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Higgs compositeness in Sp(2N) gauge theories —
The pure gauge model
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Abstract. As a first step in the study of Sp(2N) composite Higgs models, we obtained a
set of novel numerical results for the pure gauge Sp(4) lattice theory in 3+1 space-time
dimensions. Results for the continuum extrapolations of the string tension and the glue-
ball mass spectrum are presented and their values are compared with the same quantities
in neighbouring SU(N) models.

1 Introduction

The Sp(2N) class of gauge theories naturally arises in the context of Higgs compositeness whenever
the symmetry group of the new strongly coupled sector is pseudoreal. As explained in [1] in more de-
tail, it is then interesting to perform a non-perturbative study on this class of models using their lattice
regularization. In this contribution we focus on the glueball spectrum and string tension computation
in the Sp(4) lattice regularized gauge theory. The first part is devoted to the implementation of the
heat bath (HB) algorithm used to simulate the Sp(2N) gauge theory. In the second part, we focus on
variational methods and improved operators employed to obtain the glueball spectrum and the string
tension of the theory. The last part is a discussion of the results obtained for N = 2, i.e. Sp(4).
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2 The heat bath algorithm for Sp(2N)

The Sp(2N) lattice gauge theory is defined on a 4 dimensional euclidean hypercubic lattice of spacing
a by the Wilson action

S = β
∑
x,µ>ν

(
1 −

1
2N

Re tr Uµν

)
(1)

where β = 4N/g2 and

Uµν(x) = Uµ(x) Uν(x + µ̂) U†µ(x + ν̂) U†ν (x) , Uµ(x) ∈ Sp(2N) (2)

An update algorithm for the above theory can be realized following the well known Cabibbo-
Marinari approach [2, 3]. The crucial observation is that since Sp(2N) is a subgroup of SU(2N),
an ergodic update algorithm can be obtained for the former group by restricting the set of usually
updated SU(2) subgroups of the latter. Starting from the unit matrix (cold start) or by a randomly
chosen Sp(2N) matrix (hot start), and updating the lattice links Uµ(x) according to the above scheme,
one samples the configuration space in the desired way.

To check the correctness of the above procedure, we measured the vacuum expectation value of
the action per plaquette P = 1

6V S for several values of β and at 4 values of N starting from both hot
and cold configurations, and compared our estimates with the strong and weak coupling expansions
and with known numerical results [3]. The deviations with respect to the latter at N = 2 is shown on
the left hand side fig. 1 while on the right hand side of fig. 1 we show the deviation with respect to the
leading order strong coupling prediction at several values of N. These results suggest that we are able
to simulate the lattice regularized Sp(2N) gauge theory at any value of N and of the coupling β.
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Figure 1: To check for the correctness of our update algorithm, we compared our results for the expectation
value of the action per plaquette at various values of β both with those present in the literature and with analytical
calculations. The deviations between the estimates obtained in the present work and those of [3] (left), and with
the leading order strong coupling expectation (right).

3 Methods for Glueballs spectrum and string tension calculations

In the confining phase of the Sp(2N) gauge theory we expect two kinds of color-singlet states to prop-
agate: bound states of gluons called glueballs and, in the presence of static sources or in compactified
space-times, closed fluxtubes. The quantity we will estimate is the ratio mG√

σ
, where mG is the mass of



the glueball in a particular symmetry channel and σ the energy per unit length of a fluxtube, i.e. the
string tension. In this section, we explain how both of these quantities can be estimated on the lattice.

In the continuum, states of the gauge field can be labelled by their energy value, by the values
of their conserved charges with respect to the euclidean Poincaré group and, in the case of fluxtubes,
by their length. For glueballs, the relevant quantum numbers are the angular momentum J and parity
P, while for fluxtubes, we use, in addition, their length L, the flux q they carry and parities Pl, Pt,
respectively in the plane of the fluxtube and with respect to its axis. Therefore, glueballs are labelled
by (J, P) and fluxtubes by (L, J, q, Pl, Pt). Since for the latter we only deal with the case q = 1, J = 0
and Pl = Pt = 1, we will omit the corresponding labels. Moreover, since Sp(2N) has only pseudo
real representations, the charge conjugation quantum number has always value +1 and will neglected
below.

The lattice formulation of the gauge theory breaks its Poincaré symmetry down to its discrete
icosahedral subgroup. States created on the lattice by gauge invariant products of elementary link
operators Uµ(~x, t) along closed loops Ω will be labelled by the irreducible representation of the icosa-
hedral group in which they transform. The latter can be labelled as A1, A2,T1,T2, E. A further distinc-
tion has to be made between contractible and non-contractible loop operators, generating, respectively,
glueball and fluxtube states. Note that because of center symmetry, these have no overlap between
each other and can be studied separately.

Now we will briefly review how to obtain the mass mC of a generic state of quantum numbers C.
As said above, C = R± for glueballs, while C = L for fluxtubes. Denoting by

φC(~x, t) = Tr
∏

Ω

Uµ(~x, t) , (3)

a generic gauge-invariant operator with quantum numbers C, the mass mC of the corresponding state
can be obtained from the asymptotic behaviour of its zero-momentum-projected euclidean time cor-
relator,

ΓC(t) =
〈φC(t)φ†C(0)〉

〈φC(0)φ†C(0)〉
=

∑
n

|〈C, n|φ†C(0)|vac〉|2∑
m |〈C,m|φ

†

C(0)|vac〉|2
e−mC,nt (4)

where n labels the excitation number and φC(t) =
∑
~x φ(~x, t). The above correlator probes the propaga-

tion of a infinite tower of states of increasing energy with quantum numbers C. The leading behaviour
for t → ∞ singles out the lowest among the mC,n, that we denote simply by mC from now on,

mC = − lim
t→∞

log ΓC(t)
t

. (5)

Direct estimates of mC can be obtained by fitting measurements of the correlator in eq. (4) on a
suitable range of t with an exponentially decaying function. In this process one has to face two severe
difficulties, however. Not only does the signal-to-noise ratio exponentially decay at large t, but, as
we increase β to flow towards the continuum limit, the amplitude of the exponential decay rapidly
goes to 0, turning the direct determination of mC into a very challenging task. These are by now well
known problems related to our choice of interpolating operators, eq. (3), and to their behaviour in the
continuum limit, for which a solution has been found in the form of variational calculus with linear
combinations of improved operators. Improved operators are the result of two iterative operations,
smearing and blocking, that are designed in order to interpolate the physical size of lattice states as its
spacing is brought to 0. Smearing consists in summing the staples around a link to the link itself, as



follows

Ũ s+1
i (n) = U s

i (n) + pa

∑
j,i

U s
j (n)U s

i (n + j)U s†
j (n + i) + pa

∑
j,i

U s†
j (n − j)U s

i (n − j)U s
j (n − j + i) (6)

U s=0
i (n) = Ui(n) (7)

where pa is a free parameter that determines how many smearing steps are necessary to reach a
particular scale. Blocking consists in replacing the original elementary links with superlinks that join
lattice sites that are 2b spacings apart, where b is the number of blocking iterations, as described by

Ũb+1
i (n) = Ub

i (n)Ub
i (n + 2bi) + pb

∑
j,i

Ub
j (n)Ub

i (n + 2b j)Ub
i (n + 2b j + 2bi)Ub†

j (n + 2bi) (8)

+ pb

∑
j,i

Ub†
j (n − 2b j)U s

i (n − 2b j)U s
i (n − 2b j + 2bi)Ub

j (n − 2b j + 2bi) (9)

Ub=0
i (n) = Ui(n) (10)

While blocking allows to reach the physical size of the glueball with less steps, at the physical
scale smearing provides a better resolution. An iterative combination of n = 1, 2 smearing steps with
a blocking step has shown to be an efficient strategy [4], and we have employed this procedure in
this work, with (pa = 0.4, pb = 0.16). Note that the matrices Ũµ(n) associated to improved links
are not necessarily part of the gauge group anymore. To reproject to the original group we find the
Sp(2N) matrix Uµ(i) that maximizes Re tr Ũ†U: first, a crude projection is operated on ŨN using a
resymplecticisation algorithm, see [5] for our choice, second, a certain number of cooling [6] steps
(we used 15) is performed on the link. This allows to iteratively approach the sought for U.

Starting from M elementary basis paths in a given symmetry channel, N iterations of the improve-
ment process results in a collection N × M operators. Denoting with {φi(t)} this collection in a given
symmetry channel, we may compute the correlation matrix

Γi j(t) =
〈0|φi(t)φ

†

j (0)|0〉

〈0|φi(0)φ†j (0)|0〉
(11)

and diagonalize it, assuming maximal rank. If vi is the eigenvector corresponding to the greatest
eigenvalue, the operator

Φ(t) =

N×M∑
i=0

viφi(t) (12)

creates the state of maximum overlap with the group state of the given symmetry channel. The corre-
sponding mass can then be extracted from a fit of

Γ̃ii(t) = Ai cosh
(
mit −

Nt

2

)
(13)

to the data, where Γ̃ is diagonalized correlation matrix, or by looking for a plateau value in

meff(t) = − log
Γ̃ii(t)

Γ̃ii(t − 1)
(14)

Note that in both cases, the extracted mass also receives contributions from excited states in the same
symmetry channel.



In the case of fluxtube states, we are interested in extracting the string tension, i.e. the proportion-
ality constant between the energy and the length quantum number

σ = lim
L→∞

m(L)
L

. (15)

Note that the corresponding correlator may be measured in several channels, depending on our (en-
tirely conventional) choice of what direction is “time-like”. However, since we are in a euclidean
setup, we expect the final results for the string tensions σs and σt to be compatible. Assuming that
the string in question is bosonic in nature, the corrections to the formula above for finite L contribute
with a power series in 1/L and can be computed in the framework of Effective String Theory, see [7]
and references therein. There it is shown that the request of Poincaré invariance of the effective action
strongly constrains the form of the power series coefficients. As a result, all the correction terms in
D = 4 are universal up to order 1/L5 and coincide with a Taylor expansion of the Nambu Goto (NG)
spectrum in 1/L around L = ∞. In particular we have, ,

mLO
l (L) = σL −

π(D − 2)
6L

, mNLO
l (L) = σL −

π(D − 2)
6L

+
1
2

(
π(D − 2)

6

)2 1
σL2 . (16)

at the Leading (LO) and Next-to-leading (NLO) order, and

mNG
l (L) = σL

√
1 −

(D − 2)π
3σL2 . (17)

for the complete NG spectrum. Estimates of the string tension at these orders of approximation were
obtained by inverting the above formulas for σ.

4 Numerical Setup and results
The simulations were performed using a version of the HiRep code suite approriately modified to
accomodate the Sp(2N) series of gauge theories. In particular, we work at N = 2. For the varia-
tional procedure with improved operators, we employed the same automatized algorithm used in [4].
Operators were blocked to the level Nb ≤ L with smearing and blocking parameters chosen as
(pa = 0.4, pb = 0.16). After Nc = 15 steps of cooling, This resulted in a variational basis of
∼ 200 operators. For each value of the lattice volume and of the coupling that were probed, 10000
configurations were stored to be later analyzed.

Data was initially collected on a (La = 10a)4 lattice at β = 7.7. This choice of the coupling
guarantees that we are in the confined phase. After estimates of the string tension and the glueball
masses were computed, the process was repeated for larger lattice sizes at the same coupling. This
allowed to estimate the importance of finite size effects. Additionally, we explicitly checked that the
estimates of the string tension obtained at each lattice volume, measured in different channels, were
statistically compatible, see the right hand side of tab. 1 and fig. 2. Our final estimate thereof was
then computed as the weighted average of the two results, using the inverse errors as weights. The
final estimates of the string tension at finite lattice spacings are reported in tab. 1. Results for the
glueball masses at finite lattice spacing are reported in tab. 2. Once a lattice large enough for the finite
size effects to be neglectable was found, we used the scale setting results reported in [5] to shrink the
lattice spacing at (approximately) constant physical volume. Computing the ratio mG/

√
σ for each of

the couplings and lattice volumes shown in the first two columns of the left hand side of tab. 1, and
assuming discretization effects to behave as

mG
√
σ

(a) −
mG
√
σ

(0) ∝ σa2 (18)



we could extrapolate the above ratio to the continuum limit for each symmetry channel. The extrap-
olations are visible in fig.3 and the continuum limits reported in tab. 3. Note that the estimates for
the E± and the T1± channels are numerically compatible, as we expect if Poincaré symmetry is to be
restored in the continuum limit.

5 Conclusions

In this work we have carried out the first numerical estimation of the glueball spectrum in the pure
Sp(4) gauge theory. After adapting the HiRep code suite to simulate the Sp(2N) gauge theory, we em-
ployed a fully automatised process to determine the best-overlap variational basis built from improved
operators. This allowed us to overcome the exponentially-decaying signal-to-noise ratio problem and
to obtain precision measurements of glueball masses in units of the square root of the string tension
in all the symmetry channels. The magnitude of our results is comparable to what is found in SU(N)
theories, see [8, 9] and reference therein, and the value of the

η =
m2(0+)
σ

·
C2(F)
C2(A)

(19)

ratio, η(S p(4)) = 5.27(15) is compatible with the expectations from [10].
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Figure 2. Estimates of the
string tension in the spacelike
(σs) and timelike (σt)
channels at various orders of
approximation and at various
values of the lattice volume
for β = 7.7. The systematic
effect on the largest lattices is
explained by the difficulty in
extracting a very large mass
from the correlator eq. (13).

L/a
√
σta(NG)

√
σsa(NG)

√
σa

24 0.2294(12) 0.2237(28) 0.2285(11)
20 0.2275(12) 0.2290(20) 0.228(10)
16 0.2271(13) 0.2278(26) 0.2272(11)
14 0.2272(11) 0.2277(23) 0.2273(10)
12 0.22623(96) 0.2288(20) 0.22673(86)
10 0.22215(69) 0.2234(15) 0.22238(63)

L/a β
√
σa

32 8.3 0.1156(3)
26 8.2 0.1293(6)
20 8.0 0.1563(6)
18 7.85 0.1885(7)
16 7.7 0.227(1)

Table 1: On the left hand side, in the first two columns, the value of
√
σ extracted from the full lightcone

spectrum (NG) prediction for the ground state energy of the fluxtube length L at β = 7.7. In the last column,
weighted averages over the timelike and spacelike channels. On the right hand side, the final estimates for

√
σ at

different lattice setups.
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Figure 3: Continuum limit extrapolations for glueball masses. For each symmetry channel RP, we expect the
ratio mG/

√
σ to tend to its continuum limit value according to eq. 18. Note, in addition, that the estimates in the

channels E+,T1+ and E−,T1−, respectively, tend to the same value as a→ 0, as we expect if Poincaré invariance
is to be restored in the continuum limit.

RP L = 10 L = 12 L = 14 L = 16 L = 20 L = 24
A1+ 0.569(13) 0.728(15) 0.738(16) 0.742(16) 0.764(15) 0.739(11)
A1− 1.039(35) 1.275(41) 1.406(47) 1.210(40) 1.300(34) 1.323(34)
A2+ 1.70(11) 1.706(95) 1.778(95) 1.650(76) 1.771(81) 1.748(74)
A2− 2.48(34) 1.83(17) 1.74(14) 2.21(25) 2.23(24) 2.252(22)
E+ 0.623(13) 1.111(32) 1.150(32) 1.159(27) 1.217(26) 1.036(59)
E− 1.402(62) 1.347(58) 1.401(48) 1.509(66) 1.597(59) 1.463(45)

T1+ 1.170(43) 1.220(36) 1.202(39) 1.209(31) 1.173(26) 1.82(11)
T1− 1.465(75) 1.513(69) 1.515(66) 1.522(57) 1.499(51) 1.87(12)
T2+ 1.53(11) 1.70(12) 1.99(14) 1.578(94) 1.839(96) 1.179(95)
T2− 1.60(12) 2.04(18) 2.38(27) 2.07(18) 1.94(15) 1.505(46)
ms 0.3744(32) 0.5196(53) 0.6436(73) 0.7570(93) 0.981(11) 1.218(13)
mt 0.3804(69) 0.534(11) 0.647(15) 0.762(19) 0.995(18) 1.157(30)

Table 2: Estimates of the ratio mG/
√
σ for each symmetry channel RP, obtained by fitting eq. 13 to the data at

coupling β = 7.7. The operators considered were blocked at level Nb ≤ L, with Nc = 15 cooling steps.

RP m(RP)/
√
σ

A1+ 3.557(52)
A1− 5.74(19)
A2+ 7.91(17)
A2− 9.42(40)
E+ 5.02(16)
E− 6.61(13)

T1+ 5.070(91)
T1− 6.872(89)
T2+ 8.73(30)
T2− 9.50(37)

Table 3: Continuum limit estimates of glueball masses in all the symmetry channels. These values are the
intercepts for the straight lines in fig. 3 for each one of the symmetry channels RP considered.
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