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Objectives: Methicillin-resistant Staphylococcus aureus (MRSA) is an important pathogen. Its resistance to multiple
antibiotics and its prevalence in healthcare establishments make it a serious threat to human health that requires
novel interventions. Manuka honey is a broad-spectrum antimicrobial agent that is gaining acceptance in the
topical treatment of wounds. Because its mode of action is only partially understood, proteomic and genomic
analysis was used to investigate the effects of manuka honey on MRSA at a molecular level.

Methods: Two-dimensional gel electrophoresis with dual-channel imaging was combined with matrix-assisted
laser desorption ionization–time of flight mass spectrometry to determine the identities of differentially expressed
proteins. The expression of the corresponding genes was investigated by quantitative PCR. Microarray analysis pro-
vided an overview of alterations in gene expression across the MRSA genome.

Results: Genes with increased expression following exposure to manuka honey were associated with glycolysis,
transport and biosynthesis of amino acids, proteins and purines. Those with decreased expression were involved
in the tricarboxylic acid cycle, cell division, quorum sensing and virulence. The greatest reductions were seen in
genes conferring virulence (sec3, fnb, hlgA, lip and hla) and coincided with a down-regulation of global regulators,
such as agr, sae and sarV. A model to illustrate these multiple effects was constructed and implicated glucose,
which is one of the major sugars contained in honey.

Conclusions: A decreased expression of virulence genes in MRSA will impact on its pathogenicity and needs to be
investigated in vivo.

Keywords: quorum sensing, biofilms, wounds, 2D-DIGE, microarrays

Introduction
Theadvent ofantibiotics generated confidence that effective means
of treating infections were available, but the emergence of antibiotic
resistance has altered our perceptions. In 1961, when methicillin re-
sistance in Staphylococcus aureus was discovered, its future global
impact was unimaginable. Now the widespread prevalence of
strains with multiple antibiotic resistance determinants has made
methicillin-resistant S. aureus (MRSA) a serious threat to human
health. The limited development of antimicrobial agents in recent
times has compounded the situation1 and increased the necessity
tosearch foralternative remediestocomplementor replaceantibio-
tics. Natural compounds isolated from plants have historically been
used as templates for successful antimicrobial therapies.2 Before

the discovery of antibiotics, honey was used for thousands of
years in the topical treatment of wounds. During the past decade,
it has been formulated into a range of modern wound dressings
and has been reintroduced into conventional medicine.

Honey is a broad-spectrum antimicrobial agent with bactericidal
activity against a number of wound pathogens.3–7 Its high osmolar-
ity, acidity, generation of hydrogen peroxide on dilution and insect-
derived antimicrobial peptides contribute to antibacterial activity,
yet not all honeys are equivalent.8 Manuka honey is a distinctive
honey that is produced in New Zealand and is used as a medical-
grade honey in the manufacture of wound dressings licensed for
clinical use in Australasia, Europe and North America. Whereas
the antibacterial effect of many honeys on dilution is confined to
the generation of hydrogen peroxide, manuka honey possesses
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additional antibacterial factors. Methylgloxal9,10 and leptosin11

were recently identified, and further bioactive factors may yet be
discovered.

The bactericidal effects of manuka honey on wound pathogens
have been investigated in vitro, especially in staphylococcal
species. The role of manuka honey in preventing cell division in S.
aureus was deduced from electron micrographs of honey-treated
cells, where elevated numbers of cells with entire septa were
found to accumulate. Autolysins (also known as murein hydro-
lases) were implicated in this effect.12 Similarly an inability to com-
plete the cell cyclewas laterobserved in MRSA treatedwith manuka
honey; despite an increased expression of the autolysin (atl) gene,
murein hydrolase activity was at undetectable levels. Failure to
cleave peptidoglycan was thought to contribute to the persistence
of the septa and to the failure to divide and complete the cell
cycle.13 In addition, a decreased expression of universal stress
protein A indicated that MRSA was unable to accommodate the
stresses caused by exposure to manuka honey.14

Transcriptome analysis of Escherichia coli exposed to manuka
honey revealed multiple cellular effects.5 More recently, a prote-
omic study found that 12 proteins were differentially expressed
in S. aureus following treatment with manuka honey,15 but those
effects were not investigated by transcriptome analysis. Both of
these studies showed that manuka honey had a distinct mode of
action that involved multiple cellular processes.

In chronic wounds, an association between the persistence
of the wounds and the presence of biofilms16 has increased
the urgency to find effective antimicrobial agents that inhibit
not only planktonic bacterial cells, but also those contained
in antibiotic-tolerant biofilm communities. The aim of this
study was therefore to investigate changes in protein and
gene expression in MRSA caused by treatment with manuka
honey, with a view to elucidating the mechanisms that influence
pathogenicity.

Materials and methods

Bacterial strains and growth conditions
The test bacterium used in this study was EMRSA-15 NCTC 13142. This was
grown at 378C with shaking at 120 rpm in tryptone soya broth (TSB; Oxoid
Cambridge, UK), with or without 10% (w/v) sterile medical-grade manuka
honey (Manukacare 18+, Comvita, UK).

Two-dimensional (2D) electrophoresis
For the preparation of cell extracts, cells were grown in 50 mL of TSB with or
without 10% (w/v) manuka honey. At 4 h, the culture was harvested bycen-
trifugation at 10000 g for 5 min. The supernatant was discarded and the
cells were resuspended in 10 mL sterile water. The cells were then dis-
rupted at 48C using 0.1 mm glass beads in a bead beater (BioSpec, Bartles-
ville, USA) using three homogenization cycles of 60 s each. The liquid phase
was gently decanted from the beads and the beads were discarded. Insol-
uble or aggregated proteins in the retained supernatant were sedimented
bya 4 min centrifugation at 13000 g. The supernatant wasthen transferred
into clean tubes and stored at 2808C.

The 2D gel electrophoresis was performed using an immobilized pH gra-
dient technique adapted from published methods.17,18 Briefly, the 24 cm pH
3–10 strips were rehydrated in the Ettan IPGphor3 IEF system (GE Health-
care, Little Chalfont, UK). Prior to electrophoresis, 160 mg of protein from
each of the control and honey-treated cells was incubated with fluoro-
chromes Cy5 and Cy3 respectively according to manufacturer’s instructions

(CyDye DIGE Fluors; GE Healthcare, Little Chalfont, UK). Protein extracts
were then combined and soluble proteins were loaded onto the rehydrated
IPG strip before being isoelectrically focused for 60000 Vh. The IPG strip
was next equilibrated in buffer containing 1% DTT for 15 min (reduction)
and then in buffer containing 2.5% iodoacetamide for 15 min (alkylation).

2D gels were prepared (270×210, 1 mm 10% SDS polyacrylamide gels)
and proteins were separated after embedding the IPG into gel using 1%
agarose (Sigma, Dorset, UK). 2D electrophoresis was performed using an
Ettan IPGPhor system (GE Healthcare, Little Chalfont, UK) and the proteins
were stained with Coomassie blue.

The difference gel electrophoresis (DIGE)-labelled gels were scanned
using a Typhoon Trio variable-mode imager (GE Healthcare, Little Chalfont,
UK) with 580BP 30Cy3, TAMRA, Alexa Fluor 546 and 670BP 30Cy5 emission
filters, and then saved as .ds files. These files were then analysed using
Decyder 2D version 6.5 software (GE Healthcare, Little Chalfont, UK). Gels
were checked for spot resolution, and exclusion filters were set at slope
3.2, Area 120, Volume 25000 and Peak height 100–6500. Spot-difference
analysis allowed the identification of spots with a 2-fold or more up- or
down-regulation compared with the control.

Sample preparation of spots for mass spectrometry (MS)
analysis
Gel plugs (1.5 mm diameter) of spots of interest were manually excised and
placed in a 96-well plate. Peptides were then recovered following trypsin
digestion using a modified version of that described by Shevchenko et al.19

Sequencing grade modified trypsin (Promega, UK) was used at 6.25 ng/mL
in 25 mM NH4HCO3 and incubated at 378C for 3 h. Finally, the dried peptides
were resuspended in 5 mLof 50%(v/v) acetonitrile in 0.1% (v/v) trifluoroacetic
acid (TFA) for MS analysis, and an aliquot corresponding to 10% of the
material (0.5 mL) was spotted onto a 384-well MS plate. The samples were
allowed to dry and were overlaid with 0.5 mL of a-cyano-4-hydroxycinnamic
acid [Sigma, Dorset, UK; prepared by mixing 5 mg of matrix with 1 mL of
50% (v/v) acetonitrile in 0.1% (v/v) TFA].

MS analysis
MS was performed using matrix-assisted laser desorption ionization–
time of flight (MALDI TOF) MS (4800 MALDI TOF-TOFAnalyzer; Applied Bio-
systems, Foster City, CA, USA) with a 200 Hz solid state laseroperating at a
wavelength of 355 nm.20,21 MALDI mass spectra and subsequent MS/MS
spectra of the eight most abundant MALDI peaks were obtained following
routine calibration. Common trypsin autolysis peaks and matrix ion
signals and precursors within 300 resolutions of each other were
excluded from the selection, and the peaks were analysed with the stron-
gest peak first. For positive-ion reflector mode spectra, 800 laser shots
were averaged (mass range 700–4000 Da, focus mass 2000). In MS/MS
positive-ion mode, 4000 spectra were averaged with 1 kV collision
energy (the collision gas being air at a pressure of 1.6×1026 Torr) and
default calibration.

Combined PMF and MS/MS queries were performed using the MASCOT
Database search engine v2.1 (Matrix Science Ltd, London, UK)22 embedded
in Global ProteomeServer (GPS) Explorer software v3.6 (AppliedBiosystems)
on the Swiss Prot database (download date 16 December 2009). Searches
were restricted to bacterial taxonomy with trypsin specificity (with one
missed cleavage allowed), the tolerances set for peptide identification
searches at 50 ppm for MS and 0.3 Da for MS/MS. Cysteine modification
by iodoacetamide was employed as a fixed modification, with methionine
oxidation as a variable modification. Search results were evaluated by
manual inspection, and conclusive identification confirmed whether
there were high-quality tandem MS (good y-ion) data for two or more pep-
tides (E value P,0.05 for each peptide; overall P,0.0025) or one peptide
(only if the E value had a value of P,0.0001).
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Extraction of RNA for real-time PCR and microarray
analysis
Cells were grown with and without manuka honey as described above. RNA
was isolated using a Promega SV Total RNA isolation kit, and cDNA was pre-
pared using an Applied Biosystems High-Capacity cDNA Reverse Transcrip-
tion Kit, both according to the manufacturer’s instructions. The RNA was
treated with an extra DNAse treatment using Ambion DNA-free according
to the manufacturer’s instructions to avoid a carry-over of genomic DNA
(Invitrogen, Paisley, UK). Real-time PCR was performed on all samples,
using Fast SYBR Green (Applied Biosystems, Foster City, CA, USA), with the
procedures suggested by the manufacturer on a CFX96 real-time PCR
system (Bio-Rad). Primers for quantitative PCR (qPCR) (Table 1) were
designed using NCBI Primer-BLAST to be 20–24 bases long, with a GC
content of more than 50% and a melting temperature of around 608C. All
reactions were carried out in triplicate, and the expression of genes was
analysed with reference to the expression of the housekeeping gene
acetyl coenzyme A (yqiL).

For microarrayanalysis, RNAwas isolated as above, hybridized, stained
and scanned on Affymetrix arrays according to the manufacturer’s
instructions for prokaryotic target preparation. All experiments were
carried out with three biological replicates and the mean values are pre-
sented here. The fold changes have been corrected and normalized to
account for background noise. Genes showing more than a 2-fold differ-
ential regulation at a significance of P¼0.001 using a Bayesian t-test were
examined.

The data discussed in this publication have been deposited in NCBI’s
Gene Expression Omnibus (GEO)13 and are accessible through GEO Series
accession number GSE31592 (http://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSE31592).

Results
The mode of action of manuka honeyon MRSAwas investigated ini-
tially by proteomic analysis, identifying proteins with differential
expression. The expression of genes encoding for those identified
proteins was then determined using qPCR and whole-genome
effects were explored using microarray analysis.

Proteomic analysis

Proteins extracted from MRSA treated with and without a bacteri-
cidal concentration (10% w/v) of manuka honey for 4 h were
separated by 2D -DIGE and 15 proteins whose levels of expression
were altered by a factor of at least two were selected for further
characterization by MS. Figure 1 shows an example of a gel with a
protein spot that was characterized by MS as an ATP-binding
subunit of an ATP-dependent Clp protease (ClpC). Five proteins
were measured at increased levels compared with untreated
cells (Table 2) and 10 proteins were decreased (Table 3). Three
protein spots were characterized as being pyruvate kinase
(Table 2), two were characterized as phosphoglucosamine
mutase (Table 3) and one was tentatively identified as transaldo-
lase. Therefore 15 samples represented 12 different proteins,
of which 11 were successfully characterized. They included pro-
teins involved in carbohydrate metabolism, cell wall biosynthesis
and the stress response. Two were pertinent to two of our previ-
ous studies: the cell wall-related protein (ScdA) where cell division
was affected13 and the Clp protease (ClpC) where inability to cope
with stress was observed.14

qPCR analysis

Excluding transaldolase, the effect of manuka honey on the ex-
pression of the genes that coded for the 11 identified proteins
was investigated quantitatively with PCR. It was found that
changes in gene expression (Table 4) did not necessarily concur
with the altered levels of protein expression observed using prote-
omic analysis (Tables 2 and 3). The expression of five corresponding
proteins and genes did show the same trend (Table 4). Two genes
(fbaA and pdp) had unchanged levels of expression and four
genes showed increased expression (Table 4) in comparison
with their respective proteins (Table 3). Hence six genes showed
higher levels of expression by qPCR after honey treatment, al-
though their proteins appeared diminished by 2D-DIGE. One ex-
planation might be that changes in protein structure were
caused directly by exposure to manuka honey or indirectly by
altered post-translational modification.

Microarray analysis

Microarray analysis was undertaken to resolve the anomalies
found with proteomic analysis and qPCR and to investigate wider
changes in gene expression. Raw data have been deposited in the
National Center for Biotechnology Information Gene Expression
Omnibus and are accessible through GEO series accession number
GSE31592. Genes were sorted into The Institute for Genomic Re-
search (TIGR) categories using the information available in the
J. Craig Ventnor Institute Comprehensive Microbial Resource. Only
changes relevant to our study are discussed in detail here.

Table 1. Primers used in this study

Target gene Direction Primer sequence (5′ – 3′)

yqiL forward GACGTGCCAGCCTATGATTT
yqiL reverse ATTCGTGCTGGATTTTGTCC
pykA forward TGCAGCAAGTTTCGTACGTC
pykA reverse GGGATTTCAACACCCATGTC
clpC forward GTTGGTGCTCCTCCAGGATA
clpC reverse ACTTGAACCACCGAATCCAG
argF forward CCAAGCAGAATTCGAAGGA
argF reverse GGATGCGCACCTAAATCAAT
adh forward GTTGCCGTTGGTTTACCTGT
adh reverse TTCAGCAGCAAATTCAAACG
menB forward CTGGGGAAGGTGATTTAGCA
menB reverse ACCGCCACCTACAGCATAAC
pur7 forward GAAGCGCATTTTCTCAACAA
pur7 reverse CCCTTACCTGCCATTGTGTC
pdp forward GCAATGCGCTTGAGTTACAA
pdp reverse TATTGAGCTTGTGGCAAACG
fabG forward CCGGGACAAGCAAACTATGT
fabG reverse CCAAAACGTGCTAACGGAAT
glmM forward AGGTGTCGCAAACCAAGAAC
glmM reverse TCGCGACCTACAAGTACACG
argF forward GCCCATTCGAAGAAAACGTA
argF reverse ACCTAATGCTGGCGCTAATG
scdA forward CGAAAGCAGCGGATATTTTT
scdA reverse GCGAACCTGGTGTATTCGTT

Manuka honey and virulence in MRSA
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Not all of the genes investigated by qPCR were among the 463
most highly differentially expressed genes identified by microarray
analysis. This could be due in part to the fact the microarray chip
was constructed from fourstrainsof S. aureus—N315(National Insti-
tute of Technology and Evaluation, Japan), Mu50 (National Institute
of Technology and Evaluation, Japan), NCTC 8325 (University of
Oklahoma, lab strain), and COL (TIGR)—which differed from the

epidemic strain of MRSA that is prominent in the UK and that was
used in this study. A specific chip for our test organism was not
available. At the level of significance chosen here (P¼0.001), analysis
indicated that 290 genes had increased levels of transcription and
173 genes showed decreased levels of transcription following expos-
ureofMRSAtomanukahoneycomparedwithuntreatedMRSA.Ofthe
11 proteins/genes that had been investigated by proteomics and

Reset Reset

Spot No: 488
Position: 642, 436
Pick pos.:

Spot No: 488
Position: 642, 436
Pick pos.:

Volume:         5.957e+006
Peak Height: 38456
Area:              444

Volume:         8.824e+005
Peak Height: 5636
Area:              444

Figure 1. 2D-DIGE gel showing spots of interest with proteins isolated from untreated MRSA (Cy5; left) and proteins from honey-treated MRSA (Cy3; right).
The expression of protein spot 488 (grey circle) was analysed using Decyder 2D version 6.5 software (GE Healthcare, Little Chalfont, UK) and was
down-regulated 2-fold. It was picked and identified as Clp protease using the Applied Biosystems 4800 MALDI TOF/TOF Analyzer (Foster City, CA, USA).

Table 2. Proteins (determined by MS) in MRSA that increased 2-fold or more following exposure to manuka honey

Accession
number

Protein
name/function Best MS sequence

Mascot
score Second best MS sequence

Mascot
score

Third best MS
sequence

Mascot
score

C2GBD3_STAAU possible
transaldolase

EITEAVTEGVPTYVSVFAGR 1.20E-10 EIPDASISFEVFADDLETMEK 4.70E-11 LNVEVFADGADIEEMK 5.20E-07

KYPK_STAAR
551

pyruvate kinase STDALLNNAVATAVETGR 1.9E-013 ENVDFIAASFVR 1.5E-011 IHLVGDEIANGQGIGR 1.8E-006

KYPK_STAAR pyruvate kinase KSTDALLNNAVATAVETGR 1.7E-018 STDALLNNAVATAVETGR 7.3E-015 ENVDFIAASFVR 5.8E-011
KYPK_STAAR pyruvate kinase KSTDALLNNAVATAVETGR 1.5E-015 STDALLNNAVATAVETGR 5.7E-013 IHLVGDEIANGQGIGR 7.6E-009
MENB_STAAR naphthoate

synthase
VGSFDAGYGSGYLAR 3.30E-10 GHGGYVGEDQIPR 9.60E-08
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Table 3. Proteins (determined by MS) in MRSA that were found to be decreased following exposure to manuka honey

Accession
number Protein name/function Best MS sequence

Mascot
score

Second best MS
sequence

Mascot
score Third best MS sequence

Mascot
score

ALF2_STAAR fructose-bisphosphate aldolase DVLNNDKEVYDPR 1.20E-07
ADH_STAAR alcohol dehydrogenase NADFGDVTGVTLGHEGIGK 4.30E-15 LVLDGIEVVGSLVGTR 7.70E-14 KLEEINDIFEEMENGTITGR 7.20E-12
FABG_STAAR 3-oxoacyl reductase EVVSQFGSLDVLVNNAGITR 6.40E-15 GVDSFAIQANVADADEVK 0.00033 FGQDTDIANTVAFLASDK 0.00027
PUR7_STAAR phosphoribosylamino-imidazole-succinocarboxamide

synthase
TETGQILLADEISPDTCR 5.70E-13 NNTGSLIETYQIFLNK 3.60E-07 ATNANFDKDVYR 3.00E-07

PDP_STAAR pyrimidine-nucleoside phosphorylase VEEGESLLTIHSNR 1.10E-06 LPQAQYQIEYK 8.90E-05
OTCC_STAAR ornithine carbamoyltransferase ENFGYLEGINLTYVGDGR 6.40E-18 AEFEGLIDFAITLK 1.90E-09 AAFTVASIDLGAHPEFLGK 7.70E-09
GLMM_STAAR phosphoglucosamine mutase VVETESDFGLAFDGDGDR 3.70E-12
GLMM_STAAR phosphoglucosamine mutase VVETESDFGLAFDGDGDR 6.10E-07
SCDA_STAAR cell wall-related protein LNEVEQTNTPGSLNPK 5.80E-08 NVDLNELLQR 6.20E-07 VHGPNHPYLVELK 1.00E-06
CLPC_STAAR

488
Clp protease DAAVHAQEFENAANLR 6.9E-009 FAGFGGSSDGQDYETIR 0.00011

Table 4. Changes in gene expression in MRSA following treatment with bactericidal concentrations as determined by qPCR

Gene Gene product Function Fold change

pykA pyruvate kinase glycolysis +6
fbaA fructose-bisphosphate aldolase glycolysis no change
adh alcohol dehydrogenase fermentation 22
menB naphthoate synthetase anaerobic electron transport +5
fabG 3-oxoacyl reductase fatty acid biosynthesis +4
purC phosphoribosylaminoimidazole-succinocarboxamide synthase purine biosynthesis 22
pdp pyrimidine-nucleoside phosphorylase pyrimidine biosynthesis no change
argF ornithine carbamoyltransferase virulence 22
glmM phosphoglucosamine mutase cell wall +4
scdA cell wall related protein cell wall +2
clpC Clp protease stress +16

Fold changes are shown in relation to untreated MRSA cells, and genes in bold show the same trend as proteins identified by 2D-DIGE.
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qPCR, down-regulation of alcohol dehydrogenase (adh) and
up-regulation of pyruvate kinase (pykA) was confirmed.

Globally, genes involved in the biosynthesis of amino acids, pro-
teins, co-factors, prosthetic groups and carriers, purines, pyrimi-
dines, nucleosides and nucleotides and cell envelope, as well as
transport and binding proteins, were among the 290 genes
found to have increased levels of expression in MRSA, while genes
with decreased levels of expression mainly included those involved
in energy metabolism and cellular processes (Figure 2). This sug-
gests that growth and division was compromised in MRSA by
manuka honey.

By mapping the affected genes to central pathways, a number
of genes concerned with carbohydrate metabolism were found to
be altered in MRSA by exposure to manuka honey (Figure 3). Essen-
tially, glycolysis was promoted by increased transcription of pfkA,
tpi, gapA, pgk, pgm and pykA (≥2-fold) and gluconeogenesis was
restricted by a decreased transcription of gapB (33-fold). This
effect was likely to be due to an increased expression of gapR
(6.8-fold), which has been shown to regulate gapA and gapB recip-
rocally in response to glucose concentration, with glucose inducing
gapA and repressing gapB.23 Since glucose accounts for approxi-
mately 33% of honey by weight, this effect was not unexpected.
We have previously shown, however, that the antibacterial effect
of manuka honey is not attributable solely to its sugar content.3

All of the tricarboxylic acid (TCA) cycle genes reported by micro-
arrayassaywere foundtoberepressed,but those involved in fermen-
tation showed varying patterns of expression (Figure 3). Essentially,

manuka honey seemed to promote glycolysis and fermentation at
the expense of oxidative metabolism. This would lead to the
accumulation of acidic end-products and reduce the supply of ATP
available to drive active transport and biosynthetic pathways.

The most notable changes in gene expression provided by the
microarray data indicated that manuka honey had a marked
effect on the expression of important MRSA virulence determi-
nants, such as haemolysins, leucocidin, lipase and fibronectin-
binding protein (Table 5). The largest change was seen in the
gene coding for enterotoxin type C3 (sec3), which was down-
regulated by a factor of 109. Another important observation was
that three genes within the accessory gene regulator (agrB, agrC
and agrD) exhibited decreased levels of expression, as did the
genes within the two component histidine kinase regulators
(saeS and saeR). Hence genes within two global regulatory
operons (agrABCD and saeSR) were found to be repressed in
MRSA exposed to manuka honey. Both regulate not only virulence,
but also biofilm formation in staphylococci.24

The elevated expression of sarV (Table 5), another regulator
gene,25 suggested that manuka honey might increase levels of
autolysins and proteases in MRSA. Three genes that code for pro-
teins involved in cell wall functions and division (ftsL, cidB and
scpA) were found in transcriptome data to have decreased levels
of expression, while lrgB, which functions as an antiholin in redu-
cing the extracellular activity of murein hydrolase,26 was increased
22-fold. Some markers of the stress response were also changed
(Table 5).

–60

–40

–20 0 20

Number of genes

amino acid biosynthesis

biosynthesis of co-factors, prosthetic groups and carriers

cell envelope

cellular processes

central intermediate metabolism

DNA metabolism

energy metabolism

fatty acid and phospholipid metabolism

hypothetical proteins

mobile and extrachromosomal elements

protein fate

protein synthesis

purines, pyrimidines, nucleosides and nucleotides

regulatory functions

signal transduction

transcription

transport and binding proteins

unclassified

unknown functions

40 60 80

100

Figure 2. Changes in gene transcription (microarray data) classified by main functions. Genes with altered levels of transcription afterexposure of MRSA to
10% (w/v) manuka honey for 4 h at 378C (compared with untreated cells) were divided into categories based on main functions according to the J. Craig
Ventor Institute Comprehensive Microbial Resource.
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Discussion
Investigations into the impact of manuka honey on transcription in
E. coli5 and on protein expression in S. aureus15 have demonstrated
multiple effects on bacterial function. The differential expression of
the proteins and genes identified in this study largely differed from
those previously reported15 and may perhaps reflect the different
strains, exposure times and honey concentrations employed in
each study. Here, a bactericidal concentration of manuka honey
was used [10% (w/v)], which was approximately twice the MIC

and at least eight times lower than that normally used in the
topical treatment of wounds. Data generated indicate multiple
effects that impact on the ability of MRSA to grow and divide, as
well as on its pathogenicity.

Virulence factors

The role of virulence determinants of S. aureus in human disease is
well established.24 Virulence genotyping of strains of S. aureus iso-
lated from diabetic foot ulcers showed that sec was one of the
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genes significantly more frequently associated with strains iso-
lated from infected ulcers compared with non-infected ones.27 Re-
ducing the transcription of sec in wounds by applying manuka
honey can, therefore, be expected to confer a clinical benefit, but
this effect will have to be investigated in vivo.

Reduced expression of the enterotoxin gene in MRSA in the pres-
ence of honey has considerable relevance for the food industry.
Honey has been used as a food preservative for many years on
the premise that it prevents microbial growth, but it may have an
additional benefit in reducing staphylococcal pathogenicity, with
the risk of staphylococcal food poisoning possibly being decreased
by incorporating honey into perishable foodstuffs. Further investi-
gation is needed to determine whether the repression of the en-
terotoxin gene is limited to manuka honey, or whether a wider
variety of honeys produced for human consumption have a
similar effect.

Many cell surface and extracellular proteins that contribute to
virulence have been identified in S. aureus (Table 6); the expression
of these genes is usually controlled by global virulence regulators
including the accessory gene regulator (agrABCD) and a staphylo-
coccal accessory regulator (sarA).28,29 In this study, a decreased
transcription of three genes within the agr operon (Table 5) was
found in treated MRSA. The agr locus (Figure 4) is a quorum-sensing
gene cluster containing five genes (agrB, agrD, agrC, agrA and
hla),30 four of which facilitate the production and detection of an
autoinducing peptide (AIP) to regulate the expression of genes
coding for virulence factors.31,32 Although certain honeys have

been shown to inhibit quorum sensing in Gram-negative
bacteria,33 – 35 this is the first indication that manuka honey inhibits
quorum sensing in Gram-positive bacteria. Thus, the repression of
some of the regulatory genes within the agr cluster is likely to
account for the decreased expression of virulence factors under
their control.

Biofilm genes

Manuka honey has been demonstrated to prevent the formation of
biofilms and to disrupt established staphylococcal biofilms in
vitro,36,37 although the underlying mechanism has been unknown.
Alpha-haemolysin (hla), a protein that elicits host cell lysis by dis-
rupting host cell membranes, was found to be down-regulated
27.5-fold by manuka honey (Table 5). Mutants of S. aureus defective
in hla have been shown to be unable to form biofilms due to a re-
quirement for cell–cell interaction mediated by this toxin.38 Al-
though agr has been implicated in the regulation of hla, another
regulator (sae) has also been suggested.39 This global regulator of
virulence in S. aureus is the two-component saeSR system, which
is thought to be activated by agr and is essential for the expression
of staphylococcal adhesins.40 Here, decreased expression of the his-
tidine kinase sensor (saeS) and regulator (saeR) genes in manuka
honey-treated cells (Table 5) might explain this observation since
mutation of saeRS has been shown to increase protease activity
and restrict biofilm formation.41 The adhesion of bacteria to host
cells, wound beds or indwelling medical devices is an important

Table 5. Genes of potential clinical significance in MRSA identified by microarray analysis following treatment with and without 10% (w/v) manuka
honey

Function Gene Gene product Fold change

Virulence sec3 enterotoxin type C3 2109
fnb fibronectin binding protein 254.5
hlgA gamma haemolysin component A 254
lip lipase 244.4
hla alpha-haemolysin 227.5
SA1813 leucocidin protein 223
sspA serine protease 23.8
hlgB gamma haemolysin component B 22.7
hlgC gamma haemolysin component C 22.3

Virulence regulators sarV HTH type regulator +2
agrB accessory gene regulatory operon: membrane-associated protein 25
agrC accessory gene regulatory operon: membrane-associated autoinducer peptide sensor 22.6
agrD accessory gene regulatory operon: pro-autoinducer peptide 22.4
saeS histidine kinase sensor protein 211
saeR response regulator 213

Cell envelope and cell division ftsL cell division protein 22.6
scpA segregation and condensation protein A 22.1
mecR1 methicillin-resistance regulator protein 23
lrgB antiholin +22
cidB holin 21.9

Stress sod superoxide dismutase +1.6
acpD FMN-dependent NADH azoreductase +4
mscL large-conductance mechanosensitive channel +2.5
asp23 alkaline shock protein 23 21.4
SACOL1759 putative universal stress protein 24.4
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prerequisite to both infection and the initiation of biofilm formation,
and interventions that prevent or disrupt biofilms in wounds may
improve wound healing outcomes. The recent demonstration of
an association between wound chronicity and the presence of
biofilm16,42 reinforces the clinical importance of anti-biofilm effects.

Reduced transcription of the gene coding for fibronectin-
binding protein by MRSA after treatment with manuka honey
(Table 5) is likely to impact on the ability of the bacterial cells to
adhere to host fibronectin within a wound and will further reduce
the opportunity to initiate infection and biofilm formation.
Manuka honey has already been shown to attenuate the efficacy
of binding in Streptococcus pyogenes by reducing the expression
of two fibronectin-binding proteins, Sof and Sfbl.6 In the case of
S. aureus, the glycolytic enzyme glyceraldehyde 3-phosphate de-
hydrogenase was also demonstrated to function as a cell wall

transferrin-binding protein and fibronectin-binding protein.43

Microarray data showing decreased expression of fnb and gapB
genes (Table 5) give a strong indication that manuka honey
impairs the efficacy of ligand binding required for adherence that
confers enhanced virulence and biofilm formation in MRSA.

Cell wall functions and cell division

The agr operon has also been linked to the control of b-lactam re-
sistance via the regulation of autolysis;44 hence the reversion of
oxacillin resistance to oxacillin susceptibility owing to a reduced ex-
pression of mecR1 caused by manuka honey45 may have resulted
from a down-regulation of agr. Autolysis is important in bacterial
growth and cell division and is controlled by complex mechanisms.
The increased expression of one pertinent transcriptional regulator
(sarV) was seen (Table 5), which positively regulates the transcrip-
tion of scdA, lrgB, atl, splA and aur.25 Increased levels of ScdA
(Table 3) and scdA were found (Table 4) and the expression of
lrgB was increased 22-fold (Table 5). An increased transcription of
atl was reported in MRSA in response to treatment with manuka
honey, but the gene product (murein hydrolase) exhibited un-
detectable activity in both cell-free and extracellular extracts.45

An inability to degrade peptidoglycan at the cell equator due to a
diminished activity of murein hydrolase helps to explain why
MRSA failed to execute cell division and complete its cell cycle.

Cell wall-related protein (ScdA) is a di-iron protein involved in the
repair of proteins that result from conditions of oxidative stress and
is also required for cell division.46 Changes in the expression of scdA
affect peptidoglycan cross-linking, and cells with depleted levels of
ScdA have been reported to form large aggregated clumps of cells
with aberrant septum placement. The diminished rate of autolysis
was attributed to structural changes in peptidoglycan rather than
altered murein hydrolase activity.46 Transcription of sarV in
S. aureus has been shown to be repressed by sarA and mgrA25

and sarA is normally repressed by agrA. Altered levels of agr A
were not discovered in this study, yet three of the genes of the
agr locus exhibited decreased levels of expression (Table 5). If
agrA had been repressed too, sarV would have been derepressed
and transcription of the regulator gene would have been allowed.
Increased levels of expression of sarV, scdA and lrgB (Table 5)
support this hypothesis.

Bacterial growth and division is intimately linked to the con-
trolled synthesis and cleavage of peptidoglycan in the cell wall by
autolysins (or murein hydrolases). The cidABC operon works in con-
junction with the lrgAB operon to regulate murein hydrolase, as
well as antibiotic tolerance.26,47 The export of murein hydrolases
is regulated by the cidABC operon, which promotes murein hydro-
lase activity and increases sensitivity to penicillin, while the lrgAB
operon decreases murein hydrolases activity and penicillin sensi-
tivity.26,47 An increased transcription of lrgB (22-fold) and a
decreased transcription of cidB (1.9) (Table 5) were observed in
this study. Since the products of the cidABC operon act as holins
to facilitate the export of murein hydrolase, and the products of
the lrgAB operon act as antiholins to restrict export, the deduction
that manuka honey interferes with the cell cycle45 is strengthened.
Further evidence of an impact on cell division was provided by
the diminished transcription of two other genes whose products
are involved in cell division: scpA (for segregation) and ftsL
(in septum formation) (Table 5).

Table 6. S. aureus virulence factors controlled by the global regulators
agr, sarA, sarE and sae

Virulence factors (gene) Virulence factors (gene)

Toxins Surface proteins
alpha haemolysin (hla) bone sialoprotein-binding protein
beta haemolysin (hlb) clumping factor A (clfA)
delta haemolysin (hld) clumping factor B (clfB)
gamma haemolysin (hlgA-C) collagen-binding protein (can)

enterotoxin A (sea) extracellular fibrinogen
enterotoxin B (seb) binding protein (efb/fib)
enterotoxin C (sec3) fibronectin-binding protein A

(fnbA)
enterotoxin E-I (entE-I) fibronectin-binding protein B

(fnbB)
exfoliative toxin A (etaA) lactoferrin-binding protein
exfoliative toxin B (etaB) laminin-binding protein
leucocidin P-V (lukS/F) lectin-like protein
toxic shock syndrome toxin-1
(tst)

MHC-II analogous protein (map)

Enzymes plasminogen-binding protein
protein A (spa)

alkaline/phosphatase Sdr A-D (sdrA, B, C, D)
beta lactamase (blaZ) thrombospondin-binding protein
coagulase (coa) vitronectin-binding protein
cysteine protease (sspB)
fatty acid modifying enzyme
(FAME)
glycerol ester hydrolase (geh)
hyaluronate lyase (hysA)
lipase/butyrylesterase (lip)
metalloprotease/aureolysin
(aur)
thermonuclease (nuc)
PI-phospholipase C (plc)
staphopain/proteasell (scp)
staphylokinase (sak)
V8 serine protease (sspA)

Those factors in bold were found to be down-regulated by treatment with
honey in this study.

Manuka honey and virulence in MRSA

611

JAC

Downloaded from https://academic.oup.com/jac/article-abstract/69/3/603/786564
by Swansea University user
on 04 December 2017



The transcription of cidABC and lrgAB has been shown to be
influenced by the metabolism of glucose when fermentation end-
products such as acetic acid and lactate accumulate and acidic
stress increases.48 In this study, increased glycolysis together
with a reduced expression of pflB and a reduced oxidation of
acetyl CoA by the TCA cycle might be expected to induce such con-
ditions.

Phosphoglucosamine mutase (GlmM) demonstrated decreased
protein expression (Table 3) and increased gene expression
(Table 4). GlmM converts glucosamine 6-phosphate into glucosa-
mine 1-phosphate, which is an essential precursorof peptidoglycan,
lipopolysaccharide and teichoic acids.49 Hence perturbations in this
enzyme will affect the cell wall composition, reducing both cell sta-
bility and resistance to antibiotics, and inhibition has been linked to
dramatic morphological changes.50

Stress

Exposure of MRSA to manuka honey has already been shown to
reduce levels of universal stress protein A.14 Here, further evidence
of stress was found, with an up-regulation of sod, acpD and mscL
and a down-regulation of asp23 and a putative stress protein
(Table 5). ATP-dependent ClpC showed reduced levels by proteo-
mics, but the equivalent gene (clpC) was found to be up-regulated
by qPCR. This might have been brought about by altered post-
transcriptional events that may have affected its migration
pattern during 2D-DIGE, perhaps causing the dissociation of the
two parts of the enzyme. This protease complex comprises an
ATPase specificity factor and a proteolytic domain51 and has
been demonstrated to play a role in bacterial adaptation to mul-
tiple stresses by the degradation of accumulated misfolded
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proteins. In S. aureus, clpC has been shown to regulate the TCA
cycle, which is required for metabolism and growth in recovery
from the stationary phase and cell death.52 Within S. aureus, it is
also thought to be essential for virulence, long-term survival and
intracellular replication; mutants lacking clp showed attenuated
virulence in mouse models.53

Summary

In this study, we compared patterns of protein expression in MRSA
cells treated with and without manuka honey, examined the ex-
pression of pertinent genes by qPCR and investigated the whole-
genome response by microarray analysis. In order to understand
the complex effects of manuka honey on MRSA, changes in gene
expression and cellular processes were mapped (Figure 4).

Essentially, the glucose in honey promoted glycolysis via gapA
to generate pyruvate, acetate and acetyl phosphate. An accumu-
lation of acetate is capable of activating the LytSR protein kinase
system to induce the transcription of lrgAB, and acetyl phosphate
has been postulated to activate lytR alone to promote lrgAB tran-
scription.54 Only an up-regulation of lrgB was detected here, but
since both lrgA and lrgB are regulated by LytSR,55 it is reasonable
to assume that antiholin was induced and would have limited
the export of murein hydrolases. The down-regulation of cidB indi-
cated that the cidABC operon was not transcribed and that holin
was in limited supply for the export of murein hydrolase. A repres-
sion of quorum sensing was deduced by the reduced expression of
three of the genes in the agr operon and this would have resulted in
diminished virulence in MRSA and a failure to initiate biofilm forma-
tion. Knock-on effects were a repression of saeRS, with a repression
of further virulence genes and a derepression of sarV, which pro-
moted the induction of lrgB, scdA and atl. The products of these
three genes can be assumed to also limit cell wall functions and
cell division (Figure 4), and this supports previous deductions that
manuka honey interrupts cell division in MRSA.13

The differential expression of proteins and genes observed in
this study provided a valuable insight into the mechanisms by
which growth and pathogenicity in MRSA were inhibited and con-
firms the multifactorial effects of manuka honey on bacterial
cells. Although the precise mode of inhibition of quorum sensing
was not found, this study provides many leads for further investiga-
tion. Collectively, the observations made here support the hypoth-
esis that honey reduces the fitness of MRSA to initiate infections or
biofilms in vitro; whether this will be elicited in wounds colonized by
MRSA in the human host must be explored. We have addressed the
major responses observed, but it is important to remember that
one cannot expect to see a complete correlation between gene ex-
pression and the corresponding activity level of the gene product.
In addition, genes showing the highest fold change might not ne-
cessarily coincide with the most important bacterial physiological
response. There remains a further opportunity to explain how
manuka honey affects other genes in MRSA.
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chestnut honey of N-acetyl-l-homoserine lactones and biofilm formation
in Erwinia carotovora, Yersinia enterocolitica, and Aeromonas hydrophila. J
Agric Food Chem 2009; 57: 11186–93.

35 Wang R, Starkey M, Hazan R et al. Honey’s ability to counter bacterial
infections arises from both bactericidal compounds and QS inhibition.
Front Microbiol 2012; 3: 144.

36 Alandejani T, Marsan JG, Ferris W et al. Effectiveness of honey
on Staphylococccus aureus and Pseudomonas aeruginosa biofilms.
Otolaryngol Head Neck Surg 2009; 139: 107–11.

37 Merckoll P, Jonassen TØ, Vad ME et al. Bacteria, biofilm and honey: a
study of the effects of honey on ‘planktonic’ and biofilm-embedded
chronic wound bacteria. Scand J Infect Dis 2009; 41: 341–7.

38 Caiazza NC, O’Toole GA. Alpha-toxin is required for biofilm formation by
Staphylococcus aureus. J Bacteriol 2003; 185: 3214–7.

39 Goekre C, Fluckiger U, Steinhuber A et al. Impact of the regulatory loci
agr, sarA and sae of Staphylococcus aureus on the induction of
alpha-toxin during device-related infections resolved by quantitative
transcript analysis. Mol Microbiol 2001; 40: 1439–47.

40 Harraghy N, Kormanec J, Wolz C et al. sae is essential for expression of
the staphylococcal adhesions Eap and Emp. Microbiology 2005; 151:
1789–800.

41 Johnson M, Cockayne A, Morrissey JA. Iron-regulated biofilm formation
in Staphylococcus aureus Newman requires ica and the secreted protein
Emp. Infect Immun 2008; 76: 1756–65.

42 Bjarnsholt T, Kirketerp-Møller K, Jensen PØ et al. Why chronic wounds
will not heal: a novel hypothesis. Wound Rep Regen 2008; 16: 2–10.

43 Modun B, Williams P. The staphylococcal transferrin-binding protein is a
cell wall glyceraldehyde-3-phosphate dehydrogenase. Infect Immun 1999;
67: 1086–92.

44 Piriz DS, Kayser FH, Berger-Bachi B. Impact of sar and agr on methicillin
resistance in Staphylococcus aureus. FEMS Microbiol Lett 1996; 141:
255–60.

45 Jenkins RE, Cooper RA. Synergy between oxacillin and manuka honey
sensitizes methicillin-resistant Staphylococcus aureus to oxacillin. J
Antimicrob Chemother 2012; 67: 1405–7.

46 Brunskill EW, de Jonge BLM, Bayles KW. The Staphylococcus aureus scdA
gene: a novel locus that affects cell division and morphogenesis.
Microbiology 1997; 143: 2877–82.

47 Rice KC, Firek BA, Nelson JB et al. The Staphylococcal aureus cidAB
operon: evaluation of its role in regulation of murein hydrolase activity
and penicillin tolerance. J Bacteriol 2003; 185: 2635–43.

48 Rice KC, Nelson JB, Patton TG et al. Acetic acid induces expression of the
Staphylococcal aureus cidABC and lrgAB murein hydrolase regulator
operons. J Bacteriol 2005; 187: 813–21.

Jenkins et al.

614
Downloaded from https://academic.oup.com/jac/article-abstract/69/3/603/786564
by Swansea University user
on 04 December 2017



49 Cordwell SJ, Larsen MR, Cole RT et al. Comparative proteomics of
Staphylococcus aureus and the response of methicillin-resistant and
methicillin-sensitive strains to Triton X-100. Microbiology 2002; 148:
2765–81.

50 Jolly L, Pompeo F, van Heijenoort J et al. Autophosphorylation of
phosphoglucosamine mutase from Escherichia coli. J Bacteriol 2000; 182:
1280–5.

51 Michel A, Agerer F, Hauck CR et al. Global regulatory impact of ClpP
protease of Staphylococcus aureus on regulons involved in virulence,
oxidative stress response, autolysis, and DNA repair. J Bacteriol 2006; 188:
5783–96.

52 Chatterjee IP, Becker M, Grundmeier M et al. Staphylococcus aureus ClpC
is required for stress resistance, aconitase activity, growth recovery, and
death. J Bacteriol 2005; 187: 4488–96.

53 Frees D, Chastanet A, Qazi S et al. Clp ATPases are required for stress
tolerance, intracellular replication and biofilm formation in Staphylococcus
aureus. Mol Microbiol 2004; 54: 1445–62.

54 Sadykov MR, Bayles KW. The control of death and lysis in staphylococcal
biofilms: a coordination of physiological signals. Curr Opin Microbiol 2012;
15: 211–5.

55 Brunskill EW, Bayles KW. Identification of LytSR-regulated genes from
Staphylococcus aureus. J Bacteriol 1996; 178: 5810–2.

Manuka honey and virulence in MRSA

615

JAC

Downloaded from https://academic.oup.com/jac/article-abstract/69/3/603/786564
by Swansea University user
on 04 December 2017


