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Abstract. Cumulative Transitivity and Cautious Monotonicity are widely
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1 Introduction

In the 1980s, several non-monotonic reasoning formalisms were proposed (see [2]
for an overview). Systemic investigations into aspects of Cautious Monotonicity
and Cumulative Transitivity of non-monotonic inference followed (e.g. [22, 23]).
Those works also contribute to the well-studied area of analysing non-monotonic
reasoning with respect to information change (c.f. [27]).

Since the early 1990s, argumentation (as overviewed in [26]) has emerged
as a generic framework for non-monotonic reasoning, admitting existing non-
monotonic reasoning formalisms as instances [7, 15]. Recently, some forms of
structured argumentation (see [5] for an overview) have been investigated in
terms of non-monotonic inference (c.f. Sect. 4). Contributing to this area of re-
search, we here analyse a well-established structured argumentation formalism—
Assumption-Based Argumentation (ABA) (see [28] for a tutorial)—against the
non-monotonic inference properties of Cumulative Transitivity and Cautious
Monotonicity in the spirit of [22, 23]. Since ABA is an instance of a well-known
structured argumentation framework ASPIC+ (see [24] for a tutorial), this work
is potentially applicable to a wider array of argumentation systems.

The original properties were defined with respect to non-monotonic entail-
ment. Yet, ABA (as well as a significant portion of other structured argumenta-
tion formalisms) is defined in terms of extensions (e.g. sets of arguments). We
thus first reformulate the properties to be applicable to extension-based non-
monotonic reasoning formalisms (but see e.g. [10, 14] for different approaches).
The essential idea is to characterize what happens to extensions when a cer-
tain change in knowledge occurs. The following will serve as an abstract pattern
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for producing the concrete instances of the properties (from now on, CUT and
MON stand for Cumulative Transitivity and Cautious Monotonicity, respectively):

Let K be a knowledge base. Suppose that an ‘entity’ ψ ‘belongs’ to an ex-
tension E of K, and let E′ be an extension of the knowledge base K′, which is
obtained by ‘adding’ ψ to K. Then

CUT : E ‘contains’ E′; MON : E′ ‘contains’ E.

These properties concern what happens when a conclusion that is reached—
which could have been already present as a hard fact, or inferred defeasibly—is
added to the knowledge base and reasoned with anew. Arguably, there are many
ways to interpret both properties, e.g. as checking that accepting a conclusion
does not yield overwhelming changes in reasoning. One of our contributions is
to provide three instantiations of both CUT and MON applicable to ABA. We will
also discuss some possible interpretations of those instantiations.

The abstract formulation above, aiming to be universal, is informal: notions
like ‘entity’ act as placeholders for alternative formal concepts (e.g. conclusion of
an argument); ‘containment’ need not be understood in set-theoretic terms. For
ABA, we will provide rigorously defined instances of the abstract formulation.

To ease the intuition behind the properties, consider the following illustration.

Example 1. Three prospective academic partners—Alphons, Benedict and Dal-
ton—invite you to dine at a new restaurant. On the eve of the dinner it turns
out that you will have to sit in pairs at two separate tables. In a playful man-
ner, your associates compete for your company: both Benedict and Dalton claim
that Alphons is antisocial, while Alphons retorts that Benedict is back-stabbing.
Somewhat puzzled, you casually inquire about the restaurant. Benedict says it
is a gourmet place. You recall that Dalton is a disagreeable person over fancy
food. It is high time to decide, so what will be the verdict? The reasoning may
unfold as follows. Benedict defends himself against Alphons by insisting that the
latter is antisocial. Meanwhile, Alphons has nothing against his attacker Dalton.
The latter is not a good option, assuming that Benedict is right about gourmet
food. No more hesitating, and you decide to go for Benedict.

Now, how would the information that you are really in a gourmet place change
your reasoning, if at all? One can argue that, knowing as a matter of fact it is a
gourmet restaurant immediately discards Dalton as an option. So if Dalton is out
of consideration, then Alphons is attacked only by Benedict, and in turn attacks
him back. Thus both Benedict and Alphons are acceptable choices. In terms of
non-monotonic inference, CUT insists you should not draw any new conclusions,
while MON demands not to lose previous inferences. Sticking to your first choice
would satisfy both requirements, whereas choosing Alphons over Benedict would
violate both properties, indicating a revision of your previous decision.

In this work we investigate how ABA (background in Sect. 2) behaves when
employed to formalize this sort of situations. In particular, in Sect. 3 we provide
three instantiations of each of CUT and MON, and analyse their satisfaction under
six extension-based ABA semantics. After discussing related work (Sect. 4), we
conclude in Sect. 5.
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2 Background

In this section, we provide background on ABA, following [28].
An ABA framework is a tuple (L,R,A,̄ ¯̄) consisting of the following ele-

ments. (L,R) is a deductive system with a language L and a set R of rules:
rules in R are assumed to be of the form ϕ0 ← ϕ1, . . . , ϕm with m ≥ 0 and
ϕi ∈ L for i ∈ {0, . . . ,m}; ϕ0 is referred to as the head, and ϕ1, . . . , ϕm is re-
ferred to as the body of the rule; if m = 0, then the rule is said to have an empty
body and we write it as ϕ0 ← >. The set A ⊆ L is non-empty, referred to as
assumptions. The so called contrary mapping¯̄̄ : A → L is a total function and
for α ∈ A, the L-formula α is referred to as the contrary of α.

As usual in the literature, we restrict the discussion to so called flat ABA
frameworks, where no assumption α ∈ A can be the head of any rule from R.

A deduction for ϕ ∈ L supported by S ⊆ L and R ⊆ R, denoted by S `R ϕ, is
a finite tree with the root labeled by ϕ, leaves labeled by > or elements from S,
the children of non-leaf nodes ψ labeled by the elements of the body of some rule
from R with the head ψ, and R being the set of all such rules. An argument A
with conclusion ϕ ∈ L and support A ⊆ A, written as A : A ` ϕ, is a deduction
for ϕ supported by A and some R ⊆ R. We say that A′ : A′ ` ϕ′ attacks
A : A ` ϕ (on some α ∈ A) just in case ϕ′ is the contrary α of some α ∈ A.

Given an ABA framework (L,R,A,̄ ¯̄), we denote the set of constructible
arguments by Args, the attack relation by  , and the corresponding argument
framework by (Args, ). For a set S ⊆ Args, we say that: S attacks an argument
A′, written S  A′, if some A ∈ S attacks A′; S attacks a set S′ ⊆ Args of
arguments, written S  S′, if S attacks some A′ ∈ S′; S is conflict-free if S 6 S;
and S defends A ∈ Args if for each A′  A we have S  A′. For an argument A,
let Cn(A) be the conclusion of A and asm(A) the support of A. We extend this
notation so that for a set S ⊆ Args of arguments, Cn(S) = {Cn(A) : A ∈ S}
and asm(S) = {α ∈ A : α ∈ asm(A), A ∈ S}.

ABA semantics are as follows. A set E ⊆ Args, also called an extension
(of (L,R,A,̄ ¯̄) or (Args, )), is: admissible, if E is conflict-free and defends all
A ∈ E; preferred, if E is ⊆-maximally admissible; sceptically preferred, if E is
the intersection of all the preferred extensions; complete, if E is admissible and
contains all arguments it defends; grounded, if E is ⊆-minimally complete; stable,
if E is admissible and E  A for all A ∈ Args \E; and ideal, if E is ⊆-maximal
such that E is admissible and contained in all the preferred extensions.

Grounded, sceptically preferred and ideal semantics fall into the category
of sceptical reasoning, whereby conclusions are drawn from a unique extension.
Meanwhile stable, preferred and complete semantics represent credulous reason-
ing, in that multiple conflicting extensions can be present.

We also recall (c.f. [15]) that the grounded extension G of any (L,R,A,̄ ¯̄)
always exists and is unique, and can be constructed inductively as G =

⋃
i≥0Gi,

where G0 is the set of arguments that are not attacked at all, and for every i ≥ 0,
Gi+1 is the set of arguments that are defended by Gi.

To simplify proofs of our results, we restrict to finite argument frameworks,
as is common in literature.
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3 Inference Properties for ABA

In this section we formulate and analyse non-monotonic inference properties
regarding ABA. There will be three different settings of instantiations of CUT and
MON. Each property will also have a strong and a weak version. The strong
properties will quantify over all extensions, indicating the necessity to preserve
the previously accepted conclusions after a change in information. Meanwhile,
the weak properties, by quantifying existentially over extensions, will insist on
the possibility, rather than necessity. When referring to a property, we will have
in mind its strong version, unless specified otherwise.

Throughout this section (except for the examples) we use the following nota-
tion. We assume as given a fixed, but otherwise arbitrary (flat) ABA framework
F = (L,R,A,̄ ¯̄), and its corresponding argument framework (Args, ). To in-
stantiate the abstract formulations of CUT and MON given in the Introduction, we
replace a knowledge base K with F , fix an argumentation semantics σ and let
E be an extension of F under σ. An ‘entity’ ψ will come from the set Cn(E)
of conclusions of E. By default, the knowledge base K′ will be represented by
F ′—the ABA framework obtained by ‘adding’ (to be formalized) ψ to F , with
the corresponding argument framework (Args′, ′). Still further, E′ will denote
an extension of F ′ according to the same fixed semantics σ. To avoid trivialities,
we consider cases only where under a particular semantics σ, each of F and F ′
has at least one extension—E and E′ respectively.

3.1 Strict Cumulative Transitivity and Cautious Monotonicity

We now rigorously formulate the first type of properties for ABA. First, given
ψ ∈ Cn(E) \ A, define F ′ = (L,R∪ {ψ ← >},A,̄ ¯̄). The following then are the
first concrete instances of non-monotonic inference properties that we consider.

STRONG STRICT CUT : For all extensions E′ of F ′ we have Cn(E′) ⊆ Cn(E);

WEAK STRICT CUT : There is an extension E′ of F ′ with Cn(E′) ⊆ Cn(E);

STRONG STRICT MON : For all extensions E′ of F ′ we have Cn(E) ⊆ Cn(E′);

WEAK STRICT MON : There is an extension E′ of F ′ with Cn(E) ⊆ Cn(E′).

STRICT CUT and STRICT MON concern what happens when a conclusion (not
itself an assumption) is reached and then considered as a fact (i.e. a rule with
empty body) to reason again. The conclusion may be learned as an objective
truth, e.g. verifying that you are in a gourmet restaurant. In essence, STRICT
properties regard strengthening of information and what effect it has on different
ABA semantics in terms of extensions. A reasoner employing ABA semantics
can utilize these properties to anticipate its behaviour regarding changes that
strengthen knowledge.

The following remarks are in place. First, satisfaction of a strong property
will always imply satisfaction of the corresponding weak property. Second, under
sceptical semantics, weak and strong formulations actually coincide, because
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the extension is unique. Finally, if a strong property is violated under stable
semantics, then it fails under both preferred and complete semantics, because
stable extensions are preferred, and preferred extensions are complete [7].

Our first result shows that grounded semantics fulfills (the strong versions
of) both CUT and MON in the STRICT setting.

Proposition 2. Grounded semantics satisfies both STRICT CUT and STRICT MON.

Proof. Let G be the grounded extension of F . If G = ∅, then F ′ = F , so
the properties are trivially satisfied. Otherwise, pick ψ ∈ Cn(G) \ A and let
B1 : B1 ` ψ, . . . , Bn : Bn ` ψ be all the arguments in G that have conclusion
ψ. Let G′ be the grounded extension of F ′ = (L,R∪ {ψ ← >},A,̄ ¯̄).

We prove G ⊆ G′ by induction on the construction of G.
For the basis step, let G0 ⊆ G be the set of arguments not attacked in F .

Since clearly Cn(Args′) = Cn(Args), we obtain G0 ⊆ G′.
For the inductive step, let Gi+1 ⊆ G be the set of arguments attacked in F

but defended by Gi ⊆ G, assuming Gi ⊆ G′ as an induction hypothesis. Suppose
A′ : A′ ` ϕ attacks Gi+1 in F ′. If A′ ∈ Args, then Gi  A′, and so G′  ′ A′

too. Else, if A′ 6∈ Args, then there is some A : A ` ϕ ∈ Args from which A′ can
be obtained by replacing occurrences of the deduction Bj `Rj ψ (for some j)
in A with the deduction ∅ `{ψ←>} ψ. (Such A′ and A are called counterpart
arguments and satisfy asm(A) = asm(A′) ∪ Bj .) We then have A  Gi+1, so
that Gi  A on some α ∈ A \Bj = A′, which yields G′  ′ A′. In any event, G′

defends Gi+1, so that Gi+1 ⊆ G′.
By induction it holds that Gi ⊆ G′ for every i ≥ 0, so that G ⊆ G′, and

hence Cn(G) ⊆ Cn(G′), giving STRICT MON.
For STRICT CUT, given that we already have G ⊆ G′, it suffices to show that

Cn(G′ \G) ⊆ Cn(G). We prove this by induction on the construction of G′.
For the basis step, let G′0 ⊆ G′ \G be the set of arguments from Args′ \Args

unattacked in F ′. Pick A′ ∈ G′0, if any. Consider a counterpart A ∈ Args with
asm(A) = asm(A′) ∪ Bj (for some j) and Cn(A) = Cn(A′). Such an A can
be attacked in F only on some β ∈ Bj , whereby G defends A. Consequently,
Cn(A′) ∈ Cn(G), and therefore, Cn(G′0) ⊆ Cn(G).

For the inductive step, let G′i+1 ⊆ G′ \ G be the set of arguments attacked
in F ′ but defended by G ∪ G′i, assuming Cn(G′i) ⊆ Cn(G). Pick A′ ∈ G′i+1, if
any, and likewise consider a counterpart A ∈ Args, which can be attacked in
F in two ways: either on some β ∈ Bj , whence G defends A in F ; or on some
α ∈ asm(A) \Bj , whence A′ is attacked in F ′ (on α), and so defended in F ′ by
G∪G′i, so that G defends A in F . In any case, A ∈ G, and so Cn(G′i+1) ⊆ Cn(G).

Cn(G′) ⊆ Cn(G) now holds by induction, as required. ut

So we now know that strong, and hence weak, STRICT CUT and STRICT

MON hold for grounded semantics. What is more, weak versions of both prop-
erties are satisfied under complete semantics, as we see next.

Proposition 3. Complete semantics satisfies WEAK STRICT CUT and WEAK STRICT

MON.
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Proof. We prove that for each complete extension E of F , and for each conclusion
ψ ∈ Cn(E) \A, there is a complete extension E′ of F ′ = (L,R∪{ψ ← >},A,̄ ¯̄)
such that Cn(E′) = Cn(E).

Let E be a complete extension of F and fix ψ ∈ Cn(E) \ A. Suppose that
B1 : B1 ` ψ, . . . , Bn : Bn ` ψ are all the arguments in E with conclusion ψ.
Now, Args′ \ Args consists of arguments A′ : A′ ` ϕ which are constructed from
arguments A : A ` ϕ in Args that use some deduction(s) of the form Ψ `R ψ, by
replacing (some) such deduction(s) with ∅ `{ψ←>} ψ. (Such A and A′ are said to
be corresponding to each other.) Let E+ be the collection of A′ ∈ Args′ \Args
whose corresponding A is in E. We claim that E′ := E ∪ E+ is the required
complete extension of F ′.

First, E′ is conflict-free, as Cn(E+) ⊆ Cn(E). Moreover, E′ defends every
argument it contains: if A′ ∈ Args′ \ Args attacks E′ in F ′, but E′ 6 ′ A′, then
a counterpart (as in the proof of Proposition 2) argument A attacks E in F ,
but E 6 A, contradicting admissibility of E. Finally, for completeness, assume
E′ defends A′ ∈ Args′. If A′ ∈ Args, then E defends A′ in F ′, so A′ ∈ E. Else,
if A′ 6∈ Args, then assume A′ 6∈ E+ for a contradiction. Then a counterpart
A ∈ Args is not in E, and so some C attacks A in F , but E 6 C. As E defends
all Bjs, we have C  ′ A′, but E′ 6 ′ C—a contradiction to E′ defending A′. In
any event, A′ ∈ E′. Hence, E′ is complete. ut

We can actually extend the proof above to be applicable to both preferred
and stable semantics, as follows.

Proposition 4. Preferred and stable semantics satisfy WEAK STRICT CUT and
WEAK STRICT MON.

Proof. We prove that for every preferred extension E of F , there is a preferred
extension E′ of F ′ with Cn(E′) = Cn(E). Since preferred extensions are com-
plete, it suffices to show that the corresponding complete extension E′ = E∪E+

(as defined in the proof of Proposition 3) is preferred in F ′. Indeed, if E′ were not
⊆-maximally admissible, then some A′ ∈ Args′\E′ could be added to E′ without
sacrificing admissibility. But then a counterpart A ∈ Args (possibly A = A′, if A′

does not use ψ) could be added to E without losing its admissibility, whence E
would not be preferred in F .

Likewise, we show that if E is stable, then E′ is also stable. Suppose A′ 6∈ E′.
If A′ ∈ Args, then A′ 6∈ E, so E  A′, and hence E′  ′ A′. Else, if A′ 6∈ Args,
then a counterpart A is not in E and E  A, so that E′  ′ A′ too. ut

Having the results above, we conclude with the following.

Corollary 5. Sceptically preferred and ideal semantics satisfy STRICT CUT.

Proof. According to Proposition 4 (on preferred extensions), the sceptically pre-
ferred (resp., ideal) extension S′ (resp., I ′) of F ′ by definition cannot contain
arguments with conclusions not in Cn(S) (resp., Cn(I)), where S (resp., I) is
the sceptically preferred (resp., ideal) extension of F . ut
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The following formalization of our illustrative example from the Introduction
reveals that neither of the (strong) properties holds under credulous reasoning.
This violation is intuitive, because credulous semantics allow for multiple exten-
sions, with not all conclusions in common.

Example 6 (STRICT CUT and STRICT MON violations). Let L = {α, β, δ, a, b, d, ψ},
where: α, β, δ are the assumptions of choosing Alphons, Benedict and Dalton
(resp.); a, b and d stand for ‘antisocial’, ‘back-stabbing’ and ‘disagreeable’ (resp.);
and ψ expresses that we are in a gourmet place. So A = {α, β, δ}, with contraries
α = a, β = b, δ = d. The rules R = {b ← α, a ← δ, a ← β, ψ ← β, d ← ψ}
complete the formalization: e.g. b ← α represents Alphons’s claim about Bene-
dict; d← ψ indicates that Dalton is a disagreeable company in a gourmet place.
(In further examples, both L and A will be omitted, as they are implicit from R
and the contrary relation.) The corresponding argument framework (Args, )
can be represented graphically as follows (a directed edge indicates an attack):

A : {α} ` b

Ψ : {β} ` ψ

B : {β} ` a

Bβ : {β} ` β Aα : {α} ` α

Bd : {β} ` dDδ : {δ} ` δ D : {δ} ` a

F has a unique preferred (also stable and ideal) extension E = {B,Bβ ,Bd, Ψ}
(gray arguments) with Cn(E) = {a, β, d, ψ}. Now suppose that after deciding to
sit with Benedict, you check the menu and realize you are indeed in a gourmet
restaurant. As knowledge changes—your belief that this is a gourmet place being
strengthened—you wonder whether you would make the same decision now.

Consider thus F ′ = (L,R ∪ {ψ ← >},A,̄ ¯̄). In Args′, we get two new argu-
ments: Ψ ′ : {} ` ψ and B′ : {} ` d. While Ψ ′ neither attacks nor is attacked, B′ is
unattacked but attacks both Dδ and D. So (Args′, ′) has two preferred exten-
sions (which are also stable): E1 = {B,Bβ ,Bd,B′, Ψ, Ψ ′} (with Cn(E1) = Cn(E))
and E2 = {Aα,A,B′, Ψ ′}. Taking E2 with Cn(E2) * Cn(E) * Cn(E2) yields vio-
lations of STRICT CUT and STRICT MON under credulous reasoning. We also have
Cn(E) * Cn({B′, Ψ ′}) = Cn(E1 ∩ E2), so STRICT MON is violated under both
ideal and sceptically preferred semantics.

So a reasoner using ABA could find itself in a situation where adding credu-
lously inferred information leads to a multitude of extensions. Even if the exten-
sion to begin with is unique, as in this case, strengthening some of its conclusions
can result in more than one acceptable extension. Whether or not this behaviour
is desirable may depend on the application, anticipated changes in information
and intended flexibility of the reasoner. For instance, one may wish for the rea-
soner to be credulous and try many different scenarios in order not to fixate on
one particular decision. Meanwhile, sceptical semantics (except grounded) pro-
vide insurance that no new conclusions are attained—fulfill STRICT CUT, while
ensuring that some are dropped (e.g. β, d). However, a sceptical reasoner may
completely lose some previously acceptable choices (such as β here).
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Example 6 also reveals contrast between STRICT CUT and STRICT MON under
sceptically preferred and ideal semantics: adding a previously attained conclusion
as a fact leaves all the original preferred extensions intact, yet allows for new
ones, thus possibly shrinking their intersection.

We observe that under credulous semantics, the strong properties gain impor-
tance in settings where there is a unique credulous extension to begin with, such
as in Example 6. Indeed, while the weak properties merely ask for the existence
of an extension (of the framework after the knowledge change) with the same
conclusions as the original one, the strong properties require all new extensions
to commit to the conclusions of the original one. The two properties together es-
sentially insist that the new framework should admit a unique extension having
the same conclusions as the original extension.

The following table summarizes this subsection’s results (as indicated, strong
and weak versions coincide under sceptical reasoning, and for credulous seman-
tics the status of the weak property is indicated in parentheses).

STRICT Cumulative Transitivity and Cautious Monotonicity
Property Grounded Ideal Sc. pref. Stable Preferred Complete

STRICT CUT X X X X (X) X (X) X (X)
STRICT MON X X X X (X) X (X) X (X)

Only grounded semantics allows for safely strengthening information. How-
ever, as the grounded extension of a given ABA framework can be empty (c.f. Ex-
ample 6), other semantics may be needed to make decisions. In that case, ideal
and sceptically preferred semantics, for instance, guarantee that no new conclu-
sions will be attained after strengthening information, yet some important ones
may be lost: in Example 6, neither semantics allows to decide whom to dine with,
because α, β, δ 6∈ Cn(E1 ∩ E2). Credulous semantics provide even less certainty,
or more flexibility—depending on the way one intends to use it, unless one has
a procedure allowing to pick the extension with the same conclusions as the
extension to begin with (guaranteed by the satisfaction of the weak properties).

3.2 Defeasible Cumulative Transitivity and Cautious Monotonicity

We now formulate another type of variants of CUT and MON. Given ψ ∈ Cn(E)\A,
define F ′ = (L ∪ {y},R \ {r ∈ R : head of r is ψ},A ∪ {ψ},̄ ¯̄).1 Then

STRONG DEF CUT : For all extensions E′ of F ′ we have Cn(E′) ⊆ Cn(E);

WEAK DEF CUT : There is an extension E′ of F ′ with Cn(E′) ⊆ Cn(E);

STRONG DEF MON : For all extensions E′ of F ′ we have Cn(E) ⊆ Cn(E′);

WEAK DEF MON : There is an extension E′ of F ′ with Cn(E) ⊆ Cn(E′).

1 The modification of the rules in F ′ is required to preserve flatness. We also slightly
abuse the notation by using¯̄̄ for both contrary mappings—the implicit presumption
is that the original ¯̄̄ is extended with the assignment ψ = y, where y is new to L.



Non-Monotonic Inference Properties for ABA 9

Unlike the STRICT setting, DEF CUT and DEF MON regard situations where a
previously accepted conclusion (inferred possibly defeasibly using assumptions) is
converted into an assumption itself, and can afterwards be drawn only defeasibly.
For instance, instead of relying on Benedict’s claim about gourmet food, you may
guess to begin with that you are in a gourmet place.

The same results (as in Sect. 3.1) hold in the defeasible (DEF) setting, via
very similar proofs. We emphasize only the pivotal aspects.

Proposition 7. Grounded semantics satisfies both DEF CUT and DEF MON.

Proof (Sketch). By reasoning as in the proof of Proposition 2, it can be shown
by induction on the construction of the grounded extension G (resp. G′) that
Cn(G) ⊆ Cn(G′) (resp. Cn(G′ \ G) ⊆ Cn(G)) by using: corresponding argu-
ments A′ ∈ Args′ \ Args (with {ψ} `∅ ψ replacing all Ψ `R ψ) of arguments
A 6∈ Args′ that use deduction(s) Ψ `R ψ; and counterparts C′ ∈ Args′ \ Args
(that use {ψ} `∅ ψ instead of some fixed Bj `Rj ψ) of arguments C ∈ Args. ut

Proposition 8. Complete semantics satisfies WEAK DEF CUT and WEAK DEF MON.

Proof (Sketch). With E complete for F , using corresponding and counterpart
arguments as in the proof (sketch) of Proposition 7, one shows that with E+ =
{A′ corresponding to A ∈ E}, set E′ := (E ∩Args′)∪E+ is complete for F ′. ut

Verbatim to the proofs of Proposition 4 and Corollary 5 (resp.), we have:

Proposition 9. Preferred and stable semantics satisfy WEAK DEF CUT and MON.

Corollary 10. Sceptically preferred and ideal semantics satisfy DEF CUT.

The following example exhibits a violation of both DEF CUT and DEF MON un-
der the remaining semantics.

Example 11 (DEF CUT and DEF MON violations. Based on Example 6). Suppose
that instead of relying on Benedict about the restaurant (remove ψ ← β), you
guess it to be a gourmet place to begin with (add ψ to assumptions). Reason
then according to (L ∪ {y},R \ {ψ ← β},A ∪ {ψ},̄ ¯̄) (with ψ = y), where the
corresponding argument framework is as follows:

A : {α} ` b

Ψψ : {ψ} ` ψ

B : {β} ` a

Bβ : {β} ` β Aα : {α} ` α

C : {ψ} ` dDδ : {δ} ` δ D : {δ} ` a

There are two preferred extensions (which are also stable): E′1 = {B,Bβ ,C, Ψψ}
(gray) and E′2 = {Aα,A,C, Ψψ} (dashed). The sceptically preferred (also ideal)
extension is E′ = {C, Ψψ} with Cn(E′) + {a, β, ψ, d} = Cn(E), where E is as in
Example 6. So DEF MON fails under both sceptically preferred and ideal semantics.
DEF CUT and DEF MON fail in credulous reasoning, as Cn(E) * Cn(E′2) * Cn(E).
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Even when starting with a unique credulous extension, assuming a previously
defeasibly inferred conclusion opens up space for multiple credulous extensions.
This may be desirable in situations where revision of decisions based on defeasible
assumptions (β in this case) is important. At the same time, such behaviour
results into possibly losing conclusions in sceptical reasoning (except, as before,
under grounded semantics). This nevertheless may be sensible, if, for instance,
differentiating defeasible information is needed (e.g. ψ versus ψ ← β).

Below is a summary of results in this subsection (using the same notational
conventions as at the end of Sect. 3.1).

DEFEASIBLE Cumulative Transitivity and Cautious Monotonicity
Property Grounded Ideal Sc. pref. Stable Preferred Complete
DEF CUT X X X X (X) X (X) X (X)
DEF MON X X X X (X) X (X) X (X)

Again, conclusions drawn using grounded semantics can be safely turned into
assumptions and inferred defeasibly instead. However, such a change would not
allow for new conclusions under the other two sceptical semantics, yet could
lead to a decision vacuum: neither of α, β, δ belongs to Cn(E′) in Example 11.
Credulous semantics, meanwhile, allow for greater dynamicity, which could be
desirable: if independently from what Benedict says a reasoner believes to be in
a gourmet place and thus does not care about Dalton, then Alphons can be as
likely a choice as Benedict, and so the conclusions may need revision.

Naturally, somewhat different formulations of the properties in the defeasible
setting could be investigated. For example, the contrary of the new assumption
ψ could instead be one of the existing symbols in L, based on the rules and
contraries of the assumptions that allowed to derive ψ in the first place. However,
such formulations can be difficult to formulate, and equally hard to grasp. We
chose the one above, readily applicable to all ABA frameworks, as the first step
in our analysis. Different and more complex settings are left for future work.

3.3 Assumption Cumulative Transitivity and Cautious
Monotonicity

Previously discussed properties focused on non-assumption conclusions. We now
turn to conclusions that are assumptions, as follows. Given ψ ∈ Cn(E) ∩ A,
define F ′ = (L,R∪ {ψ ← >},A \ {ψ},̄ ¯̄).2 Then

STRONG ASM CUT : For all extensions E′ of F ′ we have Cn(E′) ⊆ Cn(E);

WEAK ASM CUT : There is an extension E′ of F ′ with Cn(E′) ⊆ Cn(E);

STRONG ASM MON : For all extensions E′ of F ′ we have Cn(E) ⊆ Cn(E′);

WEAK ASM MON : There is an extension E′ of F ′ with Cn(E) ⊆ Cn(E′).

2 Again, for brevity reasons, the same symbol ¯̄̄ is used for both contrary mappings,
and in the new framework F ′, the contrary mapping ¯̄̄ is implicitly restricted to a
diminished set of assumptions.
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ASM CUT and ASM MON focus on previously accepted assumptions being con-
firmed and made into facts to reason again. For instance, you might have guessed
that you are in a gourmet restaurant, and after deciding whom to sit with you
may check the menu to confirm your guess and scrutinize your decision.

As for satisfaction of the properties, the same results (as in Sect. 3.1, 3.2) hold
with proofs following the same pattern, so only crucial aspects will be stressed.

Proposition 12. Grounded semantics satisfies both ASM CUT and ASM MON.

Proof (Sketch). In F ′, deductions Φ `R ϕ having ψ ∈ Φ are replaced with
Φ \ {ψ} `R′∪{ψ←>} ϕ, where bodies of rules from R′ ⊆ R do not contain ψ.
Arguments A ∈ Args with ψ ∈ asm(A) have counterparts A′ ∈ Args′ with
asm(A′) = asm(A) \ {ψ}. So Cn(G) ⊆ Cn(G′) (resp. Cn(G′) ⊆ Cn(G)) is shown
by induction on the construction of the grounded extension G (resp. G′). ut

Proposition 13. Complete semantics satisfies WEAK ASM CUT and MON.

Proof (Sketch). With E complete for F , sets E− := {A ∈ E : ψ ∈ asm(A)}
and E+ := {A′ is counterpart of A ∈ E−}, one shows that E′ := (E \E−) ∪E+

is a complete extension of F ′. ut

The following two results can be obtained similarly as before.

Proposition 14. Preferred and stable semantics satisfy WEAK ASM CUT and MON.

Corollary 15. Sceptically preferred and ideal semantics satisfy ASM CUT.

Under the remaining semantics, the properties are violated.

Example 16 (ASM CUT and ASM MON violations). Consider R = {d← α, a← β,
b← α, δ} with α = a, β = b, δ = d. This yields the following (Args, ):

Aα : {α} ` α

B : {β} ` a

A : {α} ` d

C : {α, δ} ` b

Dδ : {δ} ` δ Bβ : {β} ` β

Here, E = {B,Bβ ,Dδ} (gray) is a unique preferred (also stable and ideal) ex-
tension. Taking δ ∈ Cn(E) ∩ A results in F ′ = (L,R ∪ {δ ← >},A \ {δ},̄ ¯̄) in
which C and Dδ are replaced by their counterparts C′ : {α} ` b and D′δ : {} ` δ:

Aα : {α} ` α

B : {β} ` a

A : {α} ` d

C′ : {α} ` b

D′δ : {} ` δ Bβ : {β} ` β

Therefore, F ′ admits two preferred extensions: E′1 = {B,Bβ ,D′δ} (gray) and
E′2 = {Aα,C′,D′δ,A} (dashed) with Cn(E) * Cn(E′2) * Cn(E). The sceptically
preferred and ideal extension is E′ = {D′δ} with Cn(E) * Cn(E′).
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Compared to sceptical semantics, credulous ones are more dynamic. Here, for
instance, confirming δ results in retracting β (as well as a) under both ideal and
sceptically preferred semantics. Meanwhile, the same change effectively disables
the argument A and leads to B losing its position as the sole defender against A,
hence enabling mutual acceptability of α and δ, under, say, complete semantics.
This allows for a possibly desirable revision of conclusions.

The following is a summary of this subsection’s results (notation as before).

ASSUMPTION Cumulative Transitivity and Cautious Monotonicity
Property Grounded Ideal Sc. pref. Stable Preferred Complete
ASM CUT X X X X (X) X (X) X (X)
ASM MON X X X X (X) X (X) X (X)

We see that confirmation of some defeasible information can lead to an in-
creased number of options in credulous reasoning. This could be desirable if, for
instance, one of the choices (like C with conclusion b in Example 16) depends
on an assumption (δ) and is not considered acceptable to begin with (C has no
defense against A), but becomes viable (via C′) as soon as the assumption is
confirmed (δ ← >) and ceases to be questioned (D′δ). Meanwhile, if confirm-
ing information widens the array of credulous choices, then a sceptical reasoner
could opt for fewer—more certain—conclusions, as witnessed by the sceptical
(bar grounded) semantics satisfying ASM CUT but failing ASM MON.

4 Related Work

The two most related works to ours are Hunter’s [21] and Dung’s [16]. The for-
mer investigates non-monotonic inference properties with respect to argument–
claim entailment in logic-based argumentation systems. Given various base log-
ics, Hunter defines argument construction-mimicking entailment operators to
produce claims from knowledge bases, and examines those operators against non-
monotonic inference properties (Cumulative Transitivity and Cautious Mono-
tonicity among them). Meanwhile, Dung analyses, among other aspects of ar-
gumentation dynamics, Cumulativity (i.e. Cumulative Transitivity plus Cau-
tious Monotonicity) of ASPIC+ under stable extension semantics. The main
concern there is that confirmation of some conclusions in an extension should
strengthen other conclusions in that extension. To formalize this, Dung intro-
duces two axioms—a variant of Cumulativity and another one regarding attack
monotonicity. Stable extension semantics with respect to either of the main four
ASPIC+ attack relations are shown not to satisfy at least one of those axioms.

Other related work falls under two broad research topics in argumentation:
(i) analysing desirable properties of argumentation formalisms, and (ii) relating
belief change and argumentation. Regarding (i), with the exceptions of [16] and
[21], existing works on properties of argumentation disregard the issues of ar-
gumentation dynamics: for example, [11] propose rationality postulates for rule-
based argumentation systems; [17] provide guidelines for argumentation-based
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practical reasoning; [20] postulate and examine properties of attack relations
(and the corresponding extensions under alternative semantics) over classical
logic–based argument graphs. As far as (ii) is concerned, argumentation dynam-
ics has recently been studied with respect to Abstract Argumentation [15] and
some other argumentation-based approaches to non-monotonic reasoning, such
as DeLP [19] (see e.g. [3, 12, 13, 18]). To the best of our knowledge, [16] is the only
work in the direction of investigating structured, extension-based argumentation
with regards to non-monotonic inference properties á la [22].

Our work differs from [16] in several aspects. First, we consider Cumulative
Transitivity and Cautious Monotonicity as two separate properties, rather than
one. Also, our reformulations of the properties are not restricted to one partic-
ular semantics (stable extensions), but allow for any semantics. Still further, we
consider three types of information change, including strengthening (STRICT)
and confirmation (ASM), and analyse their influence to argumentation processes
in ABA. Finally, we do not insist that properties have to be necessarily fulfilled,
but maintain that their satisfaction is conditional on applications.

5 Conclusions

This paper researches extension-based structured argumentation dynamics in
the spirit of non-monotonic inference properties of [22, 23]. To this end, we of-
fer reformulations of non-monotonic inference properties in terms of extensions.
Particularly, we introduce (strong and weak versions of) six properties applica-
ble to the well-known structured argumentation formalism ABA and investigate
their satisfaction under six key ABA semantics. Three pairs of properties reflect
different modifications of knowledge in ABA frameworks, and each item of a pair
concerns either Cumulative Transitivity (CUT) or Cautious Monotonicity (MON)
of extension-based non-monotonic inference. While conceptually the three types
of information change are different, we show that technically they lead to the
same outcomes in the sense of a property being satisfied in either all or none of
the three settings, under a particular semantics. Consequently, irrespective of the
knowledge representation in ABA and the nature of the anticipated changes in
information, one can choose semantics best suited for the application, depending
on the desirable properties of the reasoner.

Credulous semantics violate the strong properties. This is expected, due to
presence of choice between extensions that share conclusions. Meanwhile, the
weak properties are satisfied under credulous semantics. This essentially says
that ABA frameworks do not lose the extension based on which a change in
knowledge occurs. As for further results on credulous reasoning, we can also
identify a certain provocative aspect of our findings: even when a stable/preferred
extension to begin with is unique, changing (even strengthening) information in
ABA can lead to more than one stable/preferred extension afterwards (Examples
6, 11, 16). We believe that this phenomenon itself deserves further study in terms
of characterization of ABA frameworks and/or semantics for which it occurs.
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In terms of sceptical reasoning, intuitively, the most sceptical (grounded) se-
mantics satisfies all the properties. This is because grounded extensions commit
to the most certain conclusions to begin with, and changing the way they are rep-
resented in ABA frameworks does not influence their (and other arguments’) ac-
ceptance. Somewhat surprisingly, the other two sceptical semantics—sceptically
preferred and ideal—fail MON, yet fulfill CUT. Such a behaviour is present because
changes in information can increase the number of, particularly, preferred ex-
tensions, whence their intersection shrinks, resulting in violation of MON, at the
same time satisfying CUT.

The results provide guidelines regarding argumentation dynamics for model-
ing common-sense reasoning using ABA. Due to the same property satisfaction
outcomes, irrespective of knowledge representation in ABA one has a range of
differently behaving semantics to choose among, contingent on the intended be-
haviour of the reasoner. Depending on application, one may wish to rely on the
static grounded semantics to prevent overwhelming changes in reasoning, or use
a much more dynamic credulous semantics to be flexible about revising decisions.

This work serves as one of the first steps towards investigating extension-
based structured argumentation dynamics. Current results cover ABA, and hence
(by virtue of results in [25]) ASPIC+ without preferences, with regards to non-
monotonic inference properties CUT and MON. Future work directions include
investigations of different formulations of the properties, as well as analysis
of extension-based formalisms of argumentation with preferences, such as AS-
PIC+, Value-Based Argumentation [4] or PAFs [1], against variants of the non-
monotonic inference properties in question. It may also be possible to use the
abstract formulations of the properties to analyse other non-monotonic reason-
ing formalisms, such as default logic and logic programming (c.f. [8, 9]), from a
slightly different perspective than in the existing work (e.g. [6, 10, 14]).
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5. Besnard, P., Garćıa, A., Hunter, A., Modgil, S., Prakken, H., Simari, G., Toni, F.:
Introduction to Structured Argumentation. Argument Comput. 5(1), 1–4 (2014)

6. Bochman, A.: A Foundational Theory of Belief and Belief Change. Artif. Intell.
108(1-2), 309–352 (1999)

7. Bondarenko, A., Dung, P.M., Kowalski, R., Toni, F.: An Abstract, Argumentation-
Theoretic Approach to Default Reasoning. Artif. Intell. 93(97), 63–101 (1997)

8. Brewka, G., Eiter, T.: Preferred Answer Sets for Extended Logic Programs. Artif.
Intell. 109(1-2), 297–356 (1999)



Non-Monotonic Inference Properties for ABA 15

9. Brewka, G., Eiter, T.: Prioritizing Default Logic. In: Intellectics Comput. Log. pp.
27–45 (2000)
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