, d = 10,
h = 20, vary l; 3) Fix l = 40, h = 10, m = 1000, vary d.

l blocks

d

d

h

h

Fig. 2. Block-arrow sparsity pattern: the number of blocks, l; block size,
d; the size of the arrow head, h.

TABLE I
PROBLEM STATISTICS FOR SDPLIB PROBLEMS

maxG32 maxG51 thetaG51 qpG51
Affine constraints, m 2000 1000 6910 1000
Original cone size, n 2000 1000 1001 2000
Number of cliques, p 1499 674 674 1675
Maximum clique size 60 322 323 304
Minimum clique size 5 6 7 1

The CPU times for different solvers, averaged over five
random problem instances, are shown in Fig. 3. CDCS is
approximately 10 times faster than SeDuMi and the com-
bination SparseCoLO+SeDuMi, our Algorithm 2 being the
fastest. Besides, the optimal value from CDCS was always
within 0.02% of the accurate value from SeDuMi.

B. Sparse SDPs from SDPLIB

We consider two max-cut problems (maxG32 and
maxG51), a Lovász theta problem (thetaG51), and a box-
constrained quadratic problem (qpG51) from SDPLIB [20].
Table I reports the dimensions and chordal decomposition
details of these large, sparse SDPs. Table II summarizes our
numerical results; maxG51, thetaG51 and qpG51 could not
be solved by the combination SparseCoLO+SeDuMi due to
memory overflow. For all four problems, CDCS (primal and
dual) is faster than SeDuMi and can give speedups compared
to SCS and SparseCoLO+SCS. We remark that the stopping
objective value from CDCS is within 2% of the optimal value
returned by SeDuMi (which is highly accurate, and can be
considered exact) in all four cases, and within 0.08% for
the max-cut problems maxG32 and maxG51 — a negligible
difference in applications.

VI. CONCLUSION

We proposed a conversion framework for SDPs charac-
terized by chordal sparsity suitable for the application of
FOMs, analogous to the conversion techniques for IPMs
of [11], [12]. We also developed efficient ADMM algorithms
for sparse SDPs in primal or dual standard form, which are
implemented in the solver CDCS. Numerical experiments
on SDPs with block-arrow sparsity patterns and on large
sparse problems in SDPLIB show that our methods can
provide speedups compared to both IPM solvers such as
SeDuMi [24]—even when the chordal sparsity is exploited
using SparseCoLO [13]—and the state-of-the-art first-order
solver SCS [25]. Exploiting chordal sparsity in a first-order
HSDE formulation similar to that of [7] would be desirable
in the future to be able to detect infeasibility.

https://github.com/OxfordControl/CDCS


Fig. 3. CPU time for SDPs with block-arrow patterns. Left to right: varying number of constraints; varying number of blocks; varying block size.

TABLE II
RESULTS FOR THE PROBLEM INSTANCES IN SDPLIB

SeDuMi SparseCoLO+
SeDuMi SCS SparseCoLO+

SCS
CDCS

(primal)
CDCS
(dual)

maxG32
Total time (s) 974.6 355.2 2.553 ×103 65.1 88.6 53.1

Pre-processing time (s) 0 3.18 0.43 3.24 21.2 21.4
Objective value 1.568×103 1.568×103 1.568×103 1.566×103 1.569×103 1.568×103

Iterations 14 15 2000 960 238 127

maxG51
Total time (s) 134.5 – 87.9 1.201×103 110.9 75.9

Pre-processing time (s) 0 – 0.11 2.87 3.30 3.20
Objective value 4.006×103 – 4.006×103 3.977×103 4.005×103 4.006×103

Iterations 16 – 540 2000 235 157

thetaG51
Total time (s) 2.218 ×103 – 424.2 1.346 ×103 471.2 735.1

Pre-processing time (s) 0 – 0.30 5.30 25.1 25.0
Objective value 349 – 350.6 341.3 354.5 355.9

Iterations 20 – 2000 2000 394 646

qpG51
Total time (s) 1.407×103 – 2.330×103 985.8 727.1 606.2

Pre-processing time (s) 0 – 0.47 190.2 12.3 12.3
Objective value 1.182×103 – 1.288×103 1.174×103 1.195×103 1.194×103

Iterations 22 – 2000 2000 1287 1048
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