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We prove the first rigorous bound on the heat transfer for three-dimensional Rayleigh–
Bénard convection of finite-Prandtl-number fluids between free-slip boundaries with an
imposed heat flux. Using the auxiliary functional method with a quadratic functional,
which is equivalent to the background method, we prove that the Nusselt number
Nu is bounded by Nu 6 0.5999R1/3 uniformly in the Prandtl number, where R is the
Rayleigh number based on the imposed heat flux. In terms of the Rayleigh number
based on the mean vertical temperature drop, Ra, we obtain Nu 6 0.4646Ra1/2. The
scaling with Rayleigh number is the same as that of bounds obtained with no-slip
isothermal, free-slip isothermal and no-slip fixed-flux boundaries, and numerical
optimisation of the bound suggests that it cannot be improved within our bounding
framework. Contrary to the two-dimensional case, therefore, the Ra-dependence of
rigorous upper bounds on the heat transfer obtained with the background method for
three-dimensional Rayleigh–Bénard convection is insensitive to both the thermal and
the velocity boundary conditions.
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1. Introduction

Rayleigh–Bénard (RB) convection, the buoyancy-driven motion of a fluid confined
between horizontal plates, is a cornerstone of fluid mechanics. Its applications include
atmospheric and oceanic physics, astrophysics, and industrial engineering (Lappa 2010,
chap. 3), and due to its rich dynamics it has also become a paradigm to investigate
pattern formation and nonlinear phenomena (Ahlers, Grossmann & Lohse 2009).

One of the fundamental questions in the study of convection is to what extent
the flow enhances the transport of heat across the layer. Precisely, one would like
to relate the Nusselt number Nu (the non-dimensional measure of the heat transfer
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c© Cambridge University Press 2018. This is an Open Access article, distributed under the terms of the
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enhancement) to the parameters of the fluid and the strength of the thermal forcing.
These are described, respectively, by the Prandtl and Rayleigh numbers Pr = ν/κ
and Ra = αgh3∆/(νκ), where α is the fluid’s thermal expansion coefficient, ν is
its kinematic viscosity, κ is its thermal diffusivity, h is the dimensional height
of the layer, g is the gravitational acceleration, and ∆ is the average temperature
drop across the layer. It is generally expected that for large Rayleigh numbers the
Nusselt number obeys a simple scaling law of the form Nu ∼ PraRab. However,
different phenomenological arguments predict different scaling exponents in the
ranges −1/46 a6 1/2 and 2/76 b6 1/2 (see Tables I and II in Ahlers et al. 2009),
and the available experimental evidence in the high-Ra regime is controversial (Ahlers
et al. 2009).

Discrepancies in the measurements are often attributed to differences in the
boundary conditions (BCs) or in the Prandtl number. From the modelling point
of view, eight basic configurations of RB convection can be identified depending
on the Prandtl number (finite or infinite), the BCs for the fluid’s temperature
(fixed temperature or fixed flux), and the BCs for its velocity (no-slip or free-slip).
Two-dimensional simulations (Johnston & Doering 2009; Goluskin et al. 2014; van
der Poel et al. 2014) have shown that changing the thermal BCs for given velocity
BCs has no quantitative effect on Nu, while replacing no-slip boundaries with free-slip
ones can dramatically reduce the heat transfer through the appearance of zonal flows.
However, zonal flows have not been observed in three dimensions (van der Poel et al.
2014) and how different BCs affect the Nu–Ra–Pr relationship in general remains an
open problem.

In the absence of extensive numerical results for the high-Ra regime in three
dimensions, one way to make progress is through rigorous analysis of the equations
that ostensibly describe RB convection. A particularly fruitful approach is to use the
background method (Doering & Constantin 1992, 1994, 1996; Constantin & Doering
1995) and derive rigorous bounds of the form Nu 6 f (Ra, Pr) for each of the eight
configurations described above.

The no-slip case has been studied extensively. For fluids with finite Prandtl number
the bound Nu.Ra1/2 holds uniformly in Pr irrespective of the thermal BCs (Doering
& Constantin 1996; Otero et al. 2002; Wittenberg 2010; Wittenberg & Gao 2010).
When Pr =∞ (and Pr & Ra1/3 with isothermal boundaries), instead, one has Nu .
`(Ra)Ra1/3, where `(Ra) is a logarithmic correction whose exact form depends on the
thermal BCs (Otto & Seis 2011; Whitehead & Wittenberg 2014; Choffrut, Nobili &
Otto 2016).

In contrast, the only bounds available for free-slip velocity BCs are for RB
convection between isothermal plates. All identities and estimates used in the no-slip
analysis of Doering & Constantin (1996) hold also for free-slip boundaries, so
one immediately obtains Nu 6 Ra1/2 at finite Pr. This result can be tightened to
Nu 6 Ra5/12 in two dimensions and at infinite Pr in three dimensions by explicitly
taking advantage of both the stress-free and the isothermal BCs (Whitehead &
Doering 2011, 2012).

Free-slip conditions pose a challenge for the background method when a constant
heat flux κβ, rather than a fixed boundary temperature, is imposed. The reason is
that the analysis usually relies on at least one of the temperature and horizontal
velocities being fixed at the top and bottom boundaries, which is not the case with
free-slip and fixed-flux BCs. In this short paper we show that such lack of ‘boundary
control’ for the dynamical fields can be overcome with a simple symmetry argument
and thereby prove the first rigorous upper bound on Nu for RB convection between
free-slip boundaries with imposed heat flux.
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Bounds for RB convection between free-slip, fixed-flux boundaries

The exposition is organised as follows. Section 2 reviews the Boussinesq equations
used to model the system. We formulate a bounding principle for Nu in § 3, and prove
our main result in § 4. Finally, § 5 offers further discussion and conclusive remarks.

2. The model

We model the system using the Boussinesq equations and make all variables
non-dimensional using h, h/κ , and hβ, respectively, as the length, time and
temperature scales (Otero et al. 2002). The non-dimensional velocity u(x, y, z, t),
pressure p(x, y, z, t), and perturbations θ(x, y, z, t) from the conductive temperature
profile Tc =−z then satisfy (Otero et al. 2002)

∂tu+ (u · ∇)u+∇p= Pr∇2u+ Pr R (θ − z)ez, (2.1a)
∇ · u= 0, (2.1b)

∂tθ + u · ∇θ =∇2θ +w, (2.1c)

where ez is the unit vector in the z direction and R = αgβh4/(νκ) is the Rayleigh
number based on the imposed boundary heat flux. Note that R is related to the
Rayleigh number based on the (unknown) mean temperature drop, Ra, by R= Ra Nu
(Otero et al. 2002). The domain is periodic in the horizontal (x, y) directions and the
vertical BCs are

∂zu= ∂zv =w= 0, ∂zθ = 0 at z= 0 and z= 1. (2.2a,b)

Since the average vertical heat flux across the layer is fixed to 1 in non-dimensional
units, convection reduces the mean temperature difference between the top and
bottom plates and hence the mean conductive heat flux 〈−∂zT〉 = 1− 〈∂zθ〉 (here
and throughout this work overlines denote averages over infinite time, while angle
brackets denote volume averages). The Nusselt number – the ratio of the average
vertical heat flux and the mean conductive flux – is then given by (see also Otero
et al. 2002)

Nu=
(
1− 〈∂zθ〉

)−1
. (2.3)

3. Upper bound formulation

When R< 120, conduction is globally asymptotically stable and Nu= 1 (Chapman
& Proctor 1980; Goluskin 2016). For R> 120, convection sets in (Hurle, Jakeman &
Pike 1967) and we look for a positive lower bound L on 1− 〈∂zθ〉, implying Nu61/L.
To find L we use the background method (Doering & Constantin 1994; Constantin &
Doering 1995; Doering & Constantin 1996) but we formulate it in the language of the
auxiliary functional method (Chernyshenko et al. 2014; Chernyshenko 2017) because
of its conceptual simplicity: it relies on one simple inequality, rather than a seemingly
ad hoc manipulation of the governing equations.

The analysis starts with the observation that any uniformly bounded and differentia-
ble time-dependent functional V(t)=V{θ(·, t),u(·, t)} satisfies dV/dt=0. Consequently,
to prove that 1− 〈∂zθ〉> L it suffices to show that at any instant in time

S{θ(·, t), u(·, t)} :=
dV
dt
+ 1− 〈∂zθ〉 − L > 0. (3.1)

Using the ideas outlined by Chernyshenko (2017), it can be shown that constructing
a background temperature field in the ‘classical’ background method analysis is
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equivalent to finding constants a, b and L and a function ϕ(z) such that (3.1) holds
for

V{θ(·, t), u(·, t)} :=−
a

2Pr R
〈|u|2〉 −

b
2
〈θ 2
〉 + 〈ϕθ〉. (3.2)

We assume that u and θ are sufficiently regular in time to ensure differentiability of
this functional, while uniform boundedness can be proved using estimates similar to
those presented in this paper (we do not give a full proof in this work due to space
limitations, but outline the argument in appendix A).

The functional S{θ(·, t), u(·, t)} corresponding to (3.2) can be expressed in terms
of u and θ using (2.1a)–(2.1c). Integrating the volume average 〈u · (2.1a)〉 by parts
using incompressibility and the BCs yields

d
dt
〈|u|2〉
2Pr R

=−
〈|∇u|2〉

R
+ 〈wθ〉. (3.3)

Averaging θ× (2.1c) and ϕ× (2.1c) in a similar way gives

d
dt
〈θ 2
〉

2
=−〈|∇θ |2〉 + 〈wθ〉, (3.4)

〈ϕ ∂tθ〉 = 〈ϕ
′wθ〉 − 〈ϕ′∂zθ〉. (3.5)

Combining expressions (3.3)–(3.5) and rearranging we find

S{θ(·, t), u(·, t)} = 1− L− 〈(ϕ′ + 1)∂zθ〉 +
〈 a

R
|∇u|2 + b |∇θ |2 + (ϕ′ − a− b)wθ

〉
.

(3.6)
To prove that (3.1) holds at all times, we make one key further simplification: we

drop the equations of motion and choose a, b, L and ϕ(z) such that S{θ, u}> 0 for
any time-independent fields θ = θ(x, y, z) and u= u(x, y, z) that satisfy (2.1b) and the
BCs. Hereafter, we also assume that a, b> 0 to ensure that S{θ, u} is bounded below.

Incompressibility can be incorporated explicitly in (3.6) upon substitution of the
horizontal Fourier expansions

θ =
∑

k

θk(z)ek·x, u=
∑

k

uk(z)ek·x, (3.7a,b)

where x= (x, y) is the horizontal position vector and k= (kx, ky) is the wavevector. The
z-dependent Fourier amplitudes uk, θk satisfy the same vertical BCs as the full fields
in (2.2). Using the Fourier-transformed incompressibility constraint one can show that
(Doering & Constantin 1996; Otero et al. 2002)

S{θ, u}> S0{θ0} + b
∑

k 6=(0,0)

Sk{θk,wk}, (3.8)
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Bounds for RB convection between free-slip, fixed-flux boundaries

with

S0{θ0} := b‖θ ′0‖
2
−

∫ 1

0
(ϕ′ + 1)θ ′0 dz+ 1− L, (3.9a)

Sk{θk,wk} := ‖θ
′

k‖
2
+ k2
‖θk‖

2
+

a
bR

(
‖w′′k‖

2

k2
+ 2‖w′k‖

2
+ k2
‖wk‖

2

)
+

∫ 1

0

ϕ′ − a− b
b

Re(θkw̃k) dz. (3.9b)

In these equations and in the following we write k2
= k2

x + k2
y , ‖ ·‖ denotes the standard

Lebesgue L2 norm on the interval (0, 1), and w̃k is the complex conjugate of wk.
The right-hand side of (3.8) is clearly non-negative if S0 > 0 and Sk > 0 for all

wavevectors k 6= (0, 0). (A standard argument based on the consideration of fields θ
and u with a single Fourier mode shows that these conditions are also necessary, so
enforcing the positivity of each Sk individually does not introduce conservativeness.
However, necessity is not required to proceed with our argument so we omit the
details for brevity.) In particular, given a, b and ϕ the largest value of L for which
S0 >0 is found upon completing the square (in the L2 norm sense) in (3.9a), so we set

L= 1−
‖ϕ′ + 1‖2

4b
. (3.10)

We will try to maximise this expression over a, b and ϕ subject to the non-negativity
of the functional Sk in (3.9b) for all wavevectors k 6= (0, 0). Note that Sk and the
right-hand side of (3.10) reduce, respectively, to the quadratic form and the bound
obtained by Otero et al. (2002) using the ‘classical’ background method analysis if we
let a= b− 1 and identify [ϕ′(z)− 2b+ 1]/(2b) with the derivative of the background
temperature field. We also remark that our analysis appears more general because the
choice a = 1 − b is unjustified at this stage, but its optimality (at least within the
context of our proof) will be demonstrated below.

4. An explicit bound

Let δ6 1/2 and consider the piecewise-linear profile ϕ(z) shown in figure 1, whose
derivative is

ϕ′(z)=

{
−1, z ∈ [0, δ] ∪ [1− δ, 1],

a+ b, z ∈ (δ, 1− δ).
(4.1)

To show that a, b and δ can be chosen to make the quadratic form Sk{θk,wk} in (3.9b)
positive semidefinite we rewrite θk and wk as the sum of functions that are symmetric
and antisymmetric with respect to z= 1/2. In other words, we decompose

θk(z)= θ+(z)+ θ−(z), wk(z)=w+(z)+w−(z), (4.2a,b)

with

θ±(z)=
θk(z)± θk(1− z)

2
, w±(z)=

wk(z)±wk(1− z)
2

. (4.3a,b)

(The subscripts + and − denote, respectively, the symmetric and antisymmetric parts.)
Since ϕ′(z) is symmetric with respect to z= 1/2 by construction we obtain

Sk{θk,wk} = Sk{θ+,w+} + Sk{θ−,w−}, (4.4)
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FIGURE 1. Sketch of the piecewise-linear function ϕ(z).

i.e. we can split the quadratic form Sk{θk, wk} into its symmetric and antisymmetric
components also. Symmetric and antisymmetric Fourier amplitudes θk and wk – for
which one term on the right-hand side of (4.4) vanishes – are also admissible, so
Sk is non-negative if and only if it is so for arguments that are either symmetric
or antisymmetric with respect to z = 1/2 (and, of course, satisfy the correct BCs).
As before, the ‘only if’ statement is not needed to proceed but guarantees that no
conservativeness is introduced.

The decomposition into symmetric and antisymmetric components is the essential
ingredient of our proof. In fact, contrary to the case of no-slip boundaries considered
by Otero et al. (2002), the free-slip and fixed-flux BCs cannot be used to control the
indefinite term in Sk{θk, wk} via the usual elementary functional-analytic estimates.
However, θ± and w± (or the appropriate derivatives) are known not only at the
boundaries, but also on the symmetry plane. In particular, for small δ the indefinite
term in (3.9b) can be controlled without recourse to the free-slip, fixed-flux BCs
using

w±(0)=w′
+
(1/2)= θ−(1/2)= 0. (4.5)

To prove this, recall that for any symmetric or antisymmetric quantity q(z)∫ 1/2

0
|q(z)|2 dz=

‖q‖2

2
. (4.6)

Symmetry, equation (4.1), and the identity |θ±w̃±| = |θ±w±| (w̃± is the complex
conjugate of w±) yield∣∣∣∣∫ 1

0

ϕ′ − a− b
b

Re(θ±w̃±) dz
∣∣∣∣6 2M

∫ δ

0
|θ±w±| dz, (4.7)

with M := (1+ a+ b)/b. Since w±(0)= 0 the product θ±w± vanishes at z= 0 and for
any z 6 δ 6 1/2 the fundamental theorem of calculus implies

|θ±(z)w±(z)|6
∫ z

0
|θ±(ξ)| |w′±(ξ)| dξ +

∫ z

0
|θ ′
±
(ξ)| |w±(ξ)| dξ . (4.8)

Using the fact that w±(0) = 0 once again, the fundamental theorem of calculus for
ξ 6 1/2, the Cauchy–Schwarz inequality, and (4.6) we also obtain

|w±(ξ)| =
∣∣∣∣∫ ξ

0
w′
±
(η) dη

∣∣∣∣6
√
ξ

2
‖w′
±
‖. (4.9)
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Bounds for RB convection between free-slip, fixed-flux boundaries

Furthermore, the conditions in (4.5) imply that the product θ±w′
±

vanishes at the
symmetry plane, so similar estimates as above yield

∣∣θ±(ξ)w′±(ξ)∣∣ = ∣∣∣∣∫ 1/2

ξ

[θ±(η)w′′±(η)+ θ
′

±
(η)w′

±
(η)] dη

∣∣∣∣
6

1
2
‖θ±‖‖w′′±‖ +

1
2
‖θ ′
±
‖‖w′

±
‖. (4.10)

Upon inserting (4.9) and (4.10) into (4.8), applying the Cauchy–Schwarz inequality,
and using (4.6) we arrive at

|θ±(z)w±(z)|6
z
2

(
‖θ±‖‖w′′±‖ +

1+
√

2
√

2
‖θ ′
±
‖‖w′

±
‖

)
. (4.11)

Substituting this estimate into (4.7) and integrating gives an estimate for the indefinite
term in (3.9b), and after dropping the term ak2

‖w±‖2/(bR) we conclude that

Sk{θ±,w±} >
2a
bR
‖w′
±
‖

2
−
(1+
√

2)Mδ2

2
√

2
‖w′
±
‖‖θ ′

±
‖ + ‖θ ′

±
‖

2

+
a

bRk2
‖w′′
±
‖

2
−

Mδ2

2
‖w′′
±
‖‖θ±‖ + k2

‖θ±‖
2. (4.12)

Recalling the definition of M and that a quadratic form αu2
+ βuv + γ v2 is positive

semidefinite if β2 6 4αγ , the right-hand side of (4.12) is non-negative if we set

δ = A
[

ab
(1+ a+ b)2R

]1/4

, A :=
(

8

1+
√

2

)1/2

. (4.13a,b)

Having chosen δ to ensure the non-negativity of Sk, all that is left to do is optimise
the eventual bound Nu 6 L−1 over a and b as a function of R. Substituting (4.1)
into (3.10) for our choice of δ yields

L= 1−
(1+ a+ b)2

4b
+

A
2
(1+ a+ b)3/2a1/4

b3/4R1/4
. (4.14)

In order to maximise this expression with respect to a, b > 0 we set the partial
derivatives ∂L/∂a and ∂L/∂b to zero. After some rearrangement it can be verified
that

∂L
∂a
= 0 ⇔ Ab1/4(7a+ b+ 1)− 4R1/4a3/4(1+ a+ b)1/2 = 0, (4.15a)

∂L
∂b
= 0 ⇔ (1+ a− b)[2R1/4(1+ a+ b)1/2 − 3Aa1/4b1/4

] = 0. (4.15b)

A few lines of simple algebra show that setting to zero the second factor in (4.15b)
leads to a solution with negative a or b, so we must choose b= 1+ a where a> 0
satisfies

A4(1+ 4a)4 − 64R(1+ a)a3
= 0. (4.16)

(No positive roots exist if R 6 4A4
≈ 43.92, but we are only interested in R > 120

because conduction is globally asymptotically stable otherwise. It can also be checked
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that this stationary point is a maximum; the algebra is straightforward but lengthy
and uninteresting, so we do not report it for brevity.) In particular, when R tends
to infinity (4.16) admits an asymptotic solution of the form a = a1R−1/3

+ O(R−2/3).
Substituting this expansion into (4.16) and solving for the leading-order terms gives
a1=A4/3/4. We then set b= 1+ a and a= a1R−1/3 in (4.14), simplify, and estimate

L=
A4/3

4R1/3

[
√

2
(

4+
A4/3

R1/3

)3/4

− 1

]
>

3A4/3

4R1/3
. (4.17)

Note that this bound is sharp as R→∞. Consequently,

Nu 6
1
L
6

4R1/3

3A4/3
≈ 0.5999R1/3. (4.18)

Recalling that R=Nu Ra (Otero et al. 2002) we can also express this bound in terms
of the Rayleigh number Ra based on the average temperature drop across the layer:

Nu 6
8Ra1/2

3
√

3A2
≈ 0.4646 Ra1/2. (4.19)

5. Discussion

The bound proved in this work is the first rigorous result for three-dimensional
RB convection between free-slip, fixed-flux boundaries (but note that our proof holds
also in the two-dimensional case). Key to the result is a symmetry argument that
overcomes the loss of boundary control for the trial fields when the no-slip velocity
conditions are replaced with free-slip ones. Our approach is fully equivalent to the
‘classical’ application of the background method to the temperature field, and the
scaling of our bound with Ra is the same as obtained for no-slip BCs (irrespectively
of the thermal BCs, see Doering & Constantin 1996; Otero et al. 2002) and for
free-slip isothermal BCs (Doering & Constantin 1996). Modulo differences in the
prefactor, therefore, rigorous upper bounds on the heat transfer obtained with the
background method for three-dimensional RB convection at finite Pr are insensitive
to both the velocity and the thermal BCs.

Whether convective flows observed in reality exhibit the same lack of sensitivity
to the BCs, however, remains uncertain. Two-dimensional simulations indicate that
the thermal BCs make no quantitative difference for given velocity BCs (Johnston
& Doering 2009; Goluskin et al. 2014), while replacing no-slip with free-slip leads
to zonal flows with reduced vertical heat transfer (Goluskin et al. 2014; van der
Poel et al. 2014). Partial support for such observations comes from the improved
bound Nu . Ra5/12 obtained with free-slip isothermal boundaries in two dimensions
(Whitehead & Doering 2011). It does not seem unreasonable to expect that a
symmetry argument similar to that of this paper will extend the result to the fixed-flux
case, but we leave a formal confirmation to future work. On the other hand, zonal
flows have not been observed in three dimensions (van der Poel et al. 2014). More
extensive three-dimensional numerical simulations should be carried out to reveal if
and how free-slip conditions affect the Nu–Ra relationship, as well as whether the
thermal BCs can have any influence.

Should numerical simulations in three dimensions suggest that Nu grows more
slowly than Ra1/2, the challenge will be to improve the scaling exponents in (4.18)–
(4.19). The argument by Whitehead & Doering (2012) may be adapted to study
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FIGURE 2. (a) The analytic bound (4.18) (dashed line) versus the numerically optimal
bounds for a 2π-periodic layer (solid line) and a 10π-periodic layer (dot-dashed line). The
vertical dotted line at R = 120 marks the global stability boundary for pure conduction.
(b) The optimal ϕ(z) at R= 105. A dotted line with slope a+ b for the optimal values of
these parameters at R= 105 is shown for comparison with the analytical profile sketched
in figure 1.

the infinite-Pr limit, but cannot be used at finite Pr. Moreover, at finite Pr it does
not seem sufficient to consider a more sophisticated choice of a, b and ϕ(z) in
the functional (3.2). To provide evidence of this fact, we used QUINOPT (Fantuzzi
et al. 2017a,b) to maximise the constant L (and, consequently, minimise the eventual
bound Nu6 L−1) over all constants a, b and functions ϕ(z) that make the functionals
in (3.9a) and (3.9b) positive semidefinite. We considered domains with period 2π and
10π in both horizontal directions, respectively, and the corresponding optimal bounds
on Nu are compared to the analytic bound (4.18) in figure 2(a). For both values
of the horizontal period a least-squares power-law fit to the numerical results for
R > 106 returns L−1

≈ 0.325 R0.33. Moreover, as illustrated in figure 2(b) for R= 105,
the optimal ϕ(z) closely resembles the analytical profile sketched in figure 1: it is
approximately linear with slope a+ b in the bulk and it decreases near the top and
bottom boundaries. This strongly suggests that carefully tuning a, b and ϕ(z) can
only improve the prefactor in (4.18).

Lowering the scaling exponent for three-dimensional RB convection at finite
Prandtl number, if at all possible, will therefore demand a different approach.
Recently, Tobasco, Goluskin & Doering (2017) have proved that the auxiliary
functional method gives arbitrarily sharp bounds on maximal time averages for
systems governed by ordinary differential equations. This gives hope that progress
may be achieved in the context of RB convection if a more general functional
than (3.2) is considered. The resulting bounding problem will inevitably be harder
to tackle with purely analytical techniques, but the viability of this approach may be
assessed with computer-assisted investigations based on sum-of-squares programming
(see, e.g. Goulart & Chernyshenko 2012; Chernyshenko et al. 2014; Fantuzzi et al.
2016; Goluskin 2017). Another option is to try and lower the bound proved here
through the study of optimal ‘wall-to-wall’ transport problems (Hassanzadeh, Chini
& Doering 2014; Tobasco & Doering 2017). Exactly how much these alternative
bounding techniques can improve on the background method and advance our ability
to derive a rigorous quantitative description of hydrodynamic systems is the subject
of ongoing research.
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Appendix A. Boundedness of V

The Cauchy–Schwarz inequality and the estimate 〈|θ |2〉 = 〈|T + z|2〉6 2〈|T|2〉 + 2/3
imply that the functional in (3.2) is bounded if 〈|u|2〉, 〈|T|2〉<∞. Following ideas by
Doering & Constantin (1992) and Hagstrom & Doering (2014), this holds if velocity
and temperature perturbations û := u − ψ and ϑ := T − τ from steady background
fields ψ and τ satisfy 〈|û|2〉, 〈|ϑ |2〉<∞. Below we briefly outline how to find suitable
ψ and τ .

Let T(·, 0) and u(·, 0) be given initial conditions. The volume-averaged temperature
and horizontal velocities (〈T〉, 〈u〉 and 〈v〉) are conserved, e.g. 〈T(·, t)〉 = 〈T(·, 0)〉.
This follows after taking the volume average of the Boussinesq equations using the
divergence theorem, incompressibility, and the BCs. Then, let ψ := 〈u(·, 0)〉ex +

〈v(·, 0)〉ey and set τ = τ(z) with

τ ′(z)=

{
−1, z ∈ [0, δ] ∪ [1− δ, 1],
1, z ∈ (δ, 1− δ),

(A 1)

for some δ > 0 to be determined and the constant of integration chosen such that∫ 1
0 τ(z) dz = 〈T(·, 0)〉. It follows that û satisfies the same BCs as the full velocity

field, ϑ satisfies ∂zϑ |z=0 = 0= ∂zϑ |z=1, and 〈ϑ〉 = 〈û〉 = 〈v̂〉 = 0 at all times.
Since ψ and τ are independent of time and ∇ ·ψ = 0, for any constant C> 0 we

can use incompressibility, the BCs, and the Boussinesq equations to write

d
dt

〈
|ϑ |2

2
+

∣∣û∣∣2
2Pr R

〉
=−

〈
|∇ϑ |2 +

∣∣∇û
∣∣2

R
+ (τ ′ − 1)ŵϑ + (τ ′ + 1)∂zϑ +C

〉
+C.

(A 2)
The task is then to find δ in (A 1), C> 0, and a constant γ > 0 such that〈
|∇ϑ |2 +

∣∣∇û
∣∣2

R
+ (τ ′ − 1)ŵϑ + (τ ′ + 1)∂zϑ +C

〉
− γ

〈
|ϑ |2

2
+

∣∣û∣∣2
2Pr R

〉
> 0 (A 3)

for all time-independent trial fields û and ϑ with 〈ϑ〉= 〈û〉= 〈v̂〉= 0 and ∇ · û= 0 that
satisfy the BCs. In fact, combining (A 2) and (A 3) shows that 〈|ϑ |2/2+ |û|2/(2Pr R)〉
decays when it is large, remaining bounded. Hence, 〈|û|2〉 and 〈|ϑ |2〉 are also bounded.

Inequality (A 3) can be proved wavenumber by wavenumber upon considering hori-
zontal Fourier expansions for ϑ and û provided that (i) γ <min{4, 4Pr, 2k2

m, 2Prk2
m}

with k2
m :=mink 6=(0,0) k2 (here k2 is the magnitude of the horizontal wavevector, cf. § 3;

the minimum is strictly positive because we work in a finite periodic domain), (ii) C
is sufficiently large, and (iii) δ is sufficiently small. Non-zero wavevectors can be
analysed using estimates similar to those of § 4, while the case k= (0, 0) is handled
using Poincaré-type inequalities deduced using the zero-average conditions 〈ϑ〉= 〈û〉=
〈v̂〉 = 0.
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