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Abstract. We introduce generalized Wadge games and show that each
lower cone in the Weihrauch degrees is characterized by such a game.
These generalized Wadge game subsume the original Wadge games, the
eraser and backtrack games and well as the variants of Semmes’ tree
games. In particular, we propose that the lower cones in the Weihrauch
degrees are the answer to Andretta’s question on which classes of func-
tions admit game characterizations. We then discuss some applications
of such generalized Wadge games.

1 Introduction

The use of infinite games in set theory has a well-established tradition, going
back to work by Banach, Borel, Zermelo, Kénig, and others (see [16, §27] for a
thorough historical account of the subject), and taking a prominent role in the
field with the work of Gale and Stewart on the determinacy of certain types of
such games [12].

In this paper, we will focus on infinite games which have been used to char-
acterize classes of functions in descriptive set theory. Interest in this particular
area began with the seminal work of Wadge [40], who introduced what is now
known as the Wadge game, an infinite game in which two players, I and II, are
given a partial function f : NY¥ — NY and play with perfect information. In each
run of this game, at each round player I first picks a natural number and player
IT responds by either picking a natural number or passing, although she must
pick natural numbers at infinitely many rounds. Thus, in the long run I and

* A full version is available as [19]. This research was partially done whilst the au-
thors were visiting fellows at the Isaac Newton Institute for Mathematical Sciences
in the programme ‘Mathematical, Foundational and Computational Aspects of the
Higher Infinite’. The research benefited from the Royal Society International Ex-
change Grant Infinite games in logic and Weihrauch degrees. The first author was
partially supported by a CAPES Science Without Borders grant (9625/13-5), and
the second author was partially supported by the ERC inVEST (279499) project.



II build elements 2 € NY and y € NN, respectively, and II wins the run if and
only if & dom(f) or f(z) = y. Wadge proved that this game characterizes the
continuous functions, in the following sense.

Theorem 1 (Wadge). A partial function f : NN — NN is relatively continuous
iff player I1 has a winning strategy in the Wadge game for f.

By adding new possibilities for player IT at each round, one can obtain games
characterizing larger classes of functions. For example, in the eraser game [11]
characterizing the Baire class 1 functions, player II is allowed to erase past
moves, the rule being that she is only allowed to erase each position of her output
sequence finitely often. In the backtrack game [44] characterizing the functions
which preserve the class of X9 sets under preimages, player IT is allowed to erase
all of her past moves at any given round, the rule in this case being that she
only do this finitely many times. See [26] for a survey of these and other related
results.

In his PhD thesis [39], Semmes introduced the tree game characterizing the
(total) Borel functions in Baire space. Player I plays as in the Wadge game, and
therefore builds some =z € NY in the long run, but at each round n player now
IT plays a finite labeled tree, i.e., a pair (T}, ¢,,) of a finite tree T;, € N<N and
a function ¢, : T,, ~ {()} = N, where () denotes the empty sequence. The rules
are that T,, C T,,41 and ¢, C ¢,41 must hold for each n, and that the final
labeled tree (T, ¢) = (U,.en Tn» Upen @) must be an infinite tree with a unique
infinite branch. Player IT then wins if the sequence of labels along this infinite
branch is exactly f(x). By providing suitable extra requirements on the structure
of the final tree, Semmes was able to obtain the multitape game characterizing
the classes of functions which preserve X under preimages, the multitape eraser
game characterizing the class of functions for which the preimage of any X9 set
is a XY set, and a game characterizing the Baire class 2 functions.

As examples of applications of these games, Semmes found a new proof of a
theorem of Jayne and Rogers characterizing the class of functions which preserve
39 under preimages, and extended this theorem to the classes characterized by
the multitape and multitape eraser games, by performing a detailed analysis of
the corresponding game in each case.

Given the success of such game characterizations, Andretta raised the ques-
tion which classes of functions admit a characterization by a suitable game in [1].
Significant progress towards an answer was made by Motto-Ros in [23]: Starting
from a general definition of a reduction game, it is shown how to construct new
games from existing ones in ways that mirror the typical constructions of classes
of functions (e.g. piecewise definitions, composition, pointwise limits). In partic-
ular, Motto-Ros’ results show that all the usual subclasses of the Borel functions
studied in descriptive set theory admit game characterizations.

In order to arrive at a full characterization of the classes of function char-
acterizable by a game, we need to find the appropriate language to formulate
such a result. Just as nice classes of sets can be understood as lower cones in
the Wadge degrees, nice classes of functions are found in the lower cones in the



Weihrauch degrees. Weihrauch reducibility (in its modern form) was introduced
by Gherardi and Marcone [13] and Brattka and Gherardi [2, 3] based on ear-
lier work by Weihrauch on a reducibility between sets of functions analogous to
Wadge reducibility [41,42].

We will show that game characterizations and Weihrauch degrees correspond
closely to each other. We can thus employ the results and techniques developed
for Weihrauch reducibility to study function classes in descriptive set theory,
and vice versa. In particular, we can use the algebraic structure available for
Weihrauch degrees [6,15] to obtain game characterizations for derived classes
of functions from game characterizations for the original classes, similar to the
constructions found by Motto-Ros [23].

As a further feature of our work, we should point out that our results apply
to the effective setting firsthand, and are then lifted to the continuous setting
via relativization. They thus follow the recipe laid out by Moschovakis in [22].

While the traditional scope of descriptive set theory is restricted to Polish
spaces, their subsets and functions between them, these restrictions are imma-
terial for the approach presented here. Our results naturally hold for multi-
valued functions between represented spaces. As such, this work is part of a
larger development to extend descriptive set theory to a more general setting,
cf. e.g. [7,18,28,32,34].

We shall freely use standard concepts and notation from descriptive set the-
ory, and refer to [17] for an introduction.

2 Preliminaries on represented spaces and
Weihrauch reducibility

Represented spaces and continuous/computable maps between them form the
setting for computable analysis [43]. For a comprehensive modern introduction
we refer to [30].

A represented space X = (X, dx) is given by a set X and a partial surjection
0x :C NN 5 X A (multivalued) function between represented spaces is just a
(multivalued) function on the underlying sets. We say that a partial function
F :C NN — NNis a realizer for a multivalued function f :C X — Y (in symbols:
F + f)if o0y(F(p)) € f(ox(p)) for all p € dom(fdx). We call f computable
(continuous), if it admits some computable (continuous) realizer.

Represented spaces and continuous functions do indeed generalize Polish
spaces and continuous functions. Let (X, 7) be some Polish space. Fix a countable
dense sequence (a;);en and a compatible metric d. Now define dx by dx(p) = x
iff d(ay@,r) < 277 holds for all i € N. In words: We represent a point by a se-
quence of basic points converging to it with prescribed speed. It is a foundational
result in computable analysis that the notion of continuity for the represented
space (X, dx) coincides with that for the Polish space (X, 7).

Definition 1. Let f and g be partial, multivalued functions between represented
spaces. Say that f is Weihrauch reducible to g, in symbols f <w g, if there



are computable functions K :C NN « NN 5 NN gnd H :C NN — NY guch that
whenever G &= g, the function F := (p — K(p, G(H(p)))) is a realizer for f.

If there are computable functions K, H :C NN — NN such that whenever
Gt g then KGH & f, then we that that f is strongly Weihrauch reducible to g
(f <sw f). We write f <$ g and f <Syw g for the variations where computable
s replaced with continuous.

A multivalued function f tightens g, denoted by f =< g, if dom(g) C dom(f)
and whenever x € dom(g), then f(z) C g(x), cf. [29,33].

Proposition 1 (e.g. [27, Chapter 4]). Let f :C A = B and g :C C = D.
We have

1. f <sw g (f <Sy g) iff there exist computable (continuous) k :C A = C and
h :C D = B such that hgk < f; and

2. f<w g (f < g) iff there exist computable (continuous) k :C A = N x C
and h :C NN x D = B such that h(idys x g)k < f.

There are plenty of interesting operations defined on Weihrauch degrees (see
e.g. the introduction of [4] for a recent overview), here we only require the se-
quential composition operator * from [5,6]. Rather than defining it explicitly as
in [6], we will make use of the following characterization:

Theorem 2 (Brattka & P. [6]). f*xg =w n<1ax{f’ od | f<wf A d <wg}
>~wW

3 Transparent cylinders

We call f:C X =Y a cylinder if idygn X f <sw f. Note that f is a cylinder iff
g <w f and g <qw f are equivalent for all g. This notion is from [3].

Definition 2. Call T :C X = Y transparent iff for any computable (contin-
uwous) g :C Y = Y there is a computable (continuous) f :C X = X with
Tof=<goT.

A represented space Z = (Z,0z) is a subspace of Y = (Y, éy) if Z C Y and
0z = dy [{p € dom(dy); év(p) € Z}.

Lemma 1. Let T :C (X,6x) = (Y,dy) be transparent, and let (Z,dz) be a
subspace of (Y,dy). Then S :C (X,0x) = (Z,0z) given by

S=T[{zredom(T); T(z) C Z}
is also transparent.

The transparent (singlevalued) functions on Baire space where studied by de
Brecht under the name jump operator in [8]. These are relevant because they
induce endofunctors on the category of represented spaces, which in turn can
characterize function classes in DST ( [31]). The term transparent was coined



in [5]. Our extension of the concept to multivalued functions between represented
spaces is rather straight-forward, but requires the use of the notion of tightening.

Note that if T':C X = Y is transparent, then for every y € Y there is some
z € dom(T) with T'(z) = {y}, i.e. T is slim in the terminology of [5, Definition
2.7].

Theorem 3 (Brattka & P. [6]). For every multivalued function g there is a
multivalued function g* =w g which is a transparent cylinder.

Proposition 2. Let T :.C X =2 Y and S :C Y == Z be cylinders. If T is
transparent then S oT is a cylinder and S oT =w S = T. Furthermore, if S is
also transparent then so is SoT.

4 Generalized Wadge games

Definition 3. A probe for Y is a computable partial function ¢ :C Y — NN
such that for every computable (continuous) f :CY = NN there is a computable
(continuous) e :CY =Y such that (e < f.

Note that being a probe is just the dual notion to be being an admissible
representation as in the approach taken by Schroder in [36]. As each constant
function is continuous, a probe has to be surjective. Moreover, a probe is always
transparent.

The following definition generalizes the definition of a reduction game from
[23, Subsection 3.1], which is recovered as the special case if all involved spaces
are NV, the map ¢ is the identity on NN and T is a function (rather than a
multivalued function).

Definition 4. Let ( :C Y — NN be a probe, T :C X =Y and f:CA=B.
The (¢, T)-Wadge game for f is played by two players, I and I, who take turns
in infinitely many rounds. At each round of a run of the game, player I first plays
a natural number and player 11 then either plays a natural number or passes,
as long as she plays natural numbers infinitely often. Therefore, in the long run
player T builds x € NV and II builds y € NN, and player II wins the run of the
game if x & dom(fda), ory € dom(ég(Tdx) and dgCTéx(y) C foa(x).

For example, it is easy to see that the Wadge game is the (id,id)-Wadge
game, the eraser game is the (id, lim)-Wadge game, and the backtrack game is
the (id,lima)-Wadge game, where lima(p) = lim(p) with dom(lima) = {p €
NV Invm, k> n. (p)m = (P)&}-

Theorem 4. Let T be a transparent cylinder. Then player I1 has a (computable)
winning strategy in the ((,T)-Wadge game for f iff f <@ T (f <w T).

Proof. (=) Any (computable) strategy for player II gives rise to a continu-
ous (computable) function k& :C NY — NN, If the strategy is winning, then
oBCToxk = fda, which implies 5BCT5XI<:6;1 =< féAégl = f. Thus the continu-
ous (computable) maps g o ¢ and 5xk‘(5;1 witness that f <$w T (f <sw T).



(<) As T is a cylinder, if f <4 T (f <w T), then already f <Sw T
(f <sw T). Thus, there are continuous (computable) h, k with hoT ok < f. As
51305]51 = idg, we find that 61306151 ohoTok = f. Now 5151 oh:CY = NVis
continuous (computable), so by definition of a probe, there is some continuous
(computable) e :C Y =Y with dgo(oecoT ok =< f. As T is a cylinder, there
is some continuous (computable) g with eoT = T og, thus dgo(oTogok <X f.

As (gok) :C A = X is continuous (computable), it has some (continuous)
computable realizer K :C NY¥ — NN, By Theorem 1, player II has a winning
strategy in the Wadge game for K. This strategy also wins the (¢, T)-Wadge
game for f for her. O

Corollary 1. Let T and S be transparent cylinders. If the ({,T)-Wadge games
characterize the class I' and the (', S)-Wadge games characterize the class I'’,
then the (¢',S o T)-Wadge games characterize I'' o I

The converse of Theorem 4 is almost true, as well:

Proposition 3. If the (¢,T)-Wadge games characterize a lower cone in the
Weihrauch degrees, then it is the lower cone of (o T, and (o T is a transparent
cylinder.

5 Using game characterizations

A main advantage of having game characterizations of some properties is re-
alized together with determinacy: Either by choosing our set-theoretic axioms
accordingly, or by restricting to simple cases and invoking e.g. Borel determi-
nacy [21], we can conclude that if the property is false, i.e. player II has no
winning strategy, then player I has a winning strategy. Thus, player I's winning
strategies serve as explicit witnesses of the failure of a property.

If we apply this line of reasoning to our T-Wadge games, we obtain the
following corollaries of Theorem 4:

Corollary 2 (ZFC). Let T be a transparent cylinder and ¢ a probe, such that
CoT is single-valued and dom(CoT) is Borel. Then for f : A = B with dom(da)
Borel and f(x) being Borel for any x € A, we find that f £S5, T iff player I has
a winning strategy in the ({,T)-Wadge game for f.

Corollary 3 (ZF + DC + AD). Let T be a transparent cylinder and ¢ a
probe. Then f £S, T iff player I has a winning strategy in the (¢, T)-Wadge
game for f.

Unfortunately, as determinacy fails in a computable setting (e.g. [10,20]),
we do not retain the computable counterparts. More generally, we are lacking a
clear understanding of how these winning strategies of player I might look like.
As pointed out to the authors by CARROY and LOUVEAU, this holds even for the
original Wadge-games, i.e. the (idyy,idyw)-Wadge games. Here, we are already
have a notion of explicit witnesses for discontinuity: Points of discontinuity. We
can thus inquire about their relation:



Question 1. Let a point of discontinuity of a function f : NN — NN be given as a
sequence (ay)nen, a point @ € NY, and a word w € N* with w C f(a) such that
Vn d(an,a) < 27" Aw I f(an). Let Point be the multi-valued map that takes
in a winning strategy for player I in the (id,id)-Wadge game for some function
f NN — NN and outputs a point of discontinuity for that function. Is Point
computable? More generally, what is the Weihrauch degree of Point?

We can somewhat restrict the range of potential answer for the preceding
question:

Theorem 5 (3). Let player I have a computable winning strategy in the (id, id)-
Wadge game for f: NN — NN, Then f has a computable point of discontinuity.

A particular convenient way of exploiting determinacy of T-Wadge games
could be achieved, if a more symmetric version were found. In this, we could hope
for a dual principle S, where for any f either f <{ T or S < T holds. More
generally, we hope that a better understanding of the T-Wadge games would lead
to structural results about the Weihrauch lattice, similar to the results obtained
by CARROY on the strong Weihrauch reducibility [9].

6 Generalized Wadge reductions

Wadge games were introduced not to characterize continuous functions, but in
order to reason about a reducibility — Wadge reducibility — between sets. Given
A, B C NN, we say that A <,, B iff there exists a continuous F : NN — NN
such that F[B] C A. Equivalently, we could define the multi-valued function
4 NN = NV defined via 4(z) = Aiff v € B and 4(z) = (NV\ A) iff z ¢ B.
Now, A <, B iff % is continuous. A famous structural result following from the
determinacy of Wadge games is that for any Borel A, B C NV, either A <,, B or
B¢ <, A. In particular, the Wadge hierarchy on the Borel sets is a strict weak
order of width 2.

Both definitions immediately generalize to the case where A C X and BCY
for represented spaces X, Y (4). However, they yield different notions, for not
every continuous multi-valued function has a continuous choice function. As
noted e.g. by HERTLING [14], extending the former definition to the reals al-
ready introduces infinite antichains in the resulting degree structure. The second
generalization was proposed by PEQUIGNOT [34] as an alternative®.

3 A key lemma for the proof of this theorem goes back to helpful comments by Takayuki
Kihara.

4 Note that a Wadge degree is a property of a subset of some specified space, rather
than of a topological space on its own.

5 While PEQUIGNOT only introduces the notion for quasi-Polish spaces, the extension
to all represented spaces is immediate. One needs to take into account though that for
general represented spaces, the Borel sets can show unfamiliar properties, e.g. even
singletons can fail to be Borel (cf. also [37,38]).



It is a natural variation to replace continuous in the definition of Wadge
reducibility by some other class of functions (ideally closed under composition).
MoTT0O-R0S has shown that for the typical candidates of more restrictive classes
of functions, the resulting degree structures will not share the nice properties of
the standard Wadge degrees (they are bad) [24]. Larger classes of functions as
reduction witnesses have been explored by MOTTO-ROS, SCHLICHT and SELIV-
ANOV [25] in the setting of quasi-Polish spaces — using the generalization of the
first definition of the reduction.

Definition 5. Let T be a Weihrauch degree. We define a relation <T on subsets
of represented spaces as follows: For A C X, B C Y let A <T B hold iff
% <wT.

Observation 6. If T« T =w T, then =7 is a quasiorder.

The following partially generalizes [23, Theorem 6.10]:

Theorem 7. Let A C X, B CY, transparent cylinder T : U = V and probe
¢ :CY — NN be such that the (¢,T)-Wadge game for % is determined. Then
either A <T B or B <,, A°.

Proof. If player II has a winning strategy, then by Theorem 4, we find that
% <w T, hence by Definition 5 it follows that A <T B.

Otherwise, player I has a winning strategy. This winning strategy induces
a continuous function s : NY¥ — NV, such that if player II plays y € NN, then
player I plays s(y) € NY. As T is a transparent cylinder and ¢ a probe, there is
a continuous function ¢ : N¥ — NN such that (( o T o §y o t) = idys. Now we
consider s ot : NNV — NN, If §x(x) € A, then if player IT plays t(x), player I
needs to play some s(t(x)) such that oy (s(t(x))) ¢ B. Likewise, if dx(x) ¢ A,
then for player I to win, it needs to be the case that oy (s(t(x))) € B. Thus, sot
is a continuous realizer of A%, and B <,, A® follows by definition. O

Corollary 4 (ZF + DC + AD). Let TxT =w T. Then <7 is strict weak
order of width at most 2.

In [35], Motto-Ros has identified sufficient conditions on a generalized re-
duction (in a different formalism though) to ensure that its degree structure is
equivalent to the Wadge degrees. We leave the task to future work to determine
precisely for which T the degree structure of <7 (restrict to subsets of NV) is
equivalent to the Wadge degrees, and which other structure types are realizable.
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A Omitted Proofs

Lemma (Lemma 1). Let T :C (X, dx) = (Y, dy) be transparent, and let (Z,dz)
be a subspace of (Y,dy). Then S :C (X, dx) = (Z,dz) given by

S=T[{x €dom(T); T(x) C Z}

is also transparent.

Proof. Let f:C (Z,0z) = (Z,0z) be computable. Then f :C (Y,dy) = (Y, dy),
and therefore there exists a computable g :C (X, dx) = (X, 0x) such that

1. dom(foT) C dom(T og), and
2. for all z € dom(f oT) we have T o g(x) C f o T(z).

Claim. dom(f o S) =dom(foT).

Indeed, the left-to-right inclusion is immediate from the definition of S. Con-
versely, suppose x € dom(f o T'). Therefore z € dom(7") and T'(z) C dom(f).
Thus, since dom(f) C Z, it follows that z € dom(S) and S(z) C dom(f), as
desired.

Claim. dom(f o S) C dom(S o g).

Indeed, let € dom(f o S) = dom(f o T). Then = € dom(T o g), i.e., x €
dom(g) and g(x) C dom(T), and T og(x) C foT(x) C Z. Thus g(x) C dom(S),
ie. x € dom(S o g).

Claim. For all z € dom(f o .S) we have So g(x) C fo S(z).
Indeed, let z € dom(f 0 .S) C dom(S o g). We have

Sog(x)=Tog(x)
C foT(x)
= foS(x) O

Proposition (Proposition 2). Let T:C X =Y and S :CY = Z be cylinders.
If T is transparent then S o T is a cylinder and S oT =w S *T. Furthermore,
if S is also transparent then so is SoT.

Proof. Suppose that T is transparent.

(SoT is a cylinder) As S is a cylinder, there are computable h :C Z =
NV XxZ and k£ :C NN xY = Y such that idgw X S = h o S o k. Likewise,
there are computable A/ :C Y == NN xY and &' :C NN x X = X such that
idgw X T = W' 0 Sok’. As composition respects tightening ( [33, Lemma 2.4.1.b]),
we conclude that (idyy x S)o(idyy X T') = idyw X (SoT') = hoSokoh/oTok'. Note
that (ko h') :C Y = Y is computable, and as T is transparent, there is some
computable f :C X = X with (koh')oT = T o f. But then idyw x (SoT) =
hoSokohoTok' = hoSoTo fok', thus h and f o k' witness that
idyy X (SoT) <gw (SoT),ie SoT is a cylinder.



(SoT =w S*T) The direction SoT <w ST is immediate. Assume S’ <w S
and 77 <w T. We need to show that S’ 0T’ <y SoT (if the composition exists).
As S and T are cylinders, we find that already S’ <,w S and T’ <qw T. Let h, k
witness the former and h’, &’ the latter. We conclude hoSokoh/oT ok’ < 8 oT".
As above, there then is some computable f with koh’ oT = T o f. Then h and
f ok’ witness that S’ o T <gw SoT.

Now suppose that S is also transparent.

(SoT is transparent) Let h :C Z = Z be computable. By assumption that S is
transparent, there is some computable g :C Y =2 Y such that Sog < hoS. Then
there is some computable f :C X = X with Tof < goT'. As composition respects
tightening ( [33, Lemma 2.4.1.b]), we find that ho SoT < SogoT <X SoT o f,
which is what we need. O

Proposition (Proposition 3). If the ((,T)-Wadge games characterize a lower
cone in the Weihrauch degrees, then it is the lower cone of (oT, and (o T is a
transparent cylinder.

Proof. Similar to the corresponding observation in Theorem 4, note that when-
ever player IT has a (computable) winning strategy in the (¢,7T)-Wadge game
for f, this induces a (strong) Weihrauch reduction f <Sy (o T (f <qw (o T).
Conversely, by simply copying player I's moves, player IT wins the ({, T)-Wadge
game for ( o T. This establishes the first claim.

Now, as idyy X ((oT) <w (oT, the assumption that the ({, T)-Wadge game
characterize a lower cone in the Weihrauch degrees implies that player IT wins
the (¢, T)-Wadge game for idyn X ((oT'). Thus, idyy X ((oT) <gw (o T follows,
and we find ( o T to be a cylinder.

For the remaining claim that ¢ o T is transparent, let G :C NY¥ = NN be
continuous (computable). Then Go(oT < (oT (Go(oT <w (oT), hence
player IT has a (computable) winning strategy in the (¢,7)-Wadge game for
G o ¢ o T. This strategy induces some continuous (computable) H :C NN — NN
with Go(oT odx = (oTodxoH. Thus, dxoH o (5)—(1 is the desired witness. [

Theorem (Theorem 5). Let player I have a computable winning strategy in
the (id,id)- Wadge game for f : NN — NN. Then f has a computable point of
discontinuity.

The proof of the theorem will require some recursion theoretic preparations.
Given p,q € NN, let [p | q] € NN be defined as [p | ¢] = 099 (p(0) +1)0¢™) (p(1) +
1)09?) .. ie. [p| ¢] increases each number in p by 1, and then intersperses zeros
between the entries, with the number of repetitions being provided by ¢. Now,
given 7 € NN and some A C NN let A*" :={[p|q] |p€ AAg>r}, where g > r
denotes component-wise comparison.

Lemma 2 (°). Let F : N¥ — NN be computable, r € N¥, A, B C NN, B # () be
such that F[B*"] C A and A is X9. Then A contains a computable point.

5 The proof of this lemma is based on helpful comments by Takayuki Kihara.



Proof. Let A = U, ey @n with IIY-sets Q,. For the sake of a contradiction,
assume that A and thus all Q),, contain no computable points. Pick some p € B.

As F(0Y) is computable, we find F(0Y) ¢ Q. As Qo is I1{ and F com-
putable, there is some mg > r(0) such that F[0™°NN] N Qo = 0. Next, consider
F(0mop(0)0N). Again, this is a computable point, hence there is some m; > 7(1)
such that F[0™p(p)0™NN] N @Q; = (). We proceed in this manner to chose all
m;, and then define ¢ € NY via q(i) = m;. Note that ¢ > 7. Then [p | q] € B*",
but F([p | q]) ¢ A by construction, hence we derive the desired contradiction
and conclude that A contains a computable point. O

of Theorem 5. Let us assume that player I has a winning strategy in the (id, id)-
Wadge game for f : NN — NN, We describe how player IT can coax player I into
playing a point of discontinuity of f. Player II starts passing, causing player I
to produce longer and longer prefixes of some p € NN, If player I ever produces
a prefix p<y, such that Jko f[p<,NY] C koNY, then player IT will play ko,
and then goes back to passing. If subsequently, there is some ny, such that
3k1 flp<n,NN] C kok1 NV, then player II plays ki, and starts passing again, etc.
If f is continuous at p, then player IT will play a correct response to f, hence
contradict the assumption that player I is following a winning strategy. Thus, p
has to be a point of discontinuity of f.

Note that if player IT passes even more than necessary, this does not change
the argument at all. Thus, we find that there is some non-empty set B and
r € NN such that the computable response function S : NN — NN maps B+"
into the set of points of discontinuity of f. The latter is a X9-set, hence Lemma
2 implies that it contains a computable point. O



