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How Discontinuous is Computing Nash
Equilibria? (Extended Abstract)

Arno Pauly

University of Cambridge Computer Laboratory
Cambridge, UK

Arno.Pauly@cl.cam.ac.uk

Abstract. We investigate the degree of discontinuity of several solution
concepts from non-cooperative game theory. While the consideration of
Nash equilibria forms the core of our work, also pure and correlated
equilibria are dealt with. Formally, we restrict the treatment to two player
games, but results and proofs extend to the n-player case. As a side
result, the degree of discontinuity of solving systems of linear inequalities
is settled.

Keywords. Game Theory, Computable Analysis, Nash Equilibrium,
Discontinuity

1 Introduction

Both for applications and theoretical considerations, the algorithmic task of
computing Nash equilibria from certain representations of games is of immense
importance. A natural mathematical formulation of game theory uses the real
numbers for payoffs and for mixed strategies, while classical models for algo-
rithms require a restriction to countable sets. By imposing suitable restrictions
and modifications to obtain countable problems, the complexity of computing
a Nash equilibrium for a normal form game was proven to be PPAD-complete
([1], [2]).

Here we will use another approach: Instead of limiting the problem, we will
extend the theory of computation. While the TTE-framework ([3]) is perfectly
capable of formulating the task of computing Nash equilibria from normal form
games, we will see that even the most trivial cases are discontinuous, and hence
not computable.

To gain a deeper understanding of the problem, its degree of discontinuity will
be studied. Mirroring an approach in the study of game theory using classical
computational complexity, we will also examine other solution concepts such
as correlated equilibria. While correlated equilibria seem to be computationally
easier than Nash equilibria1, we will prove that both concepts share a degree

1 In [4] several decision problems regarding Nash equilibria and correlated equilibria
were compared, most of them turned out to be NP-hard for Nash equilibria and to
be in P for correlated equilibria.

Andrej Bauer, Peter Hertling, Ker-I Ko (Eds.) 
6th Int'l Conf. on Computability and Complexity in Analysis, 2009, pp. 197-208 
http://drops.dagstuhl.de/opus/volltexte/2009/2271



198 Arno Pauly

of discontinuity. Limitation to pure strategies yields a strictly less discontinuous
problem, the classical problem can be solved by a cubic algorithm2.

Due to space restrictions, most of the proofs are omitted here. A more com-
prehensive version including proofs is [10].

2 Preliminaries

2.1 Game Theory

An n × m bi-matrix game is simply given by two n × m real valued matrices
A and B. Two players simultaneously pick an index, row player chooses an
i ∈ {1, 2, . . . , n} and column player chooses an j ∈ {1, 2, . . . ,m}. Row player gets
Aij as a reward, column player gets Bij . We consider several solution concepts
defined as equilibria, where no player has an incentive to change her strategy
unilaterally.

Definition 1. A pure equilibrium for a n×m bi-matrix game (A,B) is a pair
(i, j) ∈ {1, . . . , n} × {1, . . . ,m} satisfying Aij ≥ Akj for all k ∈ {1, . . . , n} and
Bij ≥ Bil for all l ∈ {1, . . . ,m}.

As pure equilibria do not exist for all games, a more general notion is intro-
duced. If both players can randomize independently over their actions, one is led
to the definition of an m-mixed strategy as an m-dimensional real valued vector

s with non-negative coefficients and
m∑
j=1

sj = 1. The set of m-mixed strategies

will be denoted by Sm.

Definition 2. A Nash equilibrium for an n×m bi-matrix game (A,B) is a pair
(x̂, ŷ) ∈ Sn × Sm satisfying x̂TAŷ ≥ xTAŷ for all x ∈ Sn and x̂TBŷ ≥ x̂TBy
for all y ∈ Sm.

If (x̂, ŷ) is a Nash equilibrium, again neither of the players can improve her
payoff by changing her mixed strategy unilaterally. A famous result by John
Nash ([7]) established that Nash equilibria in bi-matrix games always exist.
By identifying a pure strategy with the mixed strategy that puts weight 1 on
it, pure equilibria can be considered a special case of Nash equilibria. An even
more general solution concept can be obtained by allowing the individual player’s
randomization processes to be correlated ([8]).

Definition 3. A correlated equilibrium for a n × m bi-matrix game is a real

valued n×m matrix C with non-negative entries and
n∑
i=1

m∑
j=1

Cij = 1 so that

m∑
j=1

AijCij ≥
m∑
j=1

AljCij

2 There are, however, several interesting hardness results for finding pure equilibria in
games ([5], [6]), originating in other representations or requiring additional proper-
ties.
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holds for all i, l ∈ {1, 2, . . . , n} and

n∑
i=1

BijCij ≥
n∑
i=1

BikCij

holds for all j, k ∈ {1, 2, . . . ,m}.

Given a Nash equilibrium (x, y), a correlated equilibrium can be constructed
as Cij = xiyj , while each correlated equilibrium of this form can be obtained
from a Nash equilibrium, allowing us to consider Nash equilibria as special cases
of correlated equilibria. Thus, finding a correlated equilibrium has to be easier
than finding a Nash equilibrium, as we just presented a reduction.

Another way of creating an easier problem consists in a restriction of the
games used. A zero-sum game is a bi-matrix game of the form (A,−A).

2.2 Representing Games

In order to consider games as inputs to Type-2-Machines, they have to be coded
into infinite sequences. The choice of the countable alphabet used is irrelevant
for the theory, to simplify proofs we will use either {0, 1} or N, depending on
the context. The degrees of discontinuity we study are those of the realizations,
that is of functions turning names of instances into names of solutions. Since all
occurring representations will be admissible, topological properties carry over
between sets of games and sets of names for games, etc.

As games in normal form are pairs of real matrices, and (possible) equilibria
pairs of real vectors (or again real matrices), one can quickly derive suitable rep-
resentations by using product and coproduct representations ([3], [9]), starting
from any representation of the real numbers.

The standard representation ρ of the real numbers is chosen for various rea-
sons; it is admissible and provides a convincing class of computable functions, in
contrast to some of the alternatives ([3], [11]). Additionally, as demonstrated in
[12], the representation ρ is equivalent to the representation naturally arising for
the results of repeated physical measurements. For defining ρ, we fix a bijection
ν : N→ Q with ν(0) = 0, so that all the usual operations on Q are computable
w.r.t. ν.

Definition 4. Let ρ(w) = x ∈ R hold for w ∈ NN, if |ν(w(i)) − x| ≤ 2−i holds
for all i ∈ N.

Definition 5. Let w be a Γ -name for the bi-matrix game (A,B), if

1. w = 0n1m0w2, when (A,B) is an n×m game
2. w2 = 〈wa, wb〉, where 〈 〉 denotes the usual pairing function
3. wa = 〈wa11, . . . wan1, wa12, . . . , wanm〉
4. wb = 〈wb11, . . . wbn1, wb12, . . . , wbnm〉
5. ρ(waij) = Aij
6. ρ(wbij) = Bij

Representations for pure, Nash and correlated equilibria can be derived in
the same fashion. Detailed definitions are omitted here.
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2.3 Comparing Discontinuity

As games can have multiple equilibria, we do not consider a function assigning an
equilibrium to each game, but rather a multi-valued function. We will identify
a multi-valued functions with the set of its choice functions. To compare the
discontinuity of such sets, Type-2-Reducibility as studied in e.g. ([14], [15], [16],
[17], [25], [18], [9]) is used, as well as the Level of a function (or a set of functions),
introduced in [17].

We use the following definition of Type-2-Reducibility:

Definition 6. Let A,B be multi-valued functions. Then A ≤2 B holds, iff there
are continuous partial functions F , G with w 7→ F (w, g(G(w))) ∈ A for each
g ∈ B.

As demonstrated in [9] (for suprema) and [13] (for infima), ≤2 induces a com-
pletely distributive complete lattice. We use dPnen∈N to denote the supremum of
a countable family (Pn)n∈N. This allows to consider the degree of discontinuity
of finding equilibria in any game as the supremum of the degrees of discontinuity
of finding equilibria in games with fixed size.

As the Level will play only a minor role in our considerations, we refer to [9]
for definitions.

3 Single Player Games and Pure Equilibria

From the perspective of game theory, single player games are trivial: The acting
player chooses whatever action is best for her. As a discrete computation prob-
lem, this amounts to finding a maximum in a list of integers, a task that can be
solved in linear time or logarithmic space. As the problem posed over the reals
is discontinuous, we will study the problems 1Puren and 1Pure of finding pure
equilibria in single player games with n actions and without fixed game sizes. It
shall be noted that single player games can be identified with n × 1 bi-matrix
games, justifying their inclusion.

As every n × 1 bi-matrix game has a pure equilibrium, and Cij > 0 can
only hold in a correlated equilibrium C, if the entry Ai1 is maximal in A (and
thus (i, 1) is a pure equilibrium), finding pure, Nash and correlated equilibria is
equivalent for single player games, so the restriction to pure equilibria does not
invoke any loss of generality.

The degree of discontinuity of 1Puren turns out to be equivalent to an-
other family of problems, MLPOn, introduced in [14] as generalizations of the
lesser limited principle of omniscience (LPO) studied in constructive mathemat-
ics ([19]).

Definition 7. A function f : {(p1, . . . , pn) ∈ (NN)n | ∃i ≤ n pi = 0N} →
{1, 2, . . . , n} is in MLPOn, if it fulfills pf(p1,p2,...,pn) = 0N for all valid
(p1, p2, ..., pn).

Theorem 1. MLPOn ≡2 1Puren
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In the next step, we extend the scope of consideration to finding pure equilib-
ria in arbitrary bi-matrix games. The relevant problems are Purenm, where the
size of the game is restricted to n×m, and the general case denoted by Pure.
For obtaining results, reducibility to MLPOn shall be expressed by a partition
property:

Lemma 1. Let H be a multi-valued function defined on a strongly zero-
dimensional metrisable space3 X. Then H ≤2 MLPOn holds, iff there are n

closed sets Ai, i ≤ n with X =
n⋃
i=1

Ai, so that for each i ≤ n, there is an f i ∈ H

so that f i|Ai
is continuous.

Theorem 2. Purenm ≤2 MLPOn∗m.

Proof. Given an n ×m bi-matrix game (A,B), the condition for the pair (i, j)
to be a pure equilibrium is Aij ≥ Akj and Bij ≥ Bil for all k ≤ n, l ≤ m.
This implies that the set P ijnm = {(A,B) | (i, j) is an equilibrium of (A,B)} ⊆
Rnm × Rnm is closed. Due to the admissibility of Γ , the set of corresponding
names for the games is also closed. As the set of n ×m bi-matrix games which
have a pure strategy equilibrium is the union

⋃
i≤n,j≤m

P ijnm, an application of

Lemma 1 yields the claim.

Corollary 1. 1Pure ≡2 Pure.

Proof. As both problems are the respective limits, considering Theorems 1 and
2 is sufficient.

The same reasoning used to establish the equivalence of finding pure strate-
gies in 1 player games and in 2 player games can directly be extended to any
finite number of players. While Nash and correlated equilibria have the same
degree of discontinuity as pure equilibria in single player games, we will continue
to show that a higher degree of discontinuity emerges in the two player case.

4 Nash and correlated equilibria in bi-matrix games

We will now consider Nash and correlated equilibria in bi-matrix games. The
problems Corrnm and Nashnm are the fixed size versions, Corr and Nash the
general problems. An additional dimension of the problem is whether the games
are zero-sum, yielding the problems ZCorrnm, ZNashnm and the corresponding
general problems. Straight-forward reasoning yields the reductions:

ZCorrnm ≤2 Corrnm ≤2 Nashnm ZCorrnm ≤2 ZNashnm ≤2 Nashnm

3 Examples for such spaces are {0, 1}N and NN with their standard topologies. A brief
characterization of strongly zero-dimensional metrisable spaces can be found in [9],
for details we refer to [17] and [20].
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4.1 The discontinuity of robust division

Similar toMLPOn being representative of the kind of discontinuity we face when
searching for pure equilibria, we will start with considering division, which will
turn out to be typical for correlated and Nash equilibria. Computing a

b given
two real numbers a, b 6= 0 is continuous, of course. However, testing whether
b 6= 0 is not. A robust variant of division, which accepts division by zero and
returns an arbitrary value, is not continuous anymore:

Definition 8. Let rDiv be the set of functions d defined on

{(u, v) | 0 ≤ ρ(u) ≤ ρ(v)} satisfying ρ(d(u, v)) = ρ(u)
ρ(v) for ρ(v) > 0.

While Lev(rDiv) = 2 establishes robust division as an only slightly discon-
tinuous problem, the following result shows that robust division introduces a
new kind of discontinuity not present in finding pure equilibria.

Theorem 3. rDiv �2 Pure.

We will now use modifications of the game matching pennies as a gadget to
implement divisions in a game.

A =

(
a 0
0 b

)
B = −A MP (a, b) = (A,B)

If both a > 0 and b > 0, the unique correlated equilibrium is obtained from the
unique Nash equilibrium x = y = ( b

a+b ,
a
a+b ). If a = 0, b > 0, then (x, y) is an

equilibrium, iff y = (1, 0), and for a > 0, b = 0 we have y = (0, 1).

Theorem 4. rDiv ≤2 ZCorr22

Proof. Given a pair of ρ-names for real numbers a, b with 0 ≤ a ≤ b, a name
for the game MP (a, b − a) can be computed. A correlated equilibrium C of
MP (a, b− a) has the form:

C =

(
c11 c12
c21 c22

)
=

(
xy x(1− y)

(1− x)y (1− x)(1− y)

)
Thus, one can obtain c11 + c21 = y = a

b for b > 0.

Theorem 4 in conjunction with Theorem 3 implies ZCorr22 �2 Pure, so
even the simplest case of finding mixed strategies is not reducible to finding pure
strategies. The problem rDiv itself cannot capture the discontinuity of finding
Nash equilibria, due to Lev(ZNash22) = 4 (s. Subsection 5.2), compelling us to
derive a sequence of problems with increasing level from rDiv.
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4.2 Products of Problems and Products of Games

The product of functions can be considered as computing all of them in parallel.
This will allow us to specify exactly the degree of discontinuity of problems
solvable by multiple robust divisions, once we defined products for multi-valued
functions. The following definitions and results on the products of multi-valued
functions and their discontinuity extend corresponding results from [18].

Definition 9. For functions f : X → Y , g : U → V , define 〈f, g〉 : (X × U)→
(Y × V ) through 〈f, g〉(x, u) = (f(x), g(u)). Define 〈f〉1 = f and 〈f〉n+1 =
〈f, 〈f〉n〉.

Definition 10. For relations P , Q, define 〈P,Q〉 = {〈f, g〉 | f ∈ P, g ∈ Q}.
Define 〈P 〉 = P and 〈P 〉n+1 = 〈P, 〈P 〉n〉.

dP,Qe ≤2 〈P,Q〉 holds, but the converse is false in general. If f ≤2 g holds,
then also 〈f, h〉 ≤2 〈g, h〉. As 〈 〉 is associative, it can be extended to any finite
number of arguments in the standard way. There is a useful distributive law for
d e and 〈 〉 which we will state as 〈P, dQiei∈N〉 ≡2 d〈P,Qi〉ei∈N.

For games, our notion of a product will be inspired by the model of playing
two independent games at once. This will allow us to establish a link between
products of relations and products of games. We will use [ ] to denote a bijection
between {1, 2, . . . , n} × {1, 2, . . . ,m} and {1, 2, . . . , nm} for suitable n, m.

Definition 11. Given an n1 × m1 bi-matrix game (A1, B1) and an n2 × m2

bi-matrix game (A2, B2), we define the (n1n2) × (m1m2) product game (A,B)
through A[i1,i2][j1,j2] = A1

i1j1
+A2

i2j2
and B[i1,i2][j1,j2] = B1

i1j1
+B2

i2j2
.

The product of two games is a constant-sum game, iff both games are constant-
sum4. If (x1, y1) is an equilibrium (either pure or Nash) of (A1, B1), and (x2, y2)
is an equilibrium of (A2, B2), then (x, y) is an equilibrium (of the same type) of
the product game where x[i1i2] = x1i1x

2
i2

and y[m1m2] = y1m1
y2m2

. Conversely, if
(x, y) is an equilibrium of the product game, an equilibrium (x1, y1) for (A1, B1)

can be obtained through x1i =
n2∑
k=1

x[i,k] and y1j =
m2∑
l=1

y[j,l], analogously an equi-

librium (x2, y2) for (A2, B2) can be computed. Analogous statements hold for
correlated equilibria.

As the product game can be computed from the constituent games, we can use
the properties of the products of games to obtain the following results regarding
the problem of finding equilibria:

Theorem 5. Let Game ∈ {Pure,ZCorr,ZNash,Corr,Nash}. Then
〈Gamenm,Gamekl〉 ≤2 Game(nk),(ml).

Theorem 6. Let Game ∈ {Pure,ZCorr,ZNash,Corr,Nash}. Then
〈Game〉n ≡2 Game for all n ∈ N.

4 As equilibria finding for constant-sum games is trivially equivalent to equilibria find-
ing for zero-sum games, this is sufficient for our purposes.
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The present paper contains two results interpretable as counterparts to The-
orem 5, as they allow to reduce finding equilibria for a large game to finding equi-
libria in several smaller games; for mixed strategies, this will be a consequence
of the main result presented in Subsection 4.3, the corresponding statement for
pure strategies is given in the next theorem:

Theorem 7. 1Puren+1 ≤2 〈MLPO2〉n.

As we have identified MLPO2 (or 1Pure2) as the basic building stone in
the degree of discontinuity of finding pure strategies, the following theorem will
establish the missing link in the relationship between finding pure strategies and
multiple robust divisions:

Theorem 8. MLPO2 <2 rDiv.

To sum up the results established sofar, we have:

d〈1Pure2〉nen∈N ≡2 1Pure ≡2 Pure <2 d〈rDiv〉nen∈N ≤2 ZCorr

4.3 Problems reducible to d〈rDiv〉nen∈N

The goal of this subsection is to present a way of designing reductions to
d〈rDiv〉nen∈N, and, in particular, to present a reduction from Nash. This equiv-
alently can be considered as the task to design algorithms for a Type-2-Machine
capable of making a finite number of independent queries to an oracle for rDiv.
Due to Theorems 7, 8 also oracle calls to MLPOn are permitted.

We will start by providing a technical lemma similar to Lemma 1. Using the
lemma, we can prove that the Fourier-Motzkin-algorithm ([21]) for solving sys-
tems of linear inequalities can be executed using continuous (even computable)
operations and oracle calls to rDiv.

Lemma 2. Let F be a multi-valued function defined on a strongly zero-
dimensional metrisable space X. Then F ≤2 d〈rDiv〉nen∈N holds, iff there are

k closed sets Ai, i ≤ k with X =
k⋃
i=1

Ai, so that for each i ≤ k, there is a

multi-valued function Gi ≤2 d〈rDiv〉nen∈N with dom(Gi) = X, so that for each
gi ∈ Gi there is an f i ∈ F with f i|Ai

= gi|Ai
.

Definition 12. The problem BLinIneqnm asks for a ρm-name of a vector v
of reals, so that Av ≤ b holds in addition to 0 ≤ v ≤ 1, given a ρnm-name for
a matrix A and a ρn-name for a vector b, provided that a solution exists. For
simplicity, we assume that Av ≤ b always contains 0 ≤ v ≤ 1. BLinIneq is the
problem without fixed values n, m.

Theorem 9. BLinIneq ≤2 d〈rDiv〉zez∈N.
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Proof. As BLinIneq is expressible as a supremum, it suffices to prove
BLinIneqnm ≤2 d〈rDiv〉zez∈N for all n,m ∈ N. For this, we use induction over
m. The case m = 0 is trivial, so we assume BLinIneqn(m−1) ≤2 d〈rDiv〉zez∈N.

For each K ⊆ {1, . . . , n}, abbreviate KC := {1, . . . , n} \K. The set DK =
{(A, b) | ∀k ∈ K ak1 ≥ 0 ∧ ∀l ∈ KC al1 ≤ 0} is closed, and the union⋃
K⊆{1,...,n}

DK covers the domain of BLinIneqnm. So due to Lemma 2, it is suf-

ficient to show that BLinIneqnm restricted to DK is reducible to d〈rDiv〉zez∈N
for arbitrary K ⊆ {1, . . . , n}. In the next step we assume K to be fixed. With the
same argument we can assume |ak1| ≥ |a(k+1)1| by renumbering the inequalities
for each fixed sequence of increasing first coefficients.

Now we rewrite the given inequalities as ak1v1 ≤ bk −
m∑
i=2

akivi for k ∈ K

and −bj +
m∑
i=2

ajivi ≤ −aj1v1 for j ∈ KC . For each pair k ∈ K, j ∈ KC , the

corresponding inequalities can be multiplied by −aj1 respective ak1, and then
contracted to:

ak1(−bj +

m∑
i=2

ajivi) ≤ −aj1(bk −
m∑
i=2

akivi)

Every solution to the newly created system of linear inequalities can be extended
to a solution to the original system by choosing a suitable value for v1. Due to
the induction assumption, such a solution can be obtained by making oracle calls
to d〈rDiv〉zez∈N.

To obtain a solution for v1, we would like to call

v1 = max(0,min(1, op1(rDiv(|b1−
m∑
i=2

a1ivi|, |a11|), op2(|rDiv(b2−
m∑
i=2

a2ivi|, |a21|), . . .

with opi = min for i ∈ K and opi = max else. As the |ak1| are ordered as a
decreasing sequence, values that arise arbitrary as result of a division by zero
occur deeper inside the nested structure than significant values. While they can
influence the actual value for v1 that is chosen, it still satisfies all inequalities, if
this is possible. However, the expression above contains nested calls to rDiv in
form of the vi, 2 ≤ i ≤ n.

To solve the problem, one replaces v2 with the corresponding sequence used
to compute it, then v3, and so on. By moving the max and min operators outside,
and unifying all divisions, terms of the form rDiv(P,Q) remain, where P is a
polynomial in aij , bj whose degree does not exceed 2n, and Q is a polynomial in
aij whose degree does not exceed n. These can be evaluated by allowed oracle
calls, and the max and min operators are continuous.

As the problem BLinIneq is of considerable interest on its own, we shall
note that the converse statement to Theorem 9 is also true:

Theorem 10. d〈rDiv〉zez∈N ≤2 BLinIneq.
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By adapting [22, Algorithm 3.4] and applying Lemma 2 and Theorem 9 we
proceed to prove the main theorem of this subsection. Again, the reasoning
directly extends to more than two players.

Theorem 11. Nash ≤2 d〈rDiv〉zez∈N.

Proof. By the same reasoning as above, since Nash is the supremum
dNashnmen,m∈N, it suffices to show Nashnm ≤2 d〈rDiv〉zez∈N for arbitrary
n,m ∈ N.

By the best response condition ([22, Proposition 3.1]), a pair of mixed strate-
gies (x, y) is a Nash equilibrium of a game if each pure strategy played with
positive probability in x (in y) is a best response against y (against x). This
condition can be formalized by noting that the following set is the set of games
and their Nash equilibria with support in I, J :

ĜI,J =
{(A,B, x, y) | j, k ∈ J l /∈ J (xTB)j = (xTB)k ≥ (xTB)l yl = 0 i, p ∈ I

q /∈ I (Ay)i = (Ay)p ≥ (Ay)q xq = 0}

The set ĜI,J is closed, and so is its projectionGI,J = {(A,B) | ∃x, y (A,B, x, y) ∈
ĜI,J}.

As every game has a Nash equilibrium, the sets GI,J cover the domain of
Nash, so we can apply Lemma 2. To recover the Nash equilibrium (x, y) from
I, J the corresponding system of linear inequalities has to be solved, which is
reducible to d〈rDiv〉zez∈N as established in Theorem 9.

Corollary 2. ZCorr ≡2 Corr ≡2 ZNash ≡2 Nash ≡2 d〈rDiv〉nen∈N.

The same technique applied in the proof of Theorem 9 can also be used to
show that Gaussian Elimination can be reduced to d〈rDiv〉nen∈N. This shows
that the reduction of Gaussian Elimination to the rank of a matrix given in [23]
is strict, taking into consideration Corollary 4.

5 Additional Results

5.1 Nash and Sep

To shed further light on the degree of discontinuity of Nash, we will compare it
to the problem Sep studied in [24].

Definition 13. f ∈ Sep holds, iff f is a function from

{(p, q) ∈ NN × NN | ∀n,m ∈ N p(n) 6= q(m)}

to NN satisfying f(p(n)) = 0 and f(q(n)) = 1 for all n ∈ N.

The problem Sep was shown to be equivalent to finding an infinite path in an
infinite binary tree and extending a linear functional from a subspace of a Banach
space to the complete space following the Hahn-Banach Theorem. Sep can be
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reduced to {C1}, which is defined through C1(p)(n) = 1, iff there is an i ∈ N
with p(i) = n and C1(p)(n) = 0 else. The function C1 has been introduced in

[16]. In [25, Theorem 5.5], it was proven that a function is
∑0

2-measurable, iff it
is reducible to C1.

In [24], {cf} �2 Sep was shown, which can directly to extended to prove
{f} �2 Sep for all discontinuous functions f . In the following, we will prove
that Nash is strictly reducible to Sep, thereby obtaining a lower bound for Sep.
For this aim, we need the level of Sep.

Theorem 12. Lev2(Sep) does not exist.

Due to the behaviour of the level under formation of products ([18]) and
suprema ([9], [17]), we know Lev2(Nash) = ω, where ω is the smallest infinite
ordinal. This is sufficient to establish Sep �2 Nash by [9, Theorem 5.7].

Theorem 13. rDiv ≤2 Sep.

Theorem 14. 〈Sep, Sep〉 ≡2 Sep.

Corollary 3. Nash <2 Sep.

Corollary 4. {f} �2 Nash for all discontinuous functions f .

5.2 The Level of Nash22

The simplest non-trivial bi-matrix games, 2 × 2 games, have already been in-
vestigated from a constructive point of view in [26]. Among other results, [26]
contains the constructive analogue to the reduction MLPO2 ≤2 Nash22, and
the constructive analogue to determine a subset of L0(Nash22) \ L1(Nash22),
that is the set where Nash equilibria are continuous. We will produce the TTE-
counterpart by investigating the Level of Nash22.

Theorem 15. Lev(Nash22) = 4.
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marbeit, Fachbereich Informatik, FernUniversität Hagen (1989)

17. Hertling, P.: Unstetigkeitsgrade von Funktionen in der effektiven Analysis. PhD
thesis, Fernuniversität, Gesamthochschule in Hagen (1996)

18. Pauly, A.: Methoden zum Vergleich der Unstetigkeit von Funktionen. Master’s
Thesis, FernUniversität Hagen (2007)

19. Bishop, E., Bridges, D.: Constructive Analysis. Springer Verlag, Berlin, Heidelberg
(1985)

20. Engelking, R.: General Topology. Heldermann, Berlin (1989)
21. Keler, C.W.: Parallel fourier–motzkin elimination. In: In Proc. 2nd Int. Euro-Par

Conference, Springer (1996) 66–71
22. von Stengel, B.: Equilibrium computation for two-player games in strategic and

extensive form. In Nisan, N., Roughgarden, T., va Tardos, Vazirani, V., eds.:
Algorithmic Game Theory. Cambridge University Press (2007) 53–78

23. Ziegler, M., Brattka, V.: Computability in linear algebra. Theoretical Computer
Science 326 (2004) 187–211

24. Gherardi, G., Marcone, A.: How much incomputable is the separable Hahn-Banach
Theorem? In Brattka, V., Dillhage, R., Grubba, T., Klutsch, A., eds.: Conference
on Computability and Complexity in Analysis. Number 348 in Informatik Berichte,
FernUniversität Hagen (2008) 101 – 117

25. Brattka, V.: Effective borel measurability and reducibility of functions. Mathe-
matical Logics Quaterly 51 (2005) 19–44

26. Bridges, D.: First steps in constructive game theory. Mathematical Logic Quaterly
50 (2004) 501–506

27. Kalai, E., Zemel, E.: On the order of eliminating dominated strategies. Dis-
cussion Papers 789, Northwestern University, Center for Mathematical Studies in
Economics and Management Science (1988)


