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ABSTRACT
Periodograms are used as a key significance assessment and visualization tool to display the
significant periodicities in unevenly sampled time series. We introduce a framework of peri-
odograms, called ‘Agatha’, to disentangle periodic signals from correlated noise and to solve
the two-dimensional model selection problem: signal dimension and noise model dimension.
These periodograms are calculated by applying likelihood maximization and marginalization
and combined in a self-consistent way. We compare Agatha with other periodograms for the
detection of Keplerian signals in synthetic radial velocity data produced for the radial velocity
challenge as well as in radial velocity data sets of several Sun-like stars. In our tests, we find
Agatha is able to recover signals to the adopted detection limit of the radial velocity challenge.
Applied to real radial velocity, we use Agatha to confirm previous analysis of CoRoT-7 and to
find two new planet candidates with minimum masses of 15.1 and 7.08 M⊕ orbiting HD177565
and HD41248, with periods of 44.5 and 13.4 d, respectively. We find that Agatha outperforms
other periodograms in terms of removing correlated noise and assessing the significances of
signals with more robust metrics. Moreover, it can be used to select the optimal noise model
and to test the consistency of signals in time. Agatha is intended to be flexible enough to
be applied to time series analyses in other astronomical and scientific disciplines. Agatha is
available at agatha.herts.ac.uk.

Key words: methods: data analysis – methods: statistical – techniques: radial velocities –
stars: individual: HD 177565, HD 41248, CoRoT-7.

1 IN T RO D U C T I O N

Time series analyses based on periodograms have been created
and developed over decades to satisfy different requirements for
the detection of periodic phenomena. To analyse unevenly sam-
pled time series in the frequency domain, Lomb (1976) and Scar-
gle (1982) independently developed the so-called Lomb–Scargle
(LS) periodogram based on a least-squares fit of sinusoids to data.
Variations of the LS periodogram have been developed to account
for measurement errors (Gilliland & Baliunas 1987; Irwin et al.
1989) or frequency-dependent mean (Cumming, Marcy & Butler
1999; Zechmeister, Kürster & Endl 2009), non-sinusoidal func-
tions (Bretthorst 2001; Cumming 2004) or multiple periodic sig-
nals (Anglada-Escudé & Tuomi 2012; Baluev 2013b). In addition
to these LS-like periodograms, Bayesian periodograms have been
developed to assess the significance of signals using marginal-
ized likelihoods (MLs) when assuming uniform prior densities
(Bretthorst 2001; Mortier et al. 2015).

� E-mail: fengfabo@gmail.com (FF); m.tuomi@herts.ac.uk (MT)

These periodograms are frequently used in time series analyses in
disciplines such as astronomy, climatology, biology and geology. In
particular, they are used by astronomers, e.g. to detect planetary can-
didates in the radial velocity (RV) data, to find periodic variations
in photometric time series of quasars and to study asteroseismol-
ogy. Most periodograms account for the white noise by weighting
the data using measurement errors. However, noise in time series
is typically not white but could be correlated in time or even in
other dimensions. In the case of Doppler measurements of stars,
the RV noise1 is typically correlated in time and wavelength (Feng
et al. 2017a; hereafter F17). Thus, the white-noise periodograms
are insufficient in assessing the significance of a periodic signal in
red-noise-dominated time series.

Some periodograms have been created to analyse time series con-
taminated by correlated noise. For example, Schulz & Mudelsee
(2002) developed the ‘RedFit’ algorithm to fit a first-order au-
toregressive (AR1) process to paleoclimatic data. However, this

1 Although noise is equivalent to unknown signals, we consider RV
variation-induced by stellar activity as noise in the context of detecting
exoplanets.
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periodogram is biased due to the subtraction of the fitted AR1
component from the data rather than fitting the AR1 and sinu-
soids simultaneously. This problem, caused by subtraction, is fre-
quently mentioned in the field of exoplanet detections (e.g. Tuomi &
Jenkins 2012; Anglada-Escudé & Tuomi 2015; Foreman-Mackey
et al. 2015). Recently, Hara et al. (2017) have developed a com-
pressed sensing technique to model the RV red noise as a Gaussian
process. This periodogram is also biased due to the subtraction of
a global mean and/or a noise component from the data during the
pre-procession. Moreover, the Gaussian process it employs could
interpret signals as noise without proper penalization (Feng et al.
2016). To remove pointing-induced systematics in the Kepler’s two-
wheeled extension (K2) data, Angus, Foreman-Mackey & Johnson
(2016) have developed a new periodogram to account for the linear
correlation between the target light curve and selected noise prox-
ies. However, this periodogram ignores the time-correlated noise,
and does not select the so-called ‘Goldilocks noise model’ by opti-
mizing the number of noise proxies, which could be important for
avoiding false negatives and positives (Feng et al. 2016; F17).

To analyse time series as complex as encountered with RV data,
we introduce ‘Agatha’,2 a framework of periodogram analyses based
on both Frequentist and Bayesian methods. Agatha is intended to
offer a number of features: (1) fit the time-correlated noise using
the moving average (MA) model, (2) used to compare noise models
to select the Goldilocks noise model (Feng et al. 2016), (3) opti-
mization of the frequency-dependent linear trend simultaneously
with sinusoids and noise components, (4) wavelength-dependent
noise accounted for by fitting a set of linear functions of the ‘dif-
ferential RVs’ introduced by F17 to the data, (5) assessment of the
significance of signals using the Bayes factor (BF) estimated by
the Bayesian information criterion (BIC), which is probably the
Goldilocks estimator of BF for the RV data (Feng et al. 2016) and
(6) production of the so-called ‘moving periodogram’ (F17) to vi-
sualize the change of signals with time thus visually testing the
consistency of signals.

Although periodograms might not be as robust as Bayesian meth-
ods implemented through Markov Chain Monte Carlo (MCMC) in
selecting and quantifying signals (e.g. Ford & Gregory 2007; Feng
et al. 2016; Fischer et al. 2016), they are computationally efficient
and are good at signal visualization. In combination with Bayesian
methods, Agatha would greatly improve the efficiency and robust-
ness of signal detections in unevenly sampled time series such as
RVs. The code for Agatha is written in R and is available at GitHub:
https://github.com/phillippro/Agatha. A relevant web app is also
developed and is available at agatha.herts.ac.uk.

This paper is structured as follows. We analytically present the
formulae for likelihood-optimization and marginalization to con-
struct the Bayes Factor Periodogram (BFP) and the Marginalized
Likelihood Periodogram (MLP) in Sections 2 and 3, respectively.
In Section 4, these periodograms are combined to form Agatha and
are compared with other periodograms for selected RV data set
examples. Finally, we discuss and conclude in Section 6.

2 BAY E S FAC TO R P E R I O D O G R A M

We define an unevenly sampled time series as {(ti, vi)}, where vi is
the RV measured at time ti, and i ∈ {1, 2, ..., N}. The basic model

2 Agatha is named after the famous detective novelist, Agatha Christie, for
the reason that detecting signals in noise-polluted data is like solving difficult
cases in detective fiction.

used for finding periodic signals in the time series is

r̂i = A cos(2πf ti − φ) + B sin(2πf ti − φ)

+ γ + γ̇ ti +
NI∑
j=1

dj Iij , (1)

where f is the signal frequency, φ is an arbitrary phase offset
determined by the time reference point,3 γ is the intercept, γ̇

is the slope characterizing a trend and d ≡ {dj } characterizes
the linear dependency of the time series on NI noise proxies
I j ≡ {Iij : i ∈ 1, . . . , N}. This model is linear with respect to all
other parameters but f.

To account for time-correlated noise in the time series, we in-
troduce the MA model that is one of the best noise models for the
detection of Keplerian signals according to the RV challenge results
(Tuomi et al. 2013; Dumusque et al. 2017). The full model is

v̂i = r̂i +
q∑

k=1

mk exp[−|ti − ti−k|/τ ](vi−k − r̂i−k), (2)

where mk and τ are the semi-amplitude and time-scale of the corre-
lation between data measured at different times, and (vi−k − r̂i−k)
is the residual of r̂i−k at ti−k. Actually, the MA model is a simplified
Gaussian process since it only accounts for the correlation between
previous data points and the current point. Considering that the
Gaussian process may be too flexible to properly disentangle sig-
nals from the noise (Feng et al. 2016), we use q MA components, i.e.
MA (q), to model the red noise. Red noise refers to time-correlated
noise that does not include wavelength-dependent noise. The MA
(0) model with d = 0 is the white-noise model that accounts for
jitter (or excess white noise) and includes a linear trend. Thus, the
full model is the white-noise model combined with the MA model
and the correlation between RVs and noise proxies.

We assume that the residuals {vi − v̂i : i ∈ {1, . . . , N}} follow a
Gaussian distribution, the likelihood function for model M and data
D is

L(θ ) ≡ P (D|θ, M) =
∏

i

1√
2π(σ 2

i + σ 2
J )

exp

[
− (vi − v̂i)2

2(σ 2
i + σ 2

J )

]
,

(3)

where θ is the model parameters, σ J is a parameter used to model the
so-called ‘jitter’ in the time series, and σ i is the known measurement
error of vi. In reality, we estimate the optimal values of parameters
by maximizing the natural logarithm of the likelihood that is

lnL(θ ) = −
∑

i

ln[2π(σ 2
i + σ 2

J )]

2
−

∑
i

(vi − v̂i)2

2(σ 2
i + σ 2

J )
. (4)

However, it is computationally expensive to directly maximize
the logarithmic likelihood as a function of many parameters. To
make the parameter optimization more efficient, we first express
the logarithmic likelihood as a function of m = {mk}, τ and σ J by
analytically maximizing the logarithmic likelihood. We then use the
R package ‘minpack.lm’4 to maximize the logarithmic likelihood as
a function of m, τ and σ J. To simplify the calculation, we introduce
the following notations:

cik = mk exp(−|ti − ti−k|/τ ), (5)

3 Since the sine fit is time-translation invariant, the reference time could be
arbitrarily chosen without affecting the power of fit.
4 This package is available at https://CRAN.R-project.org/package=
minpack.lm.
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v′
i = vi −

q∑
k=1

cikvi−k. (6)

The residual after subtracting v̂i from vi is

εi = v′
i − A

[
cos(2πf ti − φ) −

q∑
k=1

cik cos(2πf ti−k − φ)

]

− B

[
sin(2πf ti − φ) −

q∑
k=1

cik sin(2πf ti−k − φ)

]

− γ

(
1 −

q∑
k=1

cik

)
− γ̇

(
ti −

q∑
k=1

cikti−k

)

−
NI∑
j=1

dj

(
Iij −

q∑
k=1

cikIi−k,j

)
. (7)

We further denote

w′
i = 1 −

q∑
k=1

cik,

c′
i = cos(2πf ti − φ) −

q∑
k=1

cik cos(2πf ti−k − φ),

s ′
i = sin(2πf ti − φ) −

q∑
k=1

cik sin(2πf ti−k − φ),

t ′
i = ti −

q∑
k=1

cikti−k,

I ′
ij = Iij −

q∑
k=1

cikIi−k,j ,

W ′ =
∑

i

ωiw
′
i ,

W =
∑

i

1/(σ 2
i + σ 2

J ),

Ŷ Y =
∑

i

ωiv
′
iv

′
i ,

ŶC =
∑

i

ωiv
′
ic

′
i ,

and

Ŷ S =
∑

i

ωiv
′
i s

′
i , ŜS =

∑
i

ωis
′2
i ,

ŶW =
∑

i

ωiv
′
iw

′
i , ŜW =

∑
i

ωis
′
iw

′
i ,

Ŷ T =
∑

i

ωiv
′
i t

′
i , ŜT =

∑
i

ωis
′
i t

′
i ,

Ŷ Ij =
∑

i

ωiv
′
i I

′
ij , ŜIj =

∑
i

ωis
′
i I

′
j ,

Ŷ Ij =
∑

i

ωiv
′
i I

′
ij , ŴW =

∑
i

ωiw
′2
i ,

ĈC =
∑

i

ωic
′2
i , ŴT =

∑
i

ωiw
′
i t

′
i ,

ĈS =
∑

i

ωic
′
i s

′
i , Ŵ Ij =

∑
i

ωiw
′
i I

′
ij ′ ,

ĈW =
∑

i

ωic
′
iw

′
i , T̂ T =

∑
i

ωi t
′2
i ,

ĈT =
∑

i

ωic
′
i t

′
i , T̂ Ij =

∑
i

ωi t
′
i I

′
ij ,

ĈIj =
∑

i

ωis
′
i I

′
j , Îj Ij ′ =

∑
i

ωiI
′
ij I

′
ij ′ ,

where ωi = 1/(σ 2
i + σ 2

J )W is the normalized weighting function.
Since the fit of the periodic model is time-translation invariant

(Scargle 1982), we adopt φ = 0 for the optimization of parameters.
By maximizing the logarithmic likelihood in equation (4), we find
the following equation,⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ĈC ĈS ĈW ĈT ĈI1 ... ̂CINI

ĈS ŜS ŜW ŜT ŜI1 ... ŜINI

ĈW ŜW ŴW ŴT ŴI1 ... ̂WINI

ĈT ŜT ŴT T̂ T T̂ I1 ... ̂T INI

ĈI1 ŜI1 ŴI1 T̂ I1 Î1I1 ... ̂I1INI

...
...

...
...

...
. . .

...

̂CINI
ŜINI

̂WINI
̂T INI

̂I1INI
... ̂INI

INI

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(8)

×

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A

B

γ

γ̇

d1

...

dNI

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ŶC

Ŷ S

ŶW

ŶT

Ŷ I1

...

̂YINI

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (8)

By solving the above equations, we obtain the model parame-
ters as functions of m, τ and σ J. Then, the residual expressed in
equation (7) and the likelihood in equation (3) are functions of m, τ
and σ J. We use the Levenberg–Marquardt (LM) optimization algo-
rithm (Levenberg 1944; Marquardt 1963) in order to maximize the
logarithmic likelihood to obtain the optimized model parameters
and the maximum likelihood.

To assess the significance of signals, we follow Feng et al. (2016)
to estimate the BF using the BIC which is equivalent to the max-
imum likelihood ratio of the periodic model and the noise model.
Specifically, we calculate the maximum likelihood for the noise
model (i.e. A = B = 0) and for the full model for a given period.
Then, we calculate the BIC according to

BIC = −2 lnLmax + n ln N, (9)

where Lmax is the maximum likelihood, n is the number of free
parameters and N is the number of data points (see Kass & Raftery
1995 for details). We calculate the logarithmic BF for a given period
using

ln BF10 = BIC0 − BIC1

2
, (10)

where BIC1 and BIC0 are BICs for the periodic model and the noise
model, respectively. If ln BF10 is larger than 5, the periodic model
for a given period is favoured over the noise model and the signal
at this period is considered significant. This criterion is based on a
comparison of many BF estimators by Feng et al. (2016) and is also
recommended by Kass & Raftery (1995).

To calculate the BFP, we evenly sample the frequency from a
uniform distribution over [1/	tmax, 1/	tmin] with a step of 1/	tmax.
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In this work, we set 	tmin = 1 d5 and 	tmax to be the time span of
the data, leading to an oversampling of Nyquist frequency typically
by a factor of more than 10. The values of these parameters could be
changed for different applications. Here, we primarily investigate
known signals with periods of longer than a day and prefer to avoid
the strong aliases around 1 d. We then calculate ln (BF) for each
frequency/period, and construct the BFP from these logarithmic
BFs.

3 MA R G I NA L I Z E D L I K E L I H O O D
P E R I O D O G R A M

Although the BFP penalizes model complexity by applying BIC-
estimated BF, it assumes a Gaussian-like posterior for each pa-
rameter and treats each parameter equally as a free parameter of
the model. But such assumptions are not always valid, especially
when the posterior is multimodal. According to the Bayesian the-
orem, the posterior distribution of parameters θ for a given model
M is

P (θ |D, M) = P (D|θ , M)P (θ |M)

P (D|M)
, (11)

where P (D|M) = ∫
P (D|θ , M)P (θ |M)dθ is the so-called ‘evi-

dence’ or integrated likelihood, P (D|θ , M) is the likelihood func-
tion, and P (θ |M) is the prior probability density. The evidence ratio
of two models is the BF.

Assuming uniform prior distributions for all parameters, the pos-
terior of frequency f is

P (f |D,M) ≡
∫

P (θ ′, θfix, f |D, M)dθ ′ ∝
∫

L(θ ′, θfix, f )dθ ′,

(12)

where θ ′ are the parameters to be marginalized, namely θ ′ =
{A,B, γ, γ̇ }, and θfix ≡ {d, m, τ, σJ} are the parameters that are
determined by the BFP without including sinusoidal functions in
the model. Since the integral of likelihood over θfix cannot be calcu-
lated analytically, we either fix these parameters at their optimized
values estimated by the BFP or subtract the BFP-determined noise
component (excluding the trend) from the data. We will present the
formulae for the former method and then set d = 0 and m = 0 to
obtain the formulae for the latter.

We drop the non-exponential term in the expression of the like-
lihood (see equation 3) because only the relative significance of
periodic signals is relevant. Then, the posterior becomes

P (f |D,M) ∝ Eθ ′ ≡
∫
θ ′

exp

[
−1

2

∑
i

ε2
i

σ 2
i + σ 2

J

]
, (13)

where εi = vi − v̂i . Following Mortier et al. (2015), we eliminate
the term ĈS by setting the phase to be6

φ = 1

2
tan−1

(
2Ĉ ′S ′

Ĉ ′C ′ − Ŝ ′S ′

)
, (14)

5 For synthetic data sets, we set 	tmin slightly larger than 1 to avoid aliases
since the real signals are known to us.
6 Since d, m, τ are determined by the BFP without using sinusoidal func-
tions, the phase φ in the MLP could be different to the value used in the
calculation of BFP.

where

Ĉ ′C ′ =
∑

i

ωi

[
cos(2πf ti) −

q∑
k=1

cik cos(2πf ti−k)

]2

, (15)

Ĉ ′S ′ =
∑

i

ωi

[
cos(2πf ti) −

q∑
k=1

cik cos(2πf ti−k)

]

×
[

sin(2πf ti) −
q∑

k=1

cik sin(2πf ti−k)

]
, (16)

Ŝ ′S ′ =
∑

i

ωi

[
sin(2πf ti) −

q∑
k=1

cik sin(2πf ti−k)

]2

. (17)

This gives us

− 1

2

∑
i

ε2
i

σ 2
i

= W

{
− 1

2
[Ŷ Y + A2ĈC + B2ŜS + γ 2ŴW

+ γ̇ 2T̂ T ] + AŶC + BŶS + γ ŶW + γ̇ Ŷ T

− Aγ ĈW − Aγ̇ ĈT − Bγ ŜW

− Bγ̇ ŜT − γ γ̇ ŴT

}
. (18)

Since the above integrand is the sum of second-degree poly-
nomials of free parameters, we can integrate the integrand with
respect to parameter x by expressing it as ax2 + bx + c, where a,
b and c are functions of the model parameters. Following Mortier
et al. (2015) and by repeatedly using formula

∫ ∞
−∞ exp(ax2 + bx) =√

π
|a| exp(−b2/4a), the integral in equation (13) becomes

Eθ ′ (f ) = (2π)2

W 2
√|V | exp

[
W

2ĈCŜSU

(
X + G2

V

)]
, (19)

where

G = ĈCŜSŶ T U − ŶCĈT ŜSU − Ŷ SŜT ĈCU + ĈCŜSQR

V = ĈCŜST̂ T U − ŜSĈT
2
U − ĈCŜT

2
U − ĈCŜSR2

X = ŜSŶC
2
U + ĈCŶS

2
U − Ŷ Y ĈCŜSU + ĈCŜSQ2

U = ŴW − ĈW
2
/ĈC − ŜW

2
/ŜS

Q = ŶW − ĈWŶC/ĈC − ŜWŶS/ŜS

R = ĈWĈT /ĈC + ŜWŜT /ŜS − ŴT .

The marginalized posterior/likelihood ratio of the models with
frequency f1 and f2 is

P (f1|D,M)

P (f2|D,M)
= Eθ ′ (f1)

Eθ ′ (f2)
. (20)

Following Mortier et al. (2015), we scale the MLs to their maximum
value to define the relative ML, namely ML/MLmax. Since the
likelihood is only marginalized over a limited number of parameters,
the relative ML is not BF, and is thus not appropriate for assessing
signal significance.

As mentioned before, there are two ways to construct an MLP.
One method is to optimize the noise model and fix m, τ , d and
σ J at the optimal values, and calculate the relative ML. This ap-
proach is called the ‘parameter-fixed’ method. The other method is
to optimize the noise model and subtract the optimal model predic-
tion from the data, fix σ J at the optimal value, set m = d = 0, and
calculate the relative probability. This approach is called the ‘noise-
subtracted’ method. However, both methods are biased because the
parameters of the correlated noise component are determined for

MNRAS 470, 4794–4814 (2017)
Downloaded from https://academic.oup.com/mnras/article-abstract/470/4/4794/3828792
by University of Hertfordshire user
on 12 December 2017



4798 F. Feng, M. Tuomi and H. R. A. Jones

the null hypothesis and are not marginalized simultaneously with
other parameters, probably leading to an underestimation of sig-
nal significance. This bias will be discussed in Section 4.5. We
calculate the MLP using the noise-subtracted method keeping the
parameter-fixed method as an option.

4 A P P L I C ATI O N O F AG AT H A

We combine the BFP and MLP to form Agatha that is able to com-
pare noise models, fit the correlated noise and test the consistency
of signals in time. Although the BFP and MLP can be used inde-
pendently, we suggest to use them in combination with Bayesian
methods to analyse irregular time series in the following way.

(i) Select the Goldilocks noise model through optimizing the
model parameters by using equation (8) and the LM algorithm, and
calculate the logarithmic BF using equations (9) and (10) for model
comparison (see Section 4.2).

(ii) Calculate the BFP to select the signals with the highest log-
arithmic BF (see Sections 4.3, 4.4 and 4.5 for examples).

(iii) Use the selected signal as a guidance for the search of sig-
nals by applying posterior sampling implemented by the MCMC
method.

(iv) Estimate the parameters for the selected signal based on
posterior sampling.

(v) Calculate the BIC-estimated logarithmic BF of k-planet
model and k-1-planet model. If logarithmic BF is larger than 5,
subtract the best-fitted Keplerian components from the data and
calculate the residual BFP to identify the next potential signal (see
Sections 4.4 and 4.5).

(vi) Repeat the above three steps until ln BF is less than 5 and
there is no significant signals in the residual BFP.

(vii) Test the consistency of all signals using the BFP-
based/MLP-based moving periodogram (see Section 4.6).

To test the validation of Agatha and quantify the signals identified
by Agatha, we use the Bayesian method implemented by posterior
sampling through the adaptive Metropolis (AM) algorithm (Haario
et al. 2006). We use uniform prior over the logarithmic scale for time
parameters and use uniform priors for other parameters. Following
Tuomi (2012), we confirm the existence of a signal if the posterior
distribution over the period can be constrained from above and
below. We also calculate the BIC-based BFs and adopt a logarithmic
BF threshold of 5 to select signals. The reader is referred to Tuomi
et al. (2013) and Feng et al. (2016) for details of the AM method.
In the following subsections, we will specify how Agatha is used
for different applications in data analyses of RV data.

4.1 Data

We have investigated a number of different RV data sets with Agatha
during its development, for example F17. Here, we select example
synthetic and real RV data sets in order to present the algorithms
and methodology behind the usage of Agatha.

To see the improvement of periodograms by inclusion of activ-
ity indices, we compare periodograms for the 492 synthetic data
points of the second RV challenge data set due to the strong cor-
relation between RVs and indices and because the injected 75.28 d
signal is at the limits of detectability (Dumusque 2016). It has also
been analysed using compressed sensing techniques by Hara et al.
(2017). Five signals corresponding to the five planets in the Kepler-
20 system are injected into simulated noise sampled according to
the observational calendar of HARPS measurements of τ Ceti. The

periods of these signals are 3.77, 5.79, 10.64, 20.16 and 75.28 d
with semi-amplitudes of 2.75, 0.27, 2.85, 0.34 and 1.35 m s−1. The
simulated rotation period is 25.05 d.

To see the difference between red-noise and white-noise peri-
odograms, we choose the 221 HARPS RVs of HD41248 because
this data set has been the subject of some debate in the literature
(e.g. Jenkins et al. 2013; Jenkins & Tuomi 2014; Santos et al. 2014).
It presents a good-sized data set with a reasonable sampling of ob-
servational times. The data for HD41248 is essentially the same as
that used by Jenkins & Tuomi (2014) although we reprocessed us-
ing the Template-Enhanced Radial velocity Reanalysis Application
(TERRA) algorithm (Anglada-Escudé & Butler 2012) and make
use of the wavelength-dependent data, which is available in the
appendix.

The data set for HD177565 is chosen as a fairly typical in terms
of number of points and phase coverage and with no signals previ-
ously reported. It is chosen to illustrate the necessity of modelling
wavelength-dependent noise in the detection of weak signals. We
present the 68 HARPS data points of HD177565 in Appendix. The
data is reduced using the TERRA algorithm that produces RVs for
each individual spectral order.

To model the wavelength-dependent noise, F17 have linearly in-
cluded the RV differences between spectral orders into the model
to be used as noise proxies. Specifically, we evenly divide the spec-
tral orders into groups and average the orders in each group to
form the so-called ‘aperture data sets’. For n-summations of orders,
we thus create n aperture data sets denoted by ‘nAPi’, where i ∈
{1, 2, . . . , n}. Then, the difference between aperture data sets are
called ‘differential RVs’, named by ‘nAPi-j’, where i ∈ {2, . . . , n}
and j = i − 1.

To remove the instrumental bias of HARPS, we generate aperture
data sets from a set of 168 HARPS data sets measured for different
targets, remove the outliers and stack them to generate the so-
called ‘calibration data sets’ (Feng et al. 2017b). We derive aperture
data sets and differential RVs from these HARPS measurements,
and combine them. Specifically, we remove the (differential) RVs
that have absolute values larger than 20 m s−1 or deviate from the
mean more than 5σ before combining them. For each epoch in each
aperture data set for a target, we average the calibration (differential)
RVs measured within the same night by weighting them according
to their measurement errors. We further remove the outliers that
deviate from the mean more than 3σ . There are also epochs where
no RVs of other stars are available, we assign the (differential) RVs
measured at nearby epochs to them. We use these calibration data
sets as proxies like activity indices to remove instrumental noise.
For example, we can use a linear combination of the 1AP1, 3AP2-1
and 3AP3-2 calibration data sets to model the instrumental noise
in the 1AP1 data set. We use ‘cnAPi’ and ‘cnAPi-j’ to denote the
nAPi and nAPi-j calibration data sets. Since the c3AP2-1 data set
is found to be strongly correlated with RVs, it is linearly included
into the full model in equation (2). Hereafter, we use this calibration
data in the noise model for real RV data sets.

4.2 Model comparison

Using the BF as a metric, Bayesian inference can be used to com-
pare models on the same footing. However, because the posterior
is typically complex and multimodal, it is difficult to calculate
the BF analytically. Therefore, the BF is usually calculated in a
Monte Carlo fashion by posterior sampling. In previous work, we
have used the posterior samplings to decide which noise model is
the optimal one for modelling RV noise (F17; Feng et al. 2017b).
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Table 1. The logarithmic BFs of noise models calculated using the BFP
and AM methods for the HARPS data set of HD41248 and HD177565. The
BFs are calculated with respect to the noise model with {q, NAP} = {0, 1}.
The BFs of the optimal noise models are shown in boldface.

HD41248 HD177565
Model Method Model Method

q NAP BFP AM q NAP BFP AM

0 1 0 0 0 1 0 0
0 3 − 0.781 − 1.40 0 3 12.6 11.8
0 6 − 5.4 − 6.50 0 6 6.96 6.5
1 1 38.4 40.3 1 0 13.2 14.9
1 3 37.9 37.2 1 3 23.1 22.6
1 6 30.9 29.1 1 6 19.4 18.2
2 1 40.7 42.6 3 0 11.1 12.8
2 3 39.0 37.5 3 3 21.6 21.5
2 6 32.2 30.4 3 6 17.8 17.1

The posterior distributions for noise-model parameters are typically
unimodal according to our analyses. Thus, the BIC-estimated BF
is probably a good approximation of the true value of BF. The
BIC-estimated BF is also the most conservative and efficient BF
estimator according to the comparison of different BF estimators
for synthetic and real RV data sets (Feng et al. 2016). Therefore,
based on the BIC-estimated BFs, the BFP is an efficient and valid
inference tool for noise model comparison.

Following F17, we compare noise models with different numbers
of MA components (q) and differential RVs (ND ≡ NAP − 1 where
NAP ∈ {1, 3, 6, 9, 18, 72}).7 For a noise model with a given number
of MA components and differential RVs, we adopt different initial
values for each parameter, maximize the logarithmic likelihood for
each initial value set using the LM algorithm and select the highest
likelihood to be used when calculating the BF according to equations
(9) and (10).

To find the global likelihood maxima rather than the local max-
ima in the likelihood distribution, we select initial values of ln τ

according to a uniform prior with boundaries determined by the
minimum difference between observation times and the time span
of the time series. For the other parameters, we select the initial
values from uniform distributions over intervals determined either
by the data or by our prior knowledge. For example, we vary dj

according to a uniform prior distribution over [−dmax, dmax] with
dmax = 2(vmax − vmin)/(Ij,max − Ij,min), where vmax and vmin are the
maximum and minimum of RVs, and Ij,max and Ij,min are the maxi-
mum and minimum of Ij, respectively. The reader is referred to Feng
et al. (2016) for more details of prior distributions of parameters,
although the numerical solution of the maximum likelihood is not
sensitive to prior choices. The number of generated initial values is
equal to the rounding of 10 + 10(NAP/3 + 2q).

Considering the flexibility of the MA model (Feng et al. 2016),
we use a logarithmic BF threshold of 5 to select q. Since the de-
pendence of the data on differential RVs is linear and thus is not as
flexible as the MA components, we use a threshold of 2.3 to select
NAP. We calculate the BFs with the BFP and AM methods for the
HARPS data of HD41248 and HD177565. The linear correlation
between RVs and BIS, full width at half-maximum (FWHM) and
S-index are included in the noise models. We report the BFs with
respect to the white-noise model (i.e. q = 0 and NAP = 1) in Table 1.
We find that the logarithmic BFs calculated using the BFP and AM

7 If NAP = 1, the spectral orders are averaged to form one aperture data set.
Therefore, there is no differential RVs or ND = 0.

typically differ less than 1, confirming the validation of using the
BFP as a model comparison tool. According to the BF thresholds
we have mentioned, the optimal numbers of MA components and
differential RVs are {q, NAP} = {1, 1} and {1, 3} for HD41248
and HD177565, respectively. We will apply these Goldilocks noise
models to the HARPS data in Sections 4.4 and 4.5. In principle,
the activity indices of BIS, FWHM and S-index can also be com-
pared in a similar fashion. But to be simple, we combine all of them
with differential RVs linearly in the following subsections. We also
include c3AP3-2 linearly in the model in Sections 4.4, 4.5 and 4.6.

4.3 Periodograms for index-dependent noise

Periodogram analysis without accounting for the dependence of
RVs on activity indices would be misleading if the dependence was
strong. Although the linear dependence can be removed from the
data before periodogram analysis, the subtraction is biased due to
a lack of simultaneous fitting of noise and signals, as demonstrated
visually by Anglada-Escudé & Tuomi (2015). We explain this in
detail in Section 4.5. The BFP is able to avoid such a bias by
optimizing the parameters of noise and signal for each frequency
and can thus better determine the maximum likelihood.

To test this, we compare the periodograms of BFP and MLP
with the Bayesian generalized Lomb–Scargle (BGLS; Mortier et al.
2015) and generalized Lomb–Scargle (GLS; Zechmeister et al.
2009) periodograms of the second RV challenge data set in Fig. 1.
To account for the index-dependent noise, we linearly include all
the supplied activity indexes, S-index, BIS and FWHM, in the RV
model. To compare periodograms with/without accounting for in-
dices, we use a white-noise model by setting q = 0 and NAP = 1.
We do not use the red-noise model because we aim to see the im-
provement of BFP and MLP by including activity indices in the
model.

In Fig. 1, we see great improvement in the signal-to-noise ratio
of the injected signals for BFP and MLP with respect to those in the
BGLS and GLS. Because the parameter of the trend component is
optimized/marginalized, the BFP/MLP does not show long-period
powers as the BGLS and GLS. The powers corresponding to the
signals become unique after accounting for the linear correlation
between RVs and indices. In particular, the BF/ML for the rotation
period around 25 d is very low compared with the high probabil-
ity/power in the BGLS/GLS. Although the BGLS and GLS are easy
to calculate, the computation of MLP only takes 0.392 s but greatly
improves the periodogram. Nevertheless, such a huge improvement
is not found for real RV data according to our analyses, indicating
unrealistic or oversimplified artificial noise in the synthetic data of
Dumusque (2016). This is also part of the reason why we only use
the white-noise model in the calculation of BFP and MLP.

In the BFP, the strongest three injected signals at periods of
3.77, 10.64 and 75.28 d with semi-amplitudes of 2.75, 2.85 and
1.35 m s−1 all have logarithmic BFs larger than 5 and thus may be
identified. These three signals are also the only signals recovered for
this data set by the research teams in the RV challenge (Dumusque
et al. 2017) though not by all teams. To confirm these three signals
further, we subtract the signals from the data sequentially and show
the residual BFPs in Fig. 2. We see that the strongest three signals
are recovered while the weaker 5.79 and 20.16 d signals can be
recovered to a reasonable precision. In particular, the 5.79 d signal is
not accurately recovered probably due to an incomplete subtraction
of signals or an oversubtraction of the 10.64 d signal that gives
rise to a false-positive around its harmonic, 5.3 d. Thus, a detection
of harmonics of a known signal probably indicates the existence
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Figure 1. Comparison of the periodograms of BFP, MLP, GLS and BGLS for the white-noise model for the second RV challenge data set with the observational
time stamps of τ Ceti. The signals are denoted by red dotted lines and the dot size is proportional to the semi-amplitude of the signal. The horizontal lines in the
GLS represent the 0.001, 0.01, 0.1 false alarm probabilities. The logarithmic BF threshold of 5 is shown by the horizontal dashed line. For each periodogram,
the CPU time is shown under the periodogram name in the upper-right-hand corner.

of a real signal at a similar period, which is not rare according to
the distribution of the period ratio of exoplanets (Steffen & Hwang
2015). Considering this problem of signal subtractions, it should be
noted that the BFP is expected to be used in combination with full
Bayesian methods to detect signals and that with semi-amplitudes
of 0.27 and 0.34 m s−1, these signals are rather weaker than we
expect to detect with confidence. Despite not ‘properly’ recovering
all the weaker signals in Fig. 2, it is notable that the BFP is able
to recover the 1.35 m s−1 signal that has a K/N ratio8 of 7.6,
close to the detection limit of 7.5 according to the analysis of RV
challenge results (Dumusque et al. 2017). Thus, our recovery of
simulated signals based purely on the BFP is pleasing and realistic,
considering that our team has detected signals with K/N as low as 5
without announcing false positives in the RV challenge competition
(Dumusque et al. 2017).

4.4 Periodograms for time-correlated noise

As concluded in Baluev (2013a), accounting for red noise in the
RV time series is crucial for correctly identifying Keplerian sig-

8 This signal-to-noise ratio is introduced by Dumusque et al. (2017) to
measure the significance of a signal. The K/N ratio for signal with semi-
amplitude of K is defined as K/N ≡ K/RVrms × √

Nobs, where RVrms

is the standard deviation of RVs after removing the best-fitting trend and
correlation with noise proxies and Nobs is the number of observations.

nals. However, the periodograms used by most researchers in the
community are based on the implicit assumption that the noise
is white. To overcome this problem, Bayesian methods imple-
mented by various algorithms have been developed to properly
model the time and wavelength-correlated noise (e.g. Ford &
Gregory 2007, Tuomi et al. 2013; F17). Recently, a framework
of Gaussian process is developed to mitigate the red noise caused
by stellar activity (Rajpaul et al. 2015). But the Gaussian process
is probably too flexible to be the Goldilocks noise model, which
avoids both false positives and negatives (Feng et al. 2016). F17
have demonstrated this by comparing different MA models in the
Bayesian framework in order to select the Goldilocks noise model.

However, the Bayesian approach is computationally expensive
due to the requirement of intensive sampling of the posterior density
and computations of integrated likelihoods to estimate BFs. To
efficiently account for the red noise as well as to visualize the
periodic signals, we use the BFP/MLP to account for red noise in
the RV data. In Section 4.2, we show that the noise model with
one MA component and without differential RVs is favoured by
the HARPS data of HD41248. With this noise model, we calculate
the BFP and MLP, and compare them with the GLS and BGLS in
Fig. 3.

In this figure, we observe that the ∼18.4 d signal detected by
Jenkins et al. (2013) and Jenkins & Tuomi (2014) is not as significant
as a 13.4 d signal in the BFP. The long-period signals appearing in
the BGLS, GLS and MLP are strongly weakened in the BFP. We
also see that the power of the 26 d signal in the BFP is stronger than
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Figure 2. The BFPs of the data (top left) and the residuals after subtracting the first (top right), second (bottom left), third (bottom right), circular signals. To
subtract signal precisely, these BFPs are oversampled by a factor of 2 or 3.

that in the other periodograms probably because the red noise in the
data would broaden the BF distribution around the signal if it were
not accounted for. Although the model used in the calculation of
BFP is similar to that used by Jenkins & Tuomi (2014), our results
are not sensitive to the choice of noise models since similar signals
are identified in different periodograms and are also independently
detected by Santos et al. (2014).

To find and compare signals, we subtract signals quantified using
the AM posterior sampling from the data, and show the residual
BFP in Fig. 4. We see in the top-left panel that the residuals strongly
support the existence of the 26 d signal in the data subtracted by
the 13.4 d signal. If we subtract the 26 d signal from the data, the

13.4 d one does not disappear, indicating that these two signals
are independent signals rather than harmonics of each other, as
interpreted by Santos et al. (2014). We further subtract the 13.4 and
26 d signals from the data, and find a signal at a period of about
26.7 d in the residual BFP (see the top-right panel in Fig. 4). This
signal is probably caused by an incomplete subtraction of the 26 d
signal that corresponds to a rather broad peak in the GLS shown in
Fig. 3. This indicates a contribution from stellar noise to this signal,
as suggested by previous analyses (Jenkins & Tuomi 2014; Santos
et al. 2014).

To compare the 13.4 and 18.4 d signals, we subtract the circular
18.4 d signal from the data because no MCMC chains has identified
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Figure 3. Similar to Fig. 1, but for the first-order MA model combined with the activity indices for the HARPS data set of HD41248. The blue dotted line
denotes the 18.4 d planetary candidate reported by Jenkins et al. (2013) based on Bayesian analysis of the same data set. The red dotted lines denote the signal
identified by the BFP.

this signal for the one-planet model. We show the residual BFP in the
bottom-left-hand panel. We see high BF around 13.4 d, indicating
that the 18.4 d signal is probably an alias of the 13.4 d signal.
Although we do not find strong signals other than the ∼26 d one
in the top-right-hand panel, we find the third signal at a period
of about 290 d using the AM posterior sampling. It increases the
logarithmic BF by a factor of 2.5 with respect to the two-planet
model, despite a failure in passing the logarithmic BF threshold.
However, this signal may be connected to the ∼26 and 13.4 d
signals since 1/(2/25.6 − 1/13.4) = 1/285.9. The 290 d signal
together with the 13.4 and 26 d signals are subtracted from the data
to calculate the residual BFP shown in the bottom-right-hand panel
of Fig. 4. This residual BFP does not show any significant signals.
Thus, there are at most three signals at periods of 13.4, 26 and 290 d
in this data set. To study the nature of these signals, we will test
their consistency in time in Section 4.6.

4.5 Periodograms for noise correlated in time and wavelength

The noise in RVs is caused not only by stellar activity which is par-
tially recorded by activity indices but also by wavelength-dependent
atmospheric and instrumental effects (F17). Previous periodograms
do not take the wavelength-dependent noise into account and thus
are biased in this respect in terms of identifying potential Keplerian
signals. By accounting for differential RVs as additional noise prox-

ies, the BFP and MLP are able to remove the wavelength-dependent
noise to a large extent.

To test this, we compare the BFP, MLP, BGLS and GLS for
the HARPS RV data set of HD177565. We adopt the noise model
including linear functions of activity indices and the 3AP differ-
ential RVs. This noise model is favoured by the data based on
the BFs calculated both by the AM method and by the BFP (see
Table 1). Adopting this noise model, we calculate the BFP, MLP
and other periodograms, and show them in Fig. 5. Compared with
the other periodograms, 44 d appears to be more prominent in the
BFP probably due to the accounting for correlated noise, as shown
in Fig. 3. The 44 d signal is not significant in the MLP, indicating a
bias introduced by noise subtraction that is mentioned in Sections 3
and 4.3.

To illustrate the relative roles of using an MA model and account-
ing for differential RVs in reducing noise, we calculate the BFPs for
models with {q, NAP} = {0, 3} and {1, 1}, and compare them to
the previous BFP, top-left in Fig. 6. We observe that the differential
RVs play an important role in reducing the wavelength-dependent
noise and improve the significance of the ∼44 d signal. Without de-
pendence on the differential RVs, the BFP would identify a signal at
a period of 1.43 d, which is much weaker than the 44 d signal based
on the AM-based samplings. On the other hand, the MA model
plays a role in reducing the time-correlated noise and the false pos-
itive rate. However, based on the difference in the BF ranges of the
BFPs, setting q = 1 would appear to weaken the signal somewhat
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Figure 4. The BFPs for the residuals after subtracting the 13.4 d signal (top left), the 26 d signal (top middle), the 13.4 and 26 d signals (top right), the circular
18.4 d signal (bottom left), the 13.4, 26 and 290.1 d signals (bottom right) from the HARPS data of HD41248.

presumably from part of the periodic variability being interpreted
as red noise. Thus as suggested by Feng et al. (2016), the MA
model together with other stochastic models should be penalized
more than the noise proxies for this noise model comparison. We
use the first-order MA model combined with 3AP differential RVs
to model the RV noise of HD177565.

To find additional signals, we estimated the parameters for the
44 d signal using AM-based posterior samplings, and subtract
the optimal Keplerian component from the data. Then, we cal-
culate the residual BFP and show it in Fig. 7. Based on this
residual periodogram, we cannot identify any additional significant
signals.

Based on the AM-based posterior samplings, we show the phase-
folded data and model predictions in Fig. 8. We observe a reasonable
phase coverage for this signal, which corresponds to a planet can-
didate at a period of about 44 d orbiting HD177565 on a nearly
circular orbit. Adopting a stellar mass of 1.0 M� (da Silva et al.
2012) for HD177565, we further calculate and report the parameters
of this signal by tabulating maximum a posteriori (MAP) estimates
in Table 2. If this signal is caused by a planet, it has a minimum
mass of 15.1 M⊕ and semimajor axis of 0.25 au, and thus is a hot
Neptune. Notably, there is also a debris disc orbiting HD177565
(Beichman et al. 2006), probably leading to a high impact rate on
this planet.

4.6 Moving periodogram

If the semi-amplitude of a periodic signal does not change over time,
the signal should be consistently identified in different data chunks

that are data subsets taken at different time intervals. One method
for this consistency test is to conduct Bayesian analyses of different
data chunks. But this is computationally expensive, and cannot nec-
essarily be applied because of uneven data sampling. An alternative
method is to calculate the periodogram of the data within a time
window. We move the window with small time steps, and repeat the
calculation of periodograms until the whole time span is covered.
The assembly of these periodograms forms a 2D periodogram map.
This is the so-called ‘moving periodogram’, which has been used
in the analysis of Kepler light curves by Ramsay et al. (2016) and
is introduced in the analysis of RV data here. To make the moving
periodogram computationally efficient, we calculate the MLP for
each data chunk by subtracting noise component from the data.

For example, we identify two signals at periods of 13.4 and 26 d
in the HARPS data of HD41248. We remove the correlated noise
component in the two-planet model from the data and calculate the
MLP with a white-noise model (or set m = d = 0). We calculate the
MLP for the data in a 2000 d time window, and move this window
to cover the whole time span within 100 steps. We calculate the
MLP for each time step, and scale the MLP power to be RML ≡
(ML − ML)/(MLmax − ML) where ML and MLmax are the mean
and maximum ML. Then, we use colours to encode the RML to
calculate the moving periodogram, which is shown in Fig. 9. This
periodogram is aimed at visualizing the consistency of signals in
time rather than assessing the significance of signals. We can see that
the short-period signals are consistently identified over the whole
time range while the ∼290 d signal is visible over about 1000 d
centring around JD2455000 and is relatively less distinct at other
times.
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Figure 5. Similar to Fig. 1, but for the model including differential RVs for the HARPS data set of HD177565.

Figure 6. The BFPs for models with {q, NAP} = {1, 3}, {1, 1} and {0, 3} for HARPS data of HD177565. The signals with maximum BFs are denoted with
red dotted lines.

Instead of subtracting the correlated noise from the data, we also
calculate the BFP-based periodogram of the original data to account
for the possible time-varying noise properties noticed by Santos
et al. (2014) and Jenkins & Tuomi (2014). Unlike the MLP-based
moving periodogram, the BFP-based one can assess the significance

of signals by encoding the logarithmic BFs with colours. Similar to
the MLP-based moving periodogram, the BFP-based moving pe-
riodogram is generated from a sequence of BFPs made within a
2000 d moving window. Since the BFP is computationally more
expensive than the MLP-based one, we only cover the whole data
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Figure 7. The BFP for the HARPS data of HD177565 with the 44 d signal,
subtracted and quantified using the AM posterior sampling.

Figure 8. The phase-folded data and the one-planet model prediction for
the TERRA-reduced HARPS data of HD177565. The small dots represent
raw RVs while the error bars denote the binned data. The noise component
is subtracted from the data and the model.

Table 2. The MAP estimation of the parameters for two signals
detected in the TERRA-reduced HARPS data of HD177565. The
uncertainties of parameters are represented by the values determined
at 1 and 99 per cent of the cumulative posterior density. We estimate
the minimum planetary mass and semimajor axis using a stellar mass
of 1.0 M� (da Silva et al. 2012) with an assigned 1σ uncertainty of
0.1 M�.

Parameters HD 177565b

P (d) 44.505 [44.212, 45.091]
K (m s−1) 2.71 [1.72, 3.83]
e 0.0593 [0.001 85, 0.231]
ω (rad) 5.41 [0.0679, 6.21]
M0 (rad) 2.57 [0.0686, 6.23]
m sin i (M⊕) 15.1 [9.05, 21.5]
a (au) 0.246 [0.227, 0.265]

with 10 steps. We show this moving periodogram in the left-hand
panel of Fig. 10. The BFP shows a consistent signal at a period of
about 13.4 d. Although the 18.4 d signal also consistently appears in
the BFP as noticed by Jenkins & Tuomi (2014), it is not as strong as
the 13.4 d signal and the subtraction of the latter makes the former
disappear, as shown in Section 4.4. The 26 d signal is not consis-
tently strong over the whole time span, although the high cadence
data measured after JD2456000 strongly suggests its existence. Ac-
cording to the analyses in Santos et al. (2014) and Jenkins & Tuomi
(2014), this inconsistency of the 26 d signal is probably caused by
stellar activity since the periodogram power at this period is seen
in the activity indices such as FWHM. This inconsistency could
also be caused by the irregular sampling of the data because sig-
nals tend to be more significant in high cadence data. In particular,
the time sampling would influence the consistency of long-period
signals more than that of short-period signals because the former
need sampling on longer time series to cover their phase. However,
this inconsistency of the 26 d signal is not shown in the MLP-based
moving periodogram that does not account for time-varying noise
properties. This again demonstrates that the subtraction of a noise
component from the data would typically introduce bias in the data
analyses.

To check the consistency of the 290 d signal in time, we subtract
the Keplerian components of the 13.4 and 26 d signals from the data
and show the residual moving periodogram in the right-hand panel
of Fig. 10. We see no evidence for strong signals, as indicated by the
BF values. On the other hand, the logarithmic BF is relatively high
around 18 and 26 d, but is not significant by being higher than 5. The
signals apparent in the residual BFs could arise from the subtraction
of signals from all data chunks when these signals do not contribute
the same amount of RV variation to different data chunks. This is
evident from the non-uniform significance of the 26 d signal over
time shown in the left-hand panel. Considering the potential bias
introduced by signal subtraction, the residual moving periodograms
can only be used in combination with Bayesian methods which
account for all signals together with the noise model parameters
simultaneously.

Considering these factors and the analyses shown in Section 4.4,
we conclude that the 13.4 d signal corresponds to a planet candidate,
and interpret the 18.4 d signal as an alias of the 13.4 d signal.
Following the conclusion in Jenkins & Tuomi (2014), we regard
the 26 d signal as a possible combination of a Keplerian signal and
stellar rotation. Moreover, the 13.4 and 26 d signals are close to the
1:2 period ratio that is found to be common in extrasolar planetary
systems (Steffen & Hwang 2015). We are suspicious about the
existence of the 290 d signal since we cannot find it in the residual
BFP. We also find that the inclusion of this signal increases the
eccentricity of the 26 d signal and changes the phase of the 13.4 d
signal, indicating that the 290 d signal is probably a signal connected
to the 13.4 and 26 d signals. Moreover, this signal does not satisfy
the logarithmic BF threshold of 5.

To visualize the fitting of the 13.4 and 26 d signals quantified
by the AM posterior sampling, we show the phase-folded RVs in
Fig. 11. We see a good phase coverage, further increasing their
credibility as planet candidates. Following Jenkins et al. (2013),
we adopt a stellar mass of 0.92+0.05

−0.05 M� for HD41248, calculate
the parameters of these two signals and report them in Table 3.
The parameters we estimate for the 26 d signal are consistent with
those found by Jenkins et al. (2013). The 13.4 d planet candidate
corresponds to a super-Earth with a minimum mass of 7.08 M⊕,
and an eccentricity of 0.01, which is lower than the value reported
for the 18.4 d signal by Jenkins et al. (2013).
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Figure 9. The MLP-based moving periodogram of the HARPS RV data set of HD41248. The periodogram is calculated in a 2000 d moving time window
covering the whole time span in 10 steps. The periodogram powers for each step is encoded by colours and shown vertically at the centre of the time window.
Thus, the time span of the moving periodogram is shorter than the data time span by 2000 d. The top panels show the noise-subtracted data while the bottom
ones show the moving periodogram for period ranging from 10 to 1000 d (left) and for a narrow period range around the short-period signals (right). The colour
bar shows the RMLs of the MLP. To optimize the visualization of signals, the RMLs are truncated to med(RML) − 5σRML, where med(RML) and σRML are
the median and standard deviation of RMLs, respectively. The signals are denoted by the grey dotted lines while the signals not identified by the model are
denoted by cyan dotted lines.

In summary, the moving periodogram is a useful tool for diag-
nosing the consistency of signals in time, and in visualizing the
change of signals in time. Although the MLP-based moving pe-
riodogram is relatively fast to calculate, the BFP-based moving
periodogram is more robust in terms of accounting for time-varying
noise properties. We expect better performance of the BFP-based
moving periodogram due to its ability to account for the trend and
correlated noise that vary with observation seasons. The advantage
of these new moving periodograms is evident from the analyses
of the HARPS data of HD41248. On the other hand, the MCMC-
based test of signal consistency is computationally expensive and
the divisions of the observational baseline will often be too few for
consistency tests. The moving periodograms can provide an alter-
native and reliable visualization of periodic signals in time series
albeit with reliance on careful scaling and visualization and the need
for a long-enough observational baseline.

5 A NA LY S I N G T H E H A R P S DATA O F CoRoT-7
U S I N G TH E AG ATH A A P P

In this section, we reanalyse the HARPS data of the well-known
target, CoRoT-7, and show how to use the Agatha app. The data is
obtained from the European Southern Observatory archive, and is

processed with the TERRA algorithm (Anglada-Escudé & Butler
2012). Our data is essentially the same as that used by Tuomi et al.
(2014). CoRoT-7 is a moderately active G9 star (Bruntt et al. 2010)
hosting two planets with orbital periods of 3.7 and 0.85 d (Léger
et al. 2009; Queloz et al. 2009). There is much controversy over
the existence of a third planet with a period of about 9 d (Haywood
et al. 2014; Tuomi et al. 2014; Mortier & Collier Cameron 2017).
We apply the Agatha app to the reanalysis of the HARPS data of
CoRoT-7 as follows.

First, we choose files from the archived data list or upload our
own data. Since we have processed the HARPS data of CoRoT-7
using the TERRA algorithm, we choose it from the list, as seen in
Fig. 12. The data file contains the observation times, RV, RV errors
and noise proxies including activity indices, calibration data sets
and differential RVs.

Then, we compare noise models in the ‘Model Comparison’
tab. The user can choose the data set for noise model comparison,
the maximum number of MA components and the type of proxy
comparison. The default proxy comparison is ‘Cumulative’, which
means that Agatha will first calculate the Pearson correlation coeffi-
cients between proxies and RVs. Then, Agatha will add proxies one
by one in a decreasing order of coefficients to avoid the inclusion of
redundant noise proxies that may correlate with the noise proxies
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Figure 10. The BFP-based moving periodograms of the HARPS RV data set of HD41248 (left) and the residuals after subtracting the 13.4 and 26 d signals
(right). The colour encodes the logarithmic BFs. The logarithmic BFs are truncated to optimize the visualization of signals. The other elements are similar to
Fig. 9.

Figure 11. As in Fig. 8, but for the HARPS data of HD41248 and the two significant signals in the data.

Table 3. The MAP estimates of the parameters for two signals detected
in the TERRA-reduced HARPS data of HD41248. We are dubious about
the existence of HD 41248b due to an approximate overlap between its
period and rotation period. We estimate the minimum planetary mass and
semimajor axis using a stellar mass of 0.92+0.05

−0.05 M� (Jenkins et al. 2013).

Parameters HD 41248b? HD 41248c

P (d) 25.654 [25.566, 25.694] 13.365 [13.353, 13.387]
K (m s−1) 2.37 [1.30, 2.93] 1.86 [1.03, 2.5]
e 0.0489 [0.002 01, 0.260] 0.0117 [0.002 99, 0.257]
ω (rad) 5.49 [3.26, 9.3] 0.943 [−3.04, 3.04]
M0 (rad) 5.57 [3.22, 9.33] 6.18 [3.24, 9.31]
m sin i (M⊕) 8.36 [5.53, 12.8] 7.08 [3.56, 8.83]
a (au) 0.166 [0.159, 0.173] 0.107 [0.103, 0.112]

included in the model. The basic number of proxies is the number of
proxies included in the reference model. We set the basic number to
be zero and set the maximum number of proxies to be 5. We also set
the maximum number of MA components to be 2. Then, we click
the ‘compare noise models’ button and get the table of logarithmic
BFs as shown in Fig. 13. The user can also download the table for
publication.

Based on the logarithmic BF threshold of 5, the optimal noise
model is the model that combines MA(1) and a linear function
of FWHM. Then, we use this noise model in the calculation of
periodograms. There are many types of periodograms available,
which can be compared if multiple periodograms are chosen. Since
the BFP is the most reliable periodogram, we only choose the BFP
to visualize signals. We choose the number of MA components and
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Figure 12. The screen shot of choosing files.

Figure 13. The screen shot of model comparison.

proxies according to the result of model comparison, and click the
button of ‘plot periodograms’ to calculate the BFP. We show the
BFP in Fig. 14. The logarithmic BF at 3.7 d is around 30, much
larger than the threshold of 5. Hence, we quantify this signal using
MCMC-based posterior samplings. We calculate the BFP for the
data subtracted by the Keplerian component of the one-planet model
and show it in the left-hand panel of Fig. 15. We see a significant

signal around 8.9 d, which is confirmed as a planetary candidate by
Tuomi et al. (2014). After subtracting this signal from the data, we
calculate the residual BFP that is shown in the right-hand panel of
Fig. 15. The signal at 0.85 d is strong in this BFP, which corresponds
to the planet detected using the transit method.

Therefore, the combination of Agatha and MCMC methods can
identify three signals at periods of about 0.85, 3.7 and 8.9 d, which
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Figure 14. The screen shot of the calculation of BFP.

Figure 15. The BFPs of the data subtracted by the Keplerian components of the one-planet (left) and two-planet (right) models quantified using MCMC
samplings.

have been confirmed by Tuomi et al. (2014) using the MA(1) model
combined with Bayesian methods. But the 8.9 d signal is not con-
firmed by Haywood et al. (2014) probably due to their usage of
Gaussian process, which has been found to interpret signals as
noise and thus lead to false negatives (Feng et al. 2016). Such false

negatives could be avoided by using simpler red-noise models such
as the MA(1) model. A Bayesian analysis of this data set shows
that the inclusion of the 8.9 d signal increases the BIC-estimated
BF by a factor of 25 with respect to the two-planet model. This
provides weak evidence for its existence, although Kass & Raftery
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Figure 16. The screen shot of the calculation of moving periodogram.

(1995) consider such an improvement as strong evidence. More-
over, this signal does not overlap with the rotation period that is
about 23 d (Queloz et al. 2009). But considering that this signal
does not pass the logarithmic BF threshold of 5, we do not interpret
it as a planet candidate. This signal is not confirmed by Mortier &
Collier Cameron (2017) either based on the stacked BGLS.

We move on to check the consistency of signals in time using the
moving periodogram. We choose the periodogram type, the noise
model, the time window, the number of steps and other parameters
in the ‘2D periodogram’ tab. We calculate the MLP-based moving
periodogram in a time window of 300 d covering the data in two
steps to avoid the 3-yr gap between the 2009 and 2012 RV cam-
paigns. The periodogram is shown in Fig. 16. As we can see, the
signals at periods of 3.7 and 0.85 d are significant while the 8.9 d
signal is visible over the whole time span. The location of the peri-
odogram power deviates from 0.85 d probably due to the assumption
of circular orbits in the calculation of moving periodogram. Nev-
ertheless, the consistency of signals cannot be fully explored using
the moving periodogram because the data size is small and/or the
data is not well sampled and so we are not able to be definitive about
the consistency of 8.9 d signal in time.

In order to make reliable periodograms, the window size and
the period range of the moving periodogram should be adjusted
according to the property of a given data set. As a rule of thumb,
each bin with more than 10 points spread across the bin can be
expected to provide constraints on periods less than the bin size.
For example, for 100 RVs uniformly sampled over a time span of
1000 d, we recommend a window size of at least 100 d to include
at least 10 points in each window for periodogram calculation. If a
100 d window is adopted, the moving periodogram is only able to
check the consistency of signals with periods less than 100 d. For
RVs sampled with significant gaps, the number of steps could be

chosen to avoid the gaps to a large extent. For example, we choose
two steps to calculate the MLP for the 2009 and 2012 RV campaigns
separately (see Fig. 16). The user should vary the time window and
steps to optimize the moving periodogram.

In summary, we confirm three signals at periods of 0.85, 3.7 and
8.9 d in the HARPS data of CoRoT-7. Based on our analysis of the
current HARPS data, nothing definitive can be said regarding the
nature of the 8.9 d signal. More and well-sampled data is required.

6 D I S C U S S I O N A N D C O N C L U S I O N S

Complementary to Bayesian methods, Agatha is developed to dis-
entangle periodic signals from correlated noise. Agatha can select
the best noise model and assess the significance of periodic signals
based on the BIC-estimated BF. Since it optimizes the correlated
noise and trend component for each frequency/period, it presents
clearer signals than traditional LS periodograms. Moreover, the
MLP-based and BFP-based moving periodograms can be used to
diagnose the consistency of signals in time, and to reject false pos-
itives.

We test the efficiency of Agatha and the consistency between
Agatha and Bayesian methods for an RV challenge data set and
the TERRA-reduced HARPS data of HD41248, HD177565 and
CoRoT-7. Agatha typically identifies signals consistent with those
found by Bayesian methods, although it may miss very weak signals
due to its assumption of a single signal. Our analysis of RV chal-
lenge system 2 is able to recover signals with signal-to-noise ratio
down to K/N = 7.5, which is probably a limit of reliable detection
of planets using the RV method (Dumusque et al. 2017). By quan-
tifying the signals identified by Agatha using the AM algorithm for
two interesting nearby stars, we find two new planet candidates with
15.1 and 7.08 M⊕ orbiting HD177565 and HD41248 with periods
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of 44.5 and 13.4 d, respectively. The analysis of the HARPS data of
HD41248 shows that the previously claimed 26 d signal is probably
caused by a combination of planetary perturbation and stellar rota-
tion while the 18.4 d signal is not significant and is an alias of the
13.4 d signal. We also find clues for other short-period signals in
the HARPS data of HD177565. We confirm the previous detection
of two planets with orbital periods of 0.85 and 3.7 d in the CoRoT-7
system and provide weak evidence for a signal at a period of 8.9 d.

Compared with previous red-noise periodograms such as Red-
Fit (Schulz & Mudelsee 2002) and the compressed sensing peri-
odogram (Hara et al. 2017), the BFP accounts for signals and noise
simultaneously and thus avoids the bias introduced by residual anal-
ysis. Instead of assuming white noise as Angus et al. (2016) did,
Agatha accounts for time-correlated noise and is thus more appro-
priate for analysing the K2 data to identify stellar rotation periods
and to recover acoustic oscillations in giant stars for asteroseis-
mology studies. Moreover, the BFP is the first periodogram that
can compare noise models as well as assess signal significance us-
ing the BF. To avoid false negatives/positives, the BFP selects the
Goldilocks noise model using the BIC-estimated BF. For exam-
ple, the number of eigen light curves used by Angus et al. (2016)
can be optimized by applying the BFP-based model comparison.
Otherwise, the eigen light curves, like differential RVs, might in-
troduce additional noise into model fitting (F17). Agatha enables
wavelength-dependent noise to be assessed that appears to be an
important factor in reliable signal detection.

Nevertheless, the application of Agatha is limited by the assump-
tion of single sinusoidal signal. Thus, it is not aiming at identify-
ing and quantifying signals independently. In addition, we only
account for a linear trend in the model while long-period sig-
nals are better modelled as a second-order polynomial, although
such a linear trend sometimes can improve the fitting significantly.
We have used linear functions to model the correlation between
RVs and noise proxies, which may not be optimal for the non-
linear dependence of RVs on activities as mentioned by Haywood
et al. (2016) and Feng et al. (2016). But more sophisticated models
may cause the overfitting problem that is mentioned in Feng et al.
(2016). Hence, there is no perfect way to model activity-induced RV
variation.

To reduce the dimensionality of the model comparison, Agatha
compares noise models and signals separately. According to our
analyses of HARPS data sets (e.g. F17), the inclusion of periodic
functions in the model typically do not change the optimal noise
model. Higher order MA model is only necessary if RVs are mea-
sured with high cadence (e.g. Tuomi et al. 2013), which usually
does not contribute to the RV variation-induced by planets. Hence,
the noise and signal selection can be performed separately, although
the users can compare the highest BF of BFPs calculated with dif-
ferent noise models to select the optimal combination of signal and
noise components.

Considering that Agatha only estimates the significance of a sin-
gle sinusoidal signal, we suggest to use it in combination with fully
Bayesian methods to find periodic signals. Future developments are
necessary to generalize Agatha to identify multiple signals with
various periodic functions and red-noise models. Agatha is flexible
enough to be adapted for time series analyses in various fields such
as paleontology (Bailer-Jones & Feng 2013; Feng & Bailer-Jones
2013; Melott & Bambach 2013) and paleoclimatology (Wunsch
2004; Lisiecki 2010; Feng & Bailer-Jones 2015) and particularly
in astronomical fields such as quasar variability (Graham et al.
2015; Vaughan et al. 2016), stellar activity (Reinhold, Reiners &

Basri 2013), classification of variable stars (Richards et al. 2011),
variability of AGN (Hovatta et al. 2007), solar cycles (Chowdhury,
Choudhary & Gosain 2013) and other subjects with periodic signals.
We list the following examples specifically.

(i) The LS periodogram has been used to identify various periods
in the biodiversity variation (e.g. Melott et al. 2012) while Bayesian
methods show no evidence for periodicity (Bailer-Jones 2009;
Feng & Bailer-Jones 2013). Instead of subtracting a global trend
from the biodiversity time series (Melott et al. 2012), the BFP
accounts for a floating trend and thus avoids potential biases intro-
duced by trend-subtraction.

(ii) White-noise periodograms (Graham et al. 2015) and
Bayesian methods (Andrae, Kim & Bailer-Jones 2013) have been
used to discover periodicity in quasar light curves. To avoid the
over-simplified noise model adopted by traditional periodograms
and the computationally expensive posterior samplings used by
Bayesian methods, the BFP and MLP can be efficiently calcu-
lated for a given quasar light curve to disentangle signals from
red noise. In addition, the BFP and MLP-based moving peri-
odograms can be used to visualize the change of quasar periodicity
in time.

(iii) The LS and GLS have been used to extract periodic features
from light curves for the classification of variable stars (Richards
et al. 2011; Graham et al. 2013). To improve the classification of
variable stars, the BFP/MLP can be calculated for a given light
curve in order to account for the red noise, which is found to be
common in various light curves (Pont, Zucker & Queloz 2006;
Aigrain et al. 2015). Without consideration of a correlated-noise
model, the time-correlated noise would probably lead to false pos-
itives and neglecting real signals in the light curves, potentially
leading to false classifications of variable stars.

(iv) The so-called ‘multiband LS periodogram’ has been devel-
oped to extract periodic signals from multiband light curves mea-
sured by planned multicolour surveys such as LSST (VanderPlas &
Ivezić 2015). However, such a periodogram does not account for
wavelength-correlated noise and thus would probably lead to false
positives/negatives. Such correlated noise could be modelled by
including noise proxies similar to differential RVs in the model.
The Agatha app is made within the SHINY web application framework
developed by RSTUDIO (https://shiny.rstudio.com). It is aimed at visu-
alizing signals reliably in a framework of periodograms rather than
finding periodic signals independently. It should be used in combi-
nation with MCMC-based posterior samplings to select and quantify
multiple signals. Compared with other periodogram-related soft-
wares, the Agatha app is highly interactive and easy to use, with-
out requiring programming skills. It provides the BFP and MLP
together with other periodograms for various applications. On the
other hand, the widely used exoplanet software, SYSTEMIC (Meschiari
et al. 2009), only provides simple periodograms such as GLS and
LS, which could be unreliable for planet detections. PERIOD04 (Lenz
& Breger 2004), another periodogram software, only use white-
noise periodograms, although it can provide multiple-frequency
fits. PLANETPACK (Baluev 2013a), a C++ software, requires knowl-
edge of C++ for usage and is computationally expensive, though
it can deal with time-correlated noise and multiple frequencies.
Thus, Agatha is a good choice for signal visualization, and would
be more versatile if used in combination with Bayesian methods
implemented by posterior samplings. Users can use the archived
RV data sets or upload their own data to explore signals with
Agatha.
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A P P E N D I X : H A R P S DATA O F H D 1 7 7 5 6 5
A N D H D 4 1 2 4 8

Table A1. The HARPS data of HD177565. The online version is available at https://github.com/phillippro/agatha/tree/master/data. The columns of
3AP2-1 and 3AP3-2 are differential RVs derived from three summations of orders. c3AP2-1 is the calibration data.

JD-2400000 RV (m s−1) RV error (m s−1) BIS FWHM S-index c3AP2-1 (m s−1) 3AP2-1 (m s−1) 3AP3-2 (m s−1)

52937.514 1.22 0.43 −35.73 6.8160 0.1695 −3.31 −3.31 −1.69
52937.536 0.05 0.43 −34.41 6.8142 0.1683 −0.25 −1.45 −1.27
52939.505 −0.98 0.41 −37.09 6.8150 0.1697 −0.87 −0.32 −2.30
52947.501 0.10 0.40 −37.99 6.8173 0.1715 −2.57 −3.78 −3.51
53146.709 1.68 0.50 −39.28 6.8215 0.1705 −0.13 0.59 −0.05
53146.869 0.86 0.42 −38.31 6.8175 0.1690 −0.59 0.34 0.68
53149.911 4.07 0.50 −34.40 6.8120 0.1685 −0.97 −1.34 −0.48
53150.801 3.34 0.50 −35.30 6.8184 0.1761 −0.19 0.66 −1.08
53154.806 −2.91 0.46 −36.77 6.8131 0.1735 0.05 1.06 3.50
53201.701 −3.40 1.64 −35.00 6.8071 0.1539 0.29 6.53 7.56
53201.705 −0.89 2.06 −29.77 6.8115 0.1526 3.63 3.63 5.97
53201.710 −2.62 2.32 −31.83 6.8018 0.1534 0.24 −2.62 8.56
53202.682 0.93 0.36 −36.53 6.8128 0.1709 −0.48 −0.39 1.13
53202.688 1.21 0.37 −37.39 6.8152 0.1711 −0.53 −1.19 0.25
53203.699 −0.30 0.27 −36.28 6.8213 0.1706 −0.76 −4.20 1.68
53203.704 1.85 0.28 −36.58 6.8192 0.1710 −1.07 −4.05 0.49
53204.660 −4.61 0.35 −36.35 6.8148 0.1706 0.72 3.20 2.44
53204.663 −5.72 0.34 −36.75 6.8146 0.1695 3.57 3.57 3.37
53204.667 −5.13 0.36 −34.60 6.8134 0.1705 0.21 2.54 2.58
53205.577 0.00 0.50 −37.32 6.8159 0.1691 0.27 −1.68 −1.41
53205.579 1.73 0.54 −34.97 6.8140 0.1692 0.40 0.40 0.99
53205.581 0.19 0.50 −34.96 6.8184 0.1700 −0.79 −0.79 −1.14
53205.582 −0.24 0.56 −35.76 6.8140 0.1668 1.48 1.48 −2.10
53205.584 0.50 0.55 −37.78 6.8145 0.1674 0.87 0.40 −0.39
53206.682 −1.80 0.32 −36.29 6.8105 0.1698 0.17 0.70 0.89
53206.686 −0.69 0.32 −35.50 6.8114 0.1699 −0.99 −0.99 2.97
53206.689 −1.24 0.32 −36.17 6.8135 0.1705 −0.29 −0.52 0.43
53217.651 −7.59 0.42 −37.65 6.8090 0.1684 0.15 4.04 1.14
53217.655 −7.40 0.42 −36.01 6.8078 0.1679 0.80 0.80 0.84
53217.659 −7.11 0.44 −35.99 6.8096 0.1685 −0.05 0.82 2.42
53218.686 −0.24 0.40 −36.36 6.8140 0.1692 −0.86 −1.45 −0.44
53218.690 0.71 0.39 −35.94 6.8157 0.1678 −1.20 −1.20 0.15
53218.694 0.11 0.41 −37.54 6.8143 0.1679 0.54 0.26 −0.49
53230.669 2.75 0.38 −36.15 6.8193 0.1703 0.04 −1.39 −1.62
53230.673 2.08 0.36 −36.02 6.8188 0.1694 −1.33 −1.33 0.92
53230.677 0.71 0.38 −35.96 6.8190 0.1711 1.22 −0.66 0.99
53232.626 1.40 0.62 −36.34 6.8173 0.1689 1.18 −0.01 −0.03
53232.630 3.14 0.67 −34.29 6.8149 0.1651 2.19 2.19 −3.03
53232.634 2.21 0.62 −37.20 6.8202 0.1685 −1.25 −0.83 −0.32
53263.578 −3.23 0.28 −37.47 6.8209 0.1681 −1.74 −2.07 1.16
53263.583 −1.14 0.29 −37.65 6.8226 0.1682 −2.04 −2.84 0.89
53264.553 −4.67 0.29 −36.51 6.8191 0.1681 0.51 0.93 3.79
53264.559 −5.37 0.29 −37.03 6.8175 0.1684 −0.85 1.84 4.49
53269.565 −0.48 0.53 −38.85 6.8169 0.1676 −0.02 2.38 −1.10
53269.570 1.01 0.68 −35.30 6.8179 0.1653 0.93 2.80 −0.07
53551.710 2.18 0.30 −33.61 6.8159 0.1808 −0.24 0.29 −1.09
53817.909 4.71 0.33 −30.88 6.8233 0.1859 0.97 −0.12 −2.71
53817.914 4.58 0.31 −30.20 6.8222 0.1856 0.79 0.79 −2.60
54257.771 2.86 0.73 −29.54 6.8394 0.1976 0.76 0.43 4.12
54257.772 4.72 0.69 −29.04 6.8400 0.1930 −0.56 −0.56 −0.17
54257.774 4.28 0.68 −29.43 6.8409 0.1953 3.33 3.33 −1.79
54257.776 4.22 0.65 −30.73 6.8412 0.1925 0.59 0.59 −1.52
54257.777 3.84 0.64 −28.73 6.8405 0.1943 −0.60 −0.27 −0.91
54258.854 4.13 0.68 −28.24 6.8444 0.1922 1.26 1.44 −3.34
54258.856 3.22 0.75 −28.70 6.8475 0.1932 0.97 0.97 −0.77
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Table A1 – continued

JD-2400000 RV (m s−1) RV error (m s−1) BIS FWHM S-index c3AP2-1 (m s−1) 3AP2-1 (m s−1) 3AP3-2 (m s−1)

54258.858 3.77 0.73 −30.18 6.8435 0.1945 0.09 0.09 −1.63
54258.860 4.90 0.72 −31.25 6.8448 0.1932 3.05 3.05 −0.55
54258.863 3.00 0.68 −30.68 6.8420 0.1929 −0.18 1.58 0.99
54259.913 4.37 1.31 −31.23 6.8498 0.1867 2.17 −1.55 1.79
54259.916 6.43 1.68 −24.13 6.8417 0.1839 2.17 13.06 −7.10
54259.918 4.30 2.17 −28.72 6.8426 0.1853 −0.29 −0.29 0.80
54259.921 −2.57 2.73 −34.71 6.8590 0.1637 −0.29 11.41 11.11
54259.924 2.63 1.86 −28.04 6.8483 0.1761 4.30 1.68 −0.13
54292.689 0.43 0.33 −28.57 6.8325 0.1933 1.07 1.51 −1.01
54292.695 2.55 0.33 −28.36 6.8329 0.1927 −0.99 0.81 −2.48
54617.853 5.46 0.72 −35.71 6.8369 0.1843 0.88 −0.02 −3.61
54617.858 5.15 0.82 −30.05 6.8382 0.1839 1.31 1.92 −4.95
54621.899 2.27 0.30 −33.66 6.8294 0.1820 −0.06 −0.52 −0.43

Table A2. Similar to Table A1 but for HD41248. The full data set is put online.

JD-2400000 RV (m s−1) RV error (m s−1) BIS FWHM S-index c3AP2-1 (m s−1) 3AP2-1 (m s−1) 3AP3-2 (m s−1)

52943.85 −1.89 2.13 −35.93 6.72 0.17 −1.29 −1.91 11.42
52989.71 −7.34 3.22 −27.40 6.72 0.16 −2.43 −11.29 15.96
52998.69 −0.22 3.99 −33.53 6.70 0.15 −0.62 15.95 −16.83
53007.68 −2.34 2.21 −28.61 6.72 0.17 3.50 3.50 2.23
53787.61 −4.41 2.63 −31.31 6.72 0.16 0.89 −12.67 0.53
54055.84 −5.49 2.02 −23.95 6.71 0.17 1.26 2.67 4.35
54789.72 −4.79 0.85 −27.43 6.72 0.18 0.27 −1.53 2.25
54790.69 −7.22 0.93 −30.83 6.72 0.17 0.67 0.67 0.42
54791.71 −4.86 0.86 −29.54 6.72 0.18 −2.48 −0.98 1.34
54792.70 −5.02 0.82 −28.09 6.73 0.18 0.08 0.08 0.82
54793.72 −3.35 0.92 −25.28 6.73 0.18 −2.38 0.04 1.53
54794.69 0.04 0.91 −29.59 6.73 0.18 2.71 2.71 −2.06
54795.72 0.48 0.93 −29.54 6.73 0.18 0.75 0.75 −0.54
54796.72 0.51 0.98 −30.33 6.73 0.18 −1.36 −1.36 2.69
54797.71 2.19 0.93 −27.77 6.73 0.18 −1.72 1.31 −1.64
54798.70 3.18 0.93 −25.14 6.73 0.18 −0.06 −4.92 −3.24
. . . . . . . . . . . . . . . . . . . . . . . . . . .
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