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Abstract 

Phase transformations of Al doped NbN nanocomposite coatings are studied in 

detail focusing on their microstructural evolution and phase composition. Several 

techniques such as XRD, SEM, HR-TEM, Nanoindentation and molecular dynamics 

simulation are employed in order to understand the phase evolution of the Nb-Al-N 

system. The nanocomposite structures were formed in the coatings, the roughness of 

the coatings decreased with increasing the Al concentration due to decreasing grain 

size. First-principles investigation of Nb-Al-N solid solutions was carried out to 

interpret film properties. It was found, that for small Al fractions, the solid solutions 

will form in agreement with our experimental results. The spinodal decomposition of 

Nb-Al-N solid solutions is supposed to be responsible for the formation of the 

nanocomosite structure observed in the deposited Nb-Al-N films. 

Keywords: Nanocomposites, Metals and alloys, Mechanical properties, 

Computational modeling, Microstructure, C-PVD 
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NbN based coatings are quite perspective for industrial application due to their 

high melting temperature, splendid physico-mechanical and superconducting 

properties [1–9]. Such coatings can be widely used for fabrication of Josephson’s 

large integrated circuits [10–13], bolometers [10]–[15] and superconducting one-

photon detectors [1,4,14–24]. Low thermal stability and oxidation resistance are 

among the main disadvantages of such coatings. Addition of impurities to the crystal 

lattice of the transition metal nitrides form nanostructured coatings with improved 

properties [25–32]. Ternary nitrides, such as Ti1-xAl xN, Zr1-xAl xN and Cr1-xAl xN have 

higher hardness, oxidation resistance and thermal stability in comparison with binary 

CrN, ZrN and TiN coatings [33–43]. Mainly, the mechanical and chemical properties 

of Me1-xAl xN improve due to the increasing of Al concentration up to a critical value, 

when the B1 structure transforms into the B4 one. This leads to significant decreasing 

of hardness and wear resistance [40,42,44–46]. A formation of the two-phase 

structure В1+В4 leads to decreasing oxidation resistance [40,47–49]. 

Changes in the composition of Nb1-xAl xN films are due to changing the Al 

content [50–53]. When х ≤ 0.08, the mix of δ’ (hexagonal)+δ (cubic B1, Fm3-m) 

phases forms [52]. When the Al concentration is in the range 50-53 %, the films have 

cubic В1-structure, with the (200) preferred plane of growth [50–53]. The 50-66% 

concentration of Al leads to the formation of В1-Nb1-xAl xN with the B4 (wurtzite-

type) -AlN structure [50–52,54]. When the concentration of Al is higher than 65%, a 

nanocomposite structure is formed with 20 nm B4-AlN crystallites [50].  

To our knowledge, the Nb-Al-N films with a nanocomposite structure were not 

yet prepared, although we suppose that such films can be synthesized under certain 

conditions. To verify this assumption we have deposited Al-Nb-N films by 

magnetron sputtering at different currents supplied to the Al target. Deposited 

coatings were annealed at the temperature 1000 oC for one hour in order to check 

their thermal stability. To interpret coating structure, first-principles investigations of 

Nb-Al-N solid solutions were carried out. 
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Nb−Al−N coatings were deposited on mirror-polished Si (100) wafers by DC 

reactive magnetron sputtering using Nb (99.9 %, Ø 72 x 4 mm) and Al (99.999 %, Ø 

72 x 4 mm) targets in an argon-nitrogen atmosphere. The deposition conditions were: 

substrate temperature TS = 350 °С; substrate bias UB = -50 V; flow rates 

FАr = 40 cm3/min and FN2 = 13 cm3/min; working pressure P = 0.17 Pa. The currents, 

applied to the Al target (IAl) were 0, 50, 100, 150, 250 and 300 mA, which 

corresponded to discharge power densities PAl = 0, 2.9, 5.7, 8.6, 13.7 and 

PAl = 17.1 W/cm2, respectively. The current, applied to the Nb target (INb), was 

300 mA (PNb = 17.1 W/cm2). The base pressure inside the vacuum chamber was less 

than 10−4 Pa. The distance between the targets and the substrate holder was 8 cm. The 

dihedral angle between the target planes was around 450. The substrates were 

preliminary cleaned ultrasonically and were etched in the vacuum chamber in 

hydrogen plasma during 5 min before deposition. All deposition parameters for all 

samples are presented in the Table 1. Post-deposition vacuum annealing of the 

coatings at 600, 800 and 1000 °С was done. 

Studies of the surface of the coatings were done using scanning atomic-force 

microscope Bruker's Innova in a half-contact mode and electron microscope JEOL 

7001 F with SEI detector, the accelerating voltage was 15 kV. Structural and 

mechanical properties were determined in dependence on the currents applied to the 

Al target and annealing temperatures. Microstructure of the coatings was determined 

by X-ray diffraction (XRD, X'pert3 MRD (XL) from PANalytical) using CuКα 

radiation. PowderCell 2.4 software was used for profiles separation in the case of 

overlaying of the complex profiles. Substructural characteristics, such as size of 

crystallites and microdeformation, were determined using approximation method, 

Cauchy function was used as approximating function. Cross-sections of the samples 

were prepared by focused ion beam (FIB, JEOL JIB-4000). The cross-sections were 

then studied by high-resolution transmission electron microscopy JEOL-ARM 200F 

with an accelerating voltage 200 kV, equipped with an energy-dispersive X-ray 

spectroscopy (EDS) detector. The hardness of the coatings was determined from 

nanoindentation by Nanoindenter-G200 instrument, equipped with a Berkovich 
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deformation of the coating while avoiding the influence of substrate material. Thus, 

the indenter’s penetration depth did not exceed 10–20% of the total thickness of the 

coating. Microhardness measurements were done using REVETEST device 

(Switzerland), nanohardness and elastic modulus were studied using Triboindentor 

TI-950 (HYSITRON Inc.) in dynamic mode. Thickness of the coatings was 

determined by optical profilometer “Micron-gamma”, and it was in the range of 0.7-

0.9 µm. 

 

Theoretical details 

We performed first-principles investigation of Nb-Al-N solid solutions (alloys) 

to interpret our experimental results. In order to investigate Nb-Al-N solid solutions 

with the B1 structure (space group Fm-3m, No. 225) we considered cubic supercells 

Nb32N28,  Nb24Al 8N29, Nb16Al16N30, Nb8Al 24 N31, Al32N32, representing special 

quasirandom structures (SQS) Nb1-xAl xN(7+x)/8 [55]. We put the accent on 

substoichiometric niobium nitride δ-NbN0.875 (or B1-NbN0.875) that was mixed with   

stoichiometric cubic aluminium nitride, B1-AlN. The motivation was the fact that 

stoichiometric cubic niobium nitride is dynamically unstable, for which reason it 

cannot be synthesized without nitrogen vacancies [56,57].  First-principles 

calculations were carried out using the Quantum-ESPRESSO code [58]. Vanderbilt 

ultra-soft pseudo-potentials were used to describe the electron-ion interaction [59]. 

The semi-core states were treated as valence states. The generalized gradient 

approximation (GGA) of Perdew et al. [60] was employed to describe exchange-

correlation energy. The criterion of convergence for the total energy was 10-6 Ry/cell. 

To speed up convergence, each eigenvalue was convoluted with a Gaussian with a 

width of 0.03 Ry (0.408 eV). The cut-off energy for the plane-wave basis was set to 

38 Ry (516.8 eV). The integration in the Brillouin zone (BZ) was done on special k-

points determined according to the Monkhorst-Pack scheme using a non-shifted mesh 

(4 2 2). All initial structures were optimized by simultaneously relaxing the supercell 

basis vectors and the atomic positions inside the supercells using the Broyden–

Fletcher–Goldfarb–Shanno (BFGS) algorithm [61]. The relaxation of the initial 
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mRy/Bohr (25.7 meV/Å), stresses were smaller than 0.05 GPa, and the total energy 

during the structural optimization iterative process was changing by less than 0.1 

mRy (1.36 meV). The phonon spectra of the alloys were calculated using the 

PHONOPY code [62].  The Gibbs free energy of mixing, Gmix, is given by: 

Gmix(x,T) =  G(Nb1-xAl xN(7+x)/8) – (1-x)·G(NbN0.875) – x·G(AlN), 

where each G value contains electronic, configurational and vibrational (phonon) 

terms [63]. The vibrational contribution was calculated neglecting anaharmonic 

effects.  

 

Results and Discussion 

Experimental results 

The elemental composition of the deposited films is presented in the Table 2 as a 

function of the current IAl. It is obvious that the Al concentration increases with 

increasing the current at the Al target. At the same time, the concentration of oxygen 

decreases due to increasing in film densification and changing a structure type. 

Figures 1a– 1c show the AFM surface topography of the as-deposited and 

annealed at Tan = 1000°C films. Weakly columnar structure is observed. The surface 

roughness slightly increases with Tan, see Fig. 1d. On the contrary, it decreases from 

4.82 nm to 1.61 nm with increasing the current IAl.  

The observed reduction of surface roughness can be explained by decreasing 

grain size due to appearing a large amount of atoms after adding a doping element 

[64]. In addition, surface diffusion leads to smoothing the surface of the coating 

[65,66]. The surface roughness increased to 2.66 nm after annealing, which can be 

explained by the formation of faceted phases of oxides with good crystallization [67]. 

The smallest values of the surface roughness of the sample 5 can be explained by the 

formation of the amorphous phase in the nanocrystalline structure of the coating. 

In Figure 2 we show the XRD patterns of the Nb-Al-N coatings, before and after 

annealing. An asymmetric shift of peaks towards large angles can be seen. Separation 

of these peaks showed, that two phases appeared during deposition: δ-NbNx (marked 

by arrows) and δ-(Nb,Al)N phases that formed a solid solution. 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPTWe calculated concentration of Al in the first and second phases using Vegard’s 

rule [68], it was less than 4 at.% and less than 14 at.% accordingly. We used 

a(AlN) = 4.069 Å for samples 2 – 6, and a(NbN)=4.376 Å for Sample 1 [69] as 

reference values. Structural characteristics of the coatings under investigation are 

presented in the Table 2. 

An application of high currents (250, 300 mA – Samples 5 and 6) to the Al 

target (curve 1 in Fig. 2a and curve 3 in Fig. 2b) led to appearing halo-like 

component in the range of angles 18 – 30°, which confirmed the existence of the 

amorphous phase in the coating. Changes of this component after annealing (see 

curve 2 in Fig. 2a) indicates recrystallization of the coating due to annealing and 

decreasing amorphous phase. The preferred plane of growth remains (200) after 

annealing, but crystallites with the (400) orientation disappear, and (311) oriented 

crystallites appear. The size of the crystallites of the δ-NbNx phase increased 

1.6÷1.9 times as compared to those of as-deposited samples. By the way, we did not 

observe changes in the size of the grains in δ-(Nb,Al)N phase, and the as-deposited 

coating had more ordered structure in comparison with annealed one (sample 1, curve 

3 in the Fig. 2a). 

Ordering of the coating structure growth was observed in the sample with small 

content of Al in the as-deposited state (curve 3 in the Fig. 2a) and in the sample with 

high content of Al (curve 3 in the Fig. 2a). These findings differ from the results for 

Sample 1 (curve 1 in the Fig. 2a). A formation of the preferred orientation (200) 

caused the reduction of the coating surface energy [70,71]. 

Figure 3 shows the SEM image of the Nb-Al-N coatings before (а-с) and after 

annealing (d). Strong columnar structure is observed only for Sample 1, in agreement 

with the AFM observations (see Fig. 1a). The surface of the coatings is almost 

smooth for other samples. There are no significant changes in the surface roughness 

after annealing, thus we can conclude, that thermal stability of the coatings is quite 

high [72]. 

In Figure 4 we present the TEM image of the cross-section of the sample 6. We 

can see columnar structure of the coating growth. Studies of the transition layer 

between the coating and substrate (Fig. 5) detected a thin 3.6 nm layer of silicon 
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coating deposition in order to form diffusion barrier between substrate and coating. 

Grains were not detected near the surface of the oxidized layer. Fast Fourier 

Transformation (FFT) method [73] was applied to this layer and we did not found 

any peaks, which confirmed the absence of any periodical structure in this layer. 

FFT studies of the surface of the coatings (Fig. 6a) showed three different 

structural components (Fig. 6b). Reverse FFT images of each structure are presented 

in Figs. 6c, 6d and 6e, respectively. An inspection of the red and green regions 

indicates the presence of 3÷4 nm nanoparticles, which is consistent with the results of 

XRD studies of the size of grains in the δ-NbNx phase (see Table 1). Based on TEM 

results we can assume, that δ-(Nb,Al)N solid solution was not formed in the near-

surface regions, despite the fact that Musil [74] suggested that such phases could 

appear in the near-surface regions and this could be the reason for low roughness of 

the coatings. The nc-NbN/a-AlN nanocomposite structure near the coating surface 

forms a protective layer against oxidation. This is confirmed by decreasing the 

oxygen concentration in the samples 5 and 6 compared to that in the samples 1 and 2 

that consist only of the δ-NbNx or δ-(Nb,Al)N phase (cf. Table 2). At the same time, 

δ-NbNx and δ-(Nb,Al)N phases (probably, embedded into the a-AlN matrix) form in 

the depth of the coatings.  

Figure 7 shows the diffraction patterns of the sample 6 combined with 

corresponding light-field images and SAED pattern. One can see that the fcc lattice 

was formed in the coating (see Fig. 7c and 7g). Preferred orientation of the crystal 

planes was not observed. SAED patterns (Fig. 7d) points to the formation of four 

crystallographic orientations, such as (200), (220), (311) and (400), which is 

consistent with the results [9]. 

Distribution of the coating elements over the depth determined by EDX is 

presented. The thickness of the coating is 1.16 µm, The Nb concentration decreased 

with increasing coating thickness. 

Dependencies of hardness, elastic modulus and wear on Al concentration are 

presented in Fig. 9. Doping of Al into the coating led to decreasing hardness and 

elastic modulus from 27 GPa to 19.5 GPa and from 300 GPa to 190 GPa, 
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by H/E ratio [75,76] that was in the range from 0.09 to 0.1. Mechanical properties of 

the coatings did not change after annealing at the temperature 1000 o
С, which 

indicates high thermal stability of the deposited coatings. Thus, we can assume that 

the deposited Nb-Al-N coatings are perspective as wear-resistant ones. 

 

Theoretical results 

In Fig. 10 we show the lattice parameter (a) after structural optimization as a 

function of composition. We note that the lattice constant shows a positive deviation 

from Vegard’s law (dashed line). This fact usually indicates towards phase separation. 

The Gibbs free energy of mixing for B1-Nb1-xAl xN(7+x)/8 random alloy, calculated 

at different temperatures, are presented in Fig. 11 as a function of the fraction of AlN, 

x. The positive formation energy implies that the alloys are not stable, and will 

decompose into NbN0.875 and AlN with the chemical driving force (Gmix). However, 

the alloys can be stabilized in some range of composition depending on temperature, 

owing to configurational and vibrational contributions.  Figure 11 shows also that the 

vibrational contribution strongly reduces the Gibbs free energy of mixing at high 

temperatures. 

In Figure 12 we compare the phase diagram with that calculated neglecting 

lattice vibrations. The difference in both the calculated phase diagrams is dramatic.  

By allowing for the phonon contribution, the maximum of the miscibility gap reduces 

from 11000 K to 6000 K.  We see that, for small Al fractions, x, the solid solutions 

will form in agreement with our experimental results. At moderate temperatures (less 

than 1000 K), when diffusion will activated, a further increase in x will lead to phase 

segregation thorough spinodal decomposition. We assume that it is the spinodal 

decomposition of Nb-Al-N solid solutions that is responsible for the formation of the 

observed nanocomosite structure of the deposited Nb-Al-N films.     
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Nb-Al-N coatings were deposited using magnetron sputtering on silicon 

substrates. An application of different currents in the range 0÷300 mA to the Al target 

led to different concentrations of Al in the coatings. 

Phase transformations were observed in the coatings depending on the current 

supplied to the Al target (IAl). First, the δ-NbNx phase and then solid solutions δ-

(Nb,Al)Nx formed in the coatings deposited at IAl = 0÷50 mA. The nanocomposite 

structure that consisted of the mixture of δ-NbNx and δ-(Nb,Al)Nx phases was formed 

in the coatings deposited at IAl = 100÷150 mA. At IAl = 250÷300 mA, the nc-

NbN/a−AlN nanocomposite structure forms on and near the coating surface, and the 

nc-NbNx/nc-(Nb,Al)Nx/a-AlN structure was observed in the middle of the coatings. 

The formation of different phases was caused by an inhomogeneous distribution of 

elements over the depth of the coatings. As the result, the roughness of the coatings 

decreased with increasing the Al concentration due to decreasing grain size. 

Annealing did not lead to changes in surface roughness, grain size and mechanical 

properties of the coatings. Comparatively high values of H/E ratios make the coating 

suitable for the use as wear-resistant coatings. 

First-principles investigation of Nb-Al-N solid solutions was carried out to 

interpret film properties. In particular, the phase diagram for solid solutions was 

calculated. It was show an important role of the phonon contribution to the Gibbs free 

energy of mixing. By allowing for the phonon contribution, the maximum of the 

miscibility gap reduces from 11000 K to 6000 K. The calculated phase diagram 

shows that for small Al fractions, x, the solid solutions will form in agreement with 

our experimental results. A further increase in x will lead to phase segregation 

thorough spinodal decomposition. The spinodal decomposition of Nb-Al-N solid 

solutions is supposed to be responsible for the formation of the nanocomosite 

structure observed in the deposited Nb-Al-N films. 
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Sample IAl, mA PAl, W/cm2
 INb, mA PNb, W/cm2

 Pchamber, Pa 

1 0 0 

300 17.1 10-4
 

2 50 2.9 

3 100 5.7 

4 150 8.6 
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target. 

№ IAl, mA Nb Al N О Nb/Al 

Sample 1 0 38.44 - 51.70 9.87 - 

Sample 2 50 33.66 3.69 53.38 8.87 9.36 

Sample 2 

(Cross section) 
50 24.52 3.43 62.22 9.83 7.15 

Sample 4 150 37.91 5.37 50.48 6.26 7.06 

Sample 5 
(600С) 

250 31.58 7.16 46.47 4.70 4.41 

Sample 5 
(800С) 

250 37.88 6.86 49.85 5.41 5.52 

Sample 5 
(1000С) 

250 31.50 8.83 53.53 6.13 3.57 

Sample 6 300 22.77 18.40 53.11 5.71 1.24 
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Fig. 1. AFM images of Nb-Al-N coatings: sample 1 (a), sample 5 before (b) and 

after annealing (с). The surface rougness of the deposited films as a function of IAl.(d) 

Fig. 2. (a) XRD patterns of sample 5 before (curve 1) and after (curve 2) 

annealing in comparison with pattern for annealed Sample 1 (curve 3); (b) XRD 

patterns of sample 1 (curve 1), sample 4 (curve 2) and sample 6 (curve 3). 

Fig. 3. SEM-images of Nb-Al-N coatings: Sample 1 (a), Sample 2 (b) and 

Sample 5 before (с) and after annealing (d). 

Fig. 4. Light-field and dark-field TEM images of the cross-section of the Nb-Al-

N coating (sample 6). 

Fig. 5. TEM image of the transition layer between substrate and coating (sample 

6) and their SAED patterns. 

Fig. 6. TEM image of the surface of the Nb-Al-N coating (Sample 6) 

Fig. 7. Diffraction patterns of sample 6 from the substrate (а), region between 

substrate and the coating (b) and from the coating (с), corresponding light-field 

images (e,f), SAED pattern (d), profile obtained along the blue line (g) 

Fig. 8. Depth profile of the coating, obtained using EDX method (Sample 6). 

Fig. 9. Hardness (H) (а), elasticity modulus (E) (b) and the H/E ratio (с) for the 

Sample 1 (black curve), Sample 4 (green curve) and Sample 5 after annealing (red 

curve). 

Fig. 10. Lattice parameter (a) of Nb1-xAl xN(7+x)/8 as a function of x. The dashed 

line is linear interpolation between the lattice parameters for NbN0.875 and AlN. 

Fig. 11. Gibbs free energy of mixing (G) for the alloys. The solid and dashed 

lines are G values calculated without and with phonon contribution, respectively. 

Fig. 12. Calculated phase diagram for B1- Nb1-xAl xN(7+x)/8 random alloy. The 

dashed and solid lines correspond to the bimodal (B) and spinodal (S) with and 

without vibrational contribution, respectively. 
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Highlights 

 

• Nb-Al-N coatings were deposited using magnetron sputtering on silicon 

substrates 

• Different phase transformations were observed depending on the Al content 

• First-principles investigation of Nb-Al-N solid solutions was carried out 

• Nanocomosite structure depends on spinodal decomposition of Nb-Al-N 

solid solutions 

• Deposited coatings have good resistance to high-temperature annealing 

Nanocomposite Nb-Al-N coatings: Experimental and theoretical principles of phase transformations [Т
екст] / A. Pogrebnjak, V. Rogoz, V. Ivashchenko [та ін.] 
// Journal of Alloys and Compounds. — 2017. — №718. — С. 260-269.


