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Abstract

We propose a novel constitutive framework for electro-active polymers (EAPs) that can take into account
anisotropy with a chain dispersion. To enhance actuation behaviour, particle-filled EAPs become promis-
ing candidates nowadays. Recent studies suggest that particle-filled EAPs, which can be cured under an
electric field during the manufacturing time, do not necessarily form perfect anisotropic composites, rather
they create composites with dispersed chains. Hence in this contribution, an electro-mechanically coupled
constitutive model is devised that considers the chain dispersion with a probability distribution function
(PDF) in an integral form. To obtain relevant quantities in discrete form, numerical integration over the
unit sphere is utilised. Necessary constitutive equations are derived exploiting the basic laws of thermo-
dynamics that result in a thermodynamically consistent formulation. To demonstrate the performance of
the proposed electro-mechanically coupled framework, we analytically solve a non-homogeneous boundary
value problem, the extension and inflation of an axisymmetric cylindrical tube under electro-mechanically
coupled load. The results capture various electro-mechanical couplings with the formulation proposed for
EAP composites.

Keywords: Electro-elasticity, electro-mechanical coupled problem, electro-active polymers (EAP),
micro-sphere model, numerical integration

1. Introduction

In the recent decades, significant progress has been made on the experimental characterisation, theoretical
formulations and numerical simulations of so-called smart or functional materials. The key feature of func-
tional materials is that their important mechanical properties, e.g. various moduli, can be altered by the
application of external excitations, e.g., electric fields. Among other smart materials, electro-active poly-
mers (EAPs), capable to convert electric load into mechanical energy, attract considerable attention due to
their relative low cost and potential for large actuation. They can potentially be used for actuators, sensors
and even for generators [38, 77]. Moreover, they can be used as artificial muscles, see [5] for a review. The
excitation of EAPs by an externally applied electric field not only results in large deformations but also a
change in their internal material behaviour. Hence, the governing equations need to be solved as a coupled
problem, cf. [17, 29, 78]. Two electro-mechanical forces are mainly responsible for the deformation of a
polymer, cf. Vogel et al. [74]. Firstly, the so-called Maxwell stress that arises due to an electric field that
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penetrates free space and matter alike. Secondly, the electrostriction that is due to intramolecular electro-
static forces of the material.

In contrast to theoretical formulations and numerical simulations of EAPs, experimental works related to
either pure or composite EAPs are very rare in the literature, the work of Wissler et al. [80] is one of the
few to mention. Acrylic type VHB and silicone-based polyurethane are polymeric materials that have been
extensively utilised for EAP applications. Johlitz et al. [37] did a rigorous experimental characterisation of
polyurethane (PU) along with numerical modelling of its time-dependent behaviour. Ask and co-workers
[4] used this data to identify various mechanical material parameters for their electro-viscoelastic model.
Diaconu et al. [22] studied the electro-mechanical properties of a synthesized polyurethane elastomer film-
based polyester. This data is used by Ask et al. [4] to validate their electro-viscoelastic coupled model. To
illustrate the time-dependent viscoelastic behaviour of VHB 4910 polymer under pure mechanical loading,
a comprehensive experimental study was presented in our previous work, cf. Hossain et al. [34]. Moreover,
a micro-mechanical motivated constitutive ansatz was presented to model the experimental results. Inspired
by this work, a comprehensive characterization of the electromechanically coupled properties of VHB 4910
polymer is demonstrated in Hossain et al. [35]. Qiang et al. [59] presented an experimental study on the
dielectric properties of a polyacrylate dielectric elastomer. They conducted an extensive study on the mea-
surement of dielectric properties of VHB films regarding five influencing factors, i.e. pre-stretch, electrical
frequency, electrode material, stress relaxation, and temperature. Ma and Cross [48] conducted an exper-
imental investigation of electromechanical response in a dielectric acrylic elastomer in various frequency
ranges at room temperature. It was concluded in the study that the electric-field-induced strain response
was proportional to the square of the electric field strength up to loading of 2 MV/m. Michel et al. [49]
performed a comparison between silicone and acrylic elastomers that can potentially be used as dielectric
materials in electro-active polymer actuators.

Modelling electro-elasticity as well as time-dependent viscoelastic behaviour of EAPs, several research
works appeared in the literature. Ask and co-workers [4] model the electrostrictive behaviour of viscoelas-
tic polymers, particularly the electrostrictive polyurethane elastomer by a phenomenological constitutive
ansatz. Büschel et al. [7] propose an electro-viscoelastic model using a multiplicative decomposition of the
deformation gradient into an elastic part and a viscous part for the mechanical deformation. In this work,
they consider only a time-dependent evolution for the mechanical internal variable and the electric quantity
does not evolve with time. Recently, Vogel et al. [74] model the electrostrictive behaviour of viscoelas-
tic polymers where the governing kinematical and constitutive equations are formulated in the logarithmic
strain-space. In contrast to the works of Ask et al. [4] and Büschel et al. [7], Vogel et al. [74] formulated
their constitutive relation considering the influence of the electric field also on the viscous response. Sax-
ena et al. [64, 65] propose an electro-viscoelastic coupled model that additively decomposes the electric
field vector in an equilibrium part and a non-equilibrium part. A multiplicative-based approach in the case
of electro-elasticity is proposed by Skatulla et al. [69] which is further explored by Zäh & Miehe [84].
Thereby, the deformation gradient is decomposed into a mechanical part and an electrostrictive part. Liu et
al. [86, 87, 89, 90] and Leng et al. [88] put a great amount of efforts in analysing various electro-mechanical
instabilities that consider viscoelastic and temperature effects.

The finite element implementation of electro-mechanically coupled problems is an active area of research.
Variational formulations for the governing equations of the coupled electro-mechanical problems are pre-
requisite for numerical computations in the finite element procedure. Bustamante et al. [10] and Vogel [74]

2

Page 2 of 31AUTHOR SUBMITTED MANUSCRIPT - SMS-105467.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



Figure 1: Scanning Electron Microscope (SEM) micrographs of fractured surfaces of silicone rubber-titania composites with ran-
dom distribution of filler particles in the absence of an electric field during curing [(a)-(d)] and dielectrophoretically-assembled
chain-like structure due to the application of an electric field during curing [(f)-(h)] for different concentration of titania as 2% ((a),
(e)), 5% ((b), (f)), 8% ((c), (g)), and 11% ((d), (h)) (adopted from Kashani et al. [39], with the permission of the author)
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devise variational principles where three-field formulations are proposed by considering a nearly incom-
pressible behaviour of the bulk rubber-like materials. Gil & Ortigosa [54], Ortigosa et al. [55] in a series
of papers propose a new constitutive framework with finite element implementations for large strain elec-
tromechanics based on convex multi-variable strain energies. Most of the earlier numerical formulations of
EAPs neglect the free space contribution. However, very recently, Pelteret et al. [58] devise a computational
framework for quasi-incompressible electro- and magneto-elastic solids immersed in free space.

One of the major drawbacks of EAPs is the requirement of a high electric voltage even for a reasonable
mechanical deformation. Recent studies demonstrate that the inclusion of fillers of high dielectric permit-
tivity into the polymeric matrix can increase the deformation induced by a reasonable voltage level, see
[11, 27, 81, 82, 86, 39, 50]. To increase the dielectric permittivity of polymeric materials, several strategies
are currently documented in the literature [23, 27, 81, 82, 86, 39] which can be classified into three main
groups: random composites, field-structured composites, and new synthetic polymers [12]. In the case of
field-structured EAPs, the fillers are used to make a composite material while the curing occurs in the pres-
ence of an externally applied electric field. As a result, the fillers usually align in the direction of the applied
electric field, i.e. it helps to create a preferred direction in EAP composites, cf. Fig 1(e-h). The alignment of
dipoles under the application of an electric field increases the electric polarization and hence the polarization
stress [39]. More precisely, it is observed that the application of an external electric field during the curing
process yields a field-structured composite where the axis of anisotropy is not perfectly defined, rather there
is a chain dispersion along a mean orientation, cf. Fig 1(e-h). In the absence of an electric field during the
curing process, several experimental works demonstrate the formation of filled isotropic electro-active poly-
meric composites with homogeneously distributed particles, see [40, 12, 82, 86, 39, 42, 60, 61, 70, 81, 82].

For the modelling of particle-reinforced EAP composites, Bustamante [9] proposes a constitutive model
that considers transverse isotropy. To the best of the authors’ knowledge, there is no constitutive model
that can capture the chain dispersion observed in experiments of the field-structured EAP composites. In
contrast, Saxena et al. [66] propose a probability based structure tensor to capture the chain-like imperfect
anisotropy in the case of magneto-elasticity. Recently, Thylander [71], Thylander et al. [72] formulate a
micro-sphere-based constitutive framework for electro-elasticity where the well-known Bazant & Oh [6] in-
tegration scheme is used for the numerical quadrature over the unit sphere. However, this work does not take
into account the dispersed anisotropy which is experimentally observed in particle-filled EAP composites.
The modelling of dispersion-type anisotropy has been an active field of research in the case of modelling
biological tissues. Ideally, two types of strategies are proposed in the literature, i.e. Angular Integration (AI)
based models and Generalised Structure Tensor (GST) inspired models, see [15, 16, 67, 68]. GST-based
models receive popularity over AI approaches due to their simple and closed form expression. However,
several studies have convincingly demonstrated that GST-based models suffer significant deficiencies in
validating real experimental data in the case of biological tissues, cf. [14, 15, 16, 67, 68]. To amelio-
rate such drawbacks, higher order structure tensors are devised which improve the results significantly, cf.
Pandolfi & Vasta [56], Pandolfi et al. [57]. Despite that, there still exist mismatches between the two ap-
proaches. Hence many authors prefer AI-based models regardless of their higher computational cost. In this
contribution, we develop a constitutive framework that accounts for transversely isotropic dispersion using
a probability distribution function (PDF) where the numerical integration appearing in the framework is per-
formed on the unit sphere via suitable integration schemes. For the sake of simplicity, the time-dependent
viscoelastic behaviour of the underlying polymeric matrix is discarded at this stage. Moreover, comparisons
between AI-based formulations and GST-inspired models for electro-mechanically coupled problems are
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left for a future investigation.

This paper is organized as follows. In Section 2, the finite strain theory of electro-elasticity is briefly re-
viewed where at first relevant nonlinear kinematics and balance laws in the spatial setting are illustrated
followed by the material description of the same quantities. Section 3 focuses on the key contribution of
the paper, i.e. a constitutive modelling of the dispersion-type transverse isotropy in electro-elasticity. Fur-
thermore, numerical integration over the unit sphere is elucidated here followed by a short discussion on
the transverse isotropic distribution function that captures the chain dispersion within the EAP composites.
The final Section 4 presents an analytical example which illustrates that the proposed model can capture
relevant phenomena of dispersed field-structured EAP composites under electro-mechanical loads. Section
5 concludes the paper with a summary and an outlook to future works.

2. Basics of non-linear electro-mechanics

2.1. Kinematics

In the case of large deformations we distinguish the reference configuration B0 from the deformed config-
uration Bt. The body B is composed by an infinite and continuous set of points. The placement of these
points in the reference configuration B0 is specified by the position vector X . In the deformed configura-
tion Bt, the points are at position vector x which is connected toX through the nonlinear deformation map
x = χ(X). The deformation gradient F is defined as the gradient of the deformation map with respect to
the material coordinates

F = Grad χ; J = detF , (1)

where J is the Jacobian determinant of the deformation gradient whose value should be greater than unity in
order to avoid self penetration. Using the deformation gradient we can introduce the left and right Cauchy-
Green tensors b and C, respectively,

b = FF T , C = F TF . (2)

In the case of polymeric materials’ modelling, the deformation gradient is usually decomposed into a vol-
umetric (shape preserving but volume changing) and an isochoric (volume preserving but shape changing)
part. Hence, the deformation gradient reads

F = F volF iso = J1/3I︸ ︷︷ ︸
F vol

F̄ , (3)

where I is the second order identity tensor and F̄ := F iso denotes the isochoric part of the deformation
gradient F .

2.2. Balance laws in electrostatics

2.2.1. Spatial configuration
In the case of vacuum, the electric displacement dε is coupled to the electric field e by the electric permit-
tivity of vacuum ε0

dε = ε0e, in Bt. (4)

5
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However, in the presence of a matter this equation is enhanced by the electric polarization p. Hence the
relationship among the electric displacement, the electric field and the polarization reads

d = ε0e+ p =: dε + p, in Bt. (5)

If there are no free currents and free electric charges as in non-conducting materials, the electrical problem
can be expressed by the corresponding Maxwell equations, which for the quasi-static case become

curl e = 0, div d = 0 in Bt. (6)

The curl of a vector will become zero when the vector is derived from a scalar potential. Hence equation
(6)1 is satisfied exactly if e derives from a scalar potential [74, 47, 78, 79], i.e.

e = −grad ϕ. (7)

In Eqn (7) grad ϕ is the gradient of the electric potential ϕ with respect to the spatial coordinates x. The
mechanical behavior is governed by the balance of linear momentum

div σ + b
pon
t + bt = div σtot + bt = 0, in Bt, (8)

where bt is the mechanical body force, bpon
t is the ponderomotive body force due to the field-matter inter-

action and σtot is the total Cauchy type symmetric stress tensor, cf. [17]. Furthermore, the total Cauchy
type symmetric stress tensor σtot is decomposed into a non-symmetric mechanical Cauchy stress σ and a
ponderomotive stress σpon [10] that satisfies

div σpon = b
pon
t = grad e · p. (9)

The ponderomotive stress can be decomposed into the non-symmetric polarization stress σpol [75] and the
symmetric Maxwell stress σmax

σpol = e⊗ p, σmax = −1

2
ε0[e · e]i+ ε0e⊗ e, (10)

where i is the second order identity tensor in the spatial configuration. In the absence of matter, i.e., in
vacuum, the polarization p, the Cauchy stress σ and the polarization stress σpol will disappear. However,
the Maxwell stress and the electric displacement dε exist and satisfy divergence free conditions

div σmax = 0, div dε = 0. (11)

The Dirichlet boundary conditions for the deformation map χ are prescribed as

χ = χp, on ∂Bχ
t . (12)

When we consider prescribed mechanical tractions tpt , the jump conditions regarding the total stress can be
defined, with the help of the surface normal n, on the surface of Bt [74]

[[σtot]] · n = −tpt , on ∂Bt
t, (13)
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where [[•]] = [•out]− [•in] represents the jump in a quantity across the boundary. The related jump conditions
for the electrical quantities are defined as

[[d]] · n = %̂ft , on ∂B%
t , and [[e]]× n = 0, on ∂Bt (14)

where %̂ft is the density of free surface charges per undeformed area on the boundary [75].

2.2.2. Material configuration
Next we transform various electric quantities from the spatial configuration Bt to the undeformed config-
uration B0. Hence the electric field, the electric displacement field and the polarization vector read in the
undeformed configuration as

E = F Te, D = JF−1d, P = JF−1p. (15)

These will result in the Maxwell equations as

Curl E = 0, Div D = 0, (16)

where Curl and Div denote the corresponding differential operators with respect to the position vectors X
in B0. Similar to the electric field in the spatial configuration, the first term in (16)1 will be related to the
scalar potential as

E = −Grad ϕ, in B0. (17)

We introduce the electric displacement in the bulk as

D = ε0JC
−1E+P = Dε +P in B0. (18)

Note that the referential format of the polarization is a pull-back operation of its spatial format (5). Accord-
ing to Dorfmann et al. [17], this definition is not unique as, for example, the definition of the polarization
might alter. The total Cauchy stress σtot can be transformed into the material counterpart, the total Piola
stress P tot

P tot = JσtotF−T . (19)

Similar to its spatial analogue, P tot can be decomposed into the mechanical part P and the ponderomotive
part P pon

P tot = P + P pon = P + Pmax + P pol, (20)

where the polarization stress P pol and the Maxwell stress Pmax are expressed as

P pol = e⊗P, Pmax = −
[

1

2
ε0JE · [C−1E]

]
F−T + e⊗Dε. (21)

Note that the term 1
2ε0JE · [C−1E] occuring in the Maxwell stress is nothing but the electrostatic energy

density per unit volume in the material configuration. The balance of linear momentum (8) and the diver-
gence free condition of the Maxwell stress (11) are transformed to

Div P tot + b0 = 0 and Div Pmax = 0. (22)
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The corresponding boundary conditions in the material configuration read as

[[D]] ·N = %f0 , on ∂B%
0, and [[P tot]] ·N = −tp0, on ∂Bt

0, (23)

where the relations %̂f0dA = %̂ft da and tp0dA = tptda are used to transfer these quantities from the material
configuration with area element dA to the spatial configuration with respective area element da.

3. Constitutive modelling

In this section, at first a technique to incorporate the dispersed chain contributions to the overall free energy
function will be described. Thereafter, the averaging process to transfer the free energy contribution of the
single chains from the microscopic level to the macroscopic continuum level will be elaborated. One of the
key aspects of network theories is how to link up the deformation of a single chain in the microscopic level to
the macroscopic isochoric deformation gradient, i.e., F̄ . A mapping of the orientation vector r , representing
a single chain, by the isochoric deformation gradient of the continuum gives the isochoric stretch vector

t̄ = F̄r . (24)

Then the macro-stretch λ̄ of a material line element with the orientation t̄ in the current configuration is

λ̄ = |̄t | =
√

t̄ · t̄ =
√

F̄r · F̄r =
√

C̄ : [r ⊗ r ], (25)

where C̄ = F̄
T

F̄ is the isochoric right Cauchy-Green strain tensor, see Miehe et al. [51, 52]. Similarly the
electric field vector will be projected into the direction of the fibre r to obtain a fibre-oriented scalar electric
field E as

E = E · r, (26)

where E is the electric field vector in the material configuration, see Thylander [71], Thylander et al. [72].

3.1. Energy decomposition
In particle-filled EAPs that are cured under an electric field, thanks to the experimental evidences in Fig (1),
it can be assumed that the orientations of the chains within a family I (with I = 1 · · ·N ) are distributed
by a certain dispersion with respect to a mean referential (preferred) direction (say aI ) over the surface of
the unit-sphere U2. Such a family of chains constitutes a transversely isotropic contribution to the overall
response of EAP composites. Hence the chain contributions, defined here as the anisotropic part, are added
to the bulk part of the free energy. Following the analogy of the multiplicative decomposition of the de-
formation gradient in the case of polymeric materials in Eqn (3), a decoupled representation of the strain
energy into a volumetric and an isochoric part is followed also in electro-elasticity as

Ψ = Ψ vol(J) + Ψiso(C̄ ,E;a1, · · · ,aN ) = Ψvol(J) + Ψ
isp
iso(C̄ ,E) + Ψani

iso(C̄ ,E,a1, · · · ,aN ) (27)

where Ψvol(J) describes the change in the free energy due to volume changes and Ψiso describes the change
in the free energy due to the isochoric deformation. Here the array of vectors, i.e., a1, · · · ,aN represent
the N families of fibres. The isochoric energy Ψiso is further decomposed into an isotropic part Ψ

isp
iso and an

anisotropic part Ψani
iso , respectively.
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Figure 2: The orientation of a generic chain r in the three-dimensional space. Here, for the sake of presentation, the preferential
unit vector a coincides with the Cartesian coordinate axis e3

3.2. Anisotropic energy contribution

Each chain orients in a direction designated by an arbitrary unit vector r ∈ U2, |r| = 1 . The unit vector can
be characterized by the use of Eulerian (spherical) angles, namely Θ ∈ [0, π] and Φ ∈ [0, 2π], cf. Fig (2).
Therefore, the expression of the unit vector would be r(Θ,Φ) = sin Θ cos Φe1 + sin Θ sin Φe2 + cos Θe3,
where {ei}i=1,2,3 denote the axes of a rectangular Cartesian coordinate system. Note that each chain is
counted twice by the above angles, i.e. for each r, -r is also included. Similar to the chain orienta-
tion vector r, the preferential (mean) vector a can also be expressed in terms of the Eulerian angles, i.e.,
a(Θm,Φm) = sin Θm cos Φme1 + sin Θm sin Φme2 + cos Θme3, where Θm ∈ [0, π] and Φm ∈ [0, 2π].

The macroscopic energy density is derived from the microscopic contributions of single chain energy densi-
ties. Let us assume only one family I of chains that is symmetrically distributed along a preferred direction
aI ∈ U2. If n number of chains exist per unit volume, then the anisotropic part of the macroscopic electro-
mechanical coupled energy for this set of chains is defined as

ΨI
c(C̄ ,E;aI) =

n∑
s=1

ρ(rs;aI)ψ
s
c(C̄ ,E; rs) (28)

where rs ∈ U2 are referential unit vectors associated with the direction of the s-th chain, and ψsc is the
microscopic strain energy of the s-th chain of family I according to the deformation in the direction of rs.
In Eqn (28) ρ(rs;aI) is a fibre probability distribution function which is explained in the next section. If
we consider N preferred (mean) orientations a1, · · · ,aN related to N families of chains, then the total
isochoric chain energy will be

Ψani
iso(C̄ ,E;a1, · · · ,aN ) =

N∑
I=1

ΨI
c(C̄ ,E;aI) =

N∑
I=1

n∑
s=1

ρI(r
s)ψsc(λ̄s, Es), (29)

9
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where Es = E · rs, λ̄s =
√

C̄ : [r s ⊗ r s] and ρI(rs) = ρ(rs;aI). For large n, the total isochoric chain
energy function for a single family of fibres can be expressed as the weighted average of the n contributions,
whereby the weight is the fibre probability distribution function ρI = ρI(r

s)

ΨI
c(C̄ ,E;aI) = 〈nρIψc(λ̄, E)〉. (30)

Here 〈•〉 denotes a suited averaging operator for scalar quantities and λ̄ (defined in Eqn (25)) is the macro
stretch. In the following, we take an affine assumption for the micro to macro transformation. For the
differences between affine and non-affine kinematics, see Miehe et al. [51]. An isotropic version of the
averaging scheme in Eqn (30) proposed in the case of pure polymeric materials can be found in Miehe et
al. [51, 52] while its anisotropic formulations in the case of biological tissue modelling is advocated in
Alastrue et al. [1, 3]. The differential area element of the unit sphere U2 can be expressed in terms of
the Eulerian angles as dA = sin ΘdΘdΦ while the surface integral yields the unit sphere’s total area, i.e.
AU2 =

∫ Θ
0

∫ Φ
0 dA =

∫ Θ
0

∫ Φ
0 sin ΘdΘdΦ = 4π. Normalising the integral over the unit sphere, we obtain for

the averaging operator

〈nρIψc(λ̄, E)〉 =
1

4π

∫
U2

nρIψc(λ̄, E)dA. (31)

e
3

e
3

I II III

e
3

e
1

e
1

e
1

e
2

e
2

e
2

a(π/2)

a(−π/6)
a(π/4)

Figure 3: Illustrations of the fibre probability distribution function ρ for various orientations of the preferential unit vector a; for a
fixed value of b = 3 and Θm = π/2, (I) Φm = π/2, (II) Φm = −π/6, (III) Φm = π/4

3.3. von Mises distribution function

The symmetry condition for a single chain that is represented by its vector r has to be included into the PDF,
i.e. ρ(r;a) = ρ(−r;a). Furthermore, it is assumed that the chains are rotational symmetrically distributed
with respect to the preferred mean direction a, i.e., ρ(Q · r;a) = ρ(r;a) ∀Q ∈ Q3

+ with rotation axis a.
We assume that the embedded chains are distributed transversely isotropic where the normalised π-periodic
von Mises PDF can be applied that has the form

10
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ρ(χ) = 4

√
b

2π

exp(b[cos(2χ) + 1])

erfi(
√

2b)
. (32)

Here the positive concentration parameter b ∈ [0,∞] represents a measure of the degree of anisotropy,
erfi(x) = −i erf(x) is the imaginary error function, and χ is the angle between unit vectors r and a, i.e. the
angle of a chain oriented by the vector r with the mean orientation of the chains denoted by the vector a.
The angle χ can be calculated by using the scalar product of r and a, i.e.

χ = cos−1(a · r). (33)

A three-dimensional presentation of the von Mises PDF is illustrated in the case of various orientations of
the preferential vector a in Fig (3) while its significance with respect to different degree of dispersions b is
presented in Fig (4) for a = e3. It is clear from Fig (3) that the PDF is a symmetric function around the
mean vector. Note that there are several other forms of symmetric and non-symmetric PDFs that can be
utilised to capture chain orientation distribution, cf. Alasture et al. [2, 3].

Figure 4: The three-dimensional representation of the von Mises probability distribution function (PDF) on the surface of a unit-
sphere with respect to various degree of dispersion b. (I) b = 0, (II) b = 3.0, (III) b = 20.0. For the illustration purpose, the
preferential unit vector a is considered in the vertical direction e3. The colour corresponds to the magnitude of the PDF ρ

3.4. Discretization over the micro-sphere
Concerning the averaging of the quantities in Eqn (31) over the unit sphere, numerical techniques, similar
to numerical quadrature in the finite element method, can be used. By using prescribed direction vectors
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and non-negative weighting factors the exact continuous integration can be approximated. Hence the dis-
crete form of the continuous fibre probability distribution function over the unit sphere, by assuming nid
orientation vectors {rs}s=1,··· ,nid along with nid weighting factors {ws}s=1,··· ,nid, can be expressed as

〈(•)〉 =
1

4π

∫
U2

(•)dA ≈
nid∑
s=1

(•)sws. (34)

Such a discrete integration scheme can be interpreted as (•)s is the value of (•) in the direction of rs

scaled with non-negative integration weights ws that hold the condition
∑nid

s=1w
s = 1 to ensure the exact

integration of constant functions, cf. Verron [73]. There are, according to Bazant & Oh [6], two more
constraints that need to be satisfied

〈r〉 ≈
nid∑
s=1

wsrs = 0, and 〈r ⊗ r〉 ≈
nid∑
s=1

wsrs ⊗ rs =
1

3
I. (35)

The latter constraint ensures the stress-free state of the macro-continuum in the reference configuration.
Moreover, both conditions preserve the isotropy for a constant value of the PDF, i.e. ρ = const, see, Miehe
et al. [51], Alastrue et al. [2]. One of the key advantages of the micro-sphere-based framework is that any
one-dimensional constitutive equation, that is suggested by experimental evidences, can straightforwardly
be transferred to the general three-dimensional form. Despite the high computational costs, thanks to the
simple formulation where complicated tensorial formulations are absent, the micro-sphere based AI-models
obtain popularity in many areas of constitutive modelling, see for details, Etse et al. [25], Kuhl et al. [41],
Miehe et al. [51], Alastrue et al. [1, 2], Ehret et al. [24].

3.5. Stress calculations

The concept of a total energy function is common in the area of electro-and magneto-elasticity as demon-
strated by Dorfmann & Ogden [17, 18]. Thereby the total energy Ω can be written as

Ω(F ,E) = Ψ(F ,E) + E0(F ,E), (36)

where E0 = −1
2ε0JE · [C−1E] denotes the electrostatic energy density per unit volume in the material

configuration. As is demonstrated in [74] the total energy changes the dissipation inequality to

P tot : Ḟ − Ω̇−D · Ė
!
≥ 0, (37)

for all possible thermodynamic admissible processes. Therefore, the constitutive relations modify to

P tot =
∂Ω

∂F
, with Pmax =

∂E0

∂F
, D = −∂Ω

∂E
. (38)

Moreover, in many cases, expressions for the total stress have to be written either in terms of the total Cauchy
stress or in terms of the total Piola-Kirchhoff stress tensor, i.e.

σtot = J−1 ∂Ω

∂F
F T , Stot = 2

∂Ω

∂C
. (39)

In the case of rubber-like materials’ modelling where the additive decomposition into volumetric and iso-
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choric energy contributions is assumed, i.e., with the help of Eqn (27), the total energy function becomes

Ω(F ,E) = Ψ(F ,E) +E0(F ,E) = Ψvol(J) + Ψ
isp
iso(C̄ ,E) + Ψani

iso(C̄ ,E;a1, · · · ,aN ) +E0(F ,E). (40)

The total Piola-Kirchhoff stress for a nearly incompressible electro-active coupled polymeric material can
be calculated as

Stot = 2
∂Ψiso

∂C
+ 2

∂Ψvol

∂C
+ 2

∂E0

∂C

= 2
∂Ψiso

∂C
+ JpC−1 + ε0J

[
[C−1 ·E]⊗ [E ·C−1]− 1

2
[E ·C−1 ·E]C−1

]
= J− 2

3P : 2
∂Ψiso

∂C̄
+ JpC−1 + ε0J

[
[C−1 ·E]⊗ [E ·C−1]− 1

2
[E ·C−1 ·E]C−1

]
= J− 2

3P : S̄ + JpC−1 + ε0J

[
[C−1 ·E]⊗ [E ·C−1]− 1

2
[E ·C−1 ·E]C−1

]
(41)

where P = I− 1
3C

−1 ⊗C, I = δikδjl, C̄ = J−2/3C and the hydrostatic pressure p = ∂Ψvol(J)/∂J has
been introduced. In the case of incompressibility, J = 1 and p serves as a Lagrange multiplier to satisfy
this kinematic constraint on the deformation field. Note that there are several proposals for the volumetric
part of the energy function Ψvol, see Steinmann et al. [62], Hossain & Steinmann [32]. Now we can go back
to the isochoric part of the energy function as

Ψiso(C̄ ,E;a1, · · · ,aN ) = Ψ
isp
iso(C̄ ,E) + Ψani

iso(C̄ ,E;a1, · · · ,aN )

= Ψ
isp
iso(Ī1, · · · Ī6) + Ψani

iso(C̄ ,E;a1, · · · ,aN )
(42)

where for isotropy, the energy function Ψ
isp
iso depends on the electro-mechanical coupled invariants, i.e. Ī1 to

Ī6. Thereby the electro-mechanical coupled invariants (Ī1, Ī2, Ī4, Ī5, Ī6) are defined as a combination of the
isochoric right Cauchy-Green tensor C̄ and the electric field E in the material configuration

Ī1 = tr(C̄); Ī2 =
1

2

[
[tr(C̄)]2 − tr(C̄2

)
]
; Ī3 = det(F̄ );

Ī4 = [E⊗E] : I; Ī5 = [E⊗E] : C̄
−1

; Ī6 = [E⊗E] : C̄
−2
.

(43)

Now the isochoric part of the Piola-Kirchhoff stress tensors can be calculated as

S̄ = 2
∂Ψiso

∂C̄

= 2
∂Ψ

isp
iso

∂C̄
+ 2

∂Ψani
iso

∂C̄

= 2

[
∂Ψ

isp
iso

∂Ī1

∂Ī1

∂C̄
+
∂Ψ

isp
iso

∂Ī2

∂Ī2

∂C̄
+
∂Ψ

isp
iso

∂Ī5

∂Ī5

∂C̄
+
∂Ψ

isp
iso

∂Ī6

∂Ī6

∂C̄

]
+ 2

∂Ψani
iso

∂C̄

= 2Ψ
isp
iso,1I + 2Ψ

isp
iso,2[Ī1I − C̄]− 2Ψ

isp
iso,5

[
C̄

−T · [E⊗E] · C̄−1
]

− 2Ψ
isp
iso,6

[
[C̄

−1 · C̄−T
]E⊗ [C̄

−1
E]− [C̄

−1
E]⊗ [C̄

−1 · C̄−T
]E
]

+ 2
∂Ψani

iso

∂C̄

(44)
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where derivatives of the isochoric energy function with respect to the coupled invariants are denoted as
∂Ψ

isp
iso

∂Īi
=: Ψ

isp
iso,i. Once we identify an appropriate microscopic strain energy for a single chain ψc, whereby

we shall here assume only one family of chains, the anisotropic part of the isochoric stress tensor will be as
follows

S̄
ani

= 2
∂Ψani

iso

∂C̄
≈

nid∑
s=1

2ρs
∂ψsc
∂λ̄2

s

∂λ̄2
s

∂C̄
ws =

nid∑
s=1

2ρs
1

2

1

λ̄s

∂ψsc
∂λ̄s

rs ⊗ rsws =
nid∑
s=1

ρs[λ̄]−1
s

∂ψsc
∂λ̄s

rs ⊗ rsws, (45)

where ρs = ρ(rs;a). Similar to the total coupled stress tensor, the total electric displacement will be the
combination of isotropic and anisotropic parts as

D = −∂Ω

∂E
= Diso + Dani (46)

where

Dani = −∂Ψani

∂E
≈ −

nid∑
s=1

ρs
∂ψsc
∂Es

rsws. (47)

4. Benchmark examples

In this section, we identify relevant material parameters from isotropic EAPs. Using the identified param-
eters, the capability of the proposed dispersed anisotropic electro-elastic modelling framework is demon-
strated by solving a non-homogeneous boundary value problem. In order to obtain the complete expression
for the energy function in Eqn (40), appropriate choices for the isotropic energy function Ψ

isp
iso as well as for

the anisotropic energy function Ψani
iso need to be determined. The Neo-Hookean type electro-mechanically

coupled strain energy function is often used in electro-elasticity. Hence, as a starting point, we assume a
Neo-Hookean-like material as in [79] depending on the purely mechanical invariant Ī1, the electrical invari-
ant Ī4 and the coupled invariant Ī5 where the shear modulus µ depends on the electric field via Ī4. Other
advanced forms of energy functions for rubber-like materials can be coupled with the electric part of the
energy to improve the modelling, cf. [32, 33, 62]. A Neo-Hookean coupled isotropic free energy function
is thus

Ψ
isp
iso(C̄ ,E) = µ(Ī4)

[
Ī1 − 3

]
+ ceĪ4 + cmĪ5, (48)

where ce and cm are called electrostrictive coupling coefficients. Mimicking the isotropic part of the macro-
scopic energy appearing in Eqn (48), a Neo-Hookean type free energy function for a single chain fibre can
be chosen. In order to facilitate a closed-form solution of a non-homogeneous boundary value problem dis-
cussed in the next section, we choose the free energy function for a single chain from Thylander et al. [71].
They used this energy function for micro-sphere based isotropic electro-elasticity. Note that there are several
other proposals for free energy functions for a single chain fibre in the case of biological tissue modelling,
e.g., Fung-type model, Worm-like chain model etc, see Alastrue et al.[1] for more details. After performing
the averaging operation on the unit sphere including scaling by the von Mises PDF ρ for a single family of
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fibres, we obtain the macroscopic form of the anisotropic energy function as

Ψani
iso(C̄ ,E;a) ≈

nid∑
s=1

ρs ψsc w
s =

nid∑
s=1

ρs
[

1

2
µ̃[λ̄2

s − 1] + c1λ̄
2
sE

2
s + c2E

2
s

]
︸ ︷︷ ︸

ψs
c

ws (49)

where µ̃, c1 and c2 are the chain shear modulus and the coupling parameters, respectively, in the micro-
sphere energy functionψsc . Finally, after combining the isotropic coupled function in (48) and the anisotropic
coupled function in (49), a complete form of the energy function becomes

Ψiso(C̄ ,E;a) = µ(Ī4)
[
Ī1 − 3

]
+ ceĪ4 + cmĪ5 +

nid∑
s=1

ρs
[

1

2
µ̃[λ̄2

s − 1] + c1λ̄
2
sE

2
s + c2E

2
s

]
ws. (50)

Exploring the constraint conditions described in Eqns (35), Thylander [71], Thylander et al. [72] established
that there are excellent correlations between parameters appearing in the macroscopic bulk energy and the
micro-sphere chain energy, i.e. µ̃ = 3µ, c1 = 3cm, c2 = 3ce. Therefore, at this stage, all parts of the energy
function expressed in Eqn (40) are obtained. Using the definition of the Piola-Kirchhoff stress tensor as in
Eqn (44), the isochoric part of the total stress, that also contains the chain contribution, will be as follows

S̄ = 2
∂Ψiso

∂C̄
= µI + 2cmI ¯C

−1 : [E⊗ E] +

nid∑
s=1

ρs[λ̄]−1
s

∂ψsc
∂λ̄s

rs ⊗ rsws, (51)

where IABCD
¯C

−1 = −1
2

[
C̄−1

AC C̄
−1
BD + C̄−1

ADC̄
−1
BC

]
. The electric displacement with regard to the reference config-

uration is derived as

D = ε0JC
−1 · E− 2ceE− 2cmC̄ · E−

nid∑
s=1

ρs
∂ψsc
∂Es

rsws. (52)

Due to the small value of the vacuum permittivity, the free space term in the total energy formulation (40)
will be neglected in the sequel as in [78, 45], i.e. Ω(F ,E,a) ≈ Ψ(F ,E,a) is assumed in the subse-
quent calculations. Moreover, in all numerical examples presented in the following sections, we adopt the
frequently-used assumption of incompressibility in the case of rubber-like material modelling.

4.1. Parameter identification from homogeneous isotropic EAPs

At first we would like to identify relevant material parameters appearing in the modelling frameworks using
existing experimental data. There are several experimental data available in the literature, e.g., Carpi et al.
[13], Diaconu et al. [22], Kollosche et al. [43]. However, all of the existing experiments, to the best of
the authors’ knowledge, are performed on isotropic polymeric materials under electro-mechanical coupled
loads. None of the data is obtained from chain-dispersed filled EAPs. We have systematically illustrated
in Eqns (40-45) that the proposed modelling framework is based on two parts of the energy function, i.e.
isotropic and anisotropic parts where the latter is scaled by a dispersion parameter b to capture the degree
of concentration of the dispersed polymer chains. To identify mechanical material parameters as well as
electro-mechanical coupled parameters, we select the data obtained by Carpi et al. [13]. Carpi and co-
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Figure 5: Parameter identifications and model predictions for the experimental data by Carpi et al. [13]. The specimen was 50
micro-meter thick acrylic polymeric film VHB that was pre-stretched in the longitudinal direction: longitudinal stretch (λ) versus
the electric field (E) applied in the thickness direction

workers conducted experiments on a rectangular specimen made of 50 micro-meter thick acrylic polymeric
film, commercially known as VHB (very high bond) F9460PC. For electric actuations, specimens were
coated by different electrode materials where samples were subjected first to different pre-stresses P in the
vertical (longitudinal) direction. After sufficient pre-stressing, specimens were thin enough to be activated
for significant actuations. Then various amount of electric fields were applied in the thickness direction.
The dimensions of the specimen were 3cm (longitudinal) x 2cm (transverse). Despite the application of the
electric field within a very short amount of time (2 seconds) in the thickness direction, voltage induces a
change of the stretch in the longitudinal direction. They conducted experiments with four different com-
pliant electrodes, e.g. electrolyte solution, carbon grease, graphite spray and graphite powder. However,
we only take the data produced by graphite powder electrode. For the geometry and boundary conditions
mentioned above, for the modelling purpose, specimens are idealised under uniaxial tensions with electro-
mechanical coupled loads.

To validate our model against the data that are for isotropic polymeric materials, we assume that the
(imaginary) particles are homogeneously distributed in the matrix. Hence the concentration parameter b
is set to its minimum value, i.e. b → 0. At first, we identify only mechanical parameters, i.e. µ and
µ̃ by setting E = 0 in the stress expression derived from Eqn (50). In this case, different pre-stresses

16

Page 16 of 31AUTHOR SUBMITTED MANUSCRIPT - SMS-105467.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



P = [19.6, 29.4, 39.2, 49.0]kPa are plotted against the pre-stretches λp = [1.19, 1.35, 1.58, 1.83]. By fitting
the stress equation obtained by the energy function in Eqn (50), the mechanical parameters µ (hence µ̃ as
µ̃ = 3µ) is obtained, i.e. µ = 0.81kPa. Now, we fit the electro-mechanical coupled model assuming that
the (imaginary) particles are homogeneously distributed in the matrix characterized by a minimum value of
b. In Fig (5) the change of the stretch of the film in the longitudinal direction is plotted against the electric
field in the thickness direction for various values of the pre-stresses P . By fitting the model with the first
set of data starting with the pre-stretch λp = 1.19, we obtain the coupled parameters cm = 3.25 · 10−14 F

m
( hence c1 as c1 = 3cm). During the identification of the coupled parameters, the mechanical parameters
are kept frozen. Once all relevant parameters are identified, the change of the stretch in the longitudinal
direction is simulated for other three sets of data. In Fig (5) one can observe a very good agreement between
the experimental data and model predictions.

4.2. Non-homogeneous deformation

For non-homogeneous deformations, the extension and inflation of an incompressible cylindrical tube with
a cylindrical symmetry has been explored in various areas ranging from nonlinear elasticity to nonlinear
electro-and magneto-mechanical coupling problems, cf. [17, 18, 19, 20, 53]. Bustamante [8, 9] has demon-
strated this example both for electro-mechanical and magneto-mechanical cases with transverse isotropy
while Mehnert et al. [45, 46] extended it towards thermo-electro-mechanical and thermo-magneto-mechanical
couplings. Therefore, we adopt this example to reproduce some results by the newly proposed constitutive
framework that can quantitatively be matched with results available in the literature. Moreover, this particu-
lar problem will show how the degree of dispersion of polymer chains influences the actuation behaviours.
Due to the cylindrical geometry, it is reasonable to work in cylindrical coordinates. Expressing the diver-
gence of the electric displacement div d = 0 in cylindrical coordinates in the actual configuration, we find

1

r
dr +

∂dr
∂r

+
1

r

∂dφ
∂φ

+
∂dz
∂z

= 0, (53)

and for the curl of the electric field curl e = 0

1

r

∂ez
∂φ
−
∂eφ
∂z

= 0;
∂er
∂z
− ∂ez

∂r
= 0;

1

r

∂(reφ)

∂r
− 1

r

∂er
∂φ

= 0, (54)

where the components of the electric field e and the electric displacement d are expressed as (er, eφ, ez)
and (dr,dφ,dz), respectively. The cylindrical symmetry of the tube geometry results in invariance of the
field quantity with respect to φ and z, i.e. ∂(•)

∂φ = ∂(•)
∂z = 0. Hence, equations (53) and (54) reduce to

rdr = constant; reφ = constant; ez = constant. (55)

The divergence of the total Cauchy stress tensor in cylindrical coordinates in a cylindrically symmetric stress
state is expressed as

div σtot =

[
∂σtot

rr

∂r
+
σtot
rr − σtot

φφ

r

]
er +

[
∂σtot

rφ

∂r
+

2σtot
rφ

r

]
eφ +

[
∂σtot

rz

∂r
+
σtot
rz

r

]
ez. (56)
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Figure 6: A cylindrical tube being inflated under an internal pressure P where the preferred (mean) direction a is aligned in the
vertical axis. The chains are dispersed symmetrically along the preferred axis a

4.2.1. Extension and inflation of a tube
We consider a thick-walled tube in cylindrical coordinates, see Fig (6). The geometry in the spatial config-
uration is described by

ai ≤ r ≤ ae; 0 ≤ φ ≤ 2π; 0 ≤ z ≤ l, (57)

where ai and ae denote the inner and outer radii in the deformed configuration, respectively. The tube
geometry can be described in the material configuration by

Ai ≤ R ≤ Ae; 0 ≤ Φ ≤ 2π; 0 ≤ Z ≤ L, (58)

where Ai and Ae denote the inner and outer radii in the undeformed configuration, respectively. The defor-
mation in the tube is activated under a combination of an axial extension and a radial expansion. Hence due
to the combined action of inflation and extension, the transformation from the undeformed to the deformed
configuration is described by

r2 = λ−1
z

[
R2 −A2

i

]
+ a2

i , φ = Φ, z = λzZ, (59)
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where λz is the uniform axial stretch. In formulating the first part of the above relation, the incompressibility
assumption is applied, i.e. λ1λ2λ3 ≡ 1. Note that for the problem under consideration, the deformation gra-
dient has only entries on the main diagonal. In cylindrical coordinates the radial, circumferential/azimuthal
and axial entries read

λr = [λλz]
−1; λφ =

r

R
= λ; λz. (60)

Due to the deformation gradient presented above, the electric field vector in the spatial configuration takes
the form

er = λλzER, eφ = λ−1EΦ, ez = λ−1
z EZ . (61)

For the inflation and extension of the tube, the divergence of the total stress divσtot = 0 can be formulated
from Eqn (56) as

∂σtot
rr

∂r
+
σtot
rr − σtot

φφ

r
= 0, (62a)

∂σtot
rφ

∂r
+

2σtot
rφ

r
= 0 (62b)

∂σtot
rz

∂r
+

1

r
σtot
rz = 0. (62c)

As we mentioned earlier, due to the small value of the vacuum permittivity ε0, the free-space stress is
neglected. Moreover, under the constraint of incompressibility the total Piola-Kirchhoff stress becomes

Stot = 2
∂Ψ

∂C
+ pC−1. (63)

Sometimes, it is more convenient to derive the Cauchy-type total stress from the Piola-Kirchhoff stress
σtot = FStotF T . Using the expressions of the total anisotropic energy function in (50) and the deformation
gradient defined in (60), the non-zero stress components of σtot become

σtot
φφ = p+ 2λ2

[
Ω1 + Ω2[λ−2λ−2

z + λ2
z]
]
− 2Ω5λ

−2E2
Φ − 4Ω6λ

−4E2
Φ

+
nid∑
s=1

ρs[µ̃+ 2c1E
2
s ]λ2[rsθ]

2ws

σtot
zz = p+ 2λ2

z

[
Ω1 + Ω2[λ−2λ−2

z + λ2]
]
− 2[Ω5 + 2Ω6λ

−2
z ]λ−2

z E2
Z

+

nid∑
s=1

ρs[µ̃+ 2c1E
2
s ]λ2[rsz]

2ws

σtot
rr = p+ 2λ−2λ−2

z

[
Ω1 + Ω2[λ2 + λ2

z]
]
− 2[Ω5 + 2Ω6λ

2λ2
z]λ

2λ2
zE

2
R

+
nid∑
s=1

ρs[µ̃+ 2c1E
2
s ]λ2[rsr]

2ws

σtot
rz = −2EREZ

[
Ω5 + Ω6[λ2λ2

z + λ−2
z ]
]
,

(64)

where r = {rr, rθ, rz}T .
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4.2.2. Axially applied electric field
Among other ways to apply an electric field in this classical problem, the application of an axially applied
field is discussed in the electro- and magneto-elasticity literature, see [8, 9, 19, 20]. Without considering the
surrounding free space and after rearranging Eqn (62a) we obtain

σtot
rr (r̄) =

∫ r̄

ai

1

r

[
σtot
θθ(r)− σtot

rr (r)
]
dr + q, (65)

where q is an integration constant which can be determined from the boundary conditions for the stress. If
the outer surface of the tube is free of mechanical loads we find

q = −
∫ ae

ai

1

r

[
σtot
θθ(r)− σtot

rr (r)
]
dr + σmax

rr (ae)

=

∫ ae

ai

1

r

[
σtot
rr (r)− σtot

θθ(r)
]
dr + σmax

rr (ae).

(66)

At the inner boundary, the tube is subjected to a uniform pressure P

σtot
rr (ai) = σmax

rr (ai)− P, (67)

that leads to
σtot
rr (ai) =

∫ ai

ai

1

r

[
σtot
θθ(r)− σtot

rr (r)
]
dr + q

=

∫ ae

ai

1

r

[
σtot
rr (r)− σtot

θθ(r)
]
dr + σmax

rr (ae) = σmax
rr (ai)− P.

(68)

The axially applied electric field will produce electric field lines which will be ideally aligned parallel to
the longitudinal axis of the tube. Thus, the field lines will not depend on the tube radius. As a result, the
influence of the field in the inner and outer surfaces are almost the same, i.e., σmax

rr (ai) = σmax
rr (ae). This

condition will yield

P =

∫ ae

ai

1

r

[
σtot
θθ(r)− σtot

rr (r)
]
dr. (69)

We put the expressions of the stress components σθθ and σrr from Eqns (64) into the Eqn (69). After lengthy
and rigorous calculations, which we skip writing here due to space constraint, the closed form results of the
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pressure P can be expressed as

P =
µ(I4)

λz

[
ln

(
λi
λe

)
− 1

2λz

[
λ−2
i − λ

−2
e

]]
+

1

2
λ−1
z

[
λzλ

2
i − 1

λzλ2
e − 1

] nid∑
s=1

ρs µ̃ ws[rsθ]
2

−
[
λ−1
z ln

(
λe
λi

)
+

1

2
λ−2
z [λ−2

i − λ
−2
e ] +

1

2
λ−1
z

[
λzλ

2
i − 1

λzλ2
e − 1

]] nid∑
s=1

ρs µ̃ ws[rsr]
2

+
1

2
λ−1
z

[
λzλ

2
i − 1

λzλ2
e − 1

] nid∑
s=1

2ρs c1 [Es]
2ws[rsθ]

2

−
[
λ−1
z ln

(
λe
λi

)
+

1

2
λ−2
z [λ−2

i − λ
−2
e ] +

1

2
λ−1
z

[
λzλ

2
i − 1

λzλ2
e − 1

]] nid∑
s=1

2ρs c1 [Es]
2ws[rsr]

2

(70)

where λi = ai/Ai, λe = ae/Ae. In order to express the electric field-dependent shear modulus, we bor-
row the arguments of a field-dependent linear shear function from Bustamante [8] and Mehnert et al. [45]
in the case of electro-elastic modelling, i.e., µ(I4) = g0 ± I4g1, where g0, g1 are material constants.
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Figure 7: Plot of pressure over tube inflation λi for selected values of ζ = 2, λz = 1, b = 2.0; a) Influence of the electric field on
the pressure, b) Convergence test for various integration schemes

In order to illustrate few basic features of the non-homogeneous example, we at first concentrate to quanti-
tatively reproduce some results with the help of the newly proposed model that are already available in the
literature. For the material parameters appearing in the model, we take the values that are already identified
in the previous section except the dispersion parameter b. Due to scarcity of experimental evidence, we
follow an ansatz for the field dependence of the shear modulus µ(I4) which is in line with an assumption
already taken in the literature, cf. Bustamante [8], Mehnert et al. [42, 43]. They assume that the field-
dependent shear modulus can be expressed via µ(I4) = g0 + g1I4, where g1 is a negative scaling parameter
and g0 is the ground state shear modulus which is already identified, i.e. g0 = 0.81kPa. The scaling param-
eter g1 will be either negative or positive depending on the fact whether the shear modulus is increasing or
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reducing by the applied electric field. Since we don’t have enough experimental evidence at this moment,
both possibilities are taken into account in this sequel, i.e. µ(I4) = g0 ± g1I4. However, this ansatz can
easily be fixed whenever more appropriate and illustrative experimental data will be available. Table 1 sum-
marises three major parameters (two of them are identified in the previous section) with their appropriate
units where the microscopic and macroscopic coupling parameters, c1 and cm, respectively, are related to
c1 = 3cm. We prescribe an axial stretch characterised by λz , a radial inflation or contraction expressed by
λi i.e. a ratio to the actual radius after the deformation to the initial radius. In addition to the mechanical
stretch, the electric field is applied in the axial direction that is designated by EZ , i.e. E = {0, 0, EZ}T .
For given values of the tube thickness ratio ζ, the axial stretch ratio λz and a fixed dispersion parameter
b = 2.0, the applied pressure P vs λi is plotted in Fig (7a) to show the influence of the electric field on the
pressure response captured by the model. Note that Figure (7a) depicts similar results to those produced by
other models, cf. Mehnert et al. [45, 46], Bustamante [8]. It shows that the applied electric field softens
the material response. For the tube inflation (λi > 1), a positive pressure has to be applied on the internal
surface of the thick-walled tube. It reveals the pressure increases with the increasing value of the inflation.
These results quantitatively match with the published figures in the literature, see [8, 45], Bustamante [8].

The isotropic as well as anisotropic parts of the energy function of the proposed constitutive framework
is an electro-mechanical coupled extension of the neo-Hookean energy function. The internal pressure is
almost maintained in higher inflations of the tube since at this point, the tube becomes so thin to take any
inflation pressure further. The limitation of the neo-Hookean model for rubber elasticity is well known. As
the inflation ratio (λi) becomes larger and larger, there is an upper limit of the pressure P that tends to an
asymptotic value. This result is consistent with the results obtained by Melnikov & Ogden [83], Bustamante
[8], Mehnert et al. [42,43] with isotropic as well as transverse anisotropic constitutive models that are in-
spired by a neo-Hookean formulation. However, if we take other advanced forms of energy functions, e.g.
Gent model, the pressure will increase monotonically and for the Ogden model, it will be a maximum in
the pressure followed by a minimum and subsequent monotonic increase as the inflation λi increases, see
Melnikov & Ogden [83] for isotropic electro-active polymer modelling. Moreover, in the case of radial
contraction (λi < 1), a negative pressure requires which decreases with the smaller value of λi.

For the numerical integration over the unit sphere, there are several integration schemes available in the
literature. One of the key, but still much debated, questions is which numerical scheme is better suited for
what type of constitutive model. Several research publications are dedicated to answer this pressing ques-
tion in various areas, e.g. biological tissues, see for example, Ehret et al. [24], Verron [73], Itskov [36].
One of the simplest and most often used integration scheme, particularly in the case of isotropic modelling
approach, is due to Bazant & Oh [6]. However several studies indicate that this simple and computationally
efficient scheme yields unreliable results in the case of anisotropic models, cf. Ehret et al. [24], Verron [73].
We initially use this scheme, due to its simple computational cost with a symmetry property, however, since
it produces unreliable results, alternative integration schemes are used later on. According to Itskov [36],
Verron [73], Ehret et al. [24], the integration schemes proposed by Fliege & Maier [26], Womersley [83]
can yield reliable results for anisotropic models. We compare Womersley integration scheme with Fliege
& Maier scheme for various integration points, see Fig (7b). Interestingly, both schemes show consistent
results even for the non-homogeneous tube example. Moreover, when we compare with different integra-
tion points of Womersley and Fliege & Maier, they end up with almost the same results. Henceforth, we
confine ourself to the 64-point integration scheme from Womersley. A complete analysis of various integra-
tion schemes in the case of particle-filled anisotropic EAP models should be an interesting topics to explore
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which will be a subject of investigation in our future contributions.
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Figure 8: Plot of pressure over inflation λi for selected values of λz = 1,E = 100 kV/m; a) Variation with respect to the anisotropy
parameter b and ζ = 2, b) Variation with respect to the tube thickness ratio ζ when b = 2.0

Table 1: Various baseline material constants used in the tube problem.

g0 = µ [kPa] g1 [kPa/[kV/m]2] cm [F/m]

0.81 1.0× 10−5 3.25× 10−14

Similar to Bustamante [8] for the magneto-mechanical case and Mehnert et al. [45, 46] for the thermo-
electro-mechanical case, the tube inflation pressure is plotted over the radial inflation λi for three different
values of the degree of anisotropy b = [2.0, 7.0, 20.0] in Fig (8a). As expected when the fibres are perfectly
aligned (b = 20.0) in the direction of the applied electric field, the pressure will be minimum since there
will be no contributions of the fibres in the azimuthal direction. In the case of b = 2.0 (solid line), some
fibres are also aligned azimuthally which hinder the inflation in the circumferential direction that eventually
results in larger pressure. A similar explanation for this non-homogeneous problem can be found in Gasser
et al. [28] for the case of dispersed biological tissue modelling. Next, we present the pressure variation with
respect to the tube thickness ζ, i.e. the ratio of the external to the internal radius. It is clear that for a given
amount of inflation λi, a larger pressure is required with increasing tube thickness ζ. For a certain value
of the anisotropy parameter, b = 2.0, the variation of the internal pressure for different thickness ratio is
plotted in Fig (8b) which depicts that more inflation λi will yield similar results as in the case of increasing
tube thickness ζ.

As mentioned earlier, the thickness of the tube is characterised by ζ, i.e. the ratio of the external to the inter-
nal radius. In Figure (9) it can be observed that the internal pressure decreases when the cylinder is stretched
in the axial direction which is due to the decrease in the wall thickness of the cylinder as its volume is pre-
served thanks to the incompressibility constraint. This reduction of the pressure is more pronounced in the
case of smaller values of the dispersion parameter b, i.e., when some chains align in the circumferential
direction the pressure will be more and the reduction will be prominent, see Fig (9a). For a given value
of the anisotropy parameter, b = 2.0, the variation of the internal pressure for different thickness ratio is
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Figure 9: Plot of pressure to illustrate the dependence on the axial stretch for selected values of λi = 2.0, E = 100 kV/m; a)
Pressure variation due to various dispersion values b, b) Pressure with respect to the tube thickness ratio ζ when b = 2

plotted in Fig (9b). However, when the initial tube thickness ζ is changed, the magnitude of the pressure
is affected accordingly, i.e. the pressure reduction in a thicker tube is more prominent than a relatively thin
tube, see Fig (9b).
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Figure 10: Variation of pressure over tube thickness for selected values of λz = 1, E = 100 kV/m; a) Pressure dependence with
respect to inflation for a given anisotropy parameter b = 2.0, b) Pressure with respect to various dispersion parameters b but for a
fixed inflation value of λi = 2

Similar to the tube inflation, the pressure will increase under an increasing value of the tube thickness ratio.
If we increase the inflation ratio, it will yield more pressure, cf Fig (10a). Figure (10b) reveals that in the
case of dispersed chain characterised by smaller value of b, the pressure will increase in a similar manner as
in the case of greater inflation ratio.

Next we investigate the variation of the pressure with respect to the electric field strengthE for various infla-
tion ratio and the degree of dispersion b. Figure (11a) shows that the tube pressure drops with the increasing
magnitude of the applied electric field. This is due to the fact that the applied field softens the material
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Figure 11: Pressure dependence on the electric field for selected values of λz = 1, ζ = 2; a) Variation with respect to the radial
inflation for a dispersion parameter b = 2.0, b) Variation with respect to different dispersion parameters for an inflation value of
λi = 2

which is scaled by the field-dependent shear function µ(I4). For the dispersion captured by the parameter
b, its smaller value (b = 2.0) will yield larger pressure since some chains will align in the azimuthal direc-
tion. Moreover, the softening effect is more vivid when the major chains are in the circumferential direction
compared to the perfectly aligned chains in the axial direction, i.e. b = 20, cf Fig (11b).

5. Conclusion and outlook

In this contribution a dispersion-type anisotropic constitutive framework for EAPs is proposed. In an attempt
to improve actuation mechanisms, high permittivity particles are used in a polymeric matrix to manufacture
EAP composites. For further improvements in the actuation, an electric field is applied during the curing
process of the composites which form transversely anisotropic polymers with a dispersion along a mean
orientation axis. The proposed constitutive model captures the chain dispersion anisotropy with a probabil-
ity distribution function in integral form. To obtain the results in discrete form, some advanced integration
schemes over the unit micro-sphere are utilised. Several homogeneous and non-homogeneous benchmark
examples demonstrate that the presented formulations correctly capture relevant phenomena in transversely
isotropic electro-elastic polymeric materials with a chain dispersion. The underlying bulk polymeric mate-
rials in EAP composites are typically viscoelastic. Hence, a time-dependent viscoelastic extension of the
proposed model will be treated in our forthcoming contributions. Moreover, for simulations with more re-
alistic boundary value problems, the proposed model needs to be implemented into a finite element code
which will be addressed in another contribution. A comparison between the AI-based approach and the
GST-inspired approach for electro-mechanically coupled problems is a tempting work to perform in the
future. We have a plan to identify the dispersion parameter b of the proposed constitutive framework with
experimental data of particle-filled EAPs.
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