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Abstract. We develop a new class of positional numeral systems, namely the binomial
ones, which form a subclass of generalized positional numeral systems (GPNS). The bino-
mial systems have wide range of applications in the information transmission, processing,
and storage due to their error-detection capabilities. In this paper, the binomial numeral
systems are well-defined, their prefix and compactness properties are established. Algo-
rithms of generating binomial coding words (non-uniform and uniform) are presented, as
well as an enhanced procedure of construction of constant weight Boolean combinations
based upon the non-uniform binomial coding words. The correctness of this procedure is
established.
Keywords: Generalized positional numeral systems, Binomial numeral systems, Con-
stant weight codes

1. Introduction. Positional numeral systems are widely used in computing. More com-
plicated numeral systems, in which the register’s weight need not be equal to the power
of the system’s base (for example, in the binary or decimal system), have not been thor-
oughly studied yet. Such generalized positional numeral systems (GPNS) may have quite
useful properties, like being noise-proof, easy in generating permutations (see [1-3]).

When combinatorial objects are generated and numerated, researchers use them to
develop special methods for each individual problem, which can be characterized as a
principal drawback of such an approach (cf. [4,5]). Therefore, a universal algorithm
solving these problems at both the theoretical and practical levels would be very helpful.
We propose a possible solution method based upon the GPNS. In particular, in this paper,
a binomial numeral system is considered, which generates combinatorial objects making
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use of constant weight codes (cf. [6]). The total number of coding words in such codes is
determined by binomial coefficients (cf. [7]).
It is worthwhile to develop digital devices using a GPNS and completing mainly logical

and the simplest arithmetical operations with integer numbers, because these operations
are realized by the GPNS in the most efficient way. Certain parts of such specialized
devices, e.g., noise-proof counters, registers, are of interest for the universal computers as
well [8,9].
One of the important problems arising while storing and transmitting information is its

compression, for example by the optimal coding based on the Shannon-Fano and Huffman
codes [10,11].
Next, problems of combinatorial optimization are of special importance. In the most

general form, these problems may even not have an objective function but stated in some
preference terms. Such problems are usually solved by an exhaustive search, or when it
is impossible, by random search procedures [2]. In both cases, the GPNS can provide
many efficient ways of generating the combinatorial objects in order to find a path to an
optimal solution.
Therefore, the generalized positional numeral systems (GPNS) propose a unified ap-

proach allowing one to solve efficiently a series of practical problems of various natures.
As an example of such a GPNS, our paper presents a binary binomial numeral system.
The latter is characterized with the use of binomial coefficients as weights of the binary
digits (cf. [12-14]).
The binomial numeral systems and therewith generated uniform binomial numbers are

an absolutely new result in the area of generalized positional numeral systems. The
first seminal manuscript giving birth to the binomial systems is the paper published by
Borisenko [15] more than 30 years ago. The latter was the first landmark in this area,
although many unsuccessful attempts had been made before this one (e.g., in the book
by Oberman [9]). Binomial numeral systems were also mentioned (without their detailed
description or analysis) in the famous monograph by Knuth [16]. The nearest concept to
the non-uniform binomial numbers were the codes developed in [17]; however, none of the
above-mentioned attempts had led to either creation of the theory of binomial numeral
systems or development of algorithms to synthesize the binomial numbers. Although, in
principle, it is possible to construct non-uniform binomial numbers by partitioning the
binomial coefficients into smaller equivalence classes making use of the main property
of combinations. The latter approach was exploited in the above-mentioned monograph
[17], too, but its practical value is very much restricted without the theory of binomial
numbers.
However, the practical importance of the Theory of Binomial Numbers is difficult to

overestimate for the development of various counting devices. Many such devices (about
20 in total) have been registered as inventions (see, e.g., [8]).
The binomial numbers are very widely implemented in practice. For example, Table 2

in Section 4 provides the increasing uniform binomial numbers generated by the algorithm
described below. This algorithm served as the base of developing, modeling and producing
a counter performed as a microchip on a crystal matrix and registered as the invention
(cf., [18]).
The same counter is part of the invention [19] exploited in practice to count constant

weight codes. A code has a constant weight if each combination in this code has the same
number of units. As an example of a constant weight code, consider the code containing
six combinations with two units each: 0011, 0101, 0110, 1001, 1010, and 1100 (see, also,
the constant weight code in Table 3 enjoying 4 units in each of the 15 combinations).
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The principal result of the paper is the additional analysis of the binomial numeral
systems, and the improved algorithm of creating the binomial numbers. Based upon this
algorithm, we develop a synthesis of binomial numbers containing no more than one unit
(alternatively, no more than one zero).

The main novelty of the presented paper as compared with the authors’ previous works
are the following ones:

(1) The previous works (cf., the List of References) did not describe all the algorithms
of generation of binomial numbers.

(2) The algorithms proposed and studied in the authors’ previous papers needed to be
improved, since they were not intended for the computer implementation and generation
of constant weight codes.

(3) The special kinds of binomial codes, the combinations of which contain no more than
1 unit or, vice versa, 1 zero, were not paid attention in the authors’ previous publications.
However, the latter is extremely important as these binomial numbers are very similar to
those of the unitary code, which, due to its combinations being unprecedently noise-proof,
becomes more and more popular in practical applications. Now the binomial counters
transform into the shift registers with only one unit or, alternatively, only one zero. Such
combinations boast with the remarkably noise stability, because the appearance of more
than one unit (or, alternatively, zero) in a binomial number immediately leads to the
detection of an error and, in special cases, its correction.

(4) As the binomial combinations are numbers, a possibility of creation of fast-running
noise-proof adders (or, summers) clearly arises. Hence, new circuits for computers are
also possible to develop. Such devices have already been tested in practice and confirmed
their working abilities. The speed of such devices is almost maximum possible, since the
transitions are completely excluded.

(5) Finally, in contrast to the authors’ previous publications, the theoretical part has
been also improved and brought to a mathematically rigorous form: here, all the necessary
results have been established as the corresponding lemmas and theorems.

The rest of the paper is arranged as follows. In Section 2, we define the principal struc-
ture of the binomial calculus system. Section 3 presents the main results establishing the
key properties of the binomial systems, namely, the prefix and the compactness properties.
Next, Section 4 deals with the algorithms to generate and numerate binomial combina-
tions of various lengths (non-uniform codes), the constant length (uniform codes), and
the constant weight combinations. Section 5 describes two interesting particular cases of
codes with only one unit (k = 1) and only one zero (k = n − 1) and the properties of
such binomial numbers. Conclusion, acknowledgement and the reference list complete the
paper.

2. Binomial Systems. Now we describe one of the GPNS, namely the binomial system
with the binomial weights and the binary alphabet {0, 1} (cf. [12-14]).

In a k-binomial system with n registers (k < n), the quantitative equivalent QAi of
a code combination Ai = (aj−1, aj−2, . . . , a0), i = 0, 1, . . ., P − 1, with P = Ck

n, where
j = j(i) is the combination’s length, is defined as follows:

QAi = aj−1C
k−qj
n−1 + · · ·+ a`C

k−q`+1

n−j+` + · · ·+ a0C
k−q1
n−j , (1)

where the following conditions must hold: either
q0 = k,

j < n;

a0 = 1,

(2)
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or 
n− k = j − q0,

q0 < k;

a0 = 0.

(3)

Here q0 is the quantity of units (ones) in the binomial number, P is the range of the
system, j is the quantity of registers (positions) in the binomial number (or, its length),
` = 0, 1, . . ., j−1 is the register’s ordinal number, and q` is the sum of the digits occupying
the registers (j − 1) through `, inclusively, i.e.,

q` =

j−1∑
i=`

ai, (4)

with qj = 0.
A positional numeral system must be finite, effective, and well-defined. However, it is

not enough for a generalized positional system. In addition, it has to be a prefix code
system, i.e., with the “prefix property”: there is no valid code word in the system that is
a prefix (start) of any other valid code word in the set. With a prefix code, a receiver can
identify each word without requiring a special marker between words. The generalized
positional numeral system should be also continuous, which means that for any number
s from the system’s range (except for the maximal number), there exists a combination,
whose quantitative equivalent is equal to (s + 1). All these properties of the binomial
numeral systems will be established in the next section.

3. The Binomial System is Finite, Effective, Prefix, and Well-Defined. Formula
(1) shows that the binomial numeral system is finite and effective, because there exists a
numeration algorithm, which, after a finite of number of steps, converts the coding com-
bination Ai into its quantitative equivalent QAi. Now the following theorem establishes
the prefix property of the binomial numeral system. Its proof can be found in [12].

Theorem 3.1. [12] The k-binomial numeral system with n registers (where k < n) is a
prefix code system.

To show that the binomial system is well-defined, that is, two distinct coding combi-
nations cannot be equivalent to the same numerical value, we established the following
result (again, see, [12]).

Theorem 3.2. [12] The k-binomial system with n registers (where k < n) is well-defined.

Theorems 3.1 and 3.2 imply the following important corollary, which proves the com-
pactness of the binomial numeral systems.

Corollary 3.1. The k-binomial system with n registers (k < n) is compact, that is, its
range is complete and covers all the integers between 0 and (Ck

n − 1).

Remark 3.1. It is straightforward that for the k-binomial calculus system with n registers,
the range parameter P is equal to Ck

n.

4. Algorithms Generating Binomial Combinations. Table 1 contains the binomial
combinations and their quantitative equivalents for the k-binomial system with n registers,
where n = 6 and k = 4. They are generated by the following algorithm:
Step 1. An initial combination A0 consisting of (n−k) zeros is composed and referred

to as a keyword.
Step 2. The digit 1 is put into the right end register, and zero is added to the right

side of it.
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Table 1. Binomial coding combinations of non-constant length (non-
uniform code)

Binomial word Its quantitative equivalent
00 0C4

5 + 0C4
4 = 0

010 0C4
5 + 1C4

4 + 0C3
3 = 1

0110 0C4
5 + 1C4

4 + 1C3
3 + 0C2

2 = 2
01110 0C4

5 + 1C4
4 + 1C3

3 + 1C2
2 + 0C1

1 = 3
01111 0C4

5 + 1C4
4 + 1C3

3 + 1C2
2 + 1C1

1 = 4
100 1C4

5 + 0C3
4 + 0C3

3 = 5
1010 1C4

5 + 0C3
4 + 1C3

3 + 0C2
2 = 6

10110 1C4
5 + 0C3

4 + 1C3
3 + 1C2

2 + 0C1
1 = 7

10111 1C4
5 + 0C3

4 + 1C3
3 + 1C2

2 + 1C1
1 = 8

1100 1C4
5 + 1C3

4 + 0C2
3 + 0C2

2 = 9
11010 1C4

5 + 1C3
4 + 0C2

3 + 1C2
2 + 0C1

1 = 10
11011 1C4

5 + 1C3
4 + 0C2

3 + 1C2
2 + 1C1

1 = 11
11100 1C4

5 + 1C3
4 + 1C2

3 + 0C1
2 + 0C1

1 = 12
11101 1C4

5 + 1C3
4 + 1C2

3 + 0C1
2 + 1C1

1 = 13
1111 1C4

5 + 1C3
4 + 1C2

3 + 1C1
2 = 14

Step 3. Step 2 is repeated while the number of 1’s in the coding word is less than
k − 1. If the number of 1’s is equal to k − 1, then go to Step 4.

Step 4. If the right end position contains zero, we replace it with 1. Go to Step 5.
Step 5. Check the number of 1’s in the coding combination: if it equals k but the 1’s

do not occupy the first k registers counted from left to right, go to Step 6. Otherwise,
i.e., if the 1’s occupy the first k registers counted from left to right, then STOP: all the
combinations have been generated.

Step 6. Update the keyword A0 by putting 1 as a prefix before the beginning of the
keyword (i.e., its left end). If the total number of 1’s in the keyword is less than k, go to
Step 2.

The binomial systems find various important applications, in which the following use-
ful features are exploited: (i) the binomial systems are noise-proof in the information
transmission, processing, and storage; (ii) they are able to search, generate and numerate
coding combinations with a constant weight; (iii) they can be used to construct noise-proof
digital devices.

To detect errors with the aid of binomial coding combinations, they should be completed
with zeros to obtain uniform (n− 1)-digital binomial coding words given in Table 2.

The main tokens of errors in a binomial coding combination are either the number of 1’s
being greater than k, or the number of zeros exceeding (n− k). The principal feature of
the binomial noise-proof code is its ability to detect errors while processing information.
This feature allows one to arrange the throughout control in the information processing
channels involving the digital devices.

Generation of binomial coding combinations with a constant weight. Next,
Table 3 shows a transformation of binomial coding combinations to coding words with
a constant weight: this is done by adding (to the right end) either 1’s if the binomial
combination contains (n− k) zeros, or adding zeros if the combination comprises k digits
1, until the combination’s length reaches n.

Each binomial combination (column 2 of Table 3) has the corresponding combination
with the constant weight (column 3 of Table 3), hence the former is a compressed image
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Table 2. Binomial coding combinations of a constant length (uniform code)

NN Binomial word Binomial uniform word
0 00 00000
1 010 01000
2 0110 01100
3 01110 01110
4 01111 01111
5 100 10000
6 1010 10100
7 10110 10110
8 10111 10111
9 1100 11000
10 11010 11010
11 11011 11011
12 11100 11100
13 11101 11101
14 1111 11110

Table 3. Binomial coding combinations of a constant weight

NN Binomial word Binomial constant weight word
0 00 001111
1 010 010111
2 0110 011011
3 01110 011101
4 01111 011110
5 100 100111
6 1010 101011
7 10110 101101
8 10111 101110
9 1100 110011
10 11010 110101
11 11011 110110
12 11100 111001
13 11101 111010
14 1111 111100

of the latter. If one needs to label a combination with the constant weight by some
traditional numeral system numbers (e.g., decimals of column 1 in Table 3), Formula (1)
has to be used. In the latter case, a compression of binomial numbers is completed.
Algorithms of search and generation of binomial combinations and those with constant

weights can be also found in [14]. Now we describe one of modifications of such algorithms
and prove its efficiency as follows. This method is based upon the fact that the range of
binomial numbers of length n and with parameter k (k < n) coincides with the range of
the constant weight coding combinations with k units among n registers. Therefore, the
formal description of the algorithm is as follows:
Step 1. Select an arbitrary non-uniform binomial coding combination.
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Step 2. If the coding combination ends with the digit 1, then put zeros into all
registers up to the right end (register n), which is considered as auxiliary. The thus
obtained combination ending with 0 will be the combination with the constant weight.

Step 3. If the coding combination ends with the digit 0, then set units (ones) into
all registers up to the right end (register n, or the auxiliary register). The thus created
combination ending with 1 will be the combination with the constant weight.

Step 4. Verify that the thus obtained combination is indeed with the constant weight
by counting the total number of ones (units). If this number is k then the combination is
indeed a desired one. Select another non-uniform binomial coding combination and go to
Step 2. If all the non-uniform binomial coding combinations have been already selected,
then STOP: all the constant weight combinations of this range have been generated.

The above algorithm generates the complete range of the corresponding combinations
of the constant weight, which is confirmed by the following theorem.

Theorem 4.1. With the aid of the above algorithm, for every non-uniform binomial
combination of length n with parameter k (k < n), one obtains the unique corresponding
coding combination with (the constant) weight k and length n.

5. Binomial Numbers for k = 1 and k = n− 1. As an important particular case,
let us consider two special values of parameter k, namely, k = 1 and k = n− 1.

5.1. Binomial numbers for k = 1. In the first of these two cases, when k = 1, formulas
(1)-(3) reduce to the following:

QAi = aj−1C
1−qj
n−1 + · · ·+ a`C

1−q`+1

n−j+` + · · ·+ a0C
1−q1
n−j , (5)

where the following conditions must hold: either
q0 = 1,

j < n;

a0 = 1,

(6)

or 
n− 1 = j − q0,

q0 < 1;

a0 = 0.

(7)

Equation q0 = 1 from (6) immediately implies that the total number of units in the
binomial number is equal to 1. Moreover, since a0 = 1 by (6), then 0 is the unique position
having the digit 1, i.e., a0 = 1, while all the other positions aj−1, . . ., a1 will be filled in
with zero. In other words, then formula (5) has the form:

QAi = 0 · C1−qj
n−1 + · · ·+ 0 · C1−q`+1

n−j+` + · · ·+ 1 · C1−q1
n−j . (8)

Now because q1 = 0 (being the sum of all digits in the positions peceding position 0)
is evidently equal to zero, then finally the quantity function yields (in case k = 1) the
following rule:

QAi = C1
n−j = n− j. (9)

The latter can be interpreted as follows: in the binomial system with k = 1, the quanti-
tative equivalent QAi of a code combination Ai coincides with n − j, where j = j(i) is
the length of this code combination.

In addition, system (7) directly imples that q0 = 0, that is, the number of units in such a
combination is zero. In other words, constraints (7) generate only one code combination
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with n − 1 positions, each of which is occupied by zero. Therefore, the quantitative
equivalent of such a combination is zero, too:

QAi = 0 · C1−qj
n−1 + · · ·+ 0 · C1−q`+1

n−j+` + · · ·+ 0 · C1−q1
n−j = 0. (10)

To resume, the function of quantitative equivalent for the binomial system with k = 1
has the following simplified form:

QAi =

{
0, if q0 = 0;

n− j, if q0 = 1.
(11)

Example 5.1. For n = 5 and k = 1, one has the following binomial system.

Table 4. Quantitative equivalents for binomial coding combinations for
k = 1

QAi Binomial word Binomial uniform word Binomial constant weight word
0 0000 0000 00001
1 0001 0001 00010
2 001 0010 00100
4 01 0100 01000
5 1 1000 10000

5.2. Binomial numbers for k = n− 1. Now consider another extremum, that is, the
binomial system with k = n− 1. For this particular case, system (2) transforms into the
following system of equations: 

q0 = n− 1,

j = n− 1;

a0 = 1,

(12)

which evidently allows only one code combination of length n − 1 containing ones in all
positions. Therefore, the quantitative equivalent to this combination is calculated by the
formula

QAi = 1 · C1−qj
n−1 + · · ·+ 1 · C1−q`+1

n−j+` + · · ·+ 1 · C1−q1
n−j = n− 1. (13)

In its turn, constraints (3) are reduced to the form
q0 = j − 1,

1 ≤ q0 ≤ n− 1;

a0 = 0.

(14)

The latter means that all code combinations satisfying (14) will always comprise j − 1
positions filled in by ones; hence, only one position will accept the zero value. According
to (14), this is the rightest (number zero) position. Therefore, the quantitative equivalent
values function will be of the kind:

QAi = 1 · C1−qj
n−1 + · · ·+ 1 · C1−q`+1

n−j+` + · · ·+ 0 · C1−q1
n−j = 1 · (j − 1) = j − 1. (15)

Example 5.2. For n = 5 and k = n− 1, one obtains the following binomial system.
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Table 5. Quantitative equivalents for binomial coding combinations for
k = n− 1

QAi Binomial word Binomial uniform word Binomial constant weight word
0 0 0000 01111
1 10 1000 10111
2 110 1100 11011
4 1110 1110 11101
5 1111 1111 11110

6. Conclusion. The binomial numbers are a useful tool for development of new bases
of fast and noise-proof digital devices, as well as in telecommunication systems with the
aim of construction of the coding and decoding algorithms. The systems using binomial
numbers are characterized by the enhanced transmission speed, noise-and-secrecy stability
and reliability.

The principal result of the paper is the additional analysis of the binomial numeral
systems, and the improved algorithm of creating the binomial numbers. Based upon this
algorithm, we develop a synthesis of binomial numbers containing no more than one unit
(alternatively, no more than one zero).

In more detail, in this paper, we have described the error-detecting binomial numeral
systems capable of transmitting, processing and storing information. The systems can also
generate and numerate combinatorial configurations, for example, coding words with a
constant weight, as well as compositions, combinations with repetitions, etc. The binomial
systems and codes studied in Section 5 with k = 1 and k = n−1 are especially redundant
and hence extremely noise-proof. Moreover, they boast with very easy tools for the
detection and (sometimes even) correction of possible transmission errors. In addition,
counters, registors, summators and other digital devices based upon the binomial systems
and codes have enhanced speed of performance, which is often even more important than
the property of being noise-proof.

Apart from that, the binomial systems can be applied to produce efficient information
compression and defense. The latter is the goal of our further research, as well as the new
and promising concept of matrix binomial numbers.
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ported by the R&D Department (Cátedra de Investigación) CAT-174 of the Instituto
Tecnológico y de Estudios Superiores de Monterrey (ITESM), Campus Monterrey, and
by the SEP-CONACYT project CB-2008-01-106664, Mexico. Also, the work of the third
author was supported by the National Counsel of Science and Technology (CONACyT) of
Mexico as part of the project CB-2011-01-169765; PROMEP 103.5/11/4330, and PAICYT
464-10.

REFERENCES

[1] A. P. Stakhov, Golden Section Codes, Radio i Sviaz’, Moscow, 1984 (in Russian).
[2] Y. G. Stoyan and V. Z. Sokolovsky, Solution of Some Extremum Problems by the Method of Con-

tracting Neighborhoods, Naukova Dumka, Kiev, 1980 (in Russian).
[3] A. A. Borisenko, Numerical coding based upon combinatorial calculus systems, Proc. of International

Conference on Theoretical and Applied Aspects of Program Systems Development, Kiev, Ukraine,
pp.98-104, 2010 (in Russian).

[4] V. A. Amel’kin, Numerical Coding Methods, Nauka, Novosibirsk, 1986 (in Russian).
[5] E. M. Reingold, J. Nievergelt and N. Deo, Combinatorial Algorithms: Theory and Practice, Prentice

Hall, Englewood Cliffs, New Jersey, 1977.



66 A. A. BORISENKO, V. V. KALASHNIKOV, N. I. KALASHNYKOVA ET AL.

[6] A. A. Borisenko and I. A. Kulik, Binomial Coding, Sumy State University, Sumy, Ukraine, 2010 (in
Russian).

[7] J. A. Anderson, Discrete Mathematics with Combinatorics, Prentice Hall, Upper Saddle River, New
Jersey, 2001.

[8] A. A. Borisenko, Binomial Calculus and Counters, Sumy State University, Sumy, Ukraine, 2008 (in
Russian).

[9] R. M. M. Oberman, Counting and Counters, Wiley & Sons, Hoboken, New Jersey, 1981.
[10] V. P. Tsymbal, Information and Coding Theory, Vyshaya Shkola, Kiev, 1977 (in Russian).
[11] I. V. Kuz’min and V. A. Kedrus, A Basic Theory of Information and Coding, Vyshaya Shkola, Kiev,

1977 (in Russian).
[12] A. A. Borisenko, V. V. Kalashnikov and N. I. Kalashnykova, Binomial calculus: Advantages and

prospects, ICIC Express Letters, vol.2, no.1, pp.123-130, 2008.
[13] A. A. Borisenko, Introduction to the Theory of Binomial Calculus, Universitetskaya Kniga, Sumy,

Ukraine, 2004 (in Russian).
[14] A. A. Borisenko, Binomial Calculus: Theory and Applications, Universitetskaya Kniga, Sumy,

Ukraine, 2004 (in Russian).
[15] A. A. Borisenko, A numeral system wth the binomial base and binary alphabet, Deposited at VINITI,

Moscow, no.90982, 1982 (in Russian).
[16] D. E. Knuth, Art of Computer Programming, Vol. 2: Seminumerical Algorithms, 3rd Edition,

Addison-Wesley Professional, Boston, 1997.
[17] P. P. Kuvyrkov and F. E. Temnikov, Combinatorial Systems, Energy Editorial (Energia), Moscow,

1975 (in Russian).
[18] A. A. Borisenko, I. L. Puz’ko and L. A. Stetsenko, Counter of Impulses, USSR Author’s Certificate

of Invention, No. 1077054.
[19] A. A. Borisenko and G. V. Kuno, Counter of Impulses, USSR Author’s Certificate of Invention, No.

1150761.


