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Sub-optimal exposure to antimicrobial therapy is associated with poor patient outcomes and the development
of antimicrobial resistance. Mechanisms for optimizing the concentration of a drug within the individual patient
are under development. However, several barriers remain in realizing true individualization of therapy. These
include problems with plasma drug sampling, availability of appropriate assays, and current mechanisms for
dose adjustment. Biosensor technology offers a means of providing real-time monitoring of antimicrobials in a
minimally invasive fashion. We report the potential for using microneedle biosensor technology as part of
closed-loop control systems for the optimization of antimicrobial therapy in individual patients.

Introduction

Antimicrobial resistance (AMR) threatens to be a leading cause of
death by 20501 making it a global patient safety issue. A major
driver of AMR is the inappropriate use of antimicrobials in humans
and animals.2 To date, research in this field has focused on opti-
mizing the selection of antimicrobial agents. However, these strat-
egies often fail to also consider optimization of the dose of the
antimicrobial agent, which should aim to be sufficient to maximize
bacterial killing whilst negating the harmful consequences of ther-
apy, such as development of AMR and toxicity to the host.

Data are emerging within certain patient populations, such as
critically ill patients, describing wide variations in how individuals
handle antimicrobials (pharmacokinetics; PK).3–7 These wide varia-
tions in individual PK appear to be associated with increased varia-
tion in the effects of therapy, including outcomes of treatment and
the development of AMR (their pharmacodynamics; PD).3–7 In
response to the observed variations in individual PK, there has
been a shift in the focus of therapeutic drug monitoring (TDM)
away from primarily being used to prevent toxicity caused by anti-
microbials with narrow therapeutic windows, towards enhancing
the efficacy of less toxic agents such as the b-lactams, in order to

optimize the outcomes of treatment.4,8–13 However, to achieve
true individualization of therapy, we require a focus on not just the
PK of antimicrobial agents. We must also understand the individ-
ual patient’s physiology as well as the characteristics of the organ-
ism that we are treating. One method that has been explored
widely is the use of Bayesian dose optimization platforms.3 Whilst
TDM linked with Bayesian forecasting provides a powerful opportu-
nity for delivering individualized care for patients,3,14 several gaps
in current strategies for dose optimization of antimicrobials have
hindered clinical implementation. Most notably, methods for
more-continuous monitoring to allow real-time adaptive dosing of
agents are still not available. Other challenges include difficulties
in access to appropriate antimicrobial assays,12,15–20 poor integra-
tion of dosing software with electronic health records and decision
support systems,3,21 challenges with collecting and handling PK
samples,22,23 and failures of compliance with PK sampling proto-
cols currently being used by healthcare professionals.24

Validation of novel methods for the monitoring and dose opti-
mization of antimicrobial agents is required. Whilst several studies
have explored the role of microfluidics,22,23,25 these are still hin-
dered by many of the problems associated with routine antimicro-
bial TDM strategies, such as the need for laboratory analysis and
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transport of blood products. One potential method for avoiding
these problems is the development of closed-loop systems based
on minimally invasive, microneedle electrochemical sensor
technology.26 This technology has been demonstrated to be appli-
cable to the management of other conditions, such as diabetes
control through individualized insulin delivery27–31 and anaesthe-
sia control intra-operatively.32,33 This approach offers a potential
avenue for enhancing the precision of antimicrobial therapy across
a number of settings where invasive monitoring techniques may
not be appropriate, including the community and non-critical care
hospital settings. We report the current state of the art within the
field of infection that offers a novel approach for the development
of closed-loop systems for precision antimicrobial dosing.

Concept of closed-loop control for
individualized antimicrobial therapy

There are several key concepts outlined in Figure 1 that must be
considered for the development of closed-loop controllers for
antimicrobial therapy. Ideally, monitoring of antimicrobials
should be continuous and in a minimally invasive format that
does not rely on blood sampling. The development of micro-
needle array biosensor technology has provided an opportunity
to achieve this, allowing for detection of antimicrobial concen-
trations in the dermal interstitial fluid (ISF).34,35 This technology
has already been validated in the field of diabetes,

demonstrating safety and tolerability in human clinical trials
and accuracy in diabetic individuals who tend to have poor tis-
sue perfusion due to underlying diabetic vasculopathy.26,34,35

Given that the free antimicrobial concentration in the ISF is gen-
erally in equilibrium with the plasma concentration this provides
an opportunity for using this technology to monitor ISF concen-
trations as well as estimate plasma antimicrobial concentration
in near real-time without requiring plasma sampling.36–38 This
may be challenging in certain situations, such as during periods
of tissue hypoperfusion in critically ill patients in the intensive
care unit (ICU).39 However, it may also offer a novel option for
supporting the optimization of antimicrobial dosing in these
populations. This is because the majority of infections occur in
tissue ISF.39,40 Therefore, this technology may provide a mecha-
nism for monitoring antimicrobial concentrations in a compart-
ment that is closer to the site where the infection is being
treated when compared with plasma.39,40

Data generated by this sensor can then be linked with
machine-driven, closed-loop control algorithms such as
Proportional-Integral-Derivative (PID)41 and Iterative Learning
Controllers (ILC).42 These systems will allow for the optimization of
both continuous and bolus (or oral) therapy to drive individualized
target attainment of pre-defined PK/PD indices associated with
maximal bacterial killing and/or suppression of the emergence of
AMR.43,44 These may be current gold standard PK/PD targets45,46

or novel indices, such as AUC:EC50 ratio.47,48
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Figure 1. Schematic for closed-loop control of antimicrobial delivery.

Review

2 of 9
Downloaded from https://academic.oup.com/jac/advance-article-abstract/doi/10.1093/jac/dkx458/4688914
by Swansea University user
on 05 December 2017



Each of these concepts will individually be explored and cri-
tiqued within this manuscript.

Microneedles for continuous sensing of
agents in the dermal interstitial fluid

Microneedle technology was first demonstrated as a suitable
mechanism for drug monitoring and delivery over 20 years ago.49

Since then, microneedle technology has progressed rapidly with
data supporting the use of microneedles to monitor glucose and
lactate concentrations in humans34,35,50,51 as well as acting as
delivery systems for drugs and vaccines.30,52 Microneedles work by
penetrating the stratum corneum layer of the skin allowing access
to the ISF, whilst avoiding the nerve fibres and blood vessels that
are found within the dermis. Therefore, this offers a minimally
invasive method for drug or metabolite monitoring.34,35,50,51 Side
effects such as pain, bleeding, skin reactions, and infection risk
have all previously been explored and shown to be minimal follow-
ing application of such devices to the skin.34

One example of such technology was recently reported by
Sharma and colleagues,28 who demonstrated high reproducibility
when using microneedle technology to monitor glucose levels in
healthy volunteers compared with capillary blood glucose meas-
urements. The authors were able to demonstrate robustness of
the device to sterilization using gamma-irradiation thus allowing
the device to be sterilized and stored over time for use in monitor-
ing human glucose concentrations.28 Furthermore, this technology
can be reproduced reliably and at low cost through the develop-
ment of scalable microneedle fabrication batch processing, pro-
ducing up to 300 microneedles every hour.50

However, there are also challenges that remain in the develop-
ment of microneedles within this field. Whilst microneedle-based
methods of microdialysis have also been reported for the monitor-
ing of vancomycin,53 this technique requires transfer of small vol-
umes of ISF, which not only presents technical challenges in
maintaining accuracy of the sensor but also leads to delays that
mitigate against their application in real-time control.53 Moreover,
in clinical trials for monitoring glucose using glucose oxidase-
coated microneedles, the sensors appear to occasionally generate
artefact during movements that cause them to be partially
removed from the intradermal space.28 Whilst the artefact present
in previous human studies had a shorter duration than changes in
glucose concentration, this still requires consideration. Another
challenge encountered with current microneedle sensors in
humans has been accuracy of these devices at extreme ranges of
glucose, especially hypoglycaemic ranges.28 It is likely therefore
that sensor deployment for antimicrobial monitoring will encoun-
ter similar barriers for consideration.

In addition to microneedle-based sensing, other methods to
facilitate continuous monitoring are also under consideration.
Probably the most developed are attempts to perform real-time
monitoring of drug concentrations in ambulatory animals using
invasive vascular catheter insertion.54 These would only be accept-
able in very specific situations in clinical practice, such as critical
care or at the time of surgery, where tissue hypoperfusion may
influence the ability of microneedle devices to accurately predict
free drug concentrations in blood. However, invasive devices pose

their own risks to the patient, including thrombosis.54 This type of
invasive device would not be acceptable in the vast majority of
individuals who receive antimicrobial therapy outside of critical
care in hospital or in the community settings. A second considera-
tion is the use of non-invasive, sweat-based monitoring systems
as have been developed for glucose monitoring. However, to date
very few data exist on whether this would be a viable option for
monitoring antimicrobial concentrations.55

Antimicrobial electrochemical sensing

Electrochemical sensors for antimicrobials in the environment,
agriculture, and humans have been demonstrated for a wide
range of agents used in human medicine (Table 1). In the litera-
ture, electrochemical sensors for the detection and monitoring
of antimicrobials are largely based on aptamer, antibody-linked,
or enzyme-based sensors.54,56,57 These have demonstrated high
sensitivity for monitoring of antimicrobials in potentially physio-
logical ranges seen in ISF.26 However, there remains a paucity of
data for many antimicrobial agents to accurately support the
ability of these devices to predict the PK in both tissue and
plasma at present. Aptamer sensors are nucleic acid-based and
are highly specific for their target molecule, producing their
signal through the detection of a redox reaction on ligand bind-
ing. Engineered using an in vitro selection procedure, called
Systematic Evolution of Ligands by EXponential enrichment
(SELEX) they have been reported to have a high sensitivity down
to the range of picomoles in monitoring of certain environmental
contaminants.56 One such aptamer-based sensor is the MEDIC
device, described by Ferguson and colleagues.54 This device has
been demonstrated in live animal models to be able to monitor
in real time a number of different agents, including kanamycin,
using a liquid phase filter to prevent interference from blood-
fouling of the DNA aptameric sensor.54 Within that study, live
rats were injected with increasing doses of kanamycin, an ami-
noglycoside antibiotic, at hourly intervals to demonstrate the
ability to monitor the PK profile in real time using an aptamer
sensor in the bloodstream.54 Aminoglycoside aptamers have
also been tested against spiked human serum demonstrating
accuracy for determining concentrations of routine, clinically
observed targets between 2 and 6 lM.

Enzymatic penicillin G sensors are some of the oldest antimicro-
bial sensors reported in the literature.57 These reactions can be
detected through electrical, optical, or calorimetric methods.58

The majority of these techniques detect the hydrolysis of penicillin
to penicillinoic acid and a hydrogen ion. One recent example of this
technology is reported by Ro-Lee and colleagues utilizing field
effect devices.59 The authors describe the high sensitivity of the
enzyme-based device, its stability during storage, and re-usability
over a 30 day period.59

These mechanisms for antimicrobial sensing have so far
been demonstrated on microchips, disc electrodes, and nano-
tubes. This makes the devices small and highly transportable.
This technology must now be transferred and tested on micro-
needle array devices to explore the sensitivity of such systems
for real-time antimicrobial monitoring. However, based on cur-
rent evidence provided by microdialysis of critically ill patients’
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tissue ISF concentrations, this approach is a potential avenue
for estimation of antimicrobial concentrations and real-time
monitoring.36–38 Preliminary in vitro work exploring the moni-
toring of b-lactam antibiotics (penicillin G, amoxicillin, and

ceftriaxone) in artificial ISF using microneedles has demon-
strated such devices provide plausible results.26 However, the
major gap in the literature supporting translation currently is a
paucity of human, in vivo studies with such biosensors to

Table 1. Current antimicrobial sensor classes reported in the literature

Sensor Setting demonstrated Ranges of detection in study Ref

Macrolides • Spiked human urine

• Water samples

• Optimal analytical conditions

In spiked human urine:

0–2 lM (azithromycin)

83,84

Quinolones • Spiked human plasma

• Spiked human urine

• Milk

• Optimal analytical conditions

In spiked human plasma:

0.05–100 lM (CIP)

0.1–100 lM (OFX)

0.1–40 lM (NOR)

0.06–100 lM (GAT)

85–90

Chloramphenicol • Milk

• Spiked human urine

• Food samples

• Optimal analytical conditions

In food samples:

0.08–1392 lM

LLD 0.015 lM

91–94

Metronidazole • Spiked human urine

• Optimal analytical conditions

Calibration in lab:

Linear range 0.8 pM–720 nM

In spiked urine samples reported recovery at concentrations

87, 96, 110, and 123 lM

95

Tetracyclines • Meat/feedstuff samples

• Spiked honey

• Optimal analytical conditions

In feedstuff

Linear range 0.3–52.0 lM (tetra) LLD 0.10 lM (tetra)

96,97

Rifampicin • Optimal analytical conditions Linear detection ranges:

0.006–10.0 mmol/L with an

LLD of 4.16 nmol/L

and 0.04–10 mmol/L with an

LLD of 2.34 nmol/L

98

Penicillins • Optimal analytical conditions

• Food/milk samples

In spiked milk samples:

linear range 3–283 lM and

LLD 0.3 lM (Pen-G)

Recovery from spiked samples was 102+6%

In optimal conditions:

Km value 67+13 lM reported

using Michaelis Menten

kinetics equation (Pen-G)

26,58,59,

99–113

Aminoglycosides • Optimal analytical conditions

• Ambulatory animals bloodstream

• Spiked human serum

In spiked human serum:

Accurate within therapeutic range of 2–6 lM

52,98,

114–118

Lincomycin • Optimal analytical conditions

• Foodstuff

• Spiked human urine

In optimal conditions:

Linear detection range up to

1 mM and LLD of 0.08 lM

In spiked human urine:

Recovery in samples was 96.44% to 103.26%

119

Sulphonamides • Optimal analytical conditions

• Milk

• Spiked human urine

In optimal conditions:

Range of 0.1–10.0 mmol/L

with LLD of 60 nmol/L (TMP)

AND 1.0–10.0 mmol/L with

LLD of 38 nmol/L (SMX)

In spiked urine:

Recovery 91.3%-101%

120–122

CIP, ciprofloxacin; OFX, ofloxacin; GAT, gatifloxacin; NOR, norfloxacin; TMP, trimethoprim; SMX, sulfamethoxazole; Pen-G, penicillin G; LLD, lower limit
of detection.
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demonstrate their resistance to biofouling from proteins such
as albumin and immunoglobulins.60,61 Furthermore, there
remains limited data on the expected free antibiotic concen-
trations within the ISF for many antibiotics to predict the char-
acteristics of tissue PK and allow accurate estimates of the
linear range of response that such sensors will be required to
work in before translation into human studies.

Closed-loop control for drug delivery

Closed-loop controllers have a broad application in the field of dia-
betes, being the cornerstone of novel developments, such as the
artificial pancreas system.31,62 Furthermore, closed-loop control
has been demonstrated as effective in controlling delivery of both
intravenous and inhaled anaesthetic agents during surgery.32,63

This technology has been demonstrated in pre-clinical and in silico
studies to be transferable to optimization of antimicrobial dos-
ing.54,63 Two of the most widely used controllers for continuous
and intermittent bolus infusions are the PID and ILC controllers,
respectively.43,44 These controllers are algorithms that optimize
the delivery of an agent against a pre-determined set point.

PID control

PID controllers depend on constant monitoring (e.g. every
5 minutes) and can be used to control continuous infusions main-
taining drug concentrations at a set target (e.g. either target con-
centration or PK/PD index). As their name suggests, following data
input the PID has three coefficients; the proportional, integral, and
derivative. It alters these three coefficients to optimize the
response against its target for therapy. The simplicity and robust-
ness of PID algorithms make them extremely suitable for the
range of operating conditions found in healthcare. This may be
especially useful in critical care, where there is currently a drive
towards continuous infusions of b-lactam antimicrobials and
nephrotoxic agents, such as vancomycin, to optimize the PK expo-
sure and PD properties.38,64–70 However, where current protocols
require sporadic plasma TDM sampling this mechanism offers an
opportunity for real-time response to changes in individual patient
PK. For example, this would account for variations in PK caused by
changes in the patient’s inflammatory response, fluid shifts, aug-
mented renal clearance, and in changing drain outputs in surgical
patients that may currently be missed with sporadic TDM sam-
pling.71–74

ILC in closed-loop control

ILC provides the option for optimization of bolus or oral therapy,
with data from continuous monitoring being used to optimize the
amount, timing, and rate at which a bolus (or oral dose) is deliv-
ered. Like PID, ILC algorithms have wide applications but work on
the assumption that during repetitive tasks (such as antimicrobial
bolus dosing at regular intervals) there will be some level of error in
target attainment (e.g. overshoot or undershoot). Therefore, the
ILC aims to adjust the input, in this case the bolus dose, to reduce
the transient error encountered during routine drug delivery to
optimize the accuracy of such systems. This may be more applica-
ble to non-critical care or the community setting (such as outpa-
tient parenteral therapy or oral dosing) and in specialist

populations, such as paediatrics and pregnancy, where rich data
collection will allow for tailored therapy to be determined and
adjusted for, based on real-time data and potentially previous
experience housed within machine learning algorithms, as has
been demonstrated by the use of Case-Based Reasoning in diabe-
tes management.75

These systems can automatically control the delivery of an
agent to optimize drug delivery to achieve defined PK/PD targets. If
linked with Bayesian dose optimization software or Case-Based
Reasoning platforms, which can provide individualized initial dose
selection, and novel in vivo mechanisms of predicting antimicrobial
PD, these could offer a powerful mechanism for reducing the errors
that are commonly observed in the practice of current dose opti-
mization strategies.

In terms of translating these into microneedle sensor-driven
closed-loop control systems, the biggest challenge remaining is
accurately describing the relationship for individual antimicrobials
between tissue and plasma PK, especially during the initial phase
of dosing, when the drug is not at steady state. This will be required
to accurately describe the relationship between free concentra-
tions of drug in both compartments and will likely require rich
plasma and microdialysis PK sampling to enable development of
accurate algorithms to support such controllers.

Additional PK/PD indices for
individualizing therapy

Currently, individualized PK/PD indices rely on factors such as the
MIC to form part of time- and concentration-dependent measures
for exposure response (such as AUC:MIC, Time.MIC, or Peak:MIC).
MIC as a PD target requires isolation of the causative pathogen and
determination of the individual organism’s susceptibility. This
causes a practical problem in cases where the invading pathogen
is not identified, as is observed during the empirical phase of
antimicrobial therapy, and in a significant proportion of cases of
sepsis that remain culture-negative throughout the treatment
period.76,77 Therefore, in the absence of microbiology results, pop-
ulation-level assumptions are made about the most likely organ-
ism causing the infection and the average MIC of this population.
Thus this does not provide a truly individualized index on which to
optimize antimicrobial therapy.

Furthermore, in place of an easily available individualized PK/PD
index to guide the assessment of response to therapy, clinicians
rely on clinical judgement, physiological parameters, and bio-
chemical markers such as C-reactive protein (CRP) and procalcito-
nin (PCT) to assess individual patient response.78,79 In particular,
CRP, an acute phase protein that is a non-specific marker of inflam-
mation, is one of the most commonly used biomarkers during
infection management in clinical practice.80–82 Despite its wide
use in infection management, very little attempt has been made
to link it directly to exposure–response using PK/PD modelling.

To address this, recent studies have reported the use of the
ratio of the AUC to the EC50 in paediatric populations.47,48 The EC50

is the concentration of a drug (mg/L) that is estimated to induce a
half-maximal antibacterial effect (such as reduction in serum CRP
or galactomannan, a specific plasma marker in Aspergillus infec-
tion) for an individual patient. The AUC:EC50 ratio can provide an
in vivo estimate of drug response by linking drug exposure with
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PD.47,48 Acting as an in vivo measure of potency, AUC:EC50 enables
an estimate of the host immune response to the invading organ-
ism. This has the potential to circumvent the problems associated
with in vitro MIC estimation and may provide data that can drive
the development of real-time algorithms for the delivery and con-
trol of individualized antimicrobial therapy. With the clinical valida-
tion of tools such as the AUC:EC50 for predicting antimicrobial PD in
individuals using markers such as CRP, future work must now
explore the role of using newer infection-related biomarkers, such
as procalcitonin and CD64 for improving the accuracy of
these tools. Furthermore, exploration of similar methods for pre-
dicting toxicity (e.g. renal toxicity) may further enhance the individ-
ualization of therapy by including host, antimicrobial agent, and
pathogen factors in estimations of the outcome of therapy.

Drug delivery

Whilst intravenous and oral delivery of agents, via infusion pump
and personalized dosing alerts respectively, may be the initial
routes for antimicrobial delivery using such control systems there
is also the potential for delivery via microneedle systems in the
future. Such microneedles are now under investigation for drug
and vaccine delivery that provide dual functions of sensing and
also drug delivery.52 However, in the field of infection, the rate of
drug delivery that can be achieved may be hindered by certain
drug characteristics (such as hydrophilic versus hydrophobic
agents) and the volume of agent required to be delivered.
However, this technology may pose an interesting avenue for cer-
tain challenging cohorts, such as paediatric patients, as well as for
local antimicrobial therapy delivery, such as skin and soft tissue
infections or penetration of collections.

Conclusions

Novel systems are urgently required to individualize delivery of
antimicrobial therapy, to address the wide variations in PK cur-
rently observed across a range of patient populations, and mini-
mize the impact of sub-optimal dosing on clinical outcomes and
AMR. Closed-loop control utilizing dermal antimicrobial sensing
techniques offers a potential new avenue of applied research that
addresses many of the current barriers associated with drug moni-
toring and dose optimization tools. Furthermore, the nature of
minimally invasive sensor technology provides a platform that can
be used across a range of settings from the community to those in
intensive care. To achieve this there must be cross-disciplinary col-
laboration to explore the utility of such technologies to optimize
the precision of antimicrobial therapy by addressing a number of
the hurdles that remain to implementing this type of technology.

Acknowledgements
We thank the National Institute of Health Research Imperial Biomedical
Research Centre and the National Institute for Health Research Health
Protection Research Unit (NIHR HPRU) in Healthcare Associated Infection
and Antimicrobial Resistance at Imperial College London in partnership
with Public Health England and the NIHR Imperial Patient Safety
Translational Research Centre.

Funding
This report is independent research funded by the National Institute for
Health Research Invention for Innovation Grant (i4i), Enhanced,
Personalized and Integrated Care for Infection Management at Point of
Care (EPIC IMPOC), II-LA-0214-20008. A. C. G. is an NIHR Research
Professor. This report was also supported by grants from (i) the
Engineering, Medicine, Natural Sciences and Physical Sciences Bridging
Research in Antimicrobial resistance: Collaboration and Exchange
(EMBRACE), Imperial College Antimicrobial Research Collaborative; and
(ii) Imperial College Biomedical Research Centre (BRC). J. A. R. wishes to
recognize funding from the Australian National Health and Medical
Research Council for Centre of Research Excellence (APP1099452) and a
Practitioner Fellowship (APP1117065).

Transparency declarations
None to declare.

Author contributions
All authors contributed significantly to the literature review and writing
of the manuscript. T. M. R. wrote the initial draft of the manuscript with
all authors significantly contributing to the development and finalization
of the version for submission.

Disclaimer
The views expressed in this publication are those of the authors and not
necessarily those of the NHS, the National Institute for Health Research
or the UK Department of Health.

References
1 O’Neill J. 2016. Tackling Drug-Resistant Infections Globally: Final Report and
Recommendations. https://amr-review.org/sites/default/files/160518_Final%
20paper_with%20cover.pdf.

2 Holmes AH, Moore LSP, Sundsfjord A et al. Understanding the mechanisms
and drivers of antimicrobial resistance. Lancet 2016; 387: 176–87.

3 Roberts JA, Abdul-Aziz MH, Lipman J et al. Individualised antibiotic dosing
for patients who are critically ill: challenges and potential solutions. Lancet
Infect Dis 2014; 14: 498–509.

4 Perez F, El Chakhtoura NG, Papp-Wallace K et al. Treatment options for
infections caused by carbapenem-resistant Enterobacteriaceae: can we
apply ‘precision medicine’ to antimicrobial chemotherapy? Expert Opin
Pharmacother 2016; 17: 761–81.

5 Abdul-Aziz MH, Roberts JA, Lipman J et al. Applying pharmacokinetic/phar-
macodynamic principles in critically ill patients: optimizing efficacy and
reducing resistance development. Semin Respir Crit Care Med 2015; 36:
136–53.

6 Cotta MO, Roberts JA, Lipman J. We need to optimize piperacillin-
tazobactam dosing in critically ill patients—but how? Crit Care 2016;
20: 163.

7 Brusselaers N, Vogelaers D, Blot S. The rising problem of antimicrobial
resistance in the intensive care unit. Ann Intensive Care 2011; 1: 47.

8 Charmillon A, Novy E, Agrinier N et al. The ANTIBIOPERF study: a nation-
wide cross-sectional survey about practices for b-lactam administration and
therapeutic drug monitoring among critically ill patients in France. Clin
Microbiol Infect 2016; 22: 625–31.

Review

6 of 9
Downloaded from https://academic.oup.com/jac/advance-article-abstract/doi/10.1093/jac/dkx458/4688914
by Swansea University user
on 05 December 2017
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