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Data-driven dynamics simulation for railway vehicles 

Abstract: Sophisticated finite element (FE) model are usually critical for the research 

and simulation of vehicle dynamics, especially for train crash cases. However, factors 

such as the complexity of the meshes, the distortion problems involved in a large de-

formation, etc. would undermine the calculation efficiency of a FE model. Its alterna-

tive, a multi-body (MB) model, shows a satisfying time efficiency though, it only 

presents a limited simulation accuracy when involving highly nonlinear characteris-

tics in a dynamic process. To maintain the advantages of both the two methods, this 

paper proposes a data-driven simulation framework to model the dynamic behaviours 

of railway vehicles. In this framework, by extracting the training data of FE simula-

tion using machine learning techniques, the nonlinear characteristics of structures are 

formulated into a surrogate element to replace the original mechanical elements, then 

the dynamics simulation is accomplished by co-simulation via embedding the surro-

gate element into the MB model. This framework consists of a series of techniques 

including the data collection and feature extraction, the training data sampling, the 

surrogate element building, and the model evaluation and selection. To verify the ac-

cessibility of this framework, two case studies of a vertical and a longitudinal vehicle 

dynamics simulation are carried out based on Simulink/Simpack co-simulation. By 

comparing two data-driven models (the Legendre polynomial regression (LPR) and 

the Kriging), the result shows that using the LPR model in building surrogate elements 

can largely cut down the simulation time without much compromising of the accuracy. 

Keywords: Dynamics simulation; Data-driven modelling; Machine learning; Surrogate 

element; Co-simulation 

1. Introduction 

In vehicle dynamics studies, the most reliable approach in investigating the dy-

namics behaviours of railway vehicles is to take a full-size test of the whole train. In 

the SAFETRAIN project supported by the European Commission, both dynamic and 

static tests were carried out in investigating the structural crashworthiness of vehicle 

ends in order to improve the passive safety [1]. In 2003, to assess the crashworthiness 

performance of passenger trains, the U.S. Department Of Transportation conducted 

two full-scale collision tests with the conventional and the CEM (Crash Energy Man-



 

 

agement) passenger vehicles crashing with a wall, and analysed the motion details of 

the passenger cars [2]. In 2006, to improve the occupant safety, a further full-scale 

train-to-train crash test was carried out on a passenger train equipped with the CEM 

equipment and the conventional crush zone designs [3, 4].  

Due to the high economic cost of full-scale tests, scaled tests are adopted. For in-

stance, the application of scaled roller rigs for railway vehicle bogies has got a wide-

spread development in studying the dynamics since an early age, and now it still 

shows prospects in designing new devices and technologies [5-7]. Li et al. conducted 

collision tests using several simplified vehicle models to investigate the energy ab-

sorption and dissipation pattern of the honeycomb-based structures in train-to-train 

crash scenarios [8]. To decrease the wheel-rail wear for vehicle bogies, Kim et al. de-

signed an active steering control system and tested it with a 1/5 scaled vehicle on a 

curved tract to assess the performance of this system [9]. A scaled test can save cost 

though, it still demands for enormous human labour and substantial cost to design and 

make every subtle structures. 

With the increasing progress of Computer Aided Engineering, the simulation 

technology has largely helped to cut down the research expenditure and the labour 

cost in vehicle dynamics study. Among the traditional vehicle dynamics simulation 

methods, the finite element (FE) method and the multi-body (MB) method are two 

powerful simulation tools, where the FE method related techniques mainly focus on 

investigating the stress and strain details of the whole train or its substructures during 

a dynamic process. For example, in the occupant safety and protection study, the FE 

method was usually used in the crashworthiness performance assessment for passen-

ger vehicles [10-13]. It also took up a wide application field in the vehicle collision 

research and the post-derailment behaviour analysis, especially for the collision lead-

ed derailment investigations [7, 14]. Besides, in the wheel-rail contact research, re-

searchers generally choose FE method to simulate the highly nonlinear dynamic con-

tact in the running stage [15].  

Taking the complexity of the whole train into consideration, although using the 

FE method can build a detailed model for each substructure and reach a high accuracy 

[16-18], it is inevitable that the FE method demands for a large amount of time, espe-

cially for those involved in an iteration and optimisation process for designing train’s 



 

 

structures. Moreover, when it comes to the highly nonlinear dynamic problems (e.g. 

large deformation in collision), a rigorous FE analysis relies on good mesh quality and 

a precise control in hourglass energy [19, 20]. 

An alternative for the FE method is the MB method. As a simplified simulation 

tool, it has been widely applied in solving dynamics problems involving multiple ve-

hicles, especially in the train’s running performance analysis on different tracks 

[21-23], the security, stability and comfort assessments for passenger vehicles [24], 

and the dynamic interaction simulation between vehicles or substructures during the 

train crash process [25-27]. Because of the simplification, the MB method runs fast, 

but when coming to representing highly nonlinear patterns in the dynamics, the MB 

method is still time-consuming and only offers a limited accuracy [28].  

To balance an acceptable accuracy and a satisfying efficiency, the data-driven 

simulation method as a reverse engineering technology has got an increasing attention 

recently in vehicle engineering. Dias et al. took the test data and the FE simulation 

results during a collision between end structures as the training data. With these data, 

the step-wise function was used to fit a force-displacement curve during the defor-

mation period of an end structure, which was applied in the crashworthiness design 

[29, 30]. Taheri et al. introduced the machine learning techniques to the vehicle dy-

namics, where MB simulation data were applied to train the Kriging model in build-

ing a surrogate element which was used to replace all the force elements in the second 

suspension system of a vehicle’s MB model [31]. In the aspect of the structure crash-

worthiness design, Forsberg et al. and Xie et al. used the data from FE simulation to 

train the Kriging model and the polynomial response surfaces, which were used as the 

surrogate models to avoid iterations with using the FE method. Then optimisation al-

gorithms were applied in the surrogate models to acquire better parameters in struc-

ture design such as for energy absorbing tubes [32-34] and inner parts of vehicles 

[35].  

In this paper, a framework for the data-driven simulation was presented. It con-

sists of a series of essential techniques in constructing a surrogate element including 

the data collection and feature extraction, the training data sampling, the surrogate 

element building, and the model evaluation and selection. In the end of this paper, two 

case studies were carried out to assess the performance of this framework. The struc-



 

 

ture of this paper is shown as follows: the main process and the methods involved in 

the framework are explained in section 2; section 3 is the theory part about all the 

methods used in the data-driven simulation framework; two cases studies conducted 

for assessing the performance of this framework are presented in section 4, and the 

evaluation for using the two data-driven models (the Legendre polynomial regression 

(LPR) and the Kriging) is elaborated in section 4.2, then the summary about the con-

tributions of this paper is put in section 5. 

2. Overview 

To give an overview of this paper, the structure and the procedures of the da-

ta-driven simulation framework are presented in Figure 1 which illustrates the main 

functions of each technique used in the data-driven simulation. The framework of this 

simulation process is divided into four parts: 

 Data collection and feature extraction 

The first task to build a data-driven surrogate element is deciding what kind of 

dynamics pattern the data-driven model needs to learn. The data which reflects the 

mechanical characteristics of a structure need to be collected first (e.g. the 

post-processing data from FE models or test data) and extracted into the training data 

that our model could learn from to build the surrogate element. A specific feature ex-

traction is designed to fit a particular simulation task, where a further discussion will 

follow in this paper. 

 Training data sampling 

In general engineering practices, it is common that there are a large amount of 

training data from a simulation or a test. Some of these could be redundant, repeated 

or have a same pattern and high relativity with others, and such redundancy could 

bring a low computation efficiency or a singularity problem in further computation. 

To improve the overall performance of our method, a sampling technique is used to 

filter the training data into the training samples which can largely represent the origi-

nal data and is processed to build a surrogate element. 
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Figure 1. The data-driven dynamics simulation framework 

 Surrogate element building 

After acquiring the training samples, a data-driven maps the implicit relationship 

from the inputs to the outputs accordingly. To refine the data-driven model, the pa-

rameters in it are iterated by an optimisation algorithm to minimise the mapping er-

rors between the outputs from the training samples and the predicted ones. Once the 

errors satisfy a threshold, an optimised data-driven model is built and can be used as a 

surrogate element that represents the dynamics characteristics of some force ele-

ment(s). 

 Data-driven simulation 

Using the surrogate element to replace some specific element(s) which acts as the 

counterpart in the FE model, and keeping the other specifications (e.g. initial condi-



 

 

tions, structure parameters and constraints) in the same, then the data-driven simula-

tion is configured. 

Each simulation task customaries its specific feature extraction, and in this paper 

we respectively made a discussion about how to design feasible data-driven models in 

simulating the vertical dynamics of a vehicle’s suspension system in running and the 

longitudinal dynamics of a train set (with a lead car and a passenger car) in a crash. 

3. Methodology for data-driven simulations 

The details of the techniques contained in Figure 1 are elaborated in this section, 

and we divided it into four parts based on the four main procedures in a data-driven 

simulation. 

3.1. Data collection and feature extraction 

 Feature extraction for vertical dynamics simulations 

For vertical dynamics simulations, we described our model in Figure 2. The pri-

mary function of a surrogate element is to replace all the force elements involved in 

the second suspension system which has highly nonlinear characteristics and is hard 

to be modelled or time-consuming to be simulated. 
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Figure 2. A surrogate element in vertical dynamics simulations 

In Figure 2, 𝑚1 and 𝑚2 respectively represent the mass value of the bogie and 

the body of a vehicle; 𝑥1 and 𝑥2 are the displacements of the bogie and the vehicle 

body taking the rail as the reference system; 𝑘1, 𝑐1,𝑘2, 𝑐2 stand for the vertical stiff-

ness coefficients and the vertical damping coefficients of the first and the second sus-

pension systems respectively, where 𝑘2, 𝑐2 are unknown or difficult to determine. 



 

 

𝑓(𝑡) is the random vibration from the track and 𝑣0 is the running speed of this vehi-

cle. The dynamics equations in Figure 2 can be written as 

 �𝑚1�̈�1
𝑚2�̈�2

� = �
𝑓(𝑡) − 𝑘1𝑥1 − 𝑐1�̇�1 − 𝑘2(𝑥1 − 𝑥2) − 𝑐2(�̇�1 − �̇�2)

𝑘2(𝑥1 − 𝑥2) + 𝑐2(�̇�1 − �̇�2) �. (1) 

Since 𝑘2, 𝑐2 are unknown, 𝑥1 and 𝑥2 cannot be solved from the equation sys-

tem. However, from the formula (1), the acceleration value �̈�2 is decided by the 

spring force 𝑘2(𝑥1 − 𝑥2) and the damping force 𝑐2(�̇�1 − �̇�2) which contains the 

information about 𝑘2 and 𝑐2, and that information is the pattern that our data-driven 

model needs to learn to build a surrogate element. In this case, we chose 𝒖 =

(𝑥1 − 𝑥2, �̇�1 − �̇�2)T as the two-dimensional input and the 𝑣 = 𝑚2�̈�2 as the output of 

the training data. Then the goal of the data-driven model is to present the relationship 

𝑣 = F(𝒖) where the information about 𝑘2 and 𝑐2 are expressed implicitly. After 

that, the dynamics formula containing a surrogate element can be rewritten as 

 �𝑚1�̈�1
𝑚2�̈�2

� = �𝑓
(𝑡) − 𝑘1𝑥1 − 𝑐1�̇�1 − F(𝑥1 − 𝑥2, �̇�1 − �̇�2)

F(𝑥1 − 𝑥2, �̇�1 − �̇�2) �. (2) 

 Feature extraction for longitudinal dynamics simulations 

As to longitudinal dynamics simulations, the function of the surrogate elements is 

depicted in Figure 3. Two surrogate elements are embedded in the MB model to re-

place the energy absorbing structures (or deformable structures, e.g. couplers and end 

structures) in the FE model. 
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Figure 3. Surrogate elements in longitudinal dynamics simulations 

Similar to the vertical dynamics case, the motion equations of the two vehicle 

bodies are represented as 



 

 

 �𝑚1�̈�1
𝑚2�̈�2

=
=
−𝑘1𝑥1 − 𝑘2(𝑥1 − 𝑥2) − (𝑚1g ∙ 𝑓𝑐) ∙ I(�̇�1)

𝑘2(𝑥1 − 𝑥2) − (𝑚2g ∙ 𝑓𝑐) ∙ I(�̇�2) , (3) 

where 𝑚1, 𝑥1,𝑚2, 𝑥2 respectively represent the mass value and the longitudinal dis-

placement of the lead car and the passenger car during the crash period. 𝑘1 and 𝑘2 

are the equivalent stiffness value of the energy absorbing structures in the lead car and 

the passenger car. g is the acceleration of gravity and 𝑓𝑐 is the friction coefficient 

between the wheel-rail. I(∙) is the indicator function used to determine the direction 

of the friction force. Since the curves of 𝑘1 and 𝑘2 are highly nonlinear and consist 

of the cyclic loading and unloading stages during the crash, it is hard to figure them 

out. Then we used the data-driven model to extract the information of 𝑘1 and 𝑘2 into 

functions 𝑓1 = G1(𝑥1) and 𝑓2 = G2(𝑥1 − 𝑥2), where 𝑓1 is the interaction force be-

tween the wall and the lead car, and 𝑓2 is the interaction force between the lead car 

and the passenger car, and there are the relationships 𝑓1 ≈ 𝑘1𝑥1 and 𝑓2 ≈ 𝑘2(𝑥1 −

𝑥2). In this case, four data-driven models are needed to learn the loading stage and the 

unloading stage of 𝑘1 and 𝑘2 respectively. 𝑥1 and 𝑓1 are chosen as the input and 

the output of the first training data. 𝑥1 − 𝑥2 and 𝑓2 act as the input and the output of 

the second data. The formula (3) can then be rewritten as 

 �𝑚1�̈�1
𝑚2�̈�2

=
=
−G1(𝑥1) − G2(𝑥1 − 𝑥2) − (𝑚1g ∙ 𝑓𝑐) ∙ I(�̇�1)

G2(𝑥1 − 𝑥2) − (𝑚2g ∙ 𝑓𝑐) ∙ I(�̇�2) . (4) 

After the feature decisions, the training data can be collected from the 

post-processing data of a complex simulation model or a test. In the vertical dynamics, 

the simulation data from a highly nonlinear MB model were used as the data source, 

and in the longitudinal dynamics, we mainly used the post-processing data from a FE 

model. 

3.2. Training data sampling 

Since there could be redundant information among the training data, a data sam-

pling process is recommended. For the reason that a sampling plan has a large effect 

on the accuracy and efficiency of a data-driven model, the sampling plan developed 

by Taheri et al. was introduced to pick the training samples in this paper [31]. The 

idea of this sampling plan is to select the optimal 𝑀  samples 

𝑼 = �𝒖(1),𝒖(2), … ,𝒖(𝑀)�
T

,𝒖(∗) ∈ 𝑿 ⊂ 𝐑D from the training data set 𝑿, such that 𝑼 



 

 

can mostly spatially fill the data set 𝑿, where D is the dimension of 𝒖(∗).  

To test the accessibility of this method, 1600 two-dimensional points were ran-

domly scattered in the space [0,1] × [0,1], and among them we selected the best 36 

samples using the genetic algorithm [36]. The sampling result are shown in Figure 4. 

Through the sampling process, the training inputs 𝑼 = �𝒖(1),𝒖(2), … ,𝒖(𝑀)�
T

 and 

their outputs 𝑽 = �𝑣(1), 𝑣(2), … , 𝑣(𝑀)�
T
 are prepared to train the data-driven model. 
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Figure 4. Selecting the best 36 samples from 1600 points 

3.3. Surrogate element building 

Since the Legendre polynomials are a kind of orthogonal polynomial sequence 

[37] which ensures a stable and efficient solution in solving the regression parameters 

even with a high degree [38, 39], in this section we use the Legendre polynomial re-

gression (LPR) model to map the nonlinearity 𝑣 = F(𝒖) between the input 𝒖 and 

the output 𝑣 of training samples. We denote 𝑢𝑑 as the 𝑑 th dimensional input of 𝒖 

(𝑑 = 1,2, … , D). The output 𝑣 is generally one-dimensional. In section 3.1, there are 

D = 2 in the first case and D = 1 in the second case. In this part, we mainly discuss 

the regression method with D = 2 case and it is also suitable when D = 1. 

Since the relationship 𝑣 = F(𝒖) is the target the LPR model need to learn (or fit) 

from the training samples, we construct the LPR model F�(𝒖) to approximate F(𝒖) 

as the following expression shows 

 𝑣� = F�(𝒖) = ∑ 𝛼𝑖𝑝𝑖(𝑢1)𝑛1
𝑖=0 + ∑ 𝛽𝑗𝑝𝑗(𝑢2)𝑛2

𝑗=0 , 



 

 

 𝑣 = F(𝒖) = 𝑣� + 𝑒, (5) 

where two Legendre polynomial sequences {𝑝𝑖} and �𝑝𝑗� are used, and 𝑣� is the 

prediction value of 𝑣; 𝑒 is the approximation error; 𝑝𝑖,𝑝𝑗 are the elements of the 

two sequences; 𝛼𝑖 ,𝛽𝑗 are the coefficients of these elements, which are determined by 

training; 𝑛1,𝑛2 respectively represent the degree of the two polynomial sequences, 

where 𝑖 = 0,1, …𝑛1, 𝑗 = 0,1 …𝑛2.  

In equation (5), we solve the fitting problem using the decoupled two-variable 

Legendre polynomial regression because the equation in (1) indicates the following 

relationship 

 𝑚2�̈�2 = 𝑘2(𝑥1 − 𝑥2) + 𝑐2(�̇�1 − �̇�2) → 𝑣 = 𝑘2𝑢1 + 𝑐2𝑢2, 

which theoretically means no cross factor between 𝑢1 and 𝑢2 acting on the output 

𝑣. 

After that, 𝑢, 𝑣 in equation (5) are replaced with training samples {𝑼,𝑽} to 

solve the coefficients �𝛼𝑖,𝛽𝑗� (see equation (6) ). 

 �
𝑣(1)

𝑣(2)

⋮
𝑣(𝑀)

� =

⎣
⎢
⎢
⎢
⎡ 𝑝0(𝑢1

(1)) ⋯ 𝑝𝑛1(𝑢1
(1)) 𝑝0(𝑢2

(1)) ⋯ 𝑝𝑛2(𝑢2
(1))

𝑝0(𝑢1
(2)) ⋯ 𝑝𝑛1(𝑢1

(2)) 𝑝0(𝑢2
(2)) ⋯ 𝑝𝑛2(𝑢2

(2))
⋮

𝑝0(𝑢1
(𝑀)) ⋯ 𝑝𝑛1(𝑢1

(𝑀)) 𝑝0(𝑢2
(𝑀)) ⋯ 𝑝𝑛2(𝑢2

(𝑀))⎦
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎡
𝛼0
⋮
𝛼𝑛1
𝛽0
⋮
𝛽𝑛2⎦

⎥
⎥
⎥
⎥
⎤

+ 𝒆. (6) 

Since equation (6) is generally overdetermined, the least square solution of 

�𝛼𝑖,𝛽𝑗� can be acquired by solving the normal equation 

 𝑷𝑇𝑷𝑷 = 𝑷𝑇𝑽, (7) 

where 𝑷 is the coefficient matrix in equation (6) and 𝑷 is the least square solution 

of the coefficients �𝛼0,⋯ ,𝛼𝑛1 ,𝛽0,⋯ ,𝛽𝑛2�
T
 in equation (5). 

Finally, the LPR model F�(𝒖) is constructed to act as a surrogate element in 

equation (2). As for the second case in section 3.1, two one-variable LPR models are 

demanded to build the surrogate elements, which is similar to this process. 



 

 

3.4. Model evaluation and selection 

If there are several data-driven models, it is significant to choose proper test sam-

ples to compare the performance of these models. In machine learning, the cross vali-

dation is an important procedure after building several models, which is a method 

splitting the training data into training samples and test samples in many different 

ways, then using the training samples to train these models and the test samples to 

validate these models, and finally to vote which model or which model parameters are 

the “best” on average [40]. In this paper, since the degree of the Legendre polynomi-

als needs to be decided first, we use the samples that are filtered out from the training 

data set 𝑿 as the test samples (known as the OOB (out of bag) samples [41] ) to de-

cide the polynomial degree. 

As for how to define the “best”, there are many references for measuring a mod-

el’s performance from different aspects. We presented four indexes to evaluate the 

performance of a data-driven model. 

 Prediction accuracy 

If the outputs of test samples are far from the zero value, we use the average rela-

tive error to assess a model’s prediction accuracy. 

 error = 1
𝑀′

 ∑ �𝑣�t
(𝑖)−𝑣t

(𝑖)

𝑣t
(𝑖) �𝑀′

𝑖=1 . (8) 

Otherwise the average absolute error is applied. 

 error = 1
𝑀′

 ∑ �𝑣�t
(𝑖) − 𝑣t

(𝑖)�𝑀′
𝑖=1 . (9) 

In above formulas, 𝑼t = �𝒖t
(1),𝒖t

(2), … ,𝒖t
(𝑀′)�

T
 and 𝑽𝑡 = �𝑣t

(1), 𝑣t
(2), … , 𝑣t

(𝑀′)�
T
 

are denoted as the inputs and outputs of test samples, and 𝑣�t
(𝑖) = F��𝒖t

(𝑖)� is the 𝑖 th 

predicted output using the data-driven model. 𝑀′ is the size of test samples. 

 Training time and the simulation time 

The objects of using the surrogate element is using data to build an accurate vehi-

cle dynamics model. Besides the accuracy, the simulation time is also a key factor. In 

this part, we denote the simulation time by 𝑇s. Since training time is also important in 



 

 

evaluating the time cost for preparing a data driven model, we denote it by 𝑇t. 

 Requirement for the size of training samples 

Since in some cases the training data are very rare, under the same accuracy, the 

model that needs less training samples is the better. Therefore the size of the training 

samples 𝑀 is another important index for the performance. 

 Tolerance to noises 

The training data are generally collected from some specific simulation cases or 

vehicle tests which are conducted in a specific type of track spectrum. We expect that 

our data-driven simulation not only has a good performance in that type of track spec-

trum, but also goes well in different kinds of track spectrum. Hence we collected the 

training data under one type of track spectrum, and used it to train our model to get 

the surrogate element then applied it in calculating the simulation cases under differ-

ent kinds of track spectrum to evaluate our model’s tolerance to noises. 

4. Case studies 

To verify the accessibility of the data-driven dynamics simulation framework, in 

this section two case studies were carried out. In the first one, the usage of this 

framework in a common vertical dynamics simulation was elaborated, and a compar-

ison of two data-driven models ( the LPR model and the Kriging model [31]) was 

made to verify the performance of these models; In the second one, we used the LPR 

model to build the surrogate element and gave a detailed description in the longitudi-

nal dynamics simulation in a train crash. All the simulations in this section were car-

ried out on the platform of Window 7 64bit with two CPUs (Intel Xeon X5680 

3.33GHZ) and 32.0 GB RAM. 

4.1. Vertical dynamics simulation 

As Figure 2 and section 3.1 described, to build a surrogate element for the second 

suspension system, we collected the training data from the post-processing results of a 

highly nonlinear MB model built by Simpack. The parameters of the MB model in 

Figure 2 are detailed in the Table 1, Table 2, Figure 5 and Figure 6. 

Table 1. The mass values of the vehicle body and the bogie 

Name 𝑚1 𝑚2 



 

 

Value 4600 kg 42000 kg 

Table 2. Parameters of the 5th level of American track spectrum (𝑓(𝑡)) 

Name Av Aa Ωs Ωc 𝑣0 
Value 0.2095 0.0762 0.8209 0.8245 144 (km/h) 
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(a) the 𝑘1 curve              (b) the 𝑐1 curve 
Figure 5. The characteristic curves in the first suspension system 
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(a) the 𝑘2 curve             (b) the 𝑐2 curve 

Figure 6. The characteristic curves in the second suspension system 

The American track spectrums of four different levels (from 3rd to 6th levels) were 

used in this section [42]. The parameters shown in Table 2 is at the fifth level which is 

used to get the training data and build the surrogate element, and the left three levels 

(3rd, 4th and 6th levels) are used to assess the tolerance ability of data-driven models. 

After setting the simulation time at 20 s and sampling rate at 50 Hz in Simpack, 

the inputs and outputs of training data (1001 points) can be obtained (blue dots in 

Figure 7). Then applying the data sampling, the training samples (101 points) are ac-

quired (red dots in Figure 7). 
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(a) Input samples 
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(b) Output samples 

Figure 7. Sampling result (𝑀 = 101) 

In Figure 7, the training samples (the selected dots) are used to respectively train 

the two data-driven models (the LPR model and the Kriging model), and the test sam-

ples (the remaining dots) are used to determine the degree of the LPR model and 

evaluate the performance of the two models. Figure 8 shows the comparison results 

with using the two trained models to predict the outputs of the test samples. 
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(a) Prediction result using the LPR model (𝑛1,𝑛2 = 3) 
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(b) Prediction result using the Kriging model 
Figure 8. Predicted outputs of the test samples 

Figure 8 shows that the two models both have a great prediction accuracy on test 

samples. The average relative errors of these two models in prediction are listed in 

Table 3. 

Table 3. The average relative errors of the two models 

Model LPR Kriging 
error 1.92 × 10−8 1.80 × 10−5 

As the Figure 2 described, we then made the two models acting as the entire sec-

ond suspension system in the MB model to conduct the data-driven simulation. Based 

on the Matlab Simulink/ Simpack co-simulation, the calculation result of the vertical 

acceleration curve of the vehicle body with using the two models are shown in Figure 

9, and their average absolute errors are listed in Table 4. 
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(b) with Kriging model 
Figure 9. Acceleration result of data-driven simulations 

Table 4. The average absolute errors in acceleration calculation 

Model LPR Kriging 
error 5.67 × 10−4 m/s2 2.05 × 10−3 m/s2 

The comparison result above shows that the LPR model presents a higher accu-

racy in the prediction and it can afford a better surrogate element in vertical dynamics 

simulations. The all-around evaluation of these two models are given in section 4.2. 

4.2. Model evaluation for LPR model and Kriging model 

Apart from the simulation accuracy, this section mainly focuses on comparing 

these two models from three aspects: 1. The effect of the size of training samples on a 

model’s simulation accuracy; 2. The time efficiency of training and co-simulation; 3. 

The tolerance ability for different track spectrums. 

 The effect of the size of training samples on models’ simulation accuracy 

In general, a larger size of training samples can build a stronger data-driven model, 



 

 

but in some cases the training samples are difficult to access. We should choose the 

model that has a low demanding for the quantity of samples. Figure 10 displayed an-

other two sampling plans. Then by training the samples with different scales 

(𝑀 = 51,101,201), the simulation errors of the vehicle body’s displacement, velocity 

and acceleration curves with using different models are shown in Table 5 and Figure 

11. 

In Figure 11, the LPR model shows a higher accuracy and it is not sensitive to the 

size of training samples. It means that the LPR model can maintain a better accuracy 

with fewer training samples. It also indicates that these samples selected by this kind 

of sampling method can represent the entire training data very well. 
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(a) 𝑀 = 51 
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(b) 𝑀 = 201 
Figure 10. Different size of selected training samples 



 

 

 
Table 5. Simulation errors with using different sampling plans 

Model 𝐋𝐋𝐑 𝐊𝐊𝐊𝐊𝐊𝐊𝐊 
Size of samples 51 101 201 51 101 201 

Displacement error (m) 2.44E-06 2.44E-06 2.38E-06 1.51E-05 2.10E-05 7.01E-06 
Velocity error (m/s) 2.38E-05 2.38E-05 2.38E-05 2.40E-05 1.50E-04 4.64E-05 

Acceleration error (m/s2) 5.67E-04 5.67E-04 5.91E-04 5.70E-04 2.05E-03 8.11E-04 
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(a) Displacement error (m) (b) Velocity error (m/s) (c) Acceleration error (m/s2)
51 samples 101 samples 201 samples 51 samples 101 samples 201 samples

  

Figure 11. Simulation errors with using different size of training samples 

 The time efficiency of training and co-simulation 

The time cost for training model, co-simulation and running the original Simpack 

model are presented in Table 6. It shows that the time cost in training and 

co-simulation with the LPR model are both low, and it is almost not changed with the 

increasing size of training samples. Besides that, the time spent in co-simulation is 

less than that when running the original Simpack model (51.03 s). It means the da-

ta-driven model not only keeps a great accuracy, but also save the time, and when it 

comes to multi-vehicle simulations, this advantage will be more distinct. 

Table 6. Time cost of the two models 

Model 𝐋𝐋𝐑 𝐊𝐊𝐊𝐊𝐊𝐊𝐊 
Size of samples 51 101 201 51 101 201 

Training time 𝑻𝐭 (s) 0.08 0.09 0.08 159.27 372.17 1514.09 
Co-simulation time 𝑻𝐬 (s) 49.64 48.31 50.74 256.35 1593.78 9340.24 

Simpack simulation time (s) 51.03 

 The tolerance ability for different track spectrums 

In this part, the two models trained in section 4.1 are used to simulate the cases at 

different levels of track spectrum (see the parameters in Table 7) to test their tolerance 

ability. The simulation errors of the two models are presented in Table 8. 

The results in Table 8 shows that the LPR model have a better accuracy on the 

whole. For the fourth track’s level, the Kriging model diverged, and both the two 



 

 

models have a lower accuracy than their performance in other cases. 

 

Table 7. Parameters of the 3rd, 4th and 6th levels of American track spectrum [42] 

Parameters Track’s level 
3rd 4th 6th 

𝐀𝐯 0.6816 0.5376 0.0339 
𝐀𝐚 0.4128 0.3027 0.0339 
𝛀𝐬 0.8520 1.1312 0.4380 
𝛀𝐜 0.8245 0.8245 0.8245 

𝒗𝟎 (𝐤𝐤/𝐡) 96 128 176 

Table 8. Simulation errors with different track spectrums 

Track’s level LPR Kriging 
Model 3rd 4th 6th 3rd 4th 6th 

Displacement error (m) 4.33E-06 2.70E-03 5.97E-06 4.76E-04 2.95E+02 5.52E-05 
Velocity error (m/s) 3.68E-05 2.96E-02 8.57E-05 1.76E-03 5.51E+01 9.42E-05 

Acceleration error(m/s2) 6.70E-04 3.55E-01 4.22E-03 1.78E-02 1.77E+04 2.07E-03 

4.3. Longitudinal dynamics simulation 

As the Figure 3 and section 3.1 detailed, the training data were collected from the 

post-processing results of the FE model using LS-DYNA (see Figure 12). The FE 

model that consists of a lead car and a passenger car is constructed based on our pre-

vious work [28, 43]. The parameters involved in the FE model are listed in Table 9. 

 

Figure 12. the FE model of two vehicles crashing with a rigid wall 

  



 

 

Table 9. Part of the parameters in the FE model 

Parameter Value 
Mass of the lead car (𝒎𝟏) 30.39 ton 
Mass of the passenger car (𝒎𝟐) 34.45 ton 
Length of the lead car (𝒍𝟏) 27.60 m 
Length of the passenger car (𝒍𝟐) 24.50 m 
Length of the driver’s car (𝒍𝐝) 3.93 m 
Friction coefficient between wheel-rail (𝒇𝒄) 0.10 
Crash velocity (𝒗𝟎) 40 km/h 

In Figure 3, since two surrogate elements need to be constructed, we should col-

lect two training sample sets. As the section 3.1 described, the first input-output pair 

(𝑥1,𝑓1) is the lead car’s longitudinal displacement and its interaction force with the 

rigid wall. The second pair (𝑥1 − 𝑥2,𝑓2) is the relative displacement between the 

lead car and the passenger car and their interaction force. Since the inputs of the two 

training samples both are one-dimensional, the two training sample sets can be illus-

trated in Figure 13. 
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(a) The training samples (𝑥1,𝑓1) for the first surrogate element 
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(b) The training samples (𝑥1 − 𝑥2,𝑓2) for the second surrogate element 

Figure 13. Two training sample sets 

Figure 13 shows that the loading and unloading processes cyclically happened 

between the end structures of the two vehicles during the crash. To build the two sur-

rogate elements for a MB model and make them act as the deformable structures in 

the FE model, four LPR models are applied to respectively learn the loading and the 

unloading stages of the relationships 𝑓1 = G1(𝑥1)  and 𝑓2 = G2(𝑥1 − 𝑥2) . After 

training the four models, the prediction results on these samples are presented in Fig-

ure 14. 
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(a) Prediction result of the first training sample set (𝑥1,𝑓1) 
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(b) Prediction result of the second training sample set (𝑥1 − 𝑥2,𝑓2) 
Figure 14. Prediction results of the four LPR models 

In Figure 14 (a) and (b), we take one LPR model to learn the loading stage and 

the other one to learn the unloading stage of each vehicle during the entire crash. To 

choose the best degree for each of the four Legendre polynomials, the ten-fold cross 

validation method is used and the best degrees are listed in Table 10. By combining 

these surrogate elements with the MB model in co-simulation, the displacement, ve-

locity and acceleration results of the lead car and the passenger car are obtained, and 

we compared them with the original data, which are shown in Figure 15. 

Table 10. The best degrees for the four Legendre polynomials 

Surrogate element 𝐈 𝐈𝐈 
Stage Loading Unloading Loading Unloading 

Degree 69 30 82 5 
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(a) Displacement of the lead car         (b) Displacement of the passenger car 
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(c) Velocity of the lead car              (d) Velocity of the passenger car 
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(e) Acceleration of the lead car          (f) Acceleration of the passenger car 

Figure 15. Data-driven simulation results of longitudinal dynamics 

The comparison results in Figure 15 indicate that the data-driven simulation con-

verges very well and the overall trends of these curves keep the same with those using 

FE method, which shows a satisfying accuracy. The time cost of the data-driven 

co-simulation is about 8 s, while it takes 51548 s when using the FE model. The errors 

in Figure 15 are detailed in Table 11. 

Table 11. The average absolute errors in longitudinal dynamics simulation 

 Lead car Passenger car 
Displacement error (m) 0.0063 0.0061 
Velocity error (m/s) 0.0957 0.0752 
Acceleration error (m/s2) 8.7122 5.8602 

 



 

 

5. Conclusion 

To largely reduce the simulation time without at much cost of accuracy, a frame-

work of data-driven simulations for railway dynamics was proposed in this paper. 

This framework consists of four processes, which use the data from a complex model 

(a FE model or a real test) to construct surrogate elements to replace those sophisti-

cated structures in the original model. Through embedding these surrogate elements in 

a MB model, the calculation time can be largely cut down. Two case studies were car-

ried out and it has been proved that both in the vertical and the longitudinal dynamics 

simulations, the LPR model has a better calculation efficiency with a similar simula-

tion accuracy. By make a comparison with the Kriging model, the main features of the 

LPR model are shown as follows: 

1. The LPR model keeps a high prediction accuracy with using a small size of 

training samples, and the accuracy is not sensitive to the size of training samples. 

2. The time spent in training and co-simulation is short and not sensitive to the size 

of training samples. 

3. The time spent in co-simulation is even less than that with using the original 

Simpack model, which could be used as a fast calculation approach especially 

when it comes to multi-vehicle simulations. 

4. The Legendre model shows a satisfying stability when simulation cases are in-

volved in different kinds of noises. 

From the simulation results of the two case studies, it has been proved that these 

features made the data-driven models can replace some traditional time-consuming 

models in further researches. 
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