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Abstract— We propose a novel technique to solve optimiza-
tion problems subject to a class of integral inequalities whose
integrand is quadratic and homogeneous with respect to the de-
pendent variables, and affine in the parameters. We assume that
the dependent variables are subject to homogeneous boundary
conditions. Specifically, we derive rigorous relaxations of such
integral inequalities in terms of semidefinite constraints, so
a strictly feasible and near-optimal point for the original
problem can be computed using semidefinite programming.
Simple examples arising from the stability analysis of partial
differential equations illustrate the potential of our method
compared to existing techniques.

I. INTRODUCTION
The study of spatially-extended systems governed by par-

tial differential equations (PDEs) often leads to optimization
problems constrained by infinite-dimensional inequalities in-
volving quadratic forms of the system state u(t,x), where t
denotes time and x the spatial coordinate (usually, x ∈ R3

for physical systems). More specifically, such optimization
problems take the form

min
γ∈Γ

cTγ (1)

s.t. F{u;γ} :=

∫
Ω

∂kuTF (x;γ)∂kudx ≥ 0 ∀u ∈ H,

where the vector of system parameters γ ∈ Γ ⊂ Rs is the
decision variable, c ∈ Rs is the cost vector, ∂ku is a q(k +
1) × 1 vector listing all partial derivatives of the function
u : Ω ⊂ Rn → Rq up to and including order k, Ω is the
spatial domain, F : Ω × Γ → Rq(k+1)×q(k+1) defines the
integrand, and H is a particular functional space (e.g. the
space of k-times differentiable functions satisfying a set of
boundary conditions).

Examples of problems that can be recast into form (1)
include: establishing L2 stability (also known as energy
stability) for linear PDEs and PDEs with so-called “energy-
preserving” nonlinearities [1]; studying input-output proper-
ties of systems governed by PDEs [2]; bounding space- and
time-averaged properties of a class of nonlinear systems such
as turbulent fluid flows (see e.g. [3], [4], [5], [6], [7], [8]).

It has recently been suggested that semidefinite program-
ming and sum-of-squares (SOS) optimization can be applied
to solve optimization problems in the form (1) efficiently.
In [9], [10], integration by parts and algebraic identities are
used to recast an integral inequality whose integrand is poly-
nomial in both the dependent and independent variables as a
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differential matrix inequality, which after a SOS relaxation
can be solved efficiently via a semidefinite program (SDP).

In the homogeneous quadratic case (1), an integral inequal-
ity can also be recast as a linear matrix inequality (LMI)
using orthogonal series expansions, as demonstrated by the
authors in [11], [8] for selected problem instances. In this
work, we generalize the ideas of [11], [8] and propose a
novel, robust approach to rigorously formulate a class of
optimization problems of type (1) as SDPs. We consider
functionals F over one-dimensional compact domains, that is
we let x ≡ x ∈ Ω ≡ [a, b] ⊂ R, and assume that the entries
of the matrix F are polynomials of x whose coefficients
are affine in γ. Using Legendre series expansions, we show
that an inner approximation to the feasible set of (1) can be
described by LMIs, so a feasible point for (1) can be com-
puted with an SDP. Moreover, although we do not provide
a formal proof, the optimal solution of our SDP relaxation
can be expected to converge to the optimal solution of (1) as
the number of basis functions in the expansion is increased.

We remark that our approach resembles the SOS method
of [9], [10] only in so far as we formulate an SDP, which
can be derived in an algorithmic manner and independently
of the specific problem data. However, the underlying ideas,
the eventual SDPs, and the performance of the two methods
are radically different. In particular, our examples show that
despite its wider applicability, the SOS approach of [9], [10]
may be too restrictive to achieve a good approximation for
the optimal solution of (1); on the other hand, our approach
allows us to compute a near-optimal solution.

Notation. Throughout this paper, Ln(x) denotes the Leg-
endre polynomial of degree n,

Ln(x) =
1

n! 2n
dn

dxn
(x2 − 1)n. (2)

Bold font indicates vectors and matrices; in particular, 0
denotes the zero matrix (the size should be clear from the
context). The (block) entries of a matrix Q will be denoted
by Qij . The usual Euclidean norm of a vector v will be
denoted by ‖v‖, while ‖Q‖F is the standard Frobenius norm
of a matrix Q. Moreover, sym(Q) = (Q + QT )/2 is the
symmetric part of a square matrix Q, and Q � 0 means that
Q is positive semidefinite, i.e., vTQv ≥ 0 for any vector v.

Given a function u : Ω ⊂ R → R and α ∈ N, we write
∂αu := dαu/dxα. The space Ck([−1, 1],Rq) is the usual
space of k-times continuously differentiable functions with
domain [−1, 1] and values in Rq; we also write Ck([−1, 1])
for Ck([−1, 1],R). Finally, ‖ ·‖2 and ‖ ·‖∞ denote the usual
norms in the Lesbegue spaces L2(−1, 1) and L∞(−1, 1),
and 〈·, ·〉 is the standard inner product in L2(−1, 1).



II. MOTIVATING EXAMPLE

Consider the Kuramoto–Sivashinsky equation [12], [13]

ut + γuxx + uxxxx + uux = 0, (3)

where γ is the governing parameter and subscripts denote
partial derivatives with respect to time t and space x. We
study (3) on the interval [−1, 1] with boundary conditions

u(−1) = 0, u(1) = 0,

ux(−1) = ux(1), uxx(−1) = uxx(1).
(4)

The system has the equilibrium solution u = 0, which is
L2-stable at a given γ if the energy ‖u‖22 of any nonzero
solution does not increase in time. Since the term γuxx
is destabilizing (it represents anti-diffusive effects), we are
interested in the maximum γ for which L2 stability occurs.

After computing d‖u‖22/dt = 2
∫ 1

−1
uutdx with the help

of (3), integrating by parts using the boundary conditions,
and dropping the 2 in front of the integral, we see that the
maximum γ for L2 stability is given by

max
γ

γ

s. t.
∫ 1

−1

 u
∂u
∂2u

T 0 0 0
0 −γ 0
0 0 1

 u
∂u
∂2u

 dx ≥ 0,
(5)

where the integral inequality must hold for all functions u ∈
C4([−1, 1]) satisfying (4).

III. INNER SDP RELAXATIONS

A straightforward LMI approximation of the feasible re-
gion of (1) can be found if one replaces H with a finite-
dimensional subspace of polynomials of degree N . With this
assumption, the integral inequality can be integrated to obtain
a finite-dimensional quadratic form for a finite set of un-
known polynomial coefficients. Since the original inequality
is affine in γ, the non-negativity of such a quadratic form is
(by definition) an LMI in γ.

To derive an actual inner approximation of the feasible
region of (1), rather than a simple approximation, we refine
this simple idea by essentially keeping track of the trunca-
tion error between any function in H and its polynomial
approximation of degree N .

A. Legendre Series Expansions

The key ingredient in our analysis is to expand all func-
tions using Legendre polynomials. Given u ∈ Ck+1([−1, 1]),
all derivatives ∂αu, α ∈ {1, . . . , k} can in fact be repre-
sented by the uniformly convergent Legendre series

(∂αu) (x) =

∞∑
n=0

ûαn Ln(x), (6)

where ûαn ∈ R are the Legendre series coefficients [14].
Legendre expansions are convenient because the Legendre
polynomials are orthogonal with respect to the uniform
measure on [−1, 1], which simplifies our analysis. Moreover,
they take nonzero values at x = ±1, meaning that any
boundary conditions on ∂αu can be easily implemented.

Given N ∈ N, we decompose (6) into a polynomial part
plus a remainder function,

(∂αu) (x) =

N+α∑
n=0

ûαn Ln(x) + ũα(x), (7)

where the remainder function ũα is such that 〈ũα,Ln〉 = 0
for n ∈ {0, . . . , N +α}. We also record the first N +α+ 1
Legendre coefficients in the vector

ûα =
[
ûα0 , . . . , û

α
N+α

]T ∈ RN+α+1. (8)

For M ∈ N, we define the vector

û =
[
ûk0 , . . . , û

k
N+M+k

]T ∈ RN+M+k+1, (9)

and the function

Uk(x) :=

∞∑
n=N+M+k+1

ûkn Ln(x), (10)

so that ∂ku can be alternatively expressed as

(
∂ku

)
(x) =

N+M+k∑
n=0

ûkn Ln(x) + Uk(x). (11)

Finally, we define a vector of boundary values

ûb =
[
u|−1, ∂u|−1, . . . , ∂

k−1u|−1, Uk|−1, Uk|1
]T ∈ Rk+2.

(12)
All derivatives ∂αu up to order k are uniquely described

by the vectors û, ûb and by the remainder functions ũα, Uk
according to the following result.

Lemma 1 (Integration): Let u ∈ Ck+1([−1, 1]) and α ∈
{1, . . . , k}. Then:

1) There exist matrices Bα and Dα such that ûα =
Bαûb +Dαû.

2) If s ≤ N+M+α and r ≥ k−α, there exists a matrix
D

[r,s]
α such that [ûαr , . . . , û

α
s ]
T

= D
[r,s]
α û.

Proof: See Appendix I.
Moreover, the boundary values at x = 1 can be recovered

according to the following result.
Lemma 2 (Boundary Conditions): If u ∈ Ck+1([−1, 1]),

there exists a matrix G such that[
u|−1, u|1, ∂u|−1, . . . , ∂

ku|1
]T

= G

[
ûb
û

]
. (13)

Proof: See Appendix II.

B. Relaxation of a “minimal” quadratic integral functional

Let Ω ⊂ R in (1) be a compact interval; without loss
of generality, we consider Ω ≡ [−1, 1]. Let u(x) =
[u(x), v(x)]T and define the space H in (1) as

H :=
{
u = [u, v]

T ∈ Ck+1(Ω,R2) : Aub = 0
}
, (14)

where

ub :=
[
u|−1, u|1, ∂u|−1, . . . , ∂

ku|1, v|−1, . . . , ∂
kv|1

]T
(15)

lists the boundary values of the components of u and their
derivatives, and A ∈ Rm×4(k+1) is a matrix of rank m ≤
4(k + 1) that defines m homogeneous boundary conditions.



Given k ∈ N, k ≥ 1 and α, β ≤ k, α + β < 2k, we
consider the “minimal” homogeneous quadratic functional

F {u;γ} :=

∫ 1

−1

[
f(γ)

(
∂ku

)2
+ 2h(γ)∂ku ∂kv

+g(γ)
(
∂kv

)2
+ p(x;γ)∂αu ∂βv

]
dx, (16)

where f , g and h are affine functions of γ (but do not depend
on x) and p is a polynomial of degree dp whose coefficients
are affine with respect to γ, i.e.

p(x;γ) =

dp∑
i=0

(
ai + bTi γ

)
xi, ai ∈ R, bi ∈ Rs. (17)

To begin the relaxation of the inequality F{u;γ} ≥ 0,
we choose the integers N and M such that N ≥ dp + k− 1
and M ≥ dp + k. Since u ∈ H ⊂ Ck+1([−1, 1],R2), the
functions ∂αu, ∂βv, ∂ku and ∂kv in (16) can be decomposed
as in Section III-A in terms of suitably defined vectors ûα, û,
ûb, v̂β , v̂, v̂b, and of the corresponding remainder functions
ũα, Uk, ṽβ , Vk. In particular, we choose to expand the terms
(∂ku)2, (∂kv)2 and ∂ku∂kv using (11), while we expand
the product ∂αu∂βv using (7) (even when α = k or β = k).
For notational convenience in the following, we define the
vectors

ŵ :=
[
ûTb , û

T , v̂Tb , v̂
T
]T ∈ R2(N+M+2k+3), (18a)

Wk := [Uk, Vk]
T
. (18b)

Substituting the Legendre series expansions into (16) and
using the orthogonality of the Legendre polynomials we can
write

F {u;γ} =

[
û
v̂

]T [
f(γ)L h(γ)L
h(γ)L g(γ)L

] [
û
v̂

]
+

∫ 1

−1

W T
k S(γ)Wkdx

+ P {u;γ}+Q{u;γ}+R{u;γ} ,

(19)

where L is defined as

Lij = 〈Li,Lj〉 =
2 δij

2i+ 1
, (20)

δij is the usual Kronecker delta,

S(γ) :=

[
f(γ) h(γ)
h(γ) g(γ)

]
, (21)

and

P {u;γ} =

N+α∑
n=0

N+β∑
m=0

ûαn v̂
β
m

∫ 1

−1

p(x;γ)LmLn dx, (22a)

Q{u;γ} =

N+α∑
n=0

ûαn

∫ 1

−1

p(x;γ)Lnṽβ dx

+

N+β∑
n=0

v̂βn

∫ 1

−1

p(x;γ)Lnũα dx, (22b)

R{u;γ} =

∫ 1

−1

p(x;γ)ũαṽβ dx. (22c)

The first two terms in (19) represent the contribution
of terms involving derivatives of order k only, that were
expanded with (11); P {u;γ} accounts for the contribution
of the first N + α and N + β modes of ∂αu and ∂βv,
respectively; Q{u;γ} accounts for the coupling between the
first Legendre modes and the truncation functions ũα, ṽβ ;
finally, R{u;γ} represent the contribution coming purely
from ũα and ṽβ .

Equation (19) can be simplified using the following results.
Lemma 3: There exist matrices Pij(γ), i, j ∈ {1, 2},

affine in γ, such that

P {u;γ} =

[
ûb
û

]T [
P11(γ) P12(γ)
P21(γ) P22(γ)

] [
v̂b
v̂

]
. (23)

Proof: See Appendix III.
Lemma 4: There exists a matrix Q(γ), affine in γ, such

that Q{u;γ} = ûTQ(γ)v̂.
Proof: See Appendix IV.

Lemma 5: There exist positive semidefinite matrices R
and Σ, with ‖R‖F ∼ Nα+β−2k−1 and ‖Σ‖F ∼ Nα+β−2k,
such that

|R {u;γ} | ≤ ‖p(· ;γ)‖∞ ŵ
TRŵ

+ ‖p(· ;γ)‖∞
∫ 1

−1

W T
k ΣWkdx. (24)

Proof: The full proof is omitted for space reasons.
Briefly, the result combines Hölder’s and Young’s inequali-
ties with simple (but lengthy) bounds for ‖ũα‖22 and ‖ṽβ‖22
in terms of ‖Uk‖22 and ‖Vk‖22. These rely on the integration
formulae for Legendre expansions derived in Appendix I.

For any (k+1)-times continuously-differentiable functions
u and v, we therefore obtain the rigorous lower bound

F {u;γ} ≥ ŵT [M(γ)− ‖p(· ;γ)‖∞R] ŵ

+

∫ 1

−1

W T
k [S(γ)− ‖p(· ;γ)‖∞Σ]Wkdx, (25)

where M(γ) is defined as in (26) at the bottom of the page.

M(γ) := sym




0 0 P11(γ) P12(γ)
0 f(γ)L P21(γ) h(γ)L+ P22(γ) +Q(γ)
0 0 0 0
0 h(γ)L 0 g(γ)L


 . (26)



However, we are only interested in functions u and v that
satisfy the m boundary conditions Aub = 0. According to
Lemma 2, this means that we should only consider vectors
ŵ satisfying

A′ŵ = 0, A′ := A

[
G 0
0 G

]
. (27)

It may be verified that since m ≤ 4(k + 1) ≤ 2(N + M +
2k+3), rank(A′) = rank(A) = m, so there exists a matrix
Π ∈ R2(N+M+2k+3)×2(N+M+2k+3)−m that spans the null
space of A′. Any admissible ŵ can then be expressed as

ŵ = Π ẑ (28)

for some ẑ ∈ R2(N+M+2k+3)−m. After substituting (28)
into (25) it is not difficult to deduce the following result.

Theorem 1: Sufficient conditions for γ ∈ Rs to satisfy
the integral inequality F {u;γ} ≥ 0 for all u ∈ H are that

ΠT [M(γ)− ‖p(· ;γ)‖∞R] Π � 0, (29a)
S(γ)− ‖p(· ;γ)‖∞Σ � 0. (29b)

Remark 1: The semidefinite constraints in (29) are not
LMIs due to the appearance of ‖p(· ;γ)‖∞, but can be
readily recast as LMIs. In fact, if p̂n(γ) is the nth coefficient
of p(x;γ) when expressed in the Legendre basis (cf. Ap-
pendix III), we can use the fact that ‖Ln‖∞ = 1 to estimate

‖p(· ;γ)‖∞ =

∥∥∥∥∥∥
dp∑
n=0

p̂n(γ)Ln(x)

∥∥∥∥∥∥
∞

≤
dp∑
n=0

|p̂n(γ)|. (30)

If we introduce a vector t = [t0, ... , tdp ]T of slack variables
and the additional inequality constraints |p̂n(γ)| ≤ tn for
all n ∈ {0, ... , dp}, we can further strengthen (29) into two
LMIs for the variables γ and t. Consequently, a feasible
(and near-optimal, see Remark 2 below) γ for (1) can be
computed using semidefinite programming.

Remark 2: The only relaxation was introduced by esti-
mating the functional R as in Lemma 5. In fact, (29b) is
necessary to make the right-hand side of (25) non-negative
when one chooses ẑ = 0 in (28) (this follows from an
extension of [15, Theorem 6]). Moreover, an argument
similar to that in [8, Appendix D] can be used to show
that Wk can be chosen to make the integral on the right-
hand side of (25) arbitrarily small, proving the necessity
of (29a). Now, the estimates in Lemma 5 imply that the
magnitude of R becomes vanishingly small as the number
N of Legendre modes considered in the analysis is increased.
Consequently, the relaxation is mild when N is large, and
we expect that in practice our LMI relaxation is an accurate
inner approximation of the original inequality F {u;γ} ≥ 0
when a sufficiently large N is chosen.

IV. EXTENSIONS
Our analysis of the “minimal” functional (16) presented in

the previous section can be extended to the more general case
in which the integrand is a complete homogeneous quadratic
polynomial of the components of u : [−1, 1]→ Rq and their
derivatives, as long as the following assumption holds.

Assumption 1: Let ki, i = 1, . . . , q be the highest order
derivative of the component ui of u appearing in F . The
entries of the integrand matrix F (x;γ) in (1) corresponding
to the quadratic terms ∂kiui∂kjuj are independent of x.

This assumption restricts the class of integral inequalities
for which a rigorous SDP relaxation can be derived; when it
holds, all our proofs apply verbatim after replacing dp with
the degree of the entry of F (x;γ) of highest degree.

Removing Assumption 1 requires addressing the following
two problems: first, the matrix S in (29b) becomes x-
dependent; second, the Legendre modes of the highest order
derivatives ∂kiui are coupled, and one cannot separate the
first N + M + k Legendre coefficients from the remainder
functions without further estimates. While the former diffi-
culty can be resolved with a further SOS relaxation, the latter
is more challenging, because the magnitude of the required
estimates is commensurate to other terms even when N is
large, and so might make our SDP relaxation infeasible.

When Assumption 1 does not hold, the methods of [9],
[10] can be applied. Alternatively, an LMI approximation
to the feasible set of problem (1) can be derived by simply
truncating the Legendre series expansions, as described at the
beginning of Section III. Although the optimal solution γ?

of such an SDP approximation cannot be guaranteed to be
feasible for (1), it can be considered a good approximation to
the optimal solution of (1) if a sufficiently large N is chosen.

V. EXAMPLES

A. L2 stability of the Kuramoto–Sivashinsky equation

Our SDP relaxations can be used to solve the optimiza-
tion problem (5) and determine the maximum value of
the parameter γ for which the equilibrium solution of the
Kuramoto–Sivashinsky equation is L2-stable (cf. Section II).
Our implementation is in MATLAB R©, using the parser
YALMIP [16] and the SDP solver SeDuMi [17].

Table I reports the optimal value γ? computed numeri-
cally for increasing values of the number N of Legendre
coefficients used in our expansions, alongside the percentage
error with the analytical solution γexact = π2 (this can be
computed using the calculus of variations, see e.g. [18]).
In our computations, we chose the minimum value M =
dp + k = 2. The numerical solution is essentially exact
when using as little as 6 Legendre coefficients. In this
case (29a) and (29b) become an 8 × 8 and a 1 × 1 LMI,
respectively, with 2 variables: the constant γ and the slack
variable corresponding to its absolute value.

For comparison, we also solved (5) with the SOS approach
of [9], [10] using polynomials of degree up to 16. In

TABLE I
OPTIMIZATION RESULTS FOR PROBLEM (5).

N γ?/π2 % error with γexact
2 0.9923109944 7.6890e-03
4 0.9999654586 3.4541e-05
6 0.9999999532 4.6825e-08
8 0.9999999999 9.2157e-11



contrast to the method presented in the current paper, the
optimal value obtained with the SOS relaxations was only
γ? ≈ 4.11 ≈ 0.41γexact when polynomial of degree 10
were used, and improved by less than 0.01% for higher
polynomial degrees. Moreover, the SOS relaxation of (5)
using polynomials of degree 10 has 166 variables — a
much larger problem than that obtained using the methods
proposed in this work.

B. A modified Kuramoto–Sivashinsky equation

Consider (3) with γ = γ(x) = γ0 +π2x2, where γ0 is the
governing parameter, subject to the boundary conditions (4).
Steps similar to Section II show that the maximum γ0 for
L2 stability of the equilibrium solution u = 0 is given by

max
γ0

γ0 (31)

s. t.
∫ 1

−1

 u
∂u
∂2u

T 0 −∂γ(x) 0
0 −γ(x) 0
0 0 1

 u
∂u
∂2u

 dx ≥ 0.

Our numerical results are reported in Table II, and converge
to γ?0 ≈ 6.90. In contrast, solving the SOS relaxation of [9],
[10] with polynomials of degree 10 gives γ?0 ≈ 3.02 (using
polynomials of higher degree improves this result by less
than 0.01%); this is only approximately 43% of the optimal
value obtained with our method.

TABLE II
OPTIMIZATION RESULTS FOR PROBLEM (31).

N γ?

4 6.8874416462
8 6.9028539575

12 6.9028560655
16 6.9028560663

VI. CONCLUSION
To summarize, we have developed a framework based on

Legendre series expansions to derive rigorous LMI repre-
sentations of a class of homogeneous quadratic integral in-
equalities. A strictly feasible and near-optimal solution to the
optimization problems subject to this type of constraints can
then be computed efficiently using semidefinite programming
techniques. Although our approach is not as general as the
the SOS approach of [9], [10], many problems of interest
fall within the class we have considered (e.g. [3], [4], [5],
[6], [7], [8]). Moreover, our illustrative results regarding the
L2 stability of the Kuramoto–Sivashinsky equation demon-
strate that our methods may give better results than the
SOS approach of [9], [10] at a smaller computational cost.
Extensions of the present techniques to more general types of
functional inequalities, in particular those that do not satisfy
Assumption 1, are in the interest of future work.

APPENDIX I
PROOF OF LEMMA 1

The statement is trivial when α = k. Moreover, since
u ∈ Ck+1, the Legendre expansions of all derivatives ∂αu,

0 ≤ α ≤ k converge uniformly [14]. Consequently, we can
use the fundamental theorem of calculus for each α ≤ k− 1
to write

(∂αu) (x) = ∂αu|−1 +

∫ x

−1

∂α+1u(t) dt

= ∂αu|−1 +
∑
n≥0

ûα+1
n

∫ x

−1

Ln(t) dt.
(32)

The last expression can be integrated recalling that L0(x) =
1, L1(x) = x, Ln(±1) = (±1)n and using the recurrence
relation for Legendre polynomials

(2n+ 1)Ln(x) =
d

dx
[Ln+1(x)− Ln−1(x)] , (33)

which holds for n ≥ 1 [19]. We can then rewrite (32) as

∂αu(x) = ∂αu|−1 + [L1(x) + L0(x)] ûα+1
0

+
∑
n≥1

[Ln+1(x)− Ln−1(x)]
ûα+1
n

2n+ 1
. (34)

Rearranging the series and comparing coefficients with the
Legendre expansion of ∂αu shows that

ûα0 = ∂αu|−1 + ûα+1
0 − 1

3
ûα+1

1 , (35a)

ûαn =
ûα+1
n−1

2n− 1
−

ûα+1
n+1

2n+ 3
, n ≥ 1. (35b)

These relations can be applied recursively to construct the
matrices Bα, Dα and D[r,s]

α .

APPENDIX II
PROOF OF LEMMA 2

We only need to show that the boundary values of all
derivatives ∂αu at x = 1 can be recovered from the vectors
û and ûb. Applying the fundamental theorem of calculus as
in the proof of Lemma 1 it may be shown that

∂αu|1 = ∂αu|−1 + 2ûα+1
0 (36)

for all α ∈ {0, . . . , k − 1}. Applying Lemma 1 to the
second term, we see that it is possible to express ∂αu|1 as a
linear combination of the vectors û and ûb. Moreover, since
Ln(±1) = (±1)n we have

∂ku|±1 =

N+M+k∑
n=0

(±1)nûkn + Uk(±1), (37)

so the boundary values of ∂ku can also be written as a linear
combination of the vectors û and ûb. Using these identities
we can construct the matrix G of the Lemma.

APPENDIX III
PROOF OF LEMMA 3

The polynomial p(x;γ), of degree dp, can be represented
in terms of Legendre polynomials as

p(x;γ) =

dp∑
l=0

p̂l(γ)Ll(x), (38)



where the coefficients p̂l are affine with respect to γ — a
straightforward consequence of (17). Consequently, we may
write

P {u;γ} =

dp∑
l=0

N+α∑
n=0

N+β∑
m=0

p̂l(γ)ûαn v̂
β
m

∫ 1

−1

LlLnLndx.

(39)
Using the results of [20] to compute the integral on the right-
hand side, we can construct a family of matrices Xl, l ∈
{0, . . . , dp}, such that

(Xl)nm =

∫ 1

−1

LlLmLndx. (40)

Part 1 of Lemma 1 then allows us to write

P {u;γ} =

dp∑
l=0

p̂l(γ)ûαXlv̂
β

=

dp∑
l=0

p̂l(γ)

[
ûb
û

]T [
BT
α

DT
α

]
Xl

[
Bβ Dβ

] [v̂b
v̂

]

=:

[
ûb
û

]T [
P11(γ) P12(γ)
P21(γ) P22(γ)

] [
v̂b
v̂

]
. (41)

Since the coefficients p̂l(γ) are affine in γ, so are the
matrices Pij . Note that generally P12 6= P T

21.

APPENDIX IV
PROOF OF LEMMA 4

The functions ũα and ṽβ can be represented by the
Legendre expansions

ũα(x) =

+∞∑
m=N+α+1

ûαmLm(x), (42a)

ṽβ(x) =

+∞∑
m=N+β+1

v̂βmLm(x). (42b)

Substituting these expansions in (22b), expanding p as in (38)
and recalling from [20] that∫ 1

−1

LlLnLmdx 6= 0 ⇔ l + n−m ≥ 0, (43)

we can write

Q{u;γ} =

dp∑
l=0

p̂l(γ)

û
α
N+β+1−dp

...
ûαN+α


T

Y α,β
l


v̂βN+β+1

...
v̂βN+α+dp



+

dp∑
l=0

p̂l(γ)

v̂
β
N+α+1−dp

...
v̂αN+β


T

Y β,α
l

 û
α
N+α+1

...
ûαN+β+dp

 . (44)

In the last expression, the matrices Y α,β
l and Y β,α

l contain
the integrals

∫ 1

−1
LlLnLmdx. Note that we have assumed

that α, β and dp are such that

1− dp ≤ α− β ≤ dp − 1, (45)

so that the vectors in (44) are well-defined. If the left
(respectively, the right) inequality is not satisfied, then the
first (respectively, the second) term in (44) vanishes.

Our assumptions that N ≥ dp + k − 1 and M ≥ dp + k
guarantee that we can apply part 2 of Lemma 1 and write
the vectors of Legendre coefficients in (44) in terms of û
and v̂ only. This means that it is possible to find a matrix
Q(γ) such that

Q{u;γ} = ûTQ(γ)v̂. (46)

Note that the entries of Q(γ) are affine with respect to
γ because they are linear combinations of the Legendre
coefficients p̂l(γ), l ∈ {0, . . . , dp}.
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