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Novel semi-implicit, locally conservative Galerkin
(SILCG) methods: Application to blood flow in a

systemic circulationI

Hayder M. Hasana,b, Alberto Coccarellia, Perumal Nithiarasua,∗

aZienkiewicz Centre for Computational Engineering, College of Engineering, Swansea
University, Swansea SA2 8PP, United Kingdom.

bShatra Technical Institute, Southern Technical University, Ministry of Higher Education and
Scientific Research, Iraq.

Abstract

Three novel, locally conservative Galerkin (LCG) methods in their semi-implicit
form are proposed for 1D blood flow modelling in arterial networks. These semi-
implicit discretizations are: the second order Taylor expansion (SILCG-TE) method,
the streamline upwind Petrov-Galerkin (SILCG-SUPG) procedure and the for-
ward in time and central in space (SILCG-FTCS) method. In the LCG method,
enforcement of the flux continuity condition at the element interfaces allows to
solve the discretized system of equations at element level. For problems with a
large number of degrees of freedoms, this offers a significant advantage over the
standard continuous Galerkin (CG) procedure. The well established fully explicit
LCG method is used for assessing the accuracy of the proposed new methods.
Results presented in this work demonstrate that the proposed SILCG methods are
stable and as accurate as the explicit LCG method. Among the three methods pro-
posed, the SILCG-FTCS method requires considerably lower number of iterations
per element, and thus requires lowest amount of CPU time. On the other hand,
the SILCG-TE and SILCG-SUPG methods are stable and accurate for larger time
step sizes. Although the standard Newton method requires evaluation of both the
Jacobian matrix and the residual for every single iteration, which may be expen-
sive for standard implicit solvers, the computed results show that the maximum
number of iterations per element for SILCG-TE and SILCG-SUPG is less than
unity (less than 0.3 and 0.7 respectively). Also, numerical experiments show that
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the Jacobian matrix can be calculated only once per time step, allowing to save a
significant amount of computational time.

Keywords: Semi-implicit, locally conservative Galerkin (SILCG) methods,
SILCG-TE, SILCG-SUPG and SILCG-FTCS methods, elastic tubes, systemic
circulation, arterial flow

1. Introduction

One dimensional flow modelling is a popular approach for computing arte-
rial flow in the human systemic circulation and it represents a very useful tool
for studying clinical problems, such as detection of aneurysms [1, 2], fractional
flow reserve [3, 4] and other problems of societal and practical relevance [5]. In
the last three decades a large number of one-dimensional models has been pro-
posed for predicting the blood pressure and flow along the expanded arterial trees.
In some specific cases with simplified assumptions such as axisymmetric veloc-
ity profiles, the solution has been calculated in an analytical way by means of a
Fourier technique [6]. This method has been adopted in other studies [7, 8, 9],
and has also been combined with one-dimensional electrical analogy [10]. How-
ever, such approaches have not accounted for non-linear effects [11, 12, 13].
The non-linear governing equations have been solved using the Finite Difference
method [14, 15, 16], system of characteristics [17], Galerkin Least Squares [18],
Discontinuous Galerkin methods [19, 20, 13] and Finite Volume methods [21, 22].
Some of the notable studies in this area include [7, 23]. Recently, much effort has
been also made to analyse blood flow in anatomically very detailed networks [24].
With regard to the numerical strategy, there is no a clear evidence exists on the
most suitable method for dealing with one dimensional blood flow modelling. The
algorithms available in the literature have also been generally classified according
to the time integration scheme adopted. In a fully explicit scheme, the time step
must be selected in such a way that the CFL condition is satisfied. This is also the
case for prescribing the required boundary conditions [25, 1]. It was demonstrated
in [26] that some explicit methods may represent, in terms of accuracy, a valuable
alternative to implicit schemes. Implicit methods have become very popular as
they do not have restriction on the time step. However the accuracy of the tran-
sient solution may be compromised if a significantly larger time step than the one
allowed by CFL condition is combined with a low order time discretization. In
implicit methods, difficulties related to their implementation may arise, due to the
high non-linearity of the governing equations. The design of the iterative numer-
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ical procedure for computing the solution is crucial, as it may lead to inefficient
schemes [27]. In addition, with an implicit method, a realistic representation of
the complex boundary conditions encountered in systemic circulation problems
is often difficult. For example, the use of the system of characteristics (Riemann
method) for prescribing boundary condition may be computationally expensive as
unconditional stability may be compromised. The alternative is to include such
boundary conditions into the implicit formulation (matrix) along with the main
variables. This, however, may add extra costs to the solution process. Some
authors have developed mixed time discretization methods between explicit and
implicit schemes in which the main domain has been solved explicitly whereas
the bifurcation points have been treated implicitly to ensure strong coupling of the
solution [28, 29]. Another valuable method has been proposed in [30], where the
domain decomposition does not impose any stability restriction on the time step
size. In large scale problems, implicit schemes lead to assembly of large global
matrices, leading to potential memory storage issues and reduction of computa-
tional efficiency. This may also be associated to the poor convergence of the New-
ton’s method for systems with a large number of degrees of freedoms [31]. Such
issue has been the driving motivation behind the development of quasi-Newton
methods, such as Broyden’s method. For avoiding an excessive computational
cost, some of these methods approximate the Jacobian matrix of the system by
means of the finite difference method.

In the present work, we propose a family of new semi-implicit approaches
that are able to simplify the numerical procedure without compromising the solu-
tion accuracy. This semi-implicit, locally conservative Galerkin (SILCG) meth-
ods limit the maximum matrix sizes to the element matrix sizes. With the in-
troduction of LCG discretization, the iterative numerical procedure is substan-
tially simplified. The three versions introduced here are the second order Tay-
lor expansion based (SILCG-TE) method, the streamline upwind Petrov-Galerkin
(SILCG-SUPG) scheme and the forward in time and central in space (SILCG-
FTCS) method. Since SILCG uses only element matrix in the formulation, the
resulting system size, if linear elements are employed, is 4 x 4. This small ma-
trix size allows us to easily compute the exact Jacobian matrix every time step.
The use of element matrices allows us to increase the mesh size (number of
elements) without enlarging the matrix size. The original LCG method treats
each element as an independent domain, while the information between sub-
domains are explicitly transferred via fluxes. This method was first introduced
by [32] for convection-diffusion problems and then generalised to other problems
including incompressible Navier-Stokes equations and systemic circulation prob-
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lems [25, 1, 33, 34, 35, 36, 37, 5]. The fully explicit version of the LCG method
computes multiple solutions at the node shared between two elements. To ob-
tain a unique solution, a posteriori averaging of the multiple solution was carried
out [32]. The proposed SILCG methods also follow an averaging technique that
is identical to that of the explicit LCG method. The main difference between the
proposed semi-implicit methods and the fully explicit scheme is that all the terms,
except for the boundary fluxes, are treated implicitly. The original contributions
of the present work includes the introduction of the SILCG method in three ver-
sions for systemic blood circulation, demonstration of its simplicity and accuracy
against the fully explicit LCG and other implicit methods. The paper is organised
into the following sections. In section 2 we present the governing equations, nu-
merical procedure and boundary conditions. In section 3, a detailed demonstration
of the accuracy, robustness and computational efficiency of the proposed method-
ology is provided. Finally, in section 4, the concluding remarks are reported.

2. Mathematical formulation of the problem

2.1. Governing equations
In the current study, the flow is assumed to be incompressible, Newtonian and

laminar. The mass and momentum conservation equations for one dimensional
flow in compliant vessels may be written, respectively, as [1, 38]

∂A
∂t

+
∂(Au)
∂x

= 0, (1)

∂u
∂t

+ u
∂u
∂x

+
1
ρ

∂p
∂x
− f
ρ

= 0, (2)

where A is the cross sectional area, u is the average velocity over such section and
ρ is the fluid density. The term f represents the friction forces due to viscosity
and it is given as [1]

f =
−8πµu

A
, (3)

in which µ is the fluid viscosity. The pressure p is linked to the area via a non-
linear relationship, given as [25, 39, 40, 41]

p = pext + β(
√

A −
√

A0), (4)

where pext is the pressure from the surrounding tissues, A0 is the area at zero
transmural pressure and β accounts for the material properties of the elastic vessel
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and given by

β =

√
πhE

A0(1 − σ2)
, (5)

in which h is the vessel wall thickness, E is the Young’s modulus and σ is the
Poisson’s ratio, assumed to be 0.5 (i.e. the vessel wall is incompressible). The
system (1) and (2) can be presented in the following compact form [25, 1]

∂U
∂t

= S − ∂F
∂x
, (6)

where

U =

[
A
u

]
, F =


Au

u2

2 + 1
ρ

[
pext + β

(√
A −

√
A0

)]
 and S =

[
0

−8πµ
ρ

u
A

]
. (7)

2.2. Numerical schemes
Here, the three variants of the SILCG formulation are presented.

2.2.1. SILCG-TE
The proposed methodology is based on a LCG spatial discretization scheme,

stabilised with a Taylor expansion based method [25, 1, 26]. Differentiating Eq.
(6) with respect to time and applying the chain rule yields

∂2U
∂t2 = C

∂U
∂t
− ∂

∂x

(
H
∂U
∂t

)
, (8)

where C=∂S/∂U and H=∂F/∂U are the Jacobian matrices. The Taylor expansion
in time of the primitive variables (A and u), restricted to the second order terms,
reads

Un+1 = Un + ∆t
∂U
∂t

n+θ

+
∆t2

2
∂2U
∂t2

n+θ

, (9)

where θ is a parameter (0 ≤ θ ≤ 1) controlling the time integration scheme. By
inserting (6) and (8) into Eq. (9), it is possible to obtain the following semi-
discrete form [25]

Un+1 − Un

∆t
=

{
S − ∂F

∂x
+

∆t
2

[
−C

(
∂F
∂x
− S

)
∂

∂x
+ H

(
∂F
∂x
− S

)]}n+θ

. (10)

The primitive variables are approximated in space by linear standard finite element
shape functions, i.e.

A = NÃ, u = Nũ. (11)
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In the above equation

N = [N1 N2 ... Nm]T , Ã = [Ã1 Ã2 ... Ãm], ũ = [ũ1 ũ2 ... ũm], (12)

where N contains m nodal shape functions defined over a spatial domain Ω, whilst
Ã and ũ are the nodal values of the primitive variables [42]. For the sake of
simplicity, Eq. (11) can be rewritten in the compact form as U = NŨ. The same
discretization is carried out for the vectors F = NF̃ and S = NS̃. Applying the
Galerkin weighting to Eq. (10), expressed over an elemental sub-domain Ωe with
boundary Γe, yields

[Me]∆Ũn − ∆t
(
[Ke]F̃n+θ + [Le]S̃n+θ + fn+θ

Γe

)
= 0, (13)

where Me, Ke and Le are respectively the element mass, convective and source
matrices, whilst fΓe is the boundary flux term. We notice that the subscript e refers
to the element domain. The fully discrete form of the semi-implicit method, with
θ = 0 for the boundary fluxes and θ = 1 elsewhere, becomes

[Me]∆Ũn − ∆t
(
[Ke]F̃n+1 + [Le]S̃n+1 + fn

Γe

)
= 0. (14)

As seen in the above equation, the interface LCG fluxes are treated at time level
n and thus the method is semi-implicit. Making these fluxes implicit may require
the solution of additional equations, and the introduced approximations may lead
to inaccuracies. The mass matrix in the above equation is defined as

Me =
le

6



2 1 0 0
1 2 0 0
0 0 1 2
0 0 2 1


, (15)

and it can be lumped for simplifying the solution procedure [43]

Me =
le

2



1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


, (16)

where le is the element length. In the current study, lumped mass matrices are
used in all the calculations. The other matrices introduced are defined as

Ke =
1
2



−1 −1 0 0
1 1 0 0
0 0 −1 −1
0 0 1 1


+

∆t
4

C



−1 −1 0 0
1 1 0 0
0 0 −1 −1
0 0 1 1


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−∆t
2le

H



1 −1 0 0
−1 1 0 0
0 0 1 −1
0 0 −1 1


, (17)

Le =
le

6



2 1 0 0
1 2 0 0
0 0 2 1
0 0 1 2


+

∆t le

12
C



2 1 0 0
1 2 0 0
0 0 2 1
0 0 1 2



+
∆t
4

H



−1 −1 0 0
1 1 0 0
0 0 −1 −1
0 0 1 1


. (18)

The vectors of Eq. (14) are expressed as

∆Ũn =



∆Ã1

∆Ã2

∆ũ1

∆ũ2



n

, F̃n+1 =



(
Ãũ

)
1(

Ãũ
)

2
ũ2

1
2 + 1

ρ

[
pext + β

( √
Ã −

√
A0

)]

1
ũ2

2
2 + 1

ρ

[
pext + β

( √
Ã −

√
A0

)]

2



n+1

,

S̃n+1 =



0
0

−8πµ
ρ

ũ1
Ã1

−8πµ
ρ

ũ2
Ã2



n+1

. (19)

The subscripts 1 and 2 refer respectively to first and second nodes of the element.
The Jacobian matrices can be written as

H =



uave 0 Aave 0
0 uave 0 Aave
β1

2ρ
√

Aave
0 uave 0

0 β2

2ρ
√

Aave
0 uave


, (20)

C =



0 0 0 0
0 0 0 0

8πµ
ρ

uave
A2

ave
0 −8πµ

ρ
1

Aave
0

0 8πµ
ρ

uave
A2

ave
0 −8πµ

ρ
1

Aave


. (21)
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i+1 i i-1 

e1 e2 

i+1 ie1 i-1 

e1 e2 

ie2 

Figure 1: One-dimensional elements in CG (A) and LCG methods (B).

Note that the entries of the Jacobian matrices (H and C) are averaged over the
element. For example, for calculating A1, the first line of the matrix H is used as
uave = (ũ1 + ũ2) /2 and Aave =

(
Ã1 + Ã2

)
/2. Similar procedure is applied for the

other quantities in the matrix H. The same approach is used for computing matrix
C. We notice that, in CG method, the flux term in Eq. (14) is equal to 0, except
at the boundaries. In the LCG method however, we use this term to link elements
and thus the normal assembly procedure is avoided here. This is why the LCG
method is explicitly, locally conservative rather than implicitly conservative as in
the case of CG methods [36]. The definition of fluxes F̃ is given in Eq. (19). We
use appropriate outward pointing normals to define the fluxes at both ends of an
element, i.e. fn

Γe
= F̃n. These fluxes must be recalled from the previous time step

(i.e. n time level) for maintaining continuity (see [32, 33] for more details). An al-
ternative would be introducing very expensive additional implicit approximations
for the fluxes to maintain explicit local conservation. Thus, the methods proposed
at the best can only be semi-implicit. Figure 1 shows, respectively, the CG and
LCG element discretizations. While CG method uses a continuous discretization
between elements, the LCG method breaks the link, which is then reestablished
through edge fluxes a posteriori. Eq. (14) is solved independently over the ele-
ments e1 and e2 and a unique nodal solution is obtained by averaging the variables
on the intermediate nodes as [32, 33]

Ũi =
Ũie1 + Ũie2

2
, (22)

where subscripts ie1 and ie2 refer to the two solutions obtained at node i.
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2.2.2. SILCG-SUPG
With the streamline upwind Petrov-Galerkin (SUPG) method, the test function

is modified in order to stabilise the oscillations due to the convective term

W = N +
α le

2
ũi

|uave|
dN
dx

, (23)

where W is a modified shape function of the linear weighting function N. The
value of α varies depending on local Peclet number Pe and it can be optimally
calculated as [44]

α = coth(Pe) − 1
Pe

and Pe =
|uave| le

2ν
, (24)

in which ν is the kinematic viscosity of the fluid. The rest of the formulation is
identical to that of the SILCG-TE method presented in the previous subsection.

2.2.3. SILCG-FTCS
The last method we introduce is the forward in time and central (standard

Galerkin method) in space (FTCS) method in its semi-implicit form. The motiva-
tion for this comes from the fact that the implicit form of such method for linear
convection equations is unconditionally stable. The idea here is therefore to inves-
tigate the limits of such a method in the context of the semi-implicit discretization.
The method is identical to either SILCG-TE or SILCG-SUPG method without the
additional stabilisation terms. In other words, the matrices are reduced by taking
both matrices H and C equal to 0.
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2.3. Solution procedure
The solution of the system defined in Eq. (14) is sought by employing the

Newton’s method [44, 45]. The iterative solution of the unknown variables vector
Ũ (i.e. Ũ =

[
Ã1 Ã2 ũ1 ũ2

]T
) at the iteration k + 1 is given by

Ũk+1 = Ũk + δŨk. (25)

The update δŨk is estimated via

J
(
Ũk

)
δŨk = −R

(
Ũk

)
, (26)

where J
(
Ũk

)
is a 4 x 4 Jacobian matrix and R

(
Ũk

)
is the residual vector of Eq.

(14). Eq. (26) is iteratively solved until convergence is reached. If the initial
guess is far from the root, Newton method may not converge. In the current work,
the variables are initialised at each iteration with the values of the previous time
step [46]. A linear representation of Eq. (26) gives four linear algebraic equations
per element (i.e. RA1 ,RA2 ,Ru1 and Ru2). The detailed form may now be written as



∂RA1
∂A1

∂RA1
∂A2

∂RA1
∂u1

∂RA1
∂u2

∂RA2
∂A1

∂RA2
∂A2

∂RA2
∂u1

∂RA2
∂u2

∂Ru1
∂A1

∂Ru1
∂A2

∂Ru1
∂u1

∂Ru1
∂u2

∂Ru2
∂A1

∂Ru2
∂A2

∂Ru2
∂u1

∂Ru2
∂u2





δÃ1

δÃ2

δũ1

δũ2


= −



RA1

RA2

Ru1

Ru2


. (27)

The linear system presented above is solved by using LU factorisation [47]. The
global system solution is computed at each time step via the following algorithm
-------------------------------------------

Algorithm 1
-------------------------------------------

1. do i=1,m m=1,2,.....,elements
2. do j=1,2 nodes
3. initialise Ũk,n+1 = Ũk,n

4. end do
5. do k=1,number of iterations
6. compute J

(
Ũk

)
and R

(
Ũk

)

7. call LU and solve for δŨk through Eq. (26)
8. evaluate, if δŨk ≤ tolerance
yes→ go step 10

10



no→ put Ũk+1 = Ũk

9. end do
10. update through Eq. (25)
11. end do
-------------------------------------------

Steps 2-4 represent the element initialisation procedure (where SILCG holds both
elements and nodes in different loops whereas CG has only nodes). Steps from 5
to 10 refer to the Newton iteration. The stopping tolerance for the algorithms is
set equal to 10−4.

2.4. Network boundary conditions
For prescribing boundary conditions, the methodology proposed in [25, 1] is

followed. With regard to the inlet flow condition, two types of boundaries can
generally be used. The reflective boundaries, where values of A, u, and p (or
commonly used flow rate Q = Au) are directly prescribed at the inlet node. Usu-
ally, any of these variables can be expressed as a function of time (see for in-
stance [26, 30]). Alternatively, the non-reflective boundaries where characteristic
variables are used. The latter methods are more realistic and here the boundary
conditions are calculated as a combination of outside and inside conditions by im-
plementing Riemann method. Since the wave nature of the problem is exploited
by the latter method, we use this approach for specifying the boundary conditions.
As a part of the wave comes from the domain interior, the boundaries need to be
extrapolated from the previous time step. The problem is initialised using a spec-
ified wave of pint = 50 mmHg [1]. The prescribed wave from outside the domain
is the pressure wave form as shown in Figure 2. By assuming S ≈ 0 near the
boundaries and applying chain rule to the spatial derivative, Eq. (6) becomes

∂U
∂t

+ H
∂U
∂x

= 0, (28)

The characteristic speeds for the system are the eigenvalues of the matrix H, which
can be obtained by solving |H − λI|= 0, with I being the identity matrix. The
characteristic speeds are given as

λ f ,b = u ± c, (29)

where the subscripts f and b refer to forward and backward travelling directions,
and c is the pulse wave speed which is given as

c =

√
β

2ρ
A1/4. (30)
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Figure 2: Input pressure wave.

The wave speed c is much greater than fluid velocity u under physiological flow
conditions, and therefore λ f = u + c > 0 while λb = u − c < 0. These two
eigenvalues are real, so the system is strictly hyperbolic. This needs only one
boundary condition at each inlet and exit of the domain [25]. The matrix L of the
left eigenvalues of H can be written as

L =
∂V
∂U

=

[ c
A 1
− c

A 1

]
, (31)

where V =
[
w f wb

]T
, and then

LH = ΛL, (32)

Λ =

[
λ f 0
0 λb

]
. (33)

Multiplying Eq. (28) by the matrix L and substituting LH from Eq. (32) gives

L
∂U
∂t

+ ΛL
∂U
∂x

= 0. (34)

Note that H = L−1ΛL, and thus the above equation can be rewritten as

∂V
∂t

+ Λ
∂V
∂x

= 0. (35)
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The characteristic variables can now be determined as

w f ,b = u ± 4c. (36)

The primitive variables may be estimated from the characteristic variables as [25,
48]

A =

(
w f − wb

)4

1024

(
ρ

β

)2

, (37)

u =
w f + wb

2
. (38)

The equations above show that a pair of the characteristic variables is necessary for
specifying one boundary condition. At the inlet, w f implies the imposed pressure
shown in Figure 2; thus rearranging Eq. (37) gives [25, 1]

wn+1
f = w0

b + 8A1/4

√
β

2ρ
, (39)

where w0
b is the initial backward variable, and it is equal to wb at any time (i.e.

assume no backward waves reach the inlet [25]). This is possible at the inlet as p
is given (see Figure 2). Similarly, at first time step where pint is known and thus
initial A can be computed by rearranging Eq. (4). For prescribing the velocity,
similar procedure may be applied to Eq. (38), so that

wn+1
f = 2u − w0

b. (40)

The velocity at the beginning is set equal to 0 for the first time step. Backward
variable wb carries information from domain interior, so it is extrapolated accord-
ing to the following equation [25, 1]

wn+1
b |x=x0= wn

b|x=x0−λn
b∆t. (41)

With regard to the terminal boundaries, wb represents the impedance, and is cal-
culated by using the tapering vessel approach. In this approach, the area A of
an arterial segment decreases gradually along the length. Pure reflections are as-
sumed, and thus wb can be determined as

wn+1
b = w0

b. (42)
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Figure 3: Different types of arterial tree discontinuities.

Meanwhile, w f is extrapolated by adopting [25, 1]

wn+1
f |x=xL= wn

f |x=xL−λn
f ∆t. (43)

Moreover, the characteristic system is useful to enforce quantities at bifurcations
and other discontinuities. Here, we consider two cases as shown in Figure 3. Fig-
ure 3A shows a case of single tube with a sudden change in the A or β, representing
a discontinuity. Figure 3B shows the case of a parent vessel branches and its two
daughter branches.

For each branching location, there are six unknowns, which are A and u for
parent (p) and daughter (d) segments. Such variables are computed by assembling
a system of equations accounting for mass and momentum conservation, and def-
initions of characteristic speeds [25]. The conservation of mass can be simply
written as

Qp =

N∑

i=1

Qi, (44)

where N is number of daughter vessels. In Eq. (44) the flow direction is assumed
to be from parent to daughter vessels. The continuity of total pressure (momentum
conservation) between the parent and daughter vessels may be expressed as

ρu2
p

2
+ psp =

ρu2
i

2
+ psi , (45)
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where ρu2/2 is the dynamic pressure and ps represents the static pressure given in
Eq. (4). The characteristic equations for the parent and daughter vessels are

w fp = up + 4A1/4
p

√
βp

2ρ
, (46)

wbi = ui − 4A1/4
i

√
βi

2ρ
. (47)

3. Results and discussions

In this section, the accuracy and computational efficiency of the proposed
semi-implicit methods are discussed. The well established explicit Taylor-LCG
method [25, 1] is used as a benchmark method to compare the results. For com-
puting the solution, the maximum admissible time step size is adopted. The spatial
step used is le = 0.25 cm (corresponding to 6288 elements) for all cases unless
otherwise stated. The arterial network used in the current study is shown in Figure
4. The model consists of 63 arterial segments.

The duration of a cardiac cycle is assumed to be ≈ 0.8 s or 70 − 75 beats/min
and the opening ventricular valve duration is 0.057 s while the closing duration
is 0.039 s. A coronary model as in [25] is also included. The blood viscosity
and density are set equal to, respectively, 0.035 g/(cm s) and 1.06 g/cm3. More
details on the morphology and structural properties of arterial system can be found
in [25, 1].

3.1. Wave-forms along the network
Figures 5 and 6 show, for all the SILCG methods, the pressure and flow time

evolution at different locations along the arterial tree. The monitored segments
are labelled 9, 13, 23, 15, 29, 60, 54, 35 and 49 according to Figure 4. Results
obtained by using the explicit LCG are also included. For the semi-implicit meth-
ods, the Jacobian matrix is updated at each iteration. The solutions computed with
new schemes agree very well with each other and with the one obtained with the
explicit method. The calculations show that the SILCG-FTCS admits a maximum
time step equal to ∆t = 0.1 ms, while for the SILCG-TE and SILCG-SUPG meth-
ods larger time step sizes can be selected. As expected, the additional stabilisation
improves the stability and allows for larger time step values.
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Figure 5: Pressure variation in different arterial segments.
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Figure 6: Flow variation in various segments.
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At this stage, we estimate the root mean square errors (RMSE) for pressure
and flow as shown in Table 1. These errors are defined as [26]

RMS Ep =

√√
1
n

n∑

i=1

(
pi

S ILCG − pi
LCG

pi
LCG

)2

, (48)

RMS EF =

√√
1
n

n∑

i=1


F i

S ILCG − F i
LCG

F i
LCGmax


2

, (49)

where the subscripts p and F refer to pressure and flow respectively. pi
S ILCG and

F i
S ILCG are the estimated values from all proposed approaches at a specific loca-

tion and for different times (i=1,.....,n). pi
LCG and F i

LCG are the reference values
considered from [1, 25] (at the same location and time). The table shows that the
maximum RMS Ep is always below 0.4%, whilst RMS EF is less than 0.7%. Both
percentage errors are widely within the range of accuracy expected.

In Figures 7 and 8 we show the average number of iterations for reaching
convergence against the number of elements employed. In Figure 7 the Jacobian
matrix is calculated at each iteration, whilst in Figure 8 the Jacobian matrix is only
calculated once each time step. As seen, the iterations to number of elements ratio
is substantially lower than unity. Similar observations were found in [29]. Among
the methods presented, the SILCG-FTCS is the fastest.

3.2. Spatial convergence
The effect of mesh refinement on the accuracy is highlighted for various meshes

in Figure 9. The results are plotted for mid-point of the ascending aorta (i.e. seg-
ment 9). A total of three different meshes with element sizes 0.25, 0.33 and 0.5 cm
respectively are tested on SILCG-TE. All other methods give similar results and
thus not plotted. The results are compared against a fine mesh solution obtained
by using the explicit LCG method. The plot shows that the solution, as the mesh
is refined, converges to the results obtained with the explicit LCG method.

3.3. Computational efficiency
Finally, we evaluate the CPU time for all proposed methods as shown in Table

2, by considering the maximum admissible time step sizes. The number of ele-
ments used is 6288, and the results are presented for two cases of Jacobian matrix
calculations. In case 1, the Jacobian matrix is updated at every iteration, while
for case 2, the matrix is only factorised once per time step. Table 2 shows that the
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Table 1: Percentage RMS Ep and RMS EF for all cases shown in Figures 5 and 6.

Location Error % SILCG-TE SILCG-SUPG SILCG-FTCS
segment: 9 RMS Ep 0.038 0.052 0.087

RMS EF 0.151 0.154 0.199

segment: 13 RMS Ep 0.069 0.078 0.098
RMS EF 0.371 0.380 0.293

segment: 23 RMS Ep 0.070 0.078 0.100
RMS EF 0.386 0.399 0.321

segment: 15 RMS Ep 0.133 0.136 0.122
RMS EF 0.406 0.411 0.307

segment: 29 RMS Ep 0.146 0.151 0.133
RMS EF 0.437 0.441 0.316

segment: 60 RMS Ep 0.360 0.344 0.280
RMS EF 0.651 0.617 0.434

segment: 54 RMS Ep 0.359 0.342 0.280
RMS EF 0.650 0.616 0.434

segment: 35 RMS Ep 0.090 0.097 0.109
RMS EF 0.250 0.240 0.219

segment: 49 RMS Ep 0.152 0.157 0.145
RMS EF 0.580 0.529 0.401
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Jacobian matrix included in the iteration 
Figure 7: Number of iterations to number of elements ratio for for all three approaches. Jacobian
matrix is calculated at every iteration.
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Table 2: Computational speed CPU time per cardiac cycle, le = 0.25 cm.

Jacobian matrix SILCG-TE SILCG-SUPG SILCG-FTCS
status (min) (min) (min)
case 1 29.63 33.19 3.40

case 2 13.05 14.20 3.06

SILCG-FTCS is the fastest one among the methods proposed due to the significant
simplification in the numerical formulation discussed in subsection 2.2. For this
reason, the CPU time is almost independent of the way in which Jacobian matrix
is computed. For the other methods, continuous Jacobian matrix updating (case 1)
significantly affects the computational performances. Overall, the maximum CPU
time taken is less than 34 minutes and minimum is just over 3 minutes per cardiac
cycle.

4. Conclusions

A set of semi-implicit, locally conservative Galerkin methods (SILCG) have
been proposed and tested for blood flow in a human arterial system. The three
novel methods proposed include a Taylor expansion based method, a streamline
upwind Petrov-Galerkin method and a FTCS type method. Although the FTCS
type method is the most straightforward and simple method, it is unstable beyond
a time step ∆t = 0.1 ms. This is not a major disadvantage as the method can be
very fast without the additional stabilisation terms. The other two methods can
admit larger time steps but the accuracy may deteriorate with increase in time step
values. None of the new methods are unconditionally stable as the characteristic
variables and boundary fluxes are used from the previous time step. Overall, the
proposed semi-implicit methods represent a promising alternative to the existing
explicit LCG method, as the time step is not restricted by the CFL condition.
Moreover, the proposed methodology has the advantage of avoiding large matrix
assembly, as it requires only factorisation at element level. Further research is
required to make the proposed method fully implicit and more computationally
efficient.
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