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Abstract—Regularized iterative reconstruction methods in com-
puted tomography can be effective when reconstructing from
mildly inaccurate undersampled measurements. These approaches
will fail, however, when more prominent data errors, or outliers,
are present. These outliers are associated with various inaccuracies
of the acquisition process: defective pixels or miscalibrated cam-
era sensors, scattering, missing angles, etc. To account for such
large outliers, robust data misfit functions, such as the general-
ized Huber function, have been applied successfully in the past.
In conjunction with regularization techniques, these methods can
overcome problems with both limited data and outliers. This paper
proposes a novel reconstruction approach using a robust data fit-
ting term which is based on the Student’s t distribution. This misfit
promises to be even more robust than the Huber misfit as it assigns
a smaller penalty to large outliers. We include the total variation
regularization term and automatic estimation of a scaling param-
eter that appears in the Student’s t function. We demonstrate the
effectiveness of the technique by using a realistic synthetic phantom
and also apply it to a real neutron dataset.

Index Terms—Limited angle regularization, neutron tomogra-
phy, proximal point, ring artifacts, robust statistics, X-ray CT,
zingers.
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Fig. 1. Schematic representation of discrete forward projection, where a ray
contributes to the i-th detector element. The registered contribution (physically
related to the number of unabsorbed photons) is a sum of intersected pixel
densities multiplied by their intersections lengths aij .

I. INTRODUCTION

TOMOGRAPHIC imaging provides an opportunity to ex-
plore the inner structure of materials in a non-destructive

fashion using penetrating electromagnetic radiation (X-rays) or
particle radiation (neutrons) [1]. The image formation relies on
photoelectric absorption. The mathematical model we adopt in
this paper is based on three basic assumptions: beam monochro-
maticity, absence of diffraction or refraction, and Beer’s law
[1], [2]:

Λi = I0,i exp
(
−

∫
Li

μ(r)dl

)
, i = 1, . . . ,m, (1)

where r ∈ R2 is the spatial position, μ is the attenuation coeffi-
cient of the object under investigation, I0,i is the intensity of the
incoming beam, Λi is the intensity of the beam at the detector of
the i-th ray integrated along the line path Li , and m is the total
number of rays. The typical setup is illustrated in Fig. 1. Taking
the negative log of the relative intensity leads to a linear relation-
ship between the attenuation coefficient and the observations:

∫
Li

μ(r)dl = − ln
(

Λi

I0,i

)
, i = 1, . . . , m. (2)

For X-rays, the mentioned assumptions can be fulfilled to a
degree; however for neutrons, the first two are usually not
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Fig. 2. Schematic figure of the parallel beam acquisition set-up to obtain a 2D
sinogram from the set of 1D projections.

satisfied; the neutron beam is normally polychromatic and
neutrons are scattered coherently and non-coherently.

Representing the attenuation coefficient on a square grid of
n pixels: {χj (r)}n

i=1 , i.e., μ(r) =
∑n

j=1 xjχj (r), we obtain
a discrete, linear, forward model b = Ax, where x ∈ Rn

is a vector with attenuation coefficients xj , b ∈ Rm is a

vector with the log-corrected measurements, bi = − ln
(

Λ i

I0 , i

)
,

and A ∈ Rm×n is the projection matrix with elements
aij =

∫
Li

χj (r)dl which captures the contribution of the i-th
ray to the j-th pixel (see Fig. 1).

The tomographic acquisition process is based on collecting
projections of an object at multiple angles. In the parallel-beam
setup, multiple, parallel, rays are acquired at each rotation an-
gle θ. Collecting these measurements for multiple angles leads
to a two-dimensional sinogram, as illustrated in Fig. 2. The
image reconstruction problem entails recovering the unknown
attenuation coefficients xj from the intensity measurements bi .

When the measurements are densely sampled over a full an-
gular range of π radians and not noisy, one can recover the at-
tenuation coefficients using direct reconstruction methods such
as Filtered Back Projection (FBP) [3]. When the angular range
is not complete, the reconstruction problem is referred to as lim-
ited angle or a missing wedge [4]–[6]. The missing wedge recon-
struction problem poses major difficulties due to non-uniqueness
of the solution [2]. In addition, if the data are sparse the recon-
struction is ill-posed. This relates to the issue of undersampled
signal recovery in the frequency domain. Limited angle data
normally result in aliasing streak artifacts and substantial loss
of resolution in reconstructed images.

Iterative Image Reconstruction (IIR) techniques are better
adapted to deal with noisy, under-sampled or incomplete data.
Allowing more accurate modelling of the acquisition process
one can incorporate a priori information (e.g. non-negativity,
smoothness, sparsity, etc.) [1], [7], [8]. Regularized IIR meth-
ods are capable of producing images of high quality using fewer
projections than required by the Nyquist sampling theorem [9].
A significant amount of research in the area of IIR is dedicated to
the development of novel regularization methods, such as using
the Total Variation (TV) penalty [10] and various generaliza-

tions of it [4], [5]. Much less attention, however, is given to the
data misfit term. Although regularization is crucial to stabilize
convergence and damp random noise in the reconstructed image,
it cannot completely mitigate the effects of large or systematic
errors present in the data. In other words, regularization alone
will not solve problems related to typical acquisition artifacts,
such as a streak (caused by an error in a random detector ele-
ment) or a ring (a consistent error-offset due to a miscalibrated
or defective detector). A traditional approach to eliminate those
artifacts would be a selective filtering of radiographs, the sino-
gram [11]–[13] or the image itself [14]. However, no matter
how successful the preprocessing approach is, it includes mod-
ification (filtration) of measurements. This can often result in a
biased reconstructed image with introduced artifacts due to the
filtering process [12]. In this case, the use of IIR is not recom-
mended since the data have been modified unpredictably and do
not represent real measurements. A better alternative would be
to model various data inaccuracies within the IIR framework.

Using a Model Based IIR (MBIIR) approach, one can min-
imize data errors through more accurate modelling of the for-
ward problem [15]–[18]. A good overview of MBIIR methods
is given in [19]. Frequently used, the Least-Squares (LS) noise
model assumes Gaussian noise in the measurements which is
suitable in case of high radiation dose acquisitions. For lower
dose imaging (e.g. emission tomography or dynamic tomogra-
phy), the Poisson model [18], [20], [21], or statistically weighted
LS model [15], [22], [23] are more appropriate. These models,
however, are highly sensitive to severe errors (outliers) present
in data. Recently, novel data models which are robust to outliers
have been proposed. One group of methods is based on the gen-
eralized Huber penalty [15], [16], where outliers are removed
by solving an auxiliary optimization problem. The Student’s t
penalty is a more robust (statistically) alternative to the Huber
penalty [17], [24], [25].

In this work, we investigate the use of various robust data
misfit penalties in conjunction with the TV penalty to minimize
artifacts. In particular, we consider the weighted LS, Huber, and
the Student’s t penalties. The resulting optimization problem
has a special structure; the objective is the sum of a smooth and
a convex term. We use a proximal-gradient algorithm [26]–[29]
to optimize the objective. By casting the various approaches
into a common framework, we can easily compare the methods
both from a theoretical as well as an experimental point-of-view.
Extensive numerical experiments are performed with a synthetic
phantom and real neutron measurements.

The paper is organized as follows: in Section II, the recon-
struction problem with various robust penalties is formulated.
Section III presents an optimization framework. Numerical re-
sults with a synthetic phantom are given in Section IV and real
data results in V. Section VI concludes the manuscript.

II. PROBLEM FORMULATION AND ROBUST DATA MISFIT

The measured transmission data (1) normally contain noise
due to the photon-counting process and Gaussian noise due
to the electronic response [22]. With recent improvements in
acquisition technology, Gaussian noise can be neglected and the
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actual measured intensities Λi modelled as a Poisson random
variable with parameter Λi [20], [23]:

Λi ∼ Poiss{Λi} = Poiss{I0,ie
−[Ax]i }, i = 1, . . . , m (3)

One can approach the reconstruction problem from the Bayesian
perspective by employing maximum a posteriori (MAP) esti-
mate [15], [18], [20], [22], [23]:

arg min
x

m∑
i=1

[
I0,i [Ax]i + Λie

−[Ax]i
]

+ Lprior(x), (4)

where Lprior is the negative log of the prior density function. In
[23], a quadratic approximation to the likelihood function (4)
was proposed, leading to

x̂ = arg min
x

1
2

(Ax − b)� Λ (Ax − b) + Lprior(x), (5)

where Λ ∈ Rm×m is a diagonal matrix with entries {Λi}m
i=1 .

This so-called Penalized Weighted Least Squares (PWLS)
model is a simple approximation to the Poisson model (3) which
is used for many X-ray tomography cases [15], [22], [23]. The
matrix Λ effectively gives a higher weight to projections with
a higher photon-count. In the remainder of the paper we ab-
sorb these weights in the system of equations, i.e. redefining
A ≡ √

ΛA and b ≡ √
Λb. We now express the corresponding

regularized optimization problem in the general form:

min
x

f(Ax − b) + βg(x), (6)

where f : Rm → R + is a data misfit term, g : Rn → R + is
a convex penalty, and β is the regularization parameter. Next,
we review several data misfit alternatives which can be used to
replace a standard LS misfit of the form f(·) = ‖ · ‖2

2 . Evalua-
tion of some of these involves solving an auxiliary optimization
problem that either has a closed-form solution or is easy to solve
numerically. Next, we discuss various choices of the misfit func-
tion f .

A. Regularized Least Squares

Let f(·) = ‖ · ‖2
2 and g(·) = ‖ · ‖2

L , which corresponds to
a Gaussian prior distribution for x with mean zero and co-
variance L�L. The optimization problem (6) now has the
following closed form solution x̂ = H−1A�Λb, where H =
[A�ΛA + βL�L]. It is infeasible to precompute the inverse of
H exactly for large-scale problems, therefore various approxi-
mations can be used in practice [8]. The Toeplitz-block-Toeplitz
nature of the matrix H can be also exploited by creating a decon-
volution kernel which can be efficiently implemented through
fast Fourier routines [23]. In this work, we will be using first-
order optimization approaches which avoid explicit calculation
of H−1 altogether [26]–[29].

B. Huber

A well-known robust misfit function is the Huber function
[30] (see Fig. 3), which can be defined as the Moreau-Yosida
envelope of the �1-norm [31]

f(r) = min
s

1
2 ‖s − r‖2

2 + λ‖s‖1 . (7)

Fig. 3. LS, Huber and Student’s t misfit functions (a) and their corresponding
influence functions (b).

This optimization problem has a closed-form solution ŝ with
elements

ŝi = Sλ(ri), (8)

where Sλ is the (element-wise) soft-thresholding operator given
by

Sλ(r) =

⎧⎪⎨
⎪⎩

r + λ if r < −λ

0 if |r| ≤ λ.

r − λ if r > λ,

(9)

It is readily verified, using (8), that (7) is indeed equivalent to
the Huber misfit function

f(r) =
m∑

i=1

ρH(ri), (10)

where

ρH(r) =

{
1
2 r2 if |r| ≤ λ,

λ|r| − 1
2 λ2 if |r| > λ.

(11)

The gradient is given by

∇f(r) = Wr,

where W is a diagonal matrix with elements

wii =

{
1 if |ri | ≤ λ,

λ
|ri | if |ri | > λ.

(12)

Fig. 3(a) and (b) show the misfit function ρH(r) and its derivative
ρ′H(r). This plot clearly shows that the Huber misfit assigns a
smaller weight to large residuals than the least-squares misfit.

C. Group-Huber (GH)

A specific form of the Huber misfit was proposed in [16]

f(r) = min
s

1
2 ‖s − B�r‖2

2 + λ‖s‖1 , (13)

where B = (Im 1 ⊗ 1m 2 )/
√

m2 with B�B = Im 1 . The reason-
ing behind this formulation1 is that the outliers are likely to
be correlated in such a way that the residuals can be grouped
into m1 groups with m2 entries each. The matrix B sums the
residuals in each group so that s is a vector of length m2 .

1The authors of [16] actually propose f (r) = mins
1
2 ‖Bs − r‖2

2 + λ‖s‖1 ,
but both problems have the same solution.
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We now find the following closed-form solution of (13)

ŝi = Sλ((B�r)i),

which can be written in terms of the conventional Huber misfit
ρH as

f(r) =
m∑

i=1

ρH((B�r)i).

The gradient of this objective can be expressed as

∇f(r) = BWB�r, (14)

where W is defined as in (12).

D. Student’s t Misfit

A more robust alternative to the Huber misfit is the Student’s t
misfit [17], [24], [25]. It arises when assuming that the noise fol-
lows a Student’s t distribution. Even if the actual noise does not
obey this assumption, the Student’s t misfit has some desirable
properties, such as insensitivity to large outliers (see Fig. 3).
Taking the negative log of the univariate Student’s t density
function leads to

ρStudentsT(r) = log(1 + (r/σ)2),

where σ is the noise variance parameter. It is a critical parameter
since it determines the threshold beyond which residuals will
have a diminishing influence. The objective and its gradient are
now given by

f(r) =
m∑

i=1

log(1 + (ri/σ)2), (15)

∇f(r) = Wr, (16)

where W is a diagonal matrix with elements

wii =
2

σ2 + r2
i

. (17)

A possible downside of this approach is that the misfit function
is no longer convex. In practice, however, this appears not to be
problematic (see Section IV).

Estimation of the variance parameter σ can be formulated as
a scalar optimization problem [25]:

f(r) = min
σ

{
m log(πσ) +

m∑
i=1

log(1 + (ri/σ)2)

}
. (18)

For a given residual this problem is easily solved using a scalar
minimization algorithm such as Newton’s method or Golden-
ratio search [32]. The resulting misfit function f(r) is smooth
and can be used in conjunction with any gradient-based opti-
mization method [25]. The gradient of the objective w.r.t. r is
given by Wr, with W as in (17), evaluated at the optimal σ
[25]. Algorithm 1 summarizes evaluation of the objective and
its gradient.

Algorithm 1: Evaluation of the Student’s t objective (15)
and its gradient (17).

Input: residual r
Output: f(r) and ∇f(r)

compute
σ̂ = arg minσ m log(πσ) +

∑m
i=1 log(1 + (ri/σ)2)

f(r) = m log(πσ̂) +
∑m

i=1 log(1 + (ri/σ̂)2)
∇f(r) = Wr, with wii = 2

σ̂ 2 +r 2
i

Algorithm 2: FISTA-TV reconstruction scheme.
Input: x0 , β, K,
Output: {xk}K

k=1
t1 = 1
for k = 1 to K do

yk = proxL−1 β [g]
(
xk − L−1A�∇f(Axk − b)

)
tk+1 = 1+

√
1+4t2

k

2

xk+1 = yk +
(

tk −1
tk + 1

)
(yk − yk−1)

end for

III. TOMOGRAPHIC IMAGE RECONSTRUCTION

A generic way to solve convex problems of the form (6) is by
a proximal-gradient method [31]

xk+1 = proxβ [g]
(
xk − L−1 · A�∇f(Axk − b)

)
,

where proxβ [g](y) = arg minx g(x) + 1
2β ‖x − y‖2

2 , and L is
the Lipschitz constant of ∇f . In many cases the proximal
operator is easily computed. A particularly suitable edge-
preserving regularization for tomographic reconstruction is
TV [10]. In this paper we employ an isotropic TV penalty:

g(x) =
∑m

i=1

√
[D1x]2i + [D2x]2i , where Dk is a discrete first

derivative in direction k. The corresponding TV-proximal prob-
lem is solved using a projected gradient method [29].

Using the generic FISTA-framework given in Algorithm 2
we present four different methods: LS (when ∇f(r) = r, β =
0), LS-TV (∇f(r) = r, β > 0), GH-TV (Group-Huber fidelity
with ∇f(r) defined as in (14)), and Student-TV (Student’s t
fidelity with ∇f(r) evaluated by Algorithm 1). Notably, the
statistical weighting Λ is included in all formulations, therefore
the LS formulation is the PWLS one (5) (we employ the LS
notation throughout the paper). We note that for the low-dose
situations a true Poisson terms should be used [20] instead of
approximations (5).

It should be noted that the convergence of FISTA cannot
be guaranteed in general when using a non-convex penalty
such as the Student’s t. However, a minor modification of
Algorithm 2 that includes an inertia term xk − xk−1 and some
additional requirements on the line-search parameter can be
shown to converge [33]. We do not expect the results to change
dramatically as we did not encounter any convergence issues in
the numerical experiments.
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Fig. 4. (a) A numerical phantom of size 512 × 512 pixels and its noiseless sinogram (180 projections); (b) sinogram corrupted with Poisson noise, zingers, and
vertical stripes. The corresponding image artifacts in FBP reconstruction are accentuated noise, streaks, and rings respectively; The errors: Δ1\Δ2 = 29\0.10.
(c) the sinogram (b) with the missing data (the result of limited angle acquisition). The sinogram’s ramp-shaped cut-off is due to simulation of the partial shadowing
effect. FBP reconstruction also contains rings, streaks, and the loss of information and contrast (blurred regions) can be seen. The errors: Δ1\Δ2 = 28\0.08.

IV. NUMERICAL EXPERIMENTS

In this section we compare four iterative reconstruction meth-
ods: LS, LS-TV, GH-TV, and Student-TV. To test our techniques,
we used a realistic phantom (see Fig. 4(a)) which was con-
structed from a high resolution X-ray scan of a bone-bioglass
sample acquired at the DLS Diamond-Manchester Branchline
[5]. To avoid the “inverse crime” [34], we used different pixel
grids as well as different projection models (strip and linear) for
data-generation and reconstruction. Poisson distributed noise
was added to the projection data, assuming an incoming beam
intensity of 5 × 103 (photon count).

To quantify the quality of the reconstructions we use three
metrics of quality. The first metric is the Normalized Root Mean
Square Error (NRMSE) Δ1 given as:

Δ1(x̂,x) =
1

|ROI|
∑

i∈ROI

(xi − x̂i)2 × 100. (19)

where x̂ is an exact image and ROI is the region-of-interest. In
the experiments, the ROI is selected as the phantom without the
uniform zero background (see Fig. 4(a)). The second metric is
the structural similarity index (SSIM) [35] which is given by:

Δ2(x̂,x) =
(2μxμx̂ + C1) + (2ςxx̂ + C2)

(μ2
x + μ2

x̂ + C1)(ς2
μx

+ ς2
μ x̂

+ C2)
, (20)

where μ and ς are the mean intensity and standard deviation
of a patch centered around a pixel respectively (we used an
8 × 8 patch). The variable ςxx̂ denotes the cross-correlation and
C1,2 are small constants to avoid division by zero [35]. The
SSIM is different quality metric from the NRMSE (19), as it
considers image degradation as a visually perceived change in
the structural information. The SSIM value equals 1 if images
are identical and −1 if they anti-correlated, i.e., Δ2 ∈ [−1, 1].
The third metric is the Coefficient of Variation (CoV) [21] and

defined as:

CoV(xω ) =
1

|ROI|
∑

i∈ROI

√
(xi,ω − xi)2

(Ω − 1)x2
i

, (21)

where x is the average over all noise realizations: Ω = 10, ω =
1, . . . ,Ω.

For all of our experiments, we use K = 300 (the total number
of outer FISTA iterations, see Algorithm 2). Iterations have
been terminated earlier for the synthetic phantom when the
error Δ1 increases. To compute the proximal operator for the
TV norm, we use a projected-gradient algorithm [29] with 20
(inner) iterations. TV-related iterations have been terminated
when the residual becomes small ‖xk+1 − xk‖2

2 ≤ ε, where
ε = 1 × 10−4 . The Lipschitz constant L has been established
using the Power method for the LS, LS-TV, GH-TV algorithms
and manually for the Student-TV algorithm. One can establish
it by selecting the lowest L which precludes fast divergence.

To avoid storing a large sparse projection matrix A, we use
on-the-fly forward and backward projection operations from
the ASTRA toolbox [36]. Note that the ASTRA toolbox uses
unmatched projectors, which formally means that the backward
operator is not the transpose of the forward one. This can lead
to an error in the gradient computation. However, these errors
are typically much smaller than the desired tolerances, so we do
not see their effect in practice [37]. The presented results can be
reproduced using open-source codes [38].

A. Reconstruction of Data Corrupted by Zingers and Stripes

In this experiment we reconstruct a noisy sinogram with mul-
tiple zingers (single error pixels in the sinogram) and vertical
stripes (consistent positive or negative offsets) (see Fig. 4(b,
top)). We simulated some stripes to be of varying intensity and
discontinuous. The corrupted sinogram has been generated from
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Fig. 5. Top: optimization curves to establish the optimal values for regular-
ization parameters for each method. Each curve consists of 30 points of linearly
progressing regularization parameter values. Middle: 10 Poisson noise realiza-
tions have been applied to the sinogram (see Fig. 4 (b)). Resulting values of
Δ1 against CoV are given for optimized regularization parameters. Notably,
the Student-TV reconstructions have much lower bias in terms of Δ1 error
and slightly higher CoV than the LS-TV and the GH-TV methods. Bottom:
Convergence plots for different IIR methods. The lowest error (Δ1 = 6.6) is
obtained with the Student-TV method.

the noiseless version in Fig. 4(a, top) by adding noise and ar-
tifacts. In Fig. 4(b, bottom), the FBP reconstruction of the cor-
rupted sinogram is shown. The reconstruction is exceedingly
noisy and contains strong streaks and rings artifacts.

In order to equally compare all methods, we perform an em-
pirical optimization to find the optimal regularization parame-
ters. Each method (except LS, where β = 0) has been optimized
for β with respect to NRMSE (Δ1). Notably, regularization pa-
rameter λ for the GH-TV method has been found before the
experiment.

In Fig. 5 (top) one can see how the optimal regularization
parameter β (6) has been chosen based on Δ1 values. Each curve
consists of 30 points with linearly progressing regularization

parameter values. The global minimum of Δ1 can be established
for each method and the corresponding β value is selected. It can
be seen that the minimum Δ1 error belongs to the Student-TV
method. We proceed with further examinations of the method.

Using the same technique as for the experiment in Fig. 5
(top), we perform an evaluation of all methods with respect to
ten Poisson noise realizations (see Fig. 5 (middle)). For each
noise realization, the optimal regularization parameters have
been established. For each reconstruction, a minimum value of
Δ1 is obtained and plotted against the CoV value. One can see
relatively compact distributions for all methods except the LS
method. The values for the LS method are widespread due to
absence of the regularization. The Student-TV method delivers
reconstructions with much smaller Δ1 error and only slightly
larger CoV than the LS-TV and GH-TV methods. The larger
variance of the Student-TV recovery can be also perceived from
the reconstructed images in Fig. 6(d). One can summarize that
the trade-off between bias and variance has been established by
using Student’s t data misfit.

To demonstrate the convergence behaviour of all methods we
run 300 iterations for each method using established regulariza-
tion parameters (see Fig. 5 (bottom)). One can see that the LS
method triggers early divergence (minimal error Δ1 = 10.1),
while the LS-TV method proceeds further reaching an error of
Δ1 = 9.2. The convergence behaviour of GH-TV and Student-
TV is similar. The Student-TV method has the lowest error of
Δ1 = 6.6 compared to the GH-TV method Δ1 = 8.8.

In Fig. 6 (top row), we show reconstructed images for the
optimal values of Δ1 errors. In the middle row we show image
residuals (x̂ − xk )2 , which demonstrate the amount of struc-
tural information which differs from the ideal phantom given
in Fig. 4(a, bottom). Therefore, a blank image residual (con-
taining all zero values) would represent a perfect reconstruc-
tion; this, however, never happens in practice. In the bottom
row, we demonstrate another residual in the sinogram space
(Axk − b)2 , where b is a corrupted noisy sinogram. Contrary
to the image residual, if more inconsistent information appears
in the sinogram residuals (e.g. offset pixels and stripes) then
a smaller number of artifacts appears in the reconstructed im-
age xk . Presented residuals in the image and sinogram spaces
can help to explain the nature of methods and artifacts removal
mechanisms.

The LS reconstruction is noisy and the corresponding image
residual contains almost all artifacts introduced into the sino-
gram. The sinogram residual contains stripes of low intensity
(i.e. the sinogram Axk contains strong stripes) which also con-
firms the presence of ring artifacts in the reconstructed image.
Zingers can also be seen (as red clusters of pixels), however they
are blurred (not so compact as originals in Fig. 4(d)), therefore
streak artifacts are also present in the reconstructed image.

The minimal error for the LS-TV method (see Fig. 6(b))
is not significantly lower than for the LS method. This could
be due to the fact that the LS-TV method oversmoothes the
phantom, hence also lower CoV in Fig. 5 (middle). For the LS-
TV method, the regularization parameter has been increased
which helps to smooth streaks and some minor rings while
the overall resolution is also lost (e.g. small pores have been
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Fig. 6. Top row: reconstructed images for the LS, LS-TV, GH-TV, and the Student-TV methods using the corrupted noisy sinogram (see Fig. 4 (b, top)).
Middle: residual (x̂ − xk )2 in image space. Bottom: residual (Axk − b)2 in sinogram space, where b is a corrupted noisy sinogram. Student-TV reconstruction
provides the best resolution and the absence of streak and ring artifacts (the central strong ring artifact is only partially suppressed). (a) LS, Δ1\Δ2 = 10.1\0.51,
(b) LS-TV, Δ1\Δ2 = 9.2\0.74, (c) GH-TV, Δ1\Δ2 = 8.8\0.79, (d) Stud-TV, Δ1\Δ2 = 6.6\0.85.

smoothed out). This observation is also confirmed by smaller
values of CoV and higher bias for the LS-TV and GH-TV
methods in Fig. 5 (middle). The LS-TV sinogram residual
looks similar to the TV method, however the image residual is
less noisy.

The GH-TV method delivers similar resolution but also effec-
tively removes ring artifacts (the error is Δ1 = 8.8). In the im-
age residual, some not very sharp ring contours are still present,
however the streak artifacts have become more prominent. In
the sinogram residual, the vertical stripes are sharp and of high
intensity, which means that they have been removed from the
reconstructed image. Zingers, however are not clustered simi-
larly to the LS-TV method; streaks are present in the recovered
image.

The Student-TV method provides the smallest reconstruc-
tion error (Δ1 = 6.6) among compared techniques and the
absence of artifacts is evident (see Fig. 6(d)). The recovered
image resolution is superior to the LS-TV and the GH-TV
methods (e.g. note how the background is recovered inside
smaller cavities). The image, however, appears slightly nois-
ier and this is also confirmed by larger CoV values in Fig. 5
(middle). The degree of improvement is also clear from the
corresponding image residual. It is less sharp than other image
residuals, contains no streak artifacts, and only one remaining
part of the central thick ring artifact. The sinogram residual
shows sharp stripes of high intensity and also densely clustered
zingers.

TABLE I
COMPUTATION TIMES GIVEN FOR ONE ITERATION OF ALGORITHM 2 FOR

RECONSTRUCTION OF THE PHANTOM IN FIG. 4(B)

LS LS-TV GH-TV Student-TV

0.03 sec. 0.06 sec. 0.07 sec. 0.16 sec.

Additionally, the SSIM values are given for all methods
in Fig. 6. There is a big gap in Δ2 values between the
LS reconstruction (Δ2 = 0.51) and the LS-TV-type methods
(Δ2 = 0.75-0.79). Notably the SSIM values for the LS-TV
and the GH-TV methods are very close to each other. Indeed,
the visual perception of these reconstructions is close to each
other. Reconstruction with the Student-TV method gives a better
(higher) SSIM value (Δ2 = 0.85).

In Table I we present the computation times for all methods to
evaluate their computational efficiency. Here one can note that
the Student-TV method is only 2 times slower than the LS-TV-
type methods due to additional step involving the estimation of
σ parameter in Algorithm 1.

In order to further explore the Student-TV method we apply
it to limited angle tomographic data.

B. Reconstruction of the Missing Wedge Data

In this experiment, we will test our methods to recon-
struct limited angle data. The incomplete sinogram is shown
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in Fig. 4(c, top) where the missing data consist of 2 symmetric
ramp-shaped cut-offs. FBP reconstruction of the missing wedge
data is presented in Fig. 4(c, bottom). The image is very noisy,
some streak artifacts are present due to missing information,
and the loss of resolution in the central part of the phantom is
evident. Due to the presence of abrupt features in the sinogram,
streak and shadow artifacts are prominent in images [4]–[6].

The limited angle reconstruction problem is not uniquely
defined due to the missing angles and also can be severely ill-
conditioned due to limited projection data. Traditional regular-
ization approaches are not able to fully alleviate all difficulties
related to reconstruction of such data. In order to suppress alias-
ing artifacts, one can employ Fourier space filling procedures
[6], directional TV regularization [4] or a combination of spar-
sifying penalties [5]. However, since directional inconsistency
is present in the data term the isotropic regularization penalties
are not suitable [4]. Alternatively, the negative effects of the
missing wedge data can be minimized by using a data misfit
that is more forgiving to severe data discrepancies.

Similar to the previous experiment, we estimated thoroughly
all regularization parameters before performing comparisons
and presenting results. In Fig. 7 (top) we show regularization
parameters optimization curves. In Fig. 7 (middle) we performed
an experiment similar to one in Fig. 5 where ten noise realiza-
tions were applied to the data to estimate Δ1 errors with respect
to CoV values. One can see that higher CoV values belong to
the LS and Student-TV methods, while the LS-TV and GH-TV
methods have lower CoV. However, the levels of Δ1 error are
higher for all methods except the Student-TV method. In Fig. 7
(bottom) we demonstrate convergence plots for the LS, LS-TV,
and the Student-TV methods. One can see that the Student-TV
method shows an impressive performance reaching the lowest
error Δ1 = 10.9. However the convergence plot shows that the
method must be stopped prematurely to avoid divergence.

In Fig. 8 (top row) image reconstructions from limited angle
data are presented, the corresponding image residuals (x̂ − xk )2

are shown in the middle row, and in the bottom row the sinogram
residuals are shown. The reconstructed image using the LS-
TV method (see Fig. 8(a)) is severely contaminated by shadow
(darker areas) and streak and rings artifacts. The LS-TV recon-
struction is able to mitigate noise and some streak artifacts, how-
ever the shadowing remains and all other artifacts are present.
The GH-TV reconstruction provides visually similar reconstruc-
tion to LS-TV except ring artifacts. The image reconstructed
using the Student’s t misfit (see Fig. 8(d)) has much less shadow
influence in the central part of the phantom and other artifacts
have been removed to a degree. Notably, the central vertical
shadow which affects the LS-TV and GH-TV reconstructions
is damped significantly with the Student-TV method, and the
error is substantially lower. Additionally, the SSIM values are
distinct for the methods with the significant advantage of the
Student-TV method.

V. REAL DATA RECONSTRUCTION

In this section we apply the proposed methods to real neutron
data obtained at the cold neutron imaging Beamline ICON at the

Fig. 7. Top: optimization curves to establish the optimal values for regular-
ization parameters for each method for the missing wedge dataset (see Fig. 4 (c,
top)). Middle: 10 realizations of Poisson noise have been applied to the missing
wedge projection data. Resulting values of Δ1 against CoV are given for the
optimized regularization parameters. Notably, the Student-TV reconstructions
have higher CoV that LS-TV and GH-TV, yet significantly lower bias in terms
of Δ1 error. Bottom: Convergence plots for different IIR methods using the
missing wedge dataset (see Fig. 4(c, top)).

SINQ spallation neutron source at the Paul Scherrer Institute,
Switzerland [39]. Neutron tomography (nCT) uses neutrons
instead of X-rays by interacting with atomic nuclei, and the
attenuation properties of materials are different compared
with X-rays. For instance, water is highly attenuated and lead
becomes highly translucent in a neutron beam.

We chose this particular nCT dataset because it contains
different types of errors. In general, nCT has a worse spatial
resolution than X-ray systems; the flux is lower and the nCT
projections are strongly influenced by scatter. The zingers are
caused by gammas (from neutron absorption) hitting the detec-
tor. The data are also significantly contaminated by ring arti-
facts. In Fig. 9 we show a noisy sinogram with various artifacts
of porous basalt rock beads packed in a 25 mm aluminium
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Fig. 8. Top row: reconstructed images for the LS, LS-TV, GH-TV and Student-TV methods using the corrupted by artifacts, noisy missing wedge sinogram
(see Fig 4 (c, top)). Middle: residual (x̂ − xk )2 in image space. Bottom: residual (Axk − b)2 in sinogram space, where b is a corrupted sinogram. The
Student-TV reconstruction provides the best resolution and the absence of streak and ring artifacts (the central strong ring again is only partially suppressed).
(a) LS, Δ1\Δ2 = 15.8\0.36, (b) LS-TV, Δ1\Δ2 = 15.3\0.53, (c) GH-TV, Δ1\Δ2 = 15.1\0.56, (d) Stud-TV, Δ1\Δ2 = 10.9\0.67.

Fig. 9. Neutron source sinogram obtained from scanning a 25 mm aluminium
cylindrical container filled with basalt rock beads [40]. Multiple artifacts are
present.

cylindrical container (more information about the experiment
in [40]). Data consists of 500 projections for reconstruction of
700 × 700 pixels image slice.

We reconstruct the sinogram in Fig. 9 using the LS, LS-
TV, GH-TV, and the Student-TV methods. In order to establish
optimal reconstruction parameters, we perform multiple recon-
structions for each method and assess reconstructed images and
their segmentations using Otsu’s method [43] visually. Here we
also run 300 outer iterations and 20 inner TV iterations.

In Fig. 10 we present a slice of the reconstructed volume (top
row), the zoomed central regions of the reconstructed images are
shown in the second row, the segmented images using Otsu’s
method [43] are in the third row, and the sinogram residuals

(Axk − b)2 are in the bottom row. As expected, the LS recon-
struction is very noisy, contains many streaks and also several
rings (one major ring is very prominent and sharp). Note that the
sharp vertical stripe (related to the major ring artifact) is absent
in the sinogram residual. The result of segmentation is unusable.
Noise is significantly reduced by the LS-TV method, however
all major artifacts remain. The sinogram residual shows a weak
presence of the big stripe, therefore the corresponding ring arti-
fact is still sharply defined in the reconstructed and segmented
images. The ring modelling in the GH-TV algorithm helps to
remove rings, however streaks are present in the image and in
its segmentation. The sinogram residual shows more compact
and sharp vertical stripes that have been modelled and removed
from the reconstruction.

The Student-TV algorithm delivers the most promising results
while completely removing streaks and major rings. Notably the
sinogram residual for the Student-TV method can tell us more
about the quality of the reconstructed image. Both vertical and
horizontal stripes are sharply defined. Horizontal stripes may
not directly affect the visual perception of the reconstruction,
however they are errors and must be excluded. Additionally,
streak artifacts have been removed from the reconstruction and
can be seen as distinctive dots in the sinogram residual. The
segmented image for the Student-TV method is visually satis-
factory and the best among all compared methods. It does not
contain any strong errors due to the rings and streaks as other
segmented images do.
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Fig. 10. First row: the reconstructed images for the LS (a), LS-TV (b), GH-TV (c) and Student-TV (d) methods using the sinogram in Fig 9. Second: zoomed
into the central slice region of reconstructed images. Third: segmented images using global image threshold using Otsu’s method. Fourth: residual (Axk − b)2

in the sinogram space. Note the amount of streak artifacts and rings in the LS reconstruction. The Student-TV method successfully removes artifacts.

VI. DISCUSSION AND CONCLUSION

In this manuscript, we present a novel MBIIR technique
where the conventional data fidelity term is replaced by the
Student’s t distribution. The Student’s t misfit is taken from the
group of statistical estimators which provide a robust recovery
of a signal against large errors (outliers) in data. For many
imaging experiments in computed tomography (especially
a synchrotron and neutron spallation sources), such outliers
are inevitably present in the collected data. We demonstrated
that the Student’s t based method can handle various types of
artifacts. The proposed data term is solely based on a robust loss
function and therefore different from the existing model-based
reconstruction algorithms [15], [16]. Since the proposed method
and the GH-based method [16] can be put into one optimization
framework, the comparison is straightforward. Comparison
with the TIMBIR algorithm [15] is more complicated – due

to differences in the optimization approaches, regularization
terms, and projection models – and is left for future research.

We have shown that using TV regularization penalty with the
Student’s t misfit one can successfully reconstruct from under-
sampled noisy data with various errors. The notorious limited-
angle artifacts can be noticeably alleviated using the Student-TV
algorithm. However, more advanced prior models can further
improve quality of reconstructions, such as directional regular-
izers [4], higher-order terms [5], wavelet transforms [5], trained
dictionaries [16], and patch-based priors [40].

In this work we did not attempt to deal with any possible
effects of nonconvexity of the Student’s t penalty. In practice we
noticed a stable behaviour of the Student-TV algorithm converg-
ing to a (local) minimum. To alleviate some risks of converging
to an undesirable local minimum, one can use a local quadratic
approximation [41]. The proposed algorithm can be made more
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robust to coherent outliers, such as rings, by applying the Stu-
dent’s t penalty to groups of data, in a similar fashion as the GH
approach.
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