УДК 539.3

КП № госрегистрации 0109U004117 Инв. №

Министерство образования и науки Украины Сумской Государственный университет (СумГУ) 40007, г. Сумы, ул. Римского-Корсакова, 2; тел. 33-40-49, <u>info@sci.sumdu.edu.ua</u>

УТВЕРЖДАЮ Проректор по научной работе д. ф.-м. н., профессор ______А.Н. Черноус

ОТЧЕТ

ОБ НАУЧНО-ИССЛЕДОВАТЕЛЬСКОЙ РАБОТЕ ИССЛЕДОВАНИЕ ГАРМОНИЧЕСКИХ КОЛЕБАНИЙ УПРУГИХ ТЕЛ С ЦИЛИНДРИЧЕСКИМИ НЕОДНОРОДНОСТЯМИ (заключительный)

Начальник НИЧ к.ф.-м.н., с.н.с.

Руководитель НИР к.ф.-м.н., доцент кафедры МСС

Д.И. Курбатов

А.М. Назаренко

2010

Рукопись закончена 20 декабря 2010 г. Результаты этой работы рассмотрены научным советом СумГУ, протокол от 2010.12.24 №5 Доцент каф. МСС

Аспирант каф. МСС

2010.12.20

2010.12.20

Назаренко А.М. (Вступ, Раздел 1, Выводы) Ложкин А.М. (Раздел 1.4, 1.6, Выводы)

РЕФЕРАТ

Отчет об НИР: 41 с., 16 рис., 56 формул, 18 источников.

Объект исследования – продольные и поперечные волны на периодических решетках в условиях плоской деформации.

Цель работы – компьютерное моделирование решеток, состоящих из отверстий и включений, равноудаленных друг от друга и ориентированных параллельно фронту падающей продольной или поперечной волны

Методы исследования – методы сингулярных интегральных уравнений.

Исследованы периодические задачи дифракции гармонических продольных и поперечных волн на решетках, составленных из цилиндрических полостей и различного типа включений в условиях плоской деформации.

Развивается подход, основанный на методе сингулярных интегральных уравнений, который заключается в построении интегральных представлений амплитуд перемещений, автоматически удовлетворяющих уравнениям движения плоской деформации, условиям периодичности и излучения на бесконечности.

Обосновывается выбор дополнительных условий, необходимых для однозначной разрешимости сингулярных интегральных уравнений первого рода.

Численная реализация построенных алгоритмов проводится методами дискретных особенностей и механических квадратур.

Сравнение полученных результатов подтверждает эффективность этих методов.

СИНГУЛЯРНЫЕ ИНТЕГРАЛЬНЫЕ УРАВНЕНИЯ, ДОПОЛНИТЕЛЬНЫЕ УСЛОВИЯ, ЧИСЛЕННАЯ РЕАЛИЗАЦИЯ, МЕТОД ДИСКРЕТНЫХ ОСОБЕННОСТЕЙ, МЕТОД МЕХАНИЧЕСКИХ КВАДРАТУР.

СОДЕРЖАНИЕ

ВВЕДЕНИЕ
1 ДИФРАКЦИЯ ПРОДОЛЬНЫХ И ПОПЕРЕЧНЫХ ВОЛН НА ПЕРИОДИЧЕСКИХ
РЕШЕТКАХ В УСЛОВИЯХ ПЛОСКОЙ ДЕФОРМАЦИИ6
1.1 Постановка задач дифракции плоских гармонических волн на периодических
решетках
1.2 Матрица Грина периодической задачи 8
1.3 Интегральные представления амплитуд перемещений дифрагированного
волнового поля
1.4 Сингулярные интегральные уравнения первого рода 17
1.5 Удовлетворение граничных условий по напряжениям
1.6 Численные результаты
ВЫВОДЫ
ПЕРЕЧЕНЬ ССЫЛОК

введение

Современные вычислительные комплексы в сочетании с программными системами, базирующимися на хорошо обусловленных алгоритмах, позволяют высокоэффективно моделировать напряженно-деформированное состояние сред с усложненными свойствами. Однако вопрос автоматизированного синтеза приложений, гибко перенастраиваемых в зависимости от изменения конфигурации Большинство механических систем, практически не изучен. исследований посвящено развитию метода конечных элементов. Однако существуют иные подходы, позволяющие существенно экономить вычислительные ресурсы и повышать тем самым точность вычислений. Поэтому при рассмотрении вопроса проектирования инструментальных программных средств, позволяющих синтезировать И сопровождать приложения (моделирующие динамическое поведение сложных механических систем), необходимо проанализировать именно эти методики решения задач механики сплошных сред.

Для анализа ресурсов конструкций, содержащих значительное число неоднородностей и работающих под воздействием динамических нагрузок, исследуют взаимодействие волн перемещений и напряжений в упругой среде с отверстиями, включениями, трещинами или линейными вставками. Поэтому изучение дифракции упругих волн на системах произвольных неоднородностей является вопросом важным и актуальным. Однако вследствие необходимости привлечения больших объемов вычислений и значительных ресурсов цифровой памяти такие задачи исследованы мало. В связи с этим особое значение приобретают эффективные параллельные алгоритмы, в основе которых лежат обоснованные аналитические методы. Для решения плоских и антиплоских задач теории дифракции большой эффективностью обладает метод интегральных уравнений.

1 ДИФРАКЦИЯ ПРОДОЛЬНЫХ И ПОПЕРЕЧНЫХ ВОЛН НА ПЕРИОДИЧЕСКИХ РЕШЕТКАХ В УСЛОВИЯХ ПЛОСКОЙ ДЕФОРМАЦИИ 1.1 Постановка задач дифракции плоских гармонических волн на периодических решетках

Рассмотрим неограниченную упругую среду с плотностью ρ_1 и коэффициентами Ламе λ_1 , μ_1 , которая содержит 2*d* - периодическую вдоль оси o_{X_1} систему цилиндров с образующими, параллельными оси o_{X_3} . Поперечные сечения цилиндров ограничены замкнутыми контурами типа Ляпунова, и в основную полосу периодов попадает только один цилиндр. Пусть D_2 – поперечное сечение такого цилиндра, ограниченное замкнутым контуром *L*. Положительное направление на замкнутых контурах периодической решетки выбираем так, чтобы при движении вдоль них матрица (область D_1) оставалась слева. В качестве возбуждающей нагрузки, действующей на периодическую структуру (рис. 1.1), выбираем излучающуюся из бесконечности гармоническую (зависимость от времени $e^{-i\omega t}$) продольную волну (*P* – случай)

$$U_1^{(0)} = 0, \quad U_2^{(0)} = \tau_1 e^{-i\gamma_1^{(1)}x_2}, \quad \tau_1 = const$$
 (1.1)

или поперечную волну (SV-случай)

Рисунок. 1.1 – Периодическая решетка под воздействием плоской гармонической волны

Цилиндры могут быть полостями, неподвижными, подвижными жесткими или упругими включениями. В случае упругих волокон считаем, что они имеют плотность ρ_2 и коэффициенты Ламе λ_2 , μ_2 .

Взаимодействуя с периодической решеткой, набегающая волна (1.1) или (1.2) приводит к возникновению отраженных продольных и поперечных волн. Отраженное волновое поле перемещений $(U_1^{(1)}, U_2^{(1)})'$ в области $D_1(k=1)$ должно удовлетворять уравнениям движения плоской деформации

$$(\lambda_{k}+2\mu_{k})\frac{\partial^{2}U_{1}^{(k)}}{\partial x_{1}^{2}}+\mu_{k}\frac{\partial^{2}U_{1}^{(k)}}{\partial x_{2}^{2}}+(\lambda_{k}+\mu_{k})\frac{\partial^{2}U_{2}^{(k)}}{\partial x_{1}\partial x_{2}}+\rho_{k}\omega^{2}U_{1}^{(k)}=0,$$
(1.3)

$$\mu_{k} \frac{\partial^{2} U_{2}^{(k)}}{\partial x_{1}^{2}} + (\lambda_{k} + 2\mu_{k}) \frac{\partial^{2} U_{2}^{(k)}}{\partial x_{2}^{2}} + (\lambda_{k} + \mu_{k}) \frac{\partial^{2} U_{1}^{(k)}}{\partial x_{1} \partial x_{2}} + \rho_{k} \omega^{2} U_{2}^{(k)} = 0.$$

Кроме того, амплитуды перемещений $U_1^{(1)}$ и $U_2^{(1)}$ должны обеспечивать выполнение условий излучения на бесконечности, т. е. представлять собой расходящиеся волны (или суперпозицию расходящихся волн).

В случае периодической системы упругих включений возникают также проходящие внутрь цилиндров продольные и поперечные волны. Компоненты вектора амплитуд перемещений $(U_1^{(2)}, U_2^{(2)})'$ проходящего волнового поля удовлетворяют уравнениям (6.3), если в них положить k=2 (область D_2).

1. На границе упругого включения рассматриваем условия контакта типа склейки – непрерывность перемещений и напряжений на *L*:

$$\left(U_m^{(1)} + U_m^{(0)}\right)_{z \to \zeta_0} = \left(U_m^{(2)}\right)_{z \to \zeta_0}, \left(S_m^{(1)} + S_m^{(0)}\right)_{z \to \zeta_0} = \left(S_m^{(2)}\right)_{z \to \zeta_0}, \ m = 1, 2.$$
(1.4)

Здесь компоненты вектора амплитуд напряжений $\mathbf{S} = (S_1, S_2)'$ на*L* выражаются через компоненты тензора амплитуд напряжений $\sigma_{11}, \sigma_{22}, \sigma_{12}$.

2. На границе неподвижного включения *D*₂ перемещения равны нулю, т. е.

$$\left(U_{m}^{(1)}+U_{m}^{(0)}\right)_{z\to\zeta_{0}}=0, \quad m=1, 2.$$
 (1.5)

3. Если *D*₂ – подвижное жесткое включение, то предполагаем, что включение перемещается и поворачивается вместе с матрицей:

$$\left(U_1^{(1)} + U_1^{(0)} \right)_{z \to \zeta_0} = B_1 - \omega_0 \eta_0,$$

$$\left(U_2^{(1)} + U_2^{(0)} \right)_{z \to \zeta_0} = B_2 + \omega_0 \xi_0, \quad \zeta_0 = \xi_0 + i \eta_0 \in L.$$

$$(1.6)$$

Амплитуды поступательного движения *B*₁, *B*₂ и амплитуда жесткого поворота *ω*₀ включения *D*₂ определяются из уравнений поступательного и вращательного движений жесткого включения:

$$\int_{L} S_{m} ds_{0} = -q B_{m}, \quad q = \omega^{2} \rho_{e} S_{e}, \quad m = 1, 2, \quad (1.7)$$

$$\int_{L} (S_1(\eta_0 - x_{20}) - S_2(\xi_0 - x_{10})) ds_0 = -\omega^2 J \,\omega_0.$$
(1.8)

Здесь ρ_{e} – плотность, s_{e} – площадь, J – момент инерции включения D_{2} относительно произвольной точки $A(x_{10}, x_{20})$. Соотношения (1.7), (1.8) следует использовать в качестве дополнительных условий, необходимых для определения неизвестных постоянных B_{1} , B_{2} и ω_{0} , фигурирующих в граничных равенствах (1.6).

4.Если D_2 – полость, то на *L* равны нулю напряжения S_1 и S_2 :

$$\left(S_m^{(1)} + S_m^{(0)}\right)_{z \to \zeta_0} = 0, \quad m = 1, 2.$$
 (1.9)

Следуя принятой методике будем рассматривать краевую задачу (1.4). Другие краевые задачи будут вытекать из нее как частные случаи.

1.2 Матрица Грина периодической задачи

Рассмотрим колебания плоскости под действием периодической системы гармонических источников, сосредоточенных в точках (ξ +2*ld*, η), *l*=0, ±1, ±2, ... и направленных вдоль оси O_{x_1} (1-ое состояние) или вдоль оси O_{x_2} (2-ое состояние). Пусть G_{11}, G_{21} и G_{12}, G_{22} – компоненты амплитуд перемещений 1-го и 2-го состояний соответственно, которые образуют матрицу Грина периодической задачи (зависимость от времени $e^{-i\omega t}$).

Определим периодическое фундаментальное решение динамической задачи следующим образом:

$$G = \frac{G_1 - G_2}{\gamma_2^2 - \gamma_1^2},\tag{1.10}$$

$$\Delta G_{m} + \gamma_{m}^{2} G_{m} = c \sum_{l=-\infty}^{\infty} \delta(x_{1} - \xi - 2ld, x_{2} - \eta), \ c = -\frac{1}{\mu(\lambda + 2\mu)},$$
(1.11)

где λ и μ – коэффициенты Ламе среды; $\gamma_m = \omega/c_m$ – волновые числа (m = 1, 2); c_1 и c_2 – скорости продольной и поперечной волн.

Учитывая выражение для периодической функции источника уравнения Гельмгольца, запишем функцию *G* (1.10) в виде

$$G(P,Q) = \frac{c}{2di(\gamma_{2}^{2} - \gamma_{1}^{2})} \sum_{l=0}^{\infty} \left(\frac{e^{i\lambda_{ll}|x_{2}-\eta|}}{\lambda_{ll}} - \frac{e^{i\lambda_{2l}|x_{2}-\eta|}}{\lambda_{2l}}\right) \frac{\cos\alpha_{l}(x_{1}-\xi)}{1+\delta_{l0}}, \quad (1.12)$$
$$\alpha_{l} = \frac{\pi l}{d}, \; \lambda_{kl} = \sqrt{\gamma_{k}^{2} - \alpha_{l}^{2}}, \; \gamma_{k} > \alpha_{l}; \; \lambda_{kl} = i\sqrt{\alpha_{l}^{2} - \gamma_{k}^{2}}, \; \gamma_{k} < \alpha_{l}, \; k = 1, 2.$$

Здесь $P(x_1, x_2)$ – точка области, в которой вычисляется функция G; $Q(\xi, \eta)$ – точка приложения сосредоточенного источника в основном периоде.

При указанном в (1.12) выборе знаков для λ_{kl} поле, порождаемое периодической системой источников, носит характер расходящихся волн, что соответствует условиям излучения на бесконечности. Отметим также, что функция *G* (1.12) в точке *P* = *Q* характеризуется разложением

$$G = \frac{c}{8\pi} r^{2} \ln r + \dots, \qquad (1.13)$$
$$r = |z - \zeta|, \quad z = x_{1} + ix_{2}, \quad \zeta = \xi + i\eta.$$

Если функция G (1.10) определена согласно (1.12), то компоненты матрицы Грина G_{mn} (*m*, *n* = 1, 2) могут быть вычислены следующим образом

$$G_{11} = \mu \frac{\partial^2 G}{\partial x_1^2} + (\lambda + 2\mu) \frac{\partial^2 G}{\partial x_2^2} + \rho \omega^2 G,$$

$$G_{22} = \mu \frac{\partial^2 G}{\partial x_2^2} + (\lambda + 2\mu) \frac{\partial^2 G}{\partial x_1^2} + \rho \omega^2 G,$$

$$G_{12} = G_{21} = -(\lambda + \mu) \frac{\partial^2 G}{\partial x_1 \partial x_2}.$$
(1.14)

Подстановка (1.12) в (1.14) дает:

$$G_{11} = h \sum_{l=0}^{\infty} \left(\frac{\alpha_l^2}{\lambda_{1l}} e^{i\lambda_{1l}|x_2 - \eta|} + \lambda_{2l} e^{i\lambda_{2l}|x_2 - \eta|} \right) \frac{\cos \alpha_l \left(x_1 - \xi\right)}{1 + \delta_{l0}},$$

$$G_{22} = h \sum_{l=0}^{\infty} \left(\frac{\alpha_l^2}{\lambda_{2l}} e^{i\lambda_{2l}|x_2 - \eta|} + \lambda_{1l} e^{i\lambda_{1l}|x_2 - \eta|} \right) \frac{\cos \alpha_l \left(x_1 - \xi\right)}{1 + \delta_{l0}},$$

$$G_{12} = G_{21} = ih \operatorname{sign} \left(x_2 - \eta\right) \sum_{l=1}^{\infty} \alpha_l \left(e^{i\lambda_{1l}|x_2 - \eta|} - e^{i\lambda_{2l}|x_2 - \eta|} \right) \sin \alpha_l \left(x_1 - \xi\right),$$

$$h = \frac{c(\lambda + \mu)}{2di(\gamma_2^2 - \gamma_1^2)}.$$
(1.15)

Вычислим также необходимые в дальнейшем следующие комбинации компонент матрицы Грина (суммирование по n = 1, 2):

$$G_{11} + G_{22} = h \sum_{l=0}^{\infty} \frac{\alpha_l^2 + \lambda_{nl}^2}{\lambda_{nl}} e^{i\lambda_{nl}|x_2 - \eta|} \frac{\cos \alpha_l (x_1 - \xi)}{1 + \delta_{l0}},$$

$$G_{11} - G_{22} \pm 2iG_{12} = h \left(\sum_{l=0}^{\infty} (-1)^{n-1} \frac{\alpha_l^2 - \lambda_{nl}^2}{\lambda_{nl}} e^{i\lambda_{nl}|x_2 - \eta|} \frac{\cos \alpha_l (x_1 - \xi)}{1 + \delta_{l0}} \pm 2 \operatorname{sign} (x_2 - \eta) \sum_{l=1}^{\infty} (-1)^n \alpha_l e^{i\lambda_{nl}|x_2 - \eta|} \sin \alpha_l (x_1 - \xi).$$
(1.16)

Присутствующие в (1.15) ряды, соответствующие G_{11} и G_{22} , в точке приложения сосредоточенного источника (P = Q) расходятся (общие члены рядов ведут себя как). Для выделения логарифмической особенности и ускорения сходимости функциональных рядов-остатков представим фундаментальное решение (1.12) динамической задачи в виде

$$G = G_0 + (G - G_0), \tag{1.17}$$

где _{G₀} – периодическое фундаментальное решение бигармонического уравнения

$$\Delta^{2}G_{0} = c \sum_{l=-\infty}^{\infty} \delta(x_{1} - \xi - 2ld, x_{2} - \eta), \qquad (1.18)$$

что соответствует статической задаче ($\omega = 0$). Оно имеет вид

$$G_{0}(P,Q) = \frac{c}{4d} \left(\sum_{l=1}^{\infty} \left(\frac{1}{\alpha_{l}^{3}} + \frac{|x_{2} - \eta|}{\alpha_{l}^{2}} \right) e^{-\alpha_{l}|x_{2} - \eta|} \cos \alpha_{l} \left(x_{1} - \xi \right) + \frac{1}{6} |x_{2} - \eta|^{3} \right).$$
(1.19)

Элементы матрицы Грина статической задачи могут быть получены по формулам (1.14) при $\omega = 0$. Для них получены следующие выражения:

$$G_{11}^{0} = h_{0} \left(\sum_{l=1}^{\infty} \left(\frac{\chi}{\alpha_{l}} - |x_{2} - \eta| \right) e^{-\alpha_{l}|x_{2} - \eta|} \cos \alpha_{l} \left(x_{1} - \xi \right) - \frac{\chi + 1}{2} |x_{2} - \eta| \right),$$
(1.20)

$$G_{22}^{0} = h_{0} \left(\sum_{l=1}^{\infty} \left(\frac{\chi}{\alpha_{l}} + |x_{2} - \eta| \right) e^{-\alpha_{l}|x_{2} - \eta|} \cos \alpha_{l} \left(x_{1} - \xi \right) - \frac{\chi - 1}{2} |x_{2} - \eta| \right),$$
(1.20)

$$G_{12}^{0} = G_{21}^{0} = h_{0} \left(x_{2} - \eta \right) \sum_{l=1}^{\infty} e^{-\alpha_{l}|x_{2} - \eta|} \sin \alpha_{l} \left(x_{1} - \xi \right),$$

$$h_{0} = -\frac{c \left(\lambda + \mu \right)}{4d}, \quad \chi = \frac{\lambda + 3\mu}{\lambda + \mu} = 3 - 4\nu,$$

где *v* – коэффициент Пуассона среды.

Необходимые комбинации компонент матрицы Грина статической задачи записываются следующим образом:

$$G_{11}^{0} + G_{22}^{0} = h_0 \left(\sum_{l=1}^{\infty} \frac{2\chi}{\alpha_l} e^{-\alpha_l |x_2 - \eta|} \cos \alpha_l (x_1 - \xi) - \chi |x_2 - \eta| \right),$$

$$G_{11}^{0} - G_{22}^{0} \pm 2iG_{12}^{0} = -2h_0 |x_2 - \eta| \left(\sum_{l=1}^{\infty} e^{-\alpha_l |x_2 - \eta|} \cos \alpha_l (x_1 - \xi) + \frac{1}{2} \mp \right),$$

$$\mp i \, sign(x_2 - \eta) \sum_{l=1}^{\infty} e^{-\alpha_l |x_2 - \eta|} \sin \alpha_l (x_1 - \xi).$$

(1.21)

Суммирование функциональных рядов в (1.20) дает:

$$G_{11}^{0} = -h_{0} \left(\frac{\chi d}{\pi} \operatorname{Re}\left(\ln 2\sin\frac{\pi(z-\zeta)}{2d}\right) - \frac{x_{2}-\eta}{2} \operatorname{Im}\left(\operatorname{ctg}\frac{\pi(z-\zeta)}{2d}\right)\right),$$

$$G_{22}^{0} = -h_{0} \left(\frac{\chi d}{\pi} \operatorname{Re}\left(\ln 2\sin\frac{\pi(z-\zeta)}{2d}\right) + \frac{x_{2}-\eta}{2} \operatorname{Im}\left(\operatorname{ctg}\frac{\pi(z-\zeta)}{2d}\right)\right), \qquad (1.22)$$

$$G_{12}^{0} = G_{21}^{0} = h_{0} \frac{x_{2}-\eta}{2} \operatorname{Re}\left(\operatorname{ctg}\frac{\pi(z-\zeta)}{2d}\right).$$

Для комбинаций (1.21) находим

$$G_{11}^{0} + G_{22}^{0} = -2h_{0}\frac{\chi d}{\pi}\operatorname{Re}\left(\ln 2\sin\frac{\pi(z-\zeta)}{2d}\right),$$

$$G_{11}^{0} - G_{22}^{0} + 2iG_{12}^{0} = h_{0}i(x_{2}-\eta)\operatorname{ctg}\frac{\pi(\overline{z}-\overline{\zeta})}{2d},$$

$$G_{11}^{0} - G_{22}^{0} - 2iG_{12}^{0} = -h_{0}i(x_{2}-\eta)\operatorname{ctg}\frac{\pi(z-\zeta)}{2d}.$$
(1.23)

Анализ полученных равенств показывает, что в точке P = Q амплитуды G_{11}^0 , G_{22}^0 и их сумма $G_{11}^0 + G_{22}^0$ имеют логарифмическую особенность. Компоненты G_{12}^0, G_{21}^0 и комбинации $G_{11}^0 - G_{22}^0 \pm 2iG_{12}^0$ являются непрерывными функциями.

Выделение статических членов, которые суммируются в явном виде согласно (1.23), у комбинаций (1.16) за правилом (1.17) приводит к следующим равенствам для комбинаций $G_{11} + G_{22}$ и $G_{11} - G_{22} \pm 2iG_{12}$ (суммирование по n = 1, 2):

$$G_{11} + G_{22} = \frac{c(\lambda + \mu)}{2d} \left(\frac{\chi d}{\pi} \operatorname{Re} \left(\ln 2 \sin \frac{\pi(z - \zeta)}{2d} \right) + \frac{\gamma_n e^{i\gamma_n |x_2 - \eta|}}{2i \left(\gamma_2^2 - \gamma_1^2 \right)} - \frac{\chi}{2} |x_2 - \eta| + \\ + \sum_{l=1}^{\infty} \left(\frac{\gamma_n^2}{\gamma_2^2 - \gamma_1^2} \frac{e^{i\lambda_{nl} |x_2 - \eta|}}{i \,\lambda_{nl}} + \frac{\chi}{\alpha_l} e^{-\alpha_l |x_2 - \eta|} \right) \cos \alpha_l \left(x_1 - \xi \right) \right), \qquad (1.24)$$

$$G_{11} - G_{22} \pm 2iG_{12} = \frac{c(\lambda + \mu)}{2d} \left(\left\{ \frac{\frac{x_2 - \eta}{2i} ctg \frac{\pi(\overline{z} - \overline{\zeta})}{2d}}{-\frac{x_2 - \eta}{2i} ctg \frac{\pi(z - \zeta)}{2d}} \right\} + \frac{(-1)^n \gamma_n e^{i\gamma_n |x_2 - \eta|}}{2i \left(\gamma_2^2 - \gamma_1^2 \right)} - \\ - \frac{|x_2 - \eta|}{2} + \sum_{l=1}^{\infty} \left((-1)^n \frac{\lambda_{nl}^2 - \alpha_l^2}{\gamma_2^2 - \gamma_1^2} \frac{e^{i\lambda_{nl} |x_2 - \eta|}}{i \,\lambda_{nl}} - |x_2 - \eta| e^{-\alpha_l |x_2 - \eta|} \right) \cos \alpha_l \left(x_1 - \xi \right) \pm \\ \pm \frac{sign(x_2 - \eta)}{i} \sum_{l=1}^{\infty} \left((-1)^n \frac{2\alpha_l}{\gamma_2^2 - \gamma_1^2} e^{i\lambda_{nl} |x_2 - \eta|} - |x_2 - \eta| e^{-\alpha_l |x_2 - \eta|} \right) \sin \alpha_l \left(x_1 - \xi \right) \right).$$

Если в точке P = Q ряд, фигурирующий в выражении для $G_{11} + G_{22}$ в (1.16), расходился (общий член ряда ведет себя как 1/l), то соответствующий этой сумме функциональный ряд в (1.24) сходится равномерно и абсолютно: при $P \neq Q$ в силу присутствия затухающих экспонент, а при P = Q общий член ряда ведет себя как $1/l^3$.

Действительно, в случае P = Q при больших l имеем

$$-\frac{1}{\gamma_{2}^{2}-\gamma_{1}^{2}}\left(\frac{\gamma_{1}^{2}}{\sqrt{\alpha_{l}^{2}-\gamma_{1}^{2}}}+\frac{\gamma_{2}^{2}}{\sqrt{\alpha_{l}^{2}-\gamma_{2}^{2}}}\right)+\frac{\chi}{\alpha_{l}}=$$

$$=-\frac{\gamma_{1}^{2}\sqrt{\alpha_{l}^{2}-\gamma_{2}^{2}}+\gamma_{2}^{2}\sqrt{\alpha_{l}^{2}-\gamma_{1}^{2}}}{\left(\gamma_{2}^{2}-\gamma_{1}^{2}\right)\sqrt{\alpha_{l}^{2}-\gamma_{1}^{2}}\sqrt{\alpha_{l}^{2}-\gamma_{2}^{2}}}+\frac{\chi}{\alpha_{l}}\approx$$

$$\approx-\frac{\gamma_{1}^{2}\left(1-\frac{\gamma_{2}^{2}}{2\alpha_{l}^{2}}\right)+\gamma_{2}^{2}\left(1-\frac{\gamma_{1}^{2}}{2\alpha_{l}^{2}}\right)}{\left(\gamma_{2}^{2}-\gamma_{1}^{2}\right)\alpha_{l}}+\frac{\chi}{\alpha_{l}}=\frac{\gamma_{1}^{2}\gamma_{2}^{2}}{\gamma_{2}^{2}-\gamma_{1}^{2}}\cdot\frac{1}{\alpha_{l}^{3}}.$$
(1.25)

Здесь использовано равенство

$$\frac{\gamma_{2}^{2} + \gamma_{1}^{2}}{\gamma_{2}^{2} - \gamma_{1}^{2}} = \frac{\lambda + 3\mu}{\lambda + \mu} = \chi.$$
(1.26)

Таким образом, сумма $G_{11} + G_{22}$ в точке приложения сосредоточенного источника имеет логарифмическую особенность, соответствующую статическому случаю. Комбинации $G_{11} - G_{22} \pm 2iG_{12}$ в точке P = Q являются непрерывными функциями.

Отметим также, что в выражениях (1.24) присутствует суперпозиция конечного числа распространяющихся гармоник, для которых знаки фазовых и групповых скоростей совпадают. Этим обеспечивается выполнение условий излучения на бесконечности.

1.3 Интегральные представления амплитуд перемещений дифрагированного волнового поля

Как и в случае решеток, состоящих из совокупности конечного числа полостей и включений, интегральные представления амплитуд перемещений в случае дифракции плоских гармонических волн на периодической системе неоднородностей выберем в виде потенциалов типа простого слоя:

$$U_{1}^{(k)}(P) = \int_{L} \left(f_{1}^{(k)}(s) G_{11}^{(k)}(P,Q) + f_{2}^{(k)}(s) G_{12}^{(k)}(P,Q) \right) ds,$$

$$U_{2}^{(k)}(P) = \int_{L} \left(f_{1}^{(k)}(s) G_{21}^{(k)}(P,Q) + f_{2}^{(k)}(s) G_{22}^{(k)}(P,Q) \right) ds.$$
(1.27)

Здесь волновое поле перемещений вычисляется в точке $P(x_1, x_2)$, интегрирование проводится по точкам $Q(\xi, \eta) \in L$; значение k=1 отвечает случаю $P \in D_1$ (матрица), k=2 – случаю $P \in D_2$ (если D_2 – упругое включение); компоненты матрицы Грина $G_{1j}^{(k)}$ и $G_{2j}^{(k)}$ представляют собой амплитуды перемещений *j*-го состояния в областях $D_1(k=1)$ и $D_2(k=2)$ при действии периодической системы гармонических сосредоточенных сил, приложенных в точках ($\xi + 2ld$, η), $l = 0, \pm 1, \pm 2, ...$ и направленных вдоль оси Ox_1 (1-ое состояние) или вдоль оси Ox_2 (2-ое состояние). Эти функции Грина определяются в соответствии с формулами (1.15) при задании параметров матрицы (ρ_1, λ_1, μ_i) и упругих включений (ρ_2, λ_2, μ_2).

Введем в рассмотрение новые плотности

$$p_1^{(k)}(s) = f_1^{(k)}(s) + i f_2^{(k)}(s), \quad p_2^{(k)}(s) = f_1^{(k)}(s) - i f_2^{(k)}(s).$$
(1.28)

Тогда получим следующие интегральные представления комбинаций $U_1^{(k)} \pm i U_2^{(k)}$:

$$U_{1}^{(k)} + iU_{2}^{(k)} = \frac{1}{2} \int_{L} \left(p_{1}^{(k)}(s) \left(G_{11}^{(k)} + G_{22}^{(k)} \right) + p_{2}^{(k)}(s) \left(G_{11}^{(k)} - G_{22}^{(k)} + 2iG_{12}^{(k)} \right) \right) ds,$$

$$U_{1}^{(k)} - iU_{2}^{(k)} = \frac{1}{2} \int_{L} \left(p_{1}^{(k)}(s) \left(G_{11}^{(k)} - G_{22}^{(k)} - 2iG_{12}^{(k)} \right) + p_{2}^{(k)}(s) \left(G_{11}^{(k)} + G_{22}^{(k)} \right) \right) ds.$$
(1.29)

Выражения для комбинаций $G_{11}^{(k)} + G_{22}^{(k)}$ и $G_{11}^{(k)} - G_{22}^{(k)} \pm 2iG_{12}^{(k)}$, фигурирующих в (1.29), запишем в соответствии с (1.24), подставляя вместо значений параметров ρ , λ , μ значения ρ_k , λ_k , μ_k , которые отвечают параметрам матрицы (k=1) и упругих включений (k=2). Имеем (суммирование по n = 1, 2):

$$\begin{aligned} G_{11}^{(k)} + G_{22}^{(k)} &= h_k \left(\frac{\chi_k d}{\pi} Re\left(ln2sin \frac{\pi(z-\zeta)}{2d} \right) + r_n^{(k)} \frac{e^{t\gamma_n^{(k)}|x_2-\eta|}}{2i\gamma_n^{(k)}} - \frac{\chi_k}{2} |x_2 - \eta| + \\ &+ \sum_{l=1}^{\infty} (r_n^{(k)}) \frac{e^{t\lambda_{nl}^{(k)}|x_2-\eta|}}{i\lambda_{nl}^{(k)}} + \frac{\chi_k}{\alpha_l} e^{-a_l|x_2-\eta|} cos\alpha_1(x_1 - \xi) \right) \end{aligned}$$
(1.30)
$$G_{11}^{(k)} - G_{22}^{(k)} \pm 2iG_{12}^{(k)} = h_k \left\{ \frac{\left| \frac{x_2 - \eta}{2i} ctg \frac{\pi(\overline{z} - \overline{\zeta})}{2d} \right|}{-\frac{x_2 - \eta}{2i} ctg \frac{\pi(\overline{z} - \zeta)}{2d}} \right\} + (-1) * r_n^{(k)} \frac{e^{i\gamma_n^{(k)}|x_2-\eta|}}{2i\gamma_n^{(k)}} - \\ &- \frac{\left| \frac{x_2 - \eta}{2} \right|}{2} + \sum_{i=1}^{\infty} ((-1)^n t_{nl}^{(k)}) \frac{e^{i\lambda_{nl}^{(k)}|x_2-\eta|}}{i\lambda_{nl}^{(k)}} - \left| x_2 - \eta \right| e^{-a_i|x_2-\eta|} \right) cos\alpha_i(x_1 - \zeta) \pm \\ &\pm \frac{sign(x_2 - \eta)}{i} \sum_{i=1}^{\infty} (s_i^{(k)} (-1)^n e^{i\lambda_{nl}^{(k)}|x_2-\eta|} - \left| x_2 - \eta \right| e^{-a_i|x_2-\eta|} sin \alpha_i(x_1 - \zeta) \right), \\ \chi_k &= \frac{\lambda_k + 3\mu_k}{\lambda_k + \mu_k} = 3 - 4\nu_k, \ h_k &= -\frac{1}{(\chi_k + 1)\mu_k d}, \ s_l^{(k)} &= \frac{2\alpha_l}{\gamma_2^{(k)^2} - \gamma_1^{(k)^2}}, \\ r_n^{(k)} &= \frac{\gamma_n^{(k)^2}}{\gamma_2^{(k)^2} - \gamma_i^{(k)^2}}, \ t_{nl}^{(k)} &= \frac{\lambda_{nl}^{(k)^2}}{\gamma_2^{(k)^2} - \gamma_1^{(k)^2}}, \ \gamma_n^{(k)} &= \alpha_i, \\ \lambda_{nl}^{(k)} &= \sqrt{\gamma_2^{(k)^2} - \alpha_i^2}, \ \gamma_n^{(k)} > \alpha_i; \ \lambda_{nl}^{(k)} &= i\sqrt{\alpha_i^2 - \gamma_2^{(k)^2}}, \ \gamma_n^{(k)} < \alpha_i. \end{aligned}$$

Здесь v_k – коэффициент Пуассона, $c_1^{(k)}$ и $c_2^{(k)}$ – скорости продольной и поперечной волн в области D_k (k=1, 2).

Проведем параметризацию замкнутого контура L по формулам

$$\xi = \xi(\beta), \ \eta = \eta(\beta), \ \zeta = \xi + i\eta = \zeta(\beta),$$

$$\zeta(\beta + 2\pi) = \zeta(\beta), \ \beta \in [0, 2\pi]$$
(1.31)

и положим

$$p_n(\beta) = p_n(s(\beta))s'(\beta), \quad n = 1, 2.$$
 (1.32)

Получим значения комбинаций (6.29) на *L* в точке $\zeta_0 = \zeta(\beta_0) \in L$. Для этого подставим в (1.29) вместо $z \in D_k$ (k=1, 2) значение $\zeta_0 \in L$.

При этом учитываем, что

$$\operatorname{Re}\left(\ln 2\sin\frac{\pi(\zeta_{0}-\zeta)}{2d}\right) = \ln|2\sin\frac{\pi(\zeta_{0}-\zeta)}{2d}|, \qquad (1.33)$$
$$\lim_{\beta\to\beta_{0}}\left(\ln|2\sin\frac{\pi(\zeta_{0}-\zeta)}{2d}|-\ln|\sin\frac{\beta_{0}-\beta}{2}|\right) = \ln\frac{2\pi}{d}s'(\beta_{0}).$$

Таким образом, при $z = \zeta_0 \in L$ имеем (m = 1, 2):

$$U_{1}^{(k)} - (-1)^{m} i U_{2}^{(k)} = \frac{\chi_{k}}{(\chi_{k}+1)\mu_{k}} \frac{1}{2\pi} \int_{0}^{2\pi} p_{m}^{(k)}(\beta) \ln |\sin \frac{\beta - \beta_{0}}{2}| d\beta +$$

$$+ \int_{0}^{2\pi} (p_{1}^{(k)}(\beta) A_{m1}^{(k)}(\beta_{0}, \beta) + p_{2}^{(k)}(\beta) A_{m2}^{(k)}(\beta_{0}, \beta)) d\beta, \ \beta_{0} \in [0, 2\pi],$$

$$A_{11}^{(k)} = A_{22}^{(k)} = -\frac{h_{k}}{2} (\frac{\chi_{k}d}{\pi} (\ln |2\sin \frac{\pi(\zeta_{0} - \zeta)}{2d}| - \ln |\sin \frac{\beta - \beta_{0}}{2}|) +$$

$$+ \sum_{n=1}^{2} r_{n}^{(k)} \frac{e^{i\gamma_{n}^{(k)}|\eta_{0} - \eta|}}{2i\gamma_{n}^{(k)}} - \frac{\chi_{k}}{2} |\eta_{0} - \eta| +$$

$$+ \sum_{l=1}^{\infty} (\sum_{n=1}^{2} r_{n}^{(k)} \frac{e^{i\lambda_{nl}^{(k)}|\eta_{0} - \eta|}}{i\lambda_{nl}^{(k)}} + \frac{\chi_{k}}{\alpha_{l}} e^{-\alpha_{l}|\eta_{0} - \eta|}) \cos\alpha_{l} (\xi_{0} - \xi)),$$
(1.34)

$$\begin{cases} A_{12}^{(k)} \\ A_{21}^{(k)} \end{cases} = -\frac{h_k}{2} \left[\begin{cases} \frac{\eta_0 - \eta}{2i} ctg \frac{\pi(\overline{\zeta_0} - \overline{\zeta})}{2d} \\ -\frac{\eta_0 - \eta}{2i} ctg \frac{\pi(\zeta_0 - \zeta)}{2d} \end{cases} \right] + \sum_{n=1}^2 (-1)^n r_n^{(k)} \frac{e^{i\gamma_n^{(k)} |\eta_0 - \eta|}}{2i\gamma_n^{(k)}} - \frac{|\eta_0 - \eta|}{2} + \\ + \sum_{l=1}^\infty (\sum_{n=1}^2 (-1)^n t_{nl}^{(k)} \frac{e^{i\lambda_{nl} |\eta_0 - \eta|}}{i \lambda_{nl}} - |\eta_0 - \eta| e^{-\alpha_l |\eta_0 - \eta|}) \cos \alpha_l (\xi_0 - \xi) \mp \\ \mp i sign |\eta_0 - \eta| \sum_{l=1}^\infty (s_l^{(k)} \sum_{n=1}^2 (-1)^n e^{i\lambda_{nl} |\eta_0 - \eta|} - |\eta_0 - \eta| e^{-\alpha_l |\eta_0 - \eta|}) \sin \alpha_l (\xi_0 - \xi) \right].$$

Анализ формул (1.34) показывает, что удовлетворение граничных условий по перемещениям на контуре включений применительно к комбинациям $U_1 \pm i U_2$ приводит к интегральным уравнениям с логарифмической особенностью. С целью получения сингулярных интегральных уравнений первого рода интегральные уравнения с логарифмической особенностью следует продифференцировать по переменной β_0 . Необходимые дополнительные условия вытекают из выполнения граничных условий по перемещениям средними значениями перемещений *L*.

1.4 Сингулярные интегральные уравнения первого рода

Дифференцирование по переменной интегральных уравнений β_0 С логарифмической особенностью приводит к сингулярным интегральным уравнениям первого рода. В данном случае сингулярные интегралы будут возникать дифференцирования статической Поэтому В результате части. вначале дифференцируем по β_0 статические комбинации (1.23), используя при этом следующую формулу дифференцирования:

$$\frac{d}{d\beta_0} = \zeta_0' \frac{\partial}{\partial \zeta_0} + \overline{\zeta}_0' \frac{\partial}{\partial \overline{\zeta}_0}.$$
(1.35)

Имеем

$$\frac{d}{d\beta_{0}} \left(G_{11}^{0} + G_{22}^{0} \right) = -h_{0} \chi \operatorname{Re} \left(\zeta_{0}' ctg \, \frac{\pi(\zeta_{0} - \zeta)}{2d} \right),$$

$$\frac{d}{d\beta_{0}} \left(G_{11}^{0} - G_{22}^{0} + 2iG_{12}^{0} \right) = \frac{h_{0}}{2} \left(\zeta_{0}' ctg \, \frac{\pi(\overline{\zeta_{0}} - \overline{\zeta})}{2d} - \frac{\pi i}{2d} - \frac{\pi i}{d} \frac{\eta_{0} - \eta}{\sin^{2} \frac{\pi(\overline{\zeta_{0}} - \overline{\zeta})}{2d}} \right),$$

$$\frac{d}{d\beta_{0}} \left(G_{11}^{0} - G_{22}^{0} - 2iG_{12}^{0} \right) = \frac{h_{0}}{2} \left(\overline{\zeta_{0}'} ctg \, \frac{\pi(\zeta_{0} - \zeta)}{2d} - \frac{\pi i}{2d} - \frac{\pi i}{2d} - \frac{\pi i}{2d} - \frac{\pi i}{2d} \right),$$

$$\frac{d}{d\beta_{0}} \left(G_{11}^{0} - G_{22}^{0} - 2iG_{12}^{0} \right) = \frac{h_{0}}{2} \left(\overline{\zeta_{0}'} ctg \, \frac{\pi(\zeta_{0} - \zeta)}{2d} - \frac{\pi i}{2d} \right),$$

$$\frac{d}{d\beta_{0}} \left(ctg \, \frac{\pi(\zeta_{0} - \zeta)}{2d} + \frac{\pi i}{d} \, \frac{\eta_{0} - \eta}{\sin^{2} \frac{\pi(\zeta_{0} - \zeta)}{2d}} \right).$$

Здесь первая производная сингулярна в точке $\zeta = \zeta_0$, а следующие – непрерывны в этой точке. Например, для последней производной, используя эквивалентные и правило Лопиталя, находим:

$$\frac{d}{d\beta_{0}} \left(G_{11}^{0} - G_{22}^{0} - 2iG_{12}^{0} \right) \approx \frac{h_{0}}{2} \frac{2d}{\pi} \left(\frac{\overline{\zeta}_{0}'}{\zeta_{0} - \zeta} - \zeta_{0}' \left(\frac{1}{\zeta_{0} - \zeta} - \frac{(\zeta_{0} - \zeta) - (\overline{\zeta}_{0} - \overline{\zeta})}{(\zeta_{0} - \zeta)^{2}} \right) \right) = \\
= \frac{h_{0}d}{\pi} \frac{\zeta_{0}'(\overline{\zeta} - \overline{\zeta}_{0}) - \overline{\zeta}_{0}'(\zeta - \zeta_{0})}{(\zeta - \zeta_{0})^{2}} \xrightarrow{\beta \to \beta_{0}} \frac{h_{0}d}{\pi} \frac{\zeta_{0}'\overline{\zeta}' - \overline{\zeta}_{0}'\zeta'}{2\zeta_{0}'(\zeta - \zeta_{0})} \xrightarrow{\beta \to \beta_{0}} \frac{h_{0}d}{\pi} \frac{\zeta_{0}'\overline{\zeta}_{0}''}{2\zeta_{0}'(\zeta - \zeta_{0})} \xrightarrow{\beta \to \beta_{0}} (1.37)$$

Вычисление производной по β_0 функциональных рядов, фигурирующих в (6.34), следует осуществлять с помощью формулы

$$\frac{d}{d\beta_0} = \xi_0' \frac{\partial}{\partial \xi_0} + \eta_0' \frac{\partial}{\partial \eta_0}.$$
(1.38)

В результате приходим к следующим выражениям для производных по β_0 комбинаций амплитуд перемещений $U_1^{(k)} \pm i U_2^{(k)}$ (1.34):

$$\begin{aligned} \frac{d}{d\beta_{0}}(U_{1}^{(k)}+iU_{2}^{(k)}) &= \int_{0}^{2} \int_{0}^{(\mu_{1}(\beta)}(\beta)B_{11}^{(k)}(\beta_{0},\beta) + p_{2}^{(k)}(\beta)B_{12}^{(k)}(\beta_{0},\beta))d\beta, \end{aligned} \tag{1.39} \\ \frac{d}{d\beta_{0}}(U_{1}^{(k)}-iU_{2}^{(k)}) &= \int_{0}^{2} \int_{0}^{(\mu_{1}(\beta)}(\beta)B_{21}^{(k)}(\beta_{0},\beta) + p_{2}^{(k)}(\beta)B_{22}^{(k)}(\beta_{0},\beta))d\beta, \end{aligned} \tag{1.39} \\ B_{11}^{(k)} &= B_{22}^{(k)} &= \frac{h_{k}}{2}\left(\frac{\chi_{k}}{2}\operatorname{Re}(\zeta_{0}'ctg\frac{\pi(\zeta-\zeta_{0})}{2d}) + \right. \\ &+ \left. \left. + \zeta_{0}'\sum_{l=0}^{\infty}\alpha_{l}\left(\sum_{n=1}^{2}r_{n}^{(k)}\frac{e^{i\chi_{0}^{(k)}[\eta_{0}-\eta]}}{i\lambda_{n}^{(k)}} + \frac{\chi_{k}}{\alpha_{l}}e^{-\alpha_{l}[\eta_{0}-\eta]}\right)\sin\alpha_{l}(\xi_{0}-\xi) - \right. \\ &- \left. - \eta_{0}'sign(\eta_{0}-\eta)\sum_{l=0}^{\infty}(r_{n}^{(k)}e^{i\chi_{0}^{(k)}[\eta_{0}-\eta]} - \chi_{k}e^{-\alpha_{l}[\eta_{0}-\eta]})\cos\alpha_{l}(\xi_{0}^{(k)}-\xi)) \right. \\ &\left. \left\{ B_{21}^{(k)} \right\} = -\frac{h_{k}}{2t} \left\{ \frac{1}{2i}(\eta_{0}'ctg\frac{\pi(\zeta_{0}-\zeta)}{2d} - \frac{\pi}{2d}\zeta_{0}'\frac{\pi(\zeta_{0}-\zeta)}{\sin^{2}\frac{\pi(\zeta_{0}-\zeta)}{2d}}) \right\} - \\ &- \left. \left. - \frac{g_{0}'\sum_{l=1}^{\pi}\alpha_{l}(\sum_{n=1}^{2}(-1)^{n}t_{n}^{(l)}e^{i\chi_{0}^{(l)}[\eta_{0}-\eta]} - |\eta_{0}-\eta|e^{-\alpha_{l}[\eta_{0}-\eta]})\sin\alpha_{l}(\xi_{0}-\xi) + \right. \\ &+ \left. + \eta_{0}'sign(\eta_{0}-\eta)\sum_{l=0}^{\infty}(\sum_{n=1}^{2}(-1)^{n}t_{n}^{(l)}e^{i\chi_{0}^{(l)}[\eta_{0}-\eta]} - (1-\alpha_{l}|\eta_{0}-\eta|)e^{-\alpha_{l}[\eta_{0}-\eta]})\cos\alpha_{l}(\xi_{0}-\xi) + \\ &+ \left. + \eta_{0}'sign(\eta_{0}-\eta)\sum_{l=0}^{\infty}(\sum_{n=1}^{2}(-1)^{n}t_{n}^{(l)}e^{i\chi_{0}^{(l)}[\eta_{0}-\eta]} - (1-\alpha_{l}|\eta_{0}-\eta|)e^{-\alpha_{l}[\eta_{0}-\eta]})\cos\alpha_{l}(\xi_{0}-\xi) + \\ &+ \left. + i\chi_{0}'sign(\eta_{0}-\eta)\sum_{l=0}^{\infty}\alpha_{l}(s_{l}^{(k)}\sum_{n=1}^{2}(-1)^{n}e^{i\chi_{0}^{(l)}[\eta_{0}-\eta]} - (1-\alpha_{l}|\eta_{0}-\eta|)e^{-\alpha_{l}[\eta_{0}-\eta]})\cos\alpha_{l}(\xi_{0}-\xi) + \right. \\ &+ \left. i\chi_{0}'s\sum_{l=1}^{\infty}(s_{l}^{(l)}\sum_{n=1}^{2}(-1)^{n}t_{n}^{(l)}e^{i\chi_{0}^{(l)}[\eta_{0}-\eta]} - (1-\alpha_{l}[\eta_{0}-\eta])e^{-\alpha_{l}[\eta_{0}-\eta]})\cos\alpha_{l}(\xi_{0}-\xi) + \right. \\ &+ \left. i\chi_{0}'s\sum_{l=1}^{\infty}(s_{l}^{(l)}\sum_{n=1}^{2}(-1)^{n}i\lambda_{n}^{(l)}e^{i\chi_{0}^{(l)}[\eta_{0}-\eta]} - (1-\alpha_{l}[\eta_{0}-\eta])e^{-\alpha_{l}[\eta_{0}-\eta]})\cos\alpha_{l}(\xi_{0}-\xi) \right] . \end{array}$$

Теперь можно выполнять модифицированные граничные условия по перемещениям на контурах периодической системы включений в бесконечной упругой среде. **1.** Приравнивание производных $\frac{d}{d\beta_0}(U_1 \pm iU_2)$ на границе *L* упругого включения, принадлежащего основному периоду, приводит к системе двух сингулярных интегральных уравнений первого рода (суммирование по *n* = 1, 2):

$$\int_{0}^{2\pi} \left(p_{n}^{(1)}(\beta) B_{nn}^{(1)}(\beta_{0}, \beta) - p_{n}^{(2)}(\beta) B_{nn}^{(2)}(\beta_{0}, \beta) \right) d\beta = N_{m}(\beta_{0}), m = 1, 2,$$

$$N_{2} = -N_{1} = \gamma_{1}^{(1)} \tau_{1} \eta_{0}' e^{-i\gamma_{1}^{(1)} \eta_{0}} \quad \text{B} \ P - \text{слу чае},$$

$$(1.40)$$

$$N_2 = N_1 = i \gamma_2^{(1)} \tau_2 \eta_0' e^{-i \gamma_2^{(1)} \eta_0}$$
 в SV – случае.

Здесь ядра $B_{mm}^{(1)}$ и $B_{mm}^{(2)}$ определены в (1.39), причем $B_{mmm}^{(k)}$ – сингулярны, а $B_{mmm}^{(k)}$ ($n \neq m$) – непрерывны. Правые части $N_1(\beta_0)$ и $N_2(\beta_0)$ совпадают с аналогичными функциями главы поскольку рассматривается одно и то же возбуждающее волновое поле: (1.1) – P - случай или (1.2) – *SV* -случай.

Необходимые дополнительные условия для однозначной разрешимости сингулярных интегральных уравнений первого рода вытекают из эквивалентности этих уравнений и интегральных уравнений с логарифмической особенностью, которые возникают в результате приравнивания перемещений на контуре L при стремлении точки наблюдения z к точке $\zeta_0 \in L$ со стороны матрицы (область D_1) и со стороны упругого включения (область D_2). Интегральные форму дополнительных условий получим, если проинтегрируем интегральные уравнения с логарифмической особенностью по переменной β_0 в пределах от 0 до 2π .

Учитывая значения комбинаций $U_1^{(k)} \pm i U_2^{(k)}$ наL (1.34) и осуществляя соответствующее интегрирование по β_0 в пределах от 0 до 2π , находим (суммирование по k = 1, 2):

$$(-1)^{k} \left(\frac{\chi_{k} \ln 2}{(\chi_{k}+1)\mu_{k}} \int_{0}^{2\pi} p_{m}^{(k)}(\beta) d\beta - \int_{0}^{2\pi} \left(p_{1}^{(k)}(\beta)R_{m1}^{(k)}(\beta) + p_{2}^{(k)}(\beta)R_{m2}^{(k)}(\beta)\right) d\beta =$$

$$= \int_{0}^{2\pi} M_{m}(\beta_{0}) d\beta_{0}, \qquad R_{mn}^{(k)}(\beta) = \int_{0}^{2\pi} A_{mn}^{(k)}(\beta_{0},\beta) d\beta_{0}, \quad m,n = 1, 2,$$

$$M_{2} = -M_{1} = i\tau_{1}e^{-i\gamma_{1}^{(1)}\eta_{0}} \quad \mathbf{B} \quad P - \mathbf{C}\mathbf{J}\mathbf{y}\mathbf{q}\mathbf{a}\mathbf{e},$$

$$M_{2} = M_{1} = -\tau_{2}e^{-i\gamma_{2}^{(1)}\eta_{0}} \quad \mathbf{B} \quad SV - \mathbf{C}\mathbf{J}\mathbf{y}\mathbf{q}\mathbf{a}\mathbf{e}.$$

$$(1.41)$$

2. В случае периодической системы неподвижных включений система сингулярных интегральных уравнений на *L* вытекает из (6.40), а необходимые дополнительные условия – из (6.41), если в них положить $p_1^{(2)}(\beta) = p_2^{(2)}(\beta) = 0$. Имеем (m=1,2):

$$\int_{0}^{2\pi} \left(p_{1}^{(1)}(\beta) B_{m1}^{(0)}(\beta_{0}, \beta) + p_{2}^{(1)}(\beta) B_{m2}^{(1)}(\beta_{0}, \beta) \right) d\beta = N_{m}(\beta_{0}), \qquad (1.42)$$

$$-\frac{\chi_{1}\ln 2}{(\chi_{1}+1)\mu_{1}}\int_{0}^{2\pi}p_{m}^{(1)}(\beta)d\beta + \int_{0}^{2\pi}\left(p_{1}^{(1)}(\beta)R_{m1}^{(1)}(\beta) + p_{2}^{(1)}(\beta)R_{m2}^{(1)}(\beta)\right)d\beta = \int_{0}^{2\pi}M_{m}(\beta_{0})d\beta_{0}.$$
(1.43)

Система двух сингулярных интегральных уравнений первого рода (1.42) в совокупности с двумя дополнительными условиями (1.43), которые обеспечивают эквивалентность интегральных уравнений (1.42) соответствующим интегральным уравнениям с логарифмической особенностью, имеет единственное решение.

3. В случае периодической решетки, состоящей из подвижных жестких включений, удовлетворение модифицированных граничных условий (дифференцирование граничных условий (1.6) по переменной β_0) для комбинаций амплитуд перемещений $U_1 \pm iU_2$ дает (*m*=1, 2):

$$\int_{0}^{2\pi} \left(p_{1}^{(1)}(\beta) B_{m1}^{(1)}(\beta_{0}, \beta) + p_{2}^{(1)}(\beta) B_{m2}^{(1)}(\beta_{0}, \beta) \right) d\beta + \omega_{0} Q_{m}(\beta_{0}) = N_{m}(\beta_{0}), \qquad (1.44)$$
$$Q_{1}(\beta_{0}) = i\zeta_{0}', \quad Q_{2}(\beta_{0}) = -i\overline{\zeta_{0}'}.$$

Интегральная форма дополнительных условий (1.7) записываетсятак:

$$\int_{L} (S_1 \pm i S_2) ds_0 + \frac{q}{2\pi} \int_{0}^{2\pi} (U_1 \pm i U_2) d\beta_0 = \pm i \omega_0 \frac{q}{2\pi} \int_{0}^{2\pi} (\xi_0 \pm i \eta_0) d\beta_0, \qquad (1.45)$$

а дополнительное условие, необходимое для определения амплитуды жесткого поворота ω_0 , вытекает из (1.8) и записывается в виде

$$\frac{1}{2i} \int_{L} ((S_1 + iS_2)(\overline{\zeta_0} - \overline{z_0}) - (S_1 - iS_2)(\zeta_0 - z_0)) ds_0 = \omega^2 J \omega_0.$$
(1.46)

Далее следует определить тангенциальную s_1 и нормальную s_2 составляющие вектора амплитуд напряжений $\mathbf{s} = (s_1, s_2)'$. Для этого достаточно вычислить комбинации $s_1 \pm i s_2$.

1.5 Удовлетворение граничных условий по напряжениям

Комбинации амплитуд напряжений $s_1 \pm i s_2$ связаны с компонентами тензора амплитуд напряжений формулами (5.3). Поэтому вначале необходимо определить комбинации $\sigma_{11} + \sigma_{22}$ и $\sigma_{22} - \sigma_{11} \pm 2i \sigma_{12}$ в соответствии с равенствами (5.2). Вне интегральные члены при осуществлении предельного перехода $z \rightarrow \zeta_0 \in L$ в интегральных представлениях $s_1 \pm i s_2$ дают только составляющие статической задачи, которые возникают в результате выделения статического решения в явном виде согласно (1.17). Следовательно, определение напряженного состояния будем начинать с вычисления комбинаций $\sigma_{11}^0 + \sigma_{22}^0$ и $\sigma_{22}^0 - \sigma_{11}^0 \pm 2i \sigma_{12}^0$, которые отвечают статической задаче. Они выражаются через $U_1^0 \pm i U_2^0$. Для последних запишем интегральные представления в точке $P(x_1, x_2)$ упругой среды с параметрами λ, μ в соответствии с (1.29):

$$U_{1}^{0} + iU_{2}^{0} = \frac{1}{2} \int_{L} (p_{1}(s)(G_{11}^{0} + G_{22}^{0}) + p_{2}(s)(G_{11}^{0} - G_{22}^{0} + 2iG_{12}^{0})) ds,$$

$$U_{1}^{0} - iU_{2}^{0} = \frac{1}{2} \int_{L} (p_{1}(s)(G_{11}^{0} - G_{22}^{0} - 2iG_{12}^{0}) + p_{2}(s)(G_{11}^{0} + G_{22}^{0})) ds.$$
(1.47)

Здесь комбинации $G_{11}^{0} + G_{22}^{0}$ и $G_{11}^{0} - G_{22}^{0} \pm 2iG_{12}^{0}$ амплитуд перемещений 1-го и 2-го состояний определяются соотношениями (1.23).

Используя равенства (5.2) и дифференцируя интегральные представления (1.47) по соответствующим переменным с учетом соотношений (1.23) для ядер этих представлений, находим следующие выражения для статических комбинаций $\sigma_{11}^0 + \sigma_{22}^0$ И $\sigma_{22}^0 - \sigma_{11}^0 \pm 2i\sigma_{12}^0$:

$$\sigma_{11}^{0} + \sigma_{22}^{0} = \mu h_0 \int_{L} (p_1(s)ctg \, \frac{\pi(\zeta - z)}{2d} + p_2(s)ctg \, \frac{\pi(\overline{\zeta} - \overline{z})}{2d}) ds,$$

$$\sigma_{22}^{0} - \sigma_{11}^{0} + 2i\sigma_{12}^{0} = -\mu h_0 \int_{L} (p_1(s)(ctg \, \frac{\pi(\zeta - z)}{2d} - \frac{\pi i}{d} \frac{\eta - x_2}{\sin^2 \frac{\pi(\zeta - z)}{2d}}) + p_2(s)\chi ctg \, \frac{\pi(\zeta - z)}{2d}) ds,$$

$$(1.48)$$

$$\sigma_{22}^{0} - \sigma_{11}^{0} - 2i\sigma_{12}^{0} = -\mu h_0 \int_L (p_1(s)\chi ctg \frac{\pi(\overline{\zeta} - \overline{z})}{2d} + p_2(s)(ctg \frac{\pi(\overline{\zeta} - \overline{z})}{2d} + \frac{\pi i}{d} \frac{\eta - x_2}{\sin^2 \frac{\pi(\overline{\zeta} - \overline{z})}{2d}})) ds.$$

Теперь можно определить статические комбинации $S_1^0 \pm i S_2^0$. Имеем

$$S_{1}^{0} + S_{2}^{0} = \frac{\mu h_{0}}{2i} \int_{L} (p_{1}(s)(e^{i\varphi_{0}}ctg \, \frac{\pi(\zeta - z)}{2d} - \chi e^{-i\varphi_{0}}ctg \, \frac{\pi(\overline{\zeta} - \overline{z})}{2d}) +$$
(1.49)
+ $p_{2}(s)(e^{i\varphi_{0}}ctg \, \frac{\pi(\overline{\zeta} - \overline{z})}{2d} - e^{-i\varphi_{0}}(ctg \, \frac{\pi(\overline{\zeta} - \overline{z})}{2d} + \frac{\pi i}{d} \frac{\eta - x_{2}}{\sin^{2} \frac{\pi(\overline{\zeta} - \overline{z})}{2d}})))ds,$
$$S_{1}^{0} - iS_{2}^{0} = -\frac{\mu h_{0}}{2i} \int_{L} (p_{1}(s)(e^{-i\varphi_{0}}ctg \, \frac{\pi(\zeta - z)}{2d} - e^{i\varphi_{0}}(ctg \, \frac{\pi(\zeta - z)}{2d} - e^{i\varphi_{0}}(ctg \, \frac{\pi(\zeta - z)}{2d} - e^{i\varphi_{0}}(ctg \, \frac{\pi(\zeta - z)}{2d})))ds.$$

$$-\frac{\pi i}{d} \frac{\eta - x_{2}}{\sin^{2} \frac{\pi(\zeta - z)}{2d}})) + p_{2}(s)(e^{-i\varphi_{0}}ctg \, \frac{\pi(\overline{\zeta} - \overline{z})}{2d} - \chi e^{i\varphi_{0}}ctg \, \frac{\pi(\zeta - z)}{2d}))ds.$$

Выделяя у ядер интегральных представлений (1.49) сингулярные члены типа Коши и осуществляя в полученных интегралах предельный переход при $z \rightarrow \zeta_0 \in L$ (см. §1.5), после несложных преобразований получим вне интегральные члены у комбинаций амплитуд напряжений $S_1^0 + i S_2^0$ и $S_1^0 - i S_2^0$, которые равны $\pm \frac{1}{2} p_1(s_0)$ и $\pm \frac{1}{2} p_2(s_0)$ соответственно. Интегральные члены получаются из (1.49) подстановкой вместо $z = x_1 + ix_2$ и $\bar{z} = x_1 - ix_2$ переменных $\zeta_0 = \xi_0 + i\eta_0$ и $\bar{\zeta}_0 = \xi_0 - i\eta_0$ соответственно.

Вычислим теперь значения на контуре *L* функциональных рядов, которые будут присутствовать в выражениях для $S_1^{(k)} \pm i S_2^{(k)}$ со стороны матрицы D_1 (*k*=1) и упругого включения D_2 (*k*=2). Предварительно найдем члены, соответствующие разностям ($\sigma_{11}^{(k)} + \sigma_{22}^{(k)}$) – ($\sigma_{11}^0 + \sigma_{22}^0$) И ($\sigma_{22}^{(k)} - \sigma_{11}^{(k)} \pm 2i\sigma_{12}^{(k)}$) – ($\sigma_{22}^0 - \sigma_{11}^0 \pm 2i\sigma_{12}^0$).

В данном случае формулы (5.2) целесообразно переписать в виде

$$\sigma_{11}^{(k)} + \sigma_{22}^{(k)} = (\lambda + \mu) (\frac{\partial}{\partial \xi_0} (U_1^{(k)} + iU_2^{(k)}) + \frac{\partial}{\partial \xi_0} (U_1^{(k)} - iU_2^{(k)}) - iU_2^{(k)}) - i(\frac{\partial}{\partial \eta_0} (U_1^{(k)} + iU_2^{(k)}) - \frac{\partial}{\partial \eta_0} (U_1^{(k)} - iU_2^{(k)})), \qquad (1.50)$$

$$\sigma_{22}^{(k)} - \sigma_{11}^{(k)} \pm 2i\sigma_{12}^{(k)} = -2\mu (\frac{\partial}{\partial \xi_0} (U_1^{(k)} \mp iU_2^{(k)}) \mp i\frac{\partial}{\partial \eta_0} (U_1^{(k)} \mp iU_2^{(k)})).$$

Используя интегральные представления на контуре L комбинаций $U_1^{(k)} \pm i U_2^{(k)}$ (1.34) и выделяя в них функциональные ряды, с помощью соотношений (1.50) после довольно громоздких преобразований находим:

$$(\sigma_{11}^{(k)} + \sigma_{22}^{(k)}) - (\sigma_{11}^{0} + \sigma_{22}^{0}) =$$

$$= -\frac{1}{(\chi_{k}+1)d} \int_{0}^{2\pi} (p_{1}(\beta)(\sum_{l=1}^{\infty} (\alpha_{l} \frac{e^{i\lambda_{1}^{(k)}|\eta_{0}-\eta|}}{i\lambda_{1l}^{(k)}} + e^{-\alpha_{l}|\eta_{0}-\eta|}) \sin\alpha_{l}(\xi_{0} - \xi) +$$

$$(1.51)$$

$$+ i sign(\eta_{0} - \eta) \sum_{l=0}^{\infty} (e^{i\lambda_{1}^{(k)}|\eta_{0}-\eta|} - e^{-\alpha_{l}|\eta_{0}-\eta|}) \frac{\cos\alpha_{l}(\xi_{0} - \xi)}{1 + \delta_{l0}}) +$$

$$(\sigma_{22}^{(k)} - \sigma_{11}^{(k)} \pm 2i\sigma_{12}^{(k)}) - (\sigma_{22}^{0} - \sigma_{11}^{0} \pm 2i\sigma_{12}^{0}) =$$

$$= \frac{1}{(\chi_{k}+1)d} \int_{0}^{2\pi} \left(\frac{p_{2}(\beta)}{p_{1}(\beta)} \right) (\sum_{l=0}^{\infty} (\alpha_{l} \sum_{n=1}^{2} r_{n}^{(k)} \frac{e^{i\lambda_{n}^{(k)}|\eta_{0}-\eta|}}{i\lambda_{nl}^{(k)}} + \chi_{k} e^{-\alpha_{l}|\eta_{0}-\eta|}) \sin\alpha_{l}(\xi_{0} - \xi) \pm$$

$$\pm i sign(\eta_{0} - \eta) \sum_{l=0}^{\infty} (\sum_{n=1}^{2} r_{n}^{(k)} e^{i\lambda_{nl}^{(k)}|\eta_{0}-\eta|} - (1 - 2\alpha_{l}|\eta_{0} - \eta|) e^{-\alpha_{l}|\eta_{0}-\eta|}) \frac{\cos\alpha_{l}(\xi_{0} - \xi)}{1 + \delta_{l0}}) +$$

$$(1.52)$$

$$+ \left(\frac{p_{1}(\beta)}{p_{2}(\beta)} \right) (\sum_{l=1}^{\infty} (\sum_{n=1}^{2} (-1)^{n} (\alpha_{l} t_{nl}^{(k)} + s_{l}^{(k)} \lambda_{nl}^{(k)}) \frac{e^{i\lambda_{nl}^{(k)}|\eta_{0}-\eta|}}{i\lambda_{nl}^{(k)}} -$$

$$- (1 - 2\alpha_{l}|\eta_{0} - \eta|) e^{-\alpha_{l}|\eta_{0}-\eta|}) \sin\alpha_{l}(\xi_{0} - \xi) \pm$$

$$\pm i sign(\eta_{0} - \eta) \sum_{l=0}^{\infty} (\sum_{n=1}^{2} (-1)^{n} (c_{nl}^{(k)} - \alpha_{n} s_{l}^{(k)}) e^{i\lambda_{nl}^{(k)}|\eta_{0}-\eta|} -$$

$$-(1-2\alpha_{l}|\eta_{0}-\eta|)e^{-\alpha_{l}|\eta_{0}-\eta|})\frac{\cos\alpha_{l}(\xi_{0}-\xi)}{1+\delta_{l0}}))d\beta.$$

Фигурирующие в (1.51), (1.52) функциональные ряды сходятся равномерно и абсолютно: при $\eta \neq \eta_0$ в силу присутствия затухающих экспонент, а при $\eta = \eta_0$ они ведут себя как ряд $\sum_{n=1}^{\infty} \frac{\sin \alpha_l (\xi_0 - \xi)}{\alpha_l^2}$, который при приближении ξ к ξ_0 быстро затухает.

Значения комбинаций напряжений $s_1 \pm i S_2$ наL получим, складывая статические составляющие (1.49), положив в них $z = \zeta_0 \in L$, и соответствующие функциональные ряды в (1.51), (1.52). При этом, учитывая обозначения (1.32) для плотностей $p_1(\beta)$ и $p_2(\beta)$, будем умножать значения $s_1 \pm i S_2$ в точке $\beta_0 \in L$ на $s'(\beta_0) = ds_0/d\beta_0$. Тогда вне интегральные члены у $(S_1 + i S_2)s'_0$ и $(S_1 - i S_2)s'_0$ будут равны $\pm \frac{1}{2}p_1(\beta_0)$ и $\pm \frac{1}{2}p_2(\beta_0)$ соответственно, причем здесь верхний знак отвечает стремлению $z \rightarrow \zeta_0 \in L$ со стороны матрицы (область D_1) и нижний – со стороны упругого включения (область D_2).

Итак, граничные условия по напряжениям в (1.4) умножаем на s'_{o} . В результате на границе *L* упругого включения D_{2} получим два сингулярных интегральных уравнения второго рода (m = 1, 2):

$$\frac{1}{2} p_{m}^{(1)}(\beta_{0}) + \frac{1}{2} p_{m}^{(2)}(\beta_{0}) + \int_{0}^{2\pi} (p_{1}^{(1)}(\beta)C_{m1}^{(1)}(\beta_{0},\beta) + p_{2}^{(1)}(\beta)C_{m2}^{(1)}(\beta_{0},\beta)) - p_{1}^{(2)}(\beta)C_{m2}^{(2)}(\beta_{0},\beta)) d\beta = T_{m}(\beta_{0}), \quad (1.53)$$

$$C_{mj}^{(k)} = e_{0}^{(k)}(E_{mj}^{(k)} + F_{mj}^{(k)}), \quad m, j, k = 1, 2, \quad e_{0}^{(k)} = \frac{1}{2d(\chi_{k} + 1)}, \quad E_{11}^{(k)} = \frac{1}{2i}(\zeta_{0}'ctg \frac{\pi(\zeta_{0} - \zeta)}{2d} - \chi_{k}\zeta_{0}'ctg \frac{\pi(\zeta_{0} - \zeta)}{2d}), \quad E_{22}^{(k)} = \overline{E_{11}^{(k)}}, \quad E_{12}^{(k)} = \eta_{0}'ctg \frac{\pi(\zeta_{0} - \zeta)}{2d} - \frac{\pi}{2d} \frac{\eta_{0} - \eta}{\sin^{2} \frac{\pi(\zeta_{0} - \zeta)}{2d}}, \quad E_{21}^{(k)} = \overline{E_{12}^{(k)}}, \quad F_{11}^{(k)} = \zeta_{0}'\sum_{l=0}^{\infty} ((\alpha_{l} \frac{e^{i\lambda_{1}^{(k)}|\eta_{0} - \eta|}}{i\lambda_{1l}^{(k)}} + e^{-\alpha_{l}|\eta_{0} - \eta|})i\sin\alpha_{l}(\zeta_{0} - \zeta) - \frac{-sign(\eta_{0} - \eta)(e^{i\lambda_{1}^{(k)}|\eta_{0} - \eta]} - e^{-\alpha_{l}|\eta_{0} - \eta|})i\sin\alpha_{l}(\zeta_{0} - \zeta) + \frac{-\zeta_{0}'\sum_{l=0}^{\infty} ((\alpha_{l} \sum_{n=1}^{2} r_{n}^{(k)} \frac{e^{i\lambda_{n}^{(k)}|\eta_{0} - \eta|}}{i\lambda_{nl}^{(k)}} + \chi_{k} e^{-\alpha_{l}|\eta_{0} - \eta|})i\sin\alpha_{l}(\zeta_{0} - \zeta) + \frac{-\zeta_{0}'\sum_{l=0}^{\infty} (r_{0} + e^{i\lambda_{nl}^{(k)}|\eta_{0} - \eta|} - (1 - 2\alpha_{l}|\eta_{0} - \eta|)e^{-\alpha_{l}|\eta_{0} - \eta|})\frac{\cos\alpha_{l}(\zeta_{0} - \zeta)}{1 + \delta_{l0}}),$$

$$\begin{split} F_{12}^{(k)} &= \zeta_0' \sum_{l=0}^{\infty} ((\alpha_l \frac{e^{i\lambda_{1l}^{(k)} |\eta_0 - \eta|}}{i\lambda_{1l}^{(k)}} + e^{-\alpha_l |\eta_0 - \eta|}) i \sin \alpha_l (\xi_0 - \xi) + \\ &+ sign(\eta_0 - \eta) (e^{i\lambda_{1l}^{(k)} |\eta_0 - \eta|} - e^{-\alpha_l |\eta_0 - \eta|}) \frac{\cos \alpha_l (\xi_0 - \xi)}{1 + \delta_{l0}}) - \\ &- \overline{\zeta_0} \sum_{i=0}^{\infty} ((\sum_{n=l}^2 (-1)^n (\alpha_l t_{nl}^{(k)} + s_l^{(k)} \lambda_{nl}^{(k)}) \frac{e^{i\lambda_{nl}^{(k)} |\eta_0 - \eta|}}{i\lambda_{nl}^{(k)}} - (1 - 2\alpha_l |\eta_0 - \eta|) e^{-\alpha_l |\eta_0 - \eta|}) i \sin \alpha_1 (\xi_0 - \xi) + \\ sign(\eta_0 - \eta) \sum_{n=l}^2 (-1)^n (t_{nl}^{(k)} - \alpha_i s_i^{(k)}) e^{i\lambda_{nl}^{(k)} |\eta_0 - \eta|} - (1 - 2\alpha_l |\eta_0 - \eta|) e^{-\alpha_l |\eta_0 - \eta|}) \frac{\cos \alpha_l (\xi_0 - \xi)}{1 + \delta_{10}}, \\ F_{22}^{(k)} &= \overline{F_{11}^{(k)}}, \quad F_{21}^{(k)} &= \overline{F_{12}^{(k)}}, \quad \text{если Im}(i\lambda_{nl}^{(k)}) = 0, \quad \text{т. е. } \alpha_l > \gamma_n^{(k)}. \end{split}$$

Здесь ядра $C_{mm}^{(k)}$ сингулярны, а ядра $C_{mj}^{(k)}$ ($j \neq m$) непрерывны на *L*. Правые части – функции $T_m(\beta_0)$ определяются аналогично (5.54), поскольку возбуждающее волновое поле одно и то же. Имеем (m = 1, 2):

$$T_{m}(\beta_{0}) = \frac{2\mu_{1}\gamma_{1}^{(1)}\tau_{1}}{1-2\nu_{1}}e^{-i\gamma_{1}^{(1)}\eta_{0}}(i\nu_{1}\eta_{0}'-(-1)^{m}\xi_{0}') \quad \mathbf{B} \quad P-\mathbf{C}\mathbf{Л}\mathbf{Y}\mathbf{u}\mathbf{e},$$

$$T_{m}(\beta_{0}) = -i\mu_{1}\gamma_{2}^{(1)}\tau_{2}q_{m}e^{-i\gamma_{2}^{(1)}\eta_{0}}, \quad q_{1} = \overline{\zeta}_{0}', \quad q_{2} = \zeta_{0}' \quad \mathbf{B} \quad SV-\mathbf{C}\mathbf{Л}\mathbf{Y}\mathbf{u}\mathbf{e}.$$

$$(1.54)$$

Таким образом, рассматриваемые краевые задачи сводятся к сингулярным интегральным уравнениям.

1. В случае периодической решетки, состоящей из упругих включений, краевая задача (1.4) сведена к системе двух сингулярных интегральных уравнений первого рода (1.40) и двух сингулярных интегральных уравнений второго рода (1.53). Необходимые дополнительные условия для однозначной разрешимости сингулярных интегральных уравнений первого рода имеют вид (1.41).

2. В случае периодической системы неподвижных включений краевая задача (1.5) сведена к системе двух сингулярных интегральных уравнений первого рода (1.42), которые необходимо рассматривать в совокупности с дополнительными условиями (1.43).

3. Краевая задача (1.6) в случае дифракции гармонической _{*P*}- или *SV*-волны на периодической системе подвижных жестких включений сведена к системе двух

сингулярных интегральных уравнений первого рода (1.44). Необходимые дополнительные условия имеют вид (1.44), (1.45).

4. В случае периодической решетки, состоящей из полостей, краевая задача (1.9) сводится к системе двух сингулярных интегральных уравнений второго рода, которые вытекают из (1.53) при приравнивании упругих постоянных λ_2 и μ_2 нулю. Они имеют вид (m=1,2):

$$\frac{1}{2} p_m^{(1)}(\beta_0) + \int_0^{2\pi} (p_1^{(1)}(\beta) C_{m1}^{(1)}(\beta_0, \beta) + p_2^{(1)}(\beta) C_{m2}^{(1)}(\beta_0, \beta)) d\beta = T_m(\beta_0).$$
(1.55)

Система интегральных уравнений (1.55) имеет единственное решение.

1.6 Численные результаты

При численной реализации построенных алгоритмов рассматривалась неограниченная упругая среда, содержащая бесконечную 2*d*-периодическую систему цилиндров эллиптического поперечного сечения (рис. 1.1). Параметрическое уравнение эллипса, находящегося в основном периоде, задавалось в виде

$$\xi = a \sin \beta, \quad \eta = -b \cos \beta, \quad 0 \le \beta \le 2\pi. \tag{1.56}$$

На границе центрального эллипса проводилось вычисление безразмерных напряжений $\sigma_n, \sigma_s, \sigma_n$, которые получаются делением соответствующих амплитуд напряжений на максимальное напряжение ^{*p*} в падающей волне. Очевидно, $P = \tau_1 \gamma_1^{(1)} (\lambda_1 + 2\mu_1)$ в случае набегания на цилиндры продольной волны (1.1) и $P = \tau_2 \gamma_2^{(1)} \mu_1$, если из бесконечности излучается поперечная волна (1.2).

Численная реализация сингулярных интегральных уравнений осуществлялась методами дискретных особенностей И методом механических квадратур. Компьютерные эксперименты подтверждают одинаковую практическую эффективность этих двух методов, ОНИ сходятся с заданной точностью приблизительно при одном и том же количестве узлов на контуре эллиптической неоднородности. Для всех рассмотренных периодических решеток точность вычислений 10^{-3} достигалась при N = 55.

Вычисление контурных напряжений осуществлялось с учетом симметрии рассматриваемых задач дифракции (рис. 1.1). Поэтому на приведенных ниже рисунках указаны распределения напряжений на контуре центрального эллипса при изменении угла β (1.56) в пределах от 0 (теневая точка) до π (лобовая точка).

Случай периодической системы неподвижных включений.

На рис. 1.2 приведены распределения напряжений σ_n и σ_n на контуре эллиптического неподвижного включения (1.5) в случае набегания *P*-волны при b/a=0.5; $v_1=0.3$; $\gamma_1^{(0)}a=1.0$. Кривые 1, 2 и 3 отвечают значениям a/d=0.3; 0,5 и0,7 соответственно. Видно, что вблизи точки соскальзывания ($\beta = \pi/2$) достигается максимум напряжения σ_n и минимум напряжения σ_n . В лобовой ($\beta = \pi$) и теневой ($\beta = 0$) точках напряжение σ_m равно нулю. При сближении эллипсов (увеличении параметра a/d) в теневой зоне ($0 \le \beta \le \pi/2$) контурные напряжения уменьшаются. Однако в освещенной зоне вблизи лобовой точки, наоборот, напряжение σ_n , являющееся превалирующим, возрастает.

Рисунок 1.2 – Распределения напряжений на контуре эллиптического неподвижного включения для разных значений *a/d* в случае *P*-волны

Рисунок 1.3 – Зависимость максимальных значений напряжений на контуре эллиптического неподвижного включения от $\gamma_1^{(0)}d$ в случае ^{*p*}-волны

На рисунку 1.3 приведены максимальные значения $\sigma_n u \sigma_{n}$ (случай *P*-волны) при a/d = 0,5; $v_1 = 0,3$. Кривые 1, 2, 3 и 4 отвечают значениям b/a = 0,5; 1,2; 2,0 и 5,0 соответственно. Анализ результатов показывает, что превалирующими на границе включения почти на всем диапазоне изменения параметра $\gamma_1^{(0)}d$ является напряжение σ_n и лишь вблизи точки скольжения $\gamma_2^{(0)}d = \pi$ ($\gamma_1^{(0)}d \approx 1,68$) превалирующим является напряжение $\sigma_{n'}$. При значениях $\gamma_1^{(0)}d < 1$ с увеличением параметра b/a значение $\sigma_{n^{max}}$, которое является здесь превалирующим, увеличивается. При дальнейшем увеличении $\gamma_1^{(0)}d$ (уменьшении длины падающей волны) характер изменения напряжений усложняется. Однако значение $\sigma_{n^{max}}^{max}$ при $\gamma_1^{(0)}d > 1$ меньше аналогичных значений в случае $\gamma_1^{(0)}d < 1$. Отметим также, что максимальные значения σ_{n} при переходе через первую точку скольжения начинают резко падать.

Случай периодической системы жестких включений.

При дифракции *P* - или *SV*-волны на жестком включении напряжение σ_s всегда меньше σ_n и связано с ним соотношением $\sigma_s = v_1 \sigma_n / (1 - v_1)$. Поэтому здесь будем приводить графики σ_n и σ_m .

На рис. 1.4 и 1.5 приведены распределения напряжений σ_n и σ_n вдоль контура эллиптического жесткого включения (1.6) в случае набегания *P* - и *SV* - волны соответственно при b/a = 2; $v_1 = 0,3$; a/d = 0,5; $\lambda_0/2a = 1,2$ (λ_0 - длина падающей волны: $\lambda_0 = 2\pi/\gamma_1^{(1)}$ в *P*-случае и $\lambda_0 = 2\pi/\gamma_2^{(1)}$ в *SV*-случае). Кривые 1, 2, 3 и 4 соответствуют значениям $\rho_e/\rho_1 = 0.5$; 1,0; 2,0 и 5,0.

Расчеты показывают, что существует принципиальное различие в распределении контурных напряжений при набегании на жесткое включение волны расширения-сжатия (1.1) или волны сдвига (6.2). В *P* -случае напряжения σ_n достигают максимума в лобовой ($\beta = \pi$) точке; в *SV*-случае напряжения σ_n в лобовой ($\beta = \pi$) и теневой ($\beta = 0$) точках равны нулю и достигают максимумов в теневой и освещенной зонах. В *P*- случае напряжения σ_m в лобовой и теневой точках равны нулю, а их максимум достигается вблизи точки соскальзывания ($\beta = \pi/2$); в *SV*-случае напряжения σ_m принимают максимальные значения в лобовой точке и имеют локальный максимум вблизи точки $\beta = \pi/2$.

При увеличении параметра ρ_e/ρ_1 наблюдается увеличение напряжений σ_n в *P*случае и σ_{ns} в *SV*-случае вблизи лобовой точки и их уменьшение в окрестности теневой точки, а максимальные значения напряжений σ_n в *SV*-случае смещаются из теневой области (при $\rho_e/\rho_1 < 1$) в освещенную (при $\rho_e/\rho_1 > 1$).

Рисунок 1.4 – Распределения напряжений на контуре эллиптического жесткого включения для разных значений ρ_{e}/ρ_{1} вслучае *P*-волны

Рисунок 1.5 – Распределения напряжений на контуре эллиптического жесткого включения для разных значений ρ_{e}/ρ_{1} вслучае *SV*-волны

На рисунках 1.6 и 1.7 приведены распределения напряжений на контуре (1.56) жесткого включения при $v_1 = 0.3$; a/d = 0.4; $\rho_a/\rho_1 = 3.0$. Кривые 1, 2, 3 и 4 отвечают значениям b/a = 0.25; 0.5; 2.0 и 8.0. Рис. 6.6 соответствует набеганию *P*-волны (1.1) и значению $2d/\lambda_1 = 0.5$, а рис. 1.7 – набеганию *SV*-волны (1.2) и значению $2d/\lambda_2 = 0.5$ (λ_1 и λ_2 – Длины продольной и поперечной волн соответственно).

Анализ показывает, что существует принципиальное различие в распределении контурных напряжений при набегании волн расширения-сжатия (1.1) и сдвига (1.2).

Так, в *P* -случае при $b/a \le 1$ вблизи точки соскальзывания ($\beta = \pi/2$) наблюдается максимум напряжения σ_n ; максимум напряжения σ_n ; максимум напряжения σ_n ; максимум напряжения σ_n находится в освещенной области ($\pi/2 < \beta < \pi$). В теневой ($\beta = 0$) и лобовой ($\beta = \pi$) точках напряжение σ_n всегда равно 0. При увеличении параметраb/a (b/a > 1) максимум напряжения σ_n смещается в теневую и лобовую точки, а максимум напряжения σ_n смещается в освещенную область. Отметим, что в случае жестких включений переменная b/a практически не влияет на значения напряжения σ_n вблизи точки соскальзывания.

Рисунок 6.6 – Распределения напряжений на контуре эллиптического жесткого включения для разных значений *b/a* в *P*-случае

В *SV*-случае при $b/a \le 1$ в точке соскальзывания наблюдается локальный минимум напряжения σ_n и локальный максимум напряжения σ_n ; в лобовой и теневой точках напряжения σ_n всегда равны нулю. При увеличении параметра b/a (b/a > 1) максимумы напряжения σ_n смещаются в теневую и освещенную области, а максимумы напряжения σ_n соответствуют лобовой и теневой точкам, причем максимум наиболее выражен именно в освещенной области (кривая 4, рис. 1.7).

Рисунок 1.7 – Распределения напряжений на контуре эллиптического жесткого включения для разных значений *b/a* в *SV*-случае

На рисунках 1.8 и 1.9 приведены распределения максимальных контурных напряжений σ_n и σ_n в зависимости от отношения плотностей включения и матрицы ρ_a/ρ_1 в *P* - и *SV*-случаях соответственно при a/b = 0.5; $v_1 = 0.3$; a/d = 0.5. Кривые 1, 2, 3 и 4 отвечают значениям $\lambda_0/2a = 0.35$; 0.6; 1.2 и 1.9. Видно, что здесь также существует принципиальное различие между *P*- и *SV*- случаями. Так, с увеличением параметра ρ_a/ρ_1 напряжение σ_n в *P*-случае и напряжение σ_n в *SV*-случае сначала возрастают, а затем при достижении определенного значения (зависящего от отношения длины волны к оси эллипса) они начинают постепенно стабилизироваться и стремиться к напряжению, соответствующему неподвижному включению. Напряжения σ_m в *P*случае и σ_a в *SV*-случае, наоборот, сначала убывают, а затем наступает процесс стабилизации. Причем в случае коротких волн ($\lambda_0/2a=0.35$ и 0,6) жесткое включение начинает вести себя как неподвижное уже при $\rho_e/\rho_1 = 5$ (например, при $\lambda_0/2a=0.35$ максимальные напряжения на контуре жесткого включения отличаются от соответствующих напряжений на контуре неподвижного включения менее, чем на 2%). В случае средних и длинных волн ($\lambda_0/2a=1.2$ и1,9) даже при довольно больших отношениях плотностей включения и матрицы максимальные напряжения σ_a и σ_a продолжают изменяться с увеличением ρ_e/ρ_1 . В данном случае стабилизация напряжений происходит при $\rho_e/\rho_1 > 10$.

Рисунок 1.8 – Зависимость максимальных напряжений на контуре эллиптического жесткого включения от ρ_{e}/ρ_{1} вслучае *P*-волны

Рисунок 1.9 – Зависимость максимальных напряжений на контуре эллиптического жесткого включения от ρ_s/ρ_1 вслучае *SV*-волны

Рисунок 1.10 – Зависимость максимальных напряжений на контуре эллиптического жесткого включения от 2*d*/ λ_1 в случае *P*-волны

Ha рисунку 1.10 приведены зависимости максимальных контурных напряжений от отношения периода решетки к длине набегающей волны 2d/2, в Pслучае, при a/d = 0.5; b/a = 0.5; $\rho_e/\rho_1 = 2.0$. Кривые 1, 2 и 3 соответствуют и0,4 соответственно. Вычисления показывают при значениям $v_1 = 0,1; 0,25$ что дифракции плоской гармонической волны на периодической системе жестких включений наблюдается резкое увеличение цилиндрических максимальных контурных напряжений возле точек скольжения, что соответствуют значениям $2d/\lambda_1 = k$ и $2d/\lambda_2 = k$ (k = 1, 2, ...). В низкочастотной области с увеличением коэффициента Пуассона и наблюдается уменьшение максимальных напряжений. Кроме того, в области длинных волн с увеличением отношения периода решетки к длине набегающей волны значения максимальных контурных напряжений увеличиваются.

Случай периодической системы полостей.

На рис. 1.11 и рис. 1.12 показаны распределения напряжений σ_s на контуре эллиптической полости в случае *P*-волны (*a*) и *SV*-волны (*b*). Кривые 1, 2 и 3 приведены для $v_1 = 0,3, \gamma_1^{(1)}d = 1,0$ и отвечают значениям a/d = 0,3; 0,5 и 0,7 при b/a = 0,5на рис. 1.11 и значениям b/a = 0,5; 2,0 и 5,0 при a/d = 0,5 на рис. 1.12.

Анализ полученных результатов показывает, что распределения контурных напряжений в *P*- и *SV*-случаях принципиально отличаются. Так, при b/a < 1 вблизи точки соскальзывания ($\beta = \pi/2$) напряжение σ_s имеет максимум при излучении *P*-

волны и локальный минимум в случае *SV*-волны. С ростом параметра b/a (b/a > 1) характер распределения σ_s усложняется, причем количество точек максимума и минимума увеличивается. В *SV*-случае напряжение σ_s в лобовой ($\beta = \pi$) и теневой ($\beta = 0$) точках равно нулю.

Рисунок 1.11 – Распределения напряжений на контуре эллиптической полости

для разных значений *a/d*

Рисунок 1.12 – Распределение напряжений на контуре эллиптической полости для разных значений *b/a*

На рисунку 1.13 приведены распределения напряжений на контуре центральной полости при $v_1 = 0,3$; a/d = 0,4. Кривые 1, 2, 3 и 4 отвечают значениям b/a = 0,25; 0,5; 2,0 и8,0. Рис. 1.13 (*a*) соответствует *P*-случаю и значению $2d/\lambda_1 = 0,5$, а рис. 1.13 (*b*) –*SV*- случаю и значению $2d/\lambda_2 = 0,5$ (λ_1 и λ_2 – длины продольной и поперечной волн соответственно).

Анализ показывает, что существует принципиальное различие в распределении контурных напряжений при набегании волн расширения-сжатия и сдвига. В *P* -случае при $b/a \le 1$ вблизи точки соскальзывания ($\beta = \pi/2$) наблюдается

максимум напряжения σ_s . При увеличении параметра b/a (b/a>1) максимумы напряжения σ_s смещаются в теневую и лобовую точки. Кроме того, в случаях приплюснутых и вытянутых эллипсов напряжение на границе полости значительно превосходит напряжение на границе жесткого включения (см. рис. 1.6 и рис. 1.7). ВSV-случае при $b/a \le 1$ в точке соскальзывания наблюдается локальный минимум напряжения σ_s . В лобовой и теневой точках напряжение σ_s всегда равно нулю. При увеличении параметра b/a(b/a>1) максимумы напряжения σ_s смещаются в теневую и освещенную области.

Рисунок 1.13 – Распределения напряжений на контуре эллиптической полости для разных значений *b/a*

На рисунку 1.14 приведены зависимости максимальных контурных напряжений σ_s от параметра a/d при набегании на периодическую решетку, составленную из эллиптических полостей, *P*-волны. Кривые 1, 2 и 3 отвечают значениям b/a = 0.5; 1,0 и 2,0 при $v_1 = 0.3$, $\gamma_1^{(0)}d = 1.0$. Анализ кривых показывает, что с уменьшением параметра b/a максимальные значения напряжений на контуре эллиптической полости возрастают, особенно это заметно при удалении полостей друг от друга.

Рисунок 1.14 – Зависимость максимальных напряжений на контуре

эллиптической полости от *a/d* в случае *P*-волны

Рисунок 1.15 – Зависимость максимальных напряжений на контуре эллиптической полости от $\gamma_1^{(i)}d$ в случае *P*-волны

Рисунок 1.15 иллюстрирует изменение $\max \sigma_s$ на контуре эллиптической полости в зависимости от параметра $\gamma_1^{(0)}d$ в случае *P*-волны при a/d = 0.5; b/a = 0.5. Кривые 1, 2 и 3 соответствуют значениям $v_1 = 0.2$; 0,3 и0,4. Резкое возрастание напряжения $\max \sigma_s$ наблюдается вблизи первой точки скольжения, которая отвечает значению $\gamma_1^{(0)}d = \pi$.

Рисунок 1.16 – Зависимость максимальных напряжений на контуре эллиптической полости от _{2d/д} в случае *P*-волны

На рисунку 1.16 приведены зависимости максимальных контурных напряжений от отношения $2d/\lambda_1$ периода решетки к длине набегающей волны в *P*-случае при a/d = 0.5, b/a = 0.5. Кривые 1, 2 и 3 соответствуют значениям $v_1 = 0.1$; 0.25 и 0.4 соответственно. Вычисления показывают что при дифракции продольной волны на периодической системе полостей наблюдается резкое увеличение максимальных контурных напряжений вблизи точек скольжения, которые соответствуют значениям $2d/\lambda_1 = k$ и $2d/\lambda_2 = k$ (k = 1, 2, ...).

В низкочастотной области с увеличением коэффициента Пуассона_{*v*₁} наблюдается уменьшение максимальных напряжений. Кроме того, в области длинных волн с увеличением отношения периода решетки к длине набегающей волны значения максимальных контурных напряжений уменьшаются.

Компьютерные расчеты показывают, что существует принципиальное различие в распределении напряжений на границе цилиндров в зависимости от типа цилиндров и характера набегающей волны. Полученные результаты подтверждают тот факт, что длина периода решетки существенно влияет на напряженнодеформированное состояние. В случаях, когда длины отраженных волн кратны периоду решетки, наблюдается резкое увеличение напряжений на границе цилиндров.

выводы

Как показывает компьютерное моделирование решеток, состоящих из отверстий и включений, равноудаленных друг от друга и ориентированных параллельно фронту падающей продольной или поперечной волны, в распределении напряжений на границе отражателей наблюдается эффект насыщения. Здесь, начиная с некоторого количества объектов в решетке, дальнейшее увеличение их числа практически не влияет на напряженно-деформированное состояние элементов конструкции. Это означает, что подобные решетки с конечным числом отверстий или включений можно заменять соответствующей бесконечной, а именно периодической решеткой, составленной из однородных объектов. Такой подход, с одной стороны, требует построения периодических функций Грина и эффективных методов их численной реализации. Однако, с другой стороны, рассмотрение периодических решеток позволяет значительно экономить вычислительные ресурсы и тем самым существенно повышать точность вычислений.

Исследуются периодические задачи дифракции гармонических продольных и поперечных волн на решетках, составленных из цилиндрических полостей и различного типа включений в условиях плоской деформации. Развивается подход, основанный на методе сингулярных интегральных уравнений, который заключается в построении интегральных представлений амплитуд перемещений, автоматически плоской деформации, удовлетворяющих уравнениям движения условиям периодичности И излучения на бесконечности. Обосновывается выбор дополнительных условий, необходимых однозначной разрешимости для сингулярных интегральных уравнений первого рода. Численная реализация проводится методами дискретных особенностей и построенных алгоритмов квадратур. Сравнение полученных результатов подтверждает механических эффективность этих методов.

ПЕРЕЧЕНЬ ССЫЛОК

1. Ложкин А.М., Назаренко А.М. Взаимодействие *P*- и *SV*- волн с периодической системой цилиндрических включений в пространстве // Науковотехнічна конференція: тези доповідей. – Суми. – 2004. – С. 106-107.

2. Ложкін О.М., Назаренко О.М. Дифракція пружних хвиль наперіодичних системах циліндричних порожнин та жорсткихвключень // Акустичний вісник. – 2006. – 9, №4. – С. 35-42.

3. Назаренко А.М. Дифракция гармонических волн на цилиндрическому пругом включении в условиях плоской деформации // Динамические системы. – Симферополь. – 2005. –Вып. 19. – С. 54-60.

4. Назаренко А.М., Ложкин А.М. Взаимодействие плоских гармонических волн с периодической системой неподвижных цилиндрических включений в условиях плоской деформации //Харків: Вісник НТУ «ХПІ». Тематичний випуск: Динаміка іміцність машин. – 2005. – №20. – С. 129-134.

5. Назаренко А.М., Ложкин А.М. Дифракция плоских гармонических волн на периодической системе жестких цилиндров // Динамические системы. – Симферополь. – 2006. – Вып. 20. – С. 59-67.

6. Назаренко A.M., Ложкин A.M. Плоская линамичной задача 0 периодической напряженности изотропной системой полостей среды с произвольного поперечного сечения // IV Международная научная конференция, посвященная памяти академика НАН Украины А.С. Космодамианского: материалы конференции. – Донецк-Мелекино 12-14 июня 2006г. – Донецк. – 2006. – С. 277-279.

7. Назаренко А.М., Ложкин А.М., Панченко Б.Е. Дифракция волн плоской деформации на жестком цилиндрическом включении произвольного поперечного сечения // Донецьк: Вісник ДонНУ.Сер. А: Природничі науки. – 2006. – №1. – С. 143-147.

Назаренко А.М., Назаренко Л.Д. Элементы линейной алгебры и анали
 +тической геометрии. – Сумы: Изд-во СумГУ. – 2004. – 187 с.

10. Назаренко А.М., Панченко Б.Е. Схема параллельных вичислений в задачах дифракции волн сдвига на системе отверстий в бесконечной изотропной среде // Проблемы программирования. –Киев. – 2010. – №2-3. – С. 604-610.

11. Назаренко А.М., Панченко Б.Е., Ложкин А.М. Взаимодействие упругих волн с цилиндрической полостью в условиях плоской деформации // Харків: Вісник НТУ «ХПІ». Тематичний випуск:Динаміка і міцність машин. – 2005. – №47. – С. 112-117.

12. Назаренко А.М., Панченко Б.Е., Ложкин А.М. Метод сингулярних интегральных уравнений в задачах дифракции упругих волн нацилиндрических включениях // Суми: Вісник СумДУ. Сер.: Фізика, математика, механіка. – 2004. – №8. – С. 144-150.

13. Назаренко А.М., Фильченко Д.В. Идентификация и оптимизация слабо формализованных процессов в классе стационарных *LQ*моделей // Кибернетика и вычисл. техника. – Киев. – 2009. –Вып. 158. – С. 81-99.

14. Назаренко О.М. Основи економетрики: Вид. 2-ге, перероб.: Підручник. – К.: Центр навчальної літератури. – 2005. – 392 с.

15. Назаренко О.М., Ложкін О.М. Дифракція пружних гармонійних хвиль на періодичній системі криволінійних тріщин в умовах плоскої деформації // Прикладні проблеми механіки та математики. – Львів. – 2006. – Вип. 4. – С. 162-169.

16. Назаренко О.М., Ложкін О.М. Плоска задача дифракції пружних гармонійних хвиль на періодичній системі жорстких криволінійних вставок // Фізико-хімічна механіка матеріалів. – Львів. – 2007. – **43**, №2. – С. 94-99.

17. Назаренко О.М., Ложкін О.М. Плоска задача дифракції пружних хвиль на періодичній системі криволінійних тріщин // VII Міжнародна наукова конференція «Математичні проблеми механіки неоднорідних структур»: тези доповідей в 2-х т. – Львів. – 2006. – Т.2. – С. 83-84.

18. Nazarenko A.M., Lozhkin O.M. Plane problem of diffraction of elastic harmonic wave son periodic curvi linearin serts // Materials Science. –2007. – 43, №2. – P. 249-255.

19. Nazarenko O.M., Filchenko D.V. Parametric identification of state-space dynamic systems: A time-domain perspective // International Journal of Innovative Computing, Information and Control. – 2008. –4, No7. – P. 1553-1565.