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The approach for the prediction of betavoltaic battery output parameters based on EBIC investigations 

of semiconductor converters of beta-radiation energy into electric power is presented. Using this approach 

the parameters of battery based on porous Si are calculated. These parameters are compared with those of 

battery based on a planar Si p-n junction. 
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1. INTRODUCTION  
 

In betavoltaic batteries energy of nuclear radiation 

is directly converted to electric power using a semicon-

ductor convertor. Radioactive isotopes are rather ex-

pensive; therefore for a successful design optimization 

of effective converters, methods for their testing before 

the radioactive film deposition should be developed. A 

promising idea is to use for this purpose e-beam of 

SEM, which could imitate the beta-radiation. This idea 

have been realized in a few works (for example, see 

[1, 2]) and beam energy of 17 keV corresponding to the 

mean energy of electrons emitted by the 63Ni isotope 

was usually used for the beta-radiation imitation. 

However, elastic and inelastic scattering and absorp-

tion inside the 63Ni film modify significantly the spec-

trum of electrons emitted from 63Ni atoms. Even if this 

spectrum is measured, its knowledge is insufficient to 

calculate the induced by beta-radiation current because 

the beta particle angle distribution should be also 

known. Trajectories of electrons emitted from the 63Ni 

film are distributed in a wide range of angles and this 

distribution depends on the film thickness and electron 

energy. Besides, electron range is proportional to Eb
1.75, 

where Eb is the e-beam energy. Thus, for the conduct-

ing materials with a small diffusion length the mean 

energy is not a suitable parameter to predict the collec-

tion efficiency. For the reasons mentioned the best ap-

proach for induced current calculations is to use the 

depth dependence of energy losses (depth-dose depend-

ence) inside a semiconductor instead of the energy 

spectrum and angle distribution of particles emitted 

from the film. Such depth-dose dependences determin-

ing the depth dependences of excess carrier generation 

rate in Si, SiC and GaN for beta particles emitted from 
63Ni films of different thickness were calculated in 

[3, 4] by the Monte-Carlo program taking into account 

an isotropic emission of radiation, the full energy spec-

trum of electrons emitted from the 63Ni isotopes and 

inelastic and elastic scattering processes inside a Ni 

film. It was shown that a decay of these functions with 

a depth is close to exponential one, i.e. it differs quali-

tatively from that for monoenergetic electron beam 

perpendicular to the surface, which is described by the 

Gaussian function. Therefore, it is impossible to imi-

tate the beta particle generation function using one or 

a few e-beam energies and other approaches for beta-

radiation imitation using SEM should be developed. 

The approach based on calculations of induced cur-

rent by a convolution of the depth-dose dependence 

with the collection probability obtained from the EBIC 

measurements was proposed in [5, 6]. The induced cur-

rent generated by beta-radiation is a key parameter in 

this approach. Other output parameters of converter 

can be also obtained by direct measurements in SEM 

[6]. For Si planar structures the current induced by 

beta-radiation was calculated in [5-7]. The thicknesses 

of the SiC and silicon wafers are usually varied in the 

range from 200 m to 400 m, where only the top 

15 m thick layer is the active functioning region. To 

maximize the battery output power density two ap-

proaches can be used. The first one consists in thinning 

a semiconductor structure to a thickness of a few tens 

of microns [8] and constructing the battery by stacking 

thinned-down converters and Ni films together. The 

other one is to use 3-D structures, for example, based 

on porous Si, to increase the effective converter surface 

[9-11]. Such 3-D structures allow converting beta parti-

cle energy more efficiently in addition to an increase of 

effective surface area of elements [10]. However esti-

mations of such converter efficiency were not carried 

out up to now. 

In the present paper the induced current was calcu-

lated for the semiconductor convertor based on porous 

Si. The results obtained were compared with those ob-

tained for planar Si-based structures.  

 

2. INDUCED CURRENT CALCULATIONS 
 

As shown in [12], the current induced in semicon-

ductor structures by e-beam irradiation Ic can be calcu-

lated as a convolution of depth-dose function h(z) with 

the collection probability ψ(z), i.e. the probability that a 

minority carrier generated at a depth z below the sur-

face will be collected by a collector. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Electronic Sumy State University Institutional Repository

https://core.ac.uk/display/141454639?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://jnep.sumdu.edu.ua/index.php?lang=en
http://jnep.sumdu.edu.ua/index.php?lang=uk
http://sumdu.edu.ua/int
http://dx.doi.org/10.21272/jnep.8(4(2)).04062
mailto:yakimov@iptm.ru


 

E.B. YAKIMOV, M.A. POLIKARPOV, A.A. KRASNOV J. NANO- ELECTRON. PHYS. 8, 04062 (2016) 

 

 

04062-2 

 
0

( ) ( )
d

cI h z z dz   (1) 

 

Thin 63Ni film with the specific activity of 10 Ci/g is 

taken as a radioactive source because 63Ni is considered 

as the most promising source for long-living radioiso-

tope-based batteries. The depth-dose dependence for Si 

irradiated with beta particles from such film was calcu-

lated in [3] as a function of radioactive film thickness. 

For thicknesses of Ni film in the micrometer range this 

dependence can be approximated with the exponential 

function      / 3.45h z A exp z   , where A is the pa-

rameter depending on the 63Ni film thickness and spe-

cific activity, z is expressed in microns and the charac-

teristic decay length is of 3.45 m. This dependence is 

saturated for a thickness of about 3 m, therefore the 

optimal thickness of Ni film is in the range between 1 

and 3 m and its choice is determined by a compromise 

between the price of 63Ni film and the battery output 

power. In the case of porous Si the pore diameter 

should be also taken into account. 

The collection probability can be obtained by fitting 

the measured dependence of collected current in the 

EBIC mode on beam energy [13]. For planar Si based 

structures such procedure allows to obtain the collec-

tion probability with a rather high precision. It is not 

so easy to carry put such measurements on porous Si 

structures, therefore in the present paper the collection 

probability obtained using such procedure for the pla-

nar Si p-n structure studied in [14] was used in calcu-

lations. This probability can be approximated by a lin-

ear dependence in the upper 0.3 m thick p-region 

changing from 0.45 at the surface to 1 at the top deple-

tion region boundary. Inside the depletion region and 

to a depth of 10 m in n-Si it is close to 1. 

It should be noted that, as shown in [6], for semi-

conductors with the small diffusion length and the 

large depletion region width such approach for the col-

lection probability determination is not so straightfor-

ward due to a necessity to take into account the excess 

carrier recombination inside the depletion region. 

However, in Si-based structures the diffusion length is 

usually rather large and the problem could arise only 

for p-i-n structures with very wide i-region that is not 

necessary for betavoltaic applications. 

 

2.1 Assumed Structure Design 
 

Calculations were carried out for porous Si with the 

realistic parameters presented in [11], i.e. the pore ra-

dius is of 3 m, the pore density N  106 cm2, the pore 

depth is of 200 m. It is assumed that 0.3 m p-n junc-

tion is formed inside every pore and 1 μm thick 63Ni 

film with the specific activity of 10 Ci/g is deposited on 

it uniformly on the entire depth. The porous structure 

is approximated by an array of hexagonal units per-

pendicular to the surface with a cylindrical pore inside 

every unit (Fig. 1). Thus, the values r  3 m and 

d  10 m were used. Because of periodicity, it is suffi-

cient to calculate the induced current for unit cell. To 

simplify the calculations, the hexagonal unit cell is ap-

proximated with the equivalent circle of area 
2  1 /R N  , so that the total volume of this array of 

cylinders is equal to the crystal surface multiplied by a 

depth of 200 m. Irradiation from Ni film covering the 

pore inside the unit cell and from Ni films covering 6 

adjacent pores was taken into account under calcula-

tions. 

 
 

Fig. 1 – Schematic illustration of unit cell and its approxima-

tion with a cylinder 
 

3. THE RESULT OBTAINED  
 

For the structure studied and assumed parameters 

of 63Ni film the calculated density of the induced cur-

rent, which is equal to the total short circuit current 

divided by the surface area, is of 3.9 A/cm2. Such ap-

proach allows to predict the parameters of semiconduc-

tor converter based on porous Si as a function of their 

radius and density that can be used for their optimiza-

tion. An example of such calculations is presented in 

Fig. 2, where the induced current as a function of pore 

density is shown for the fixed pore radius of 3 m. It is 

seen that as expected, the induced current increases 

with the pore density practically linear, however, it 

start to decrease, when the pore diameter approaches 

d. The maximum induced current is about 5 A/cm2 at 

the pore density of 1.5·106 cm2. 
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Fig. 2 – Dependence of induced current on pore density for 

pore radius of 3 m 

 

3.1 Comparison with Planar Structures 
 

For the planar Si p-n diode covered with 3 m thick 
63Ni film with the specific activity of 10 Ci/g the induced 

current density was calculated in [6], where a value of 

110 nA/cm2 was obtained. For the 1 m thick film the 
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calculated induced current density is equal to 

78 nA/cm2, i.e. 50 times lower than that for the porous 

Si based structure. The total effective area of pores in 

1 cm2 is about 38 cm2, i.e. in porous Si structure with 

the parameters used in the calculations the efficiency of 

beta-radiation utilization increases 1.3 times in compar-

ison with the planar structure.  

However, it should be taken into account that at Si 

thickness of 9 m it absorbs about 95 % of beta-

radiation energy. Thus, a stack of 10 planar structures 

with a total thickness of 200 m produces the current 

only 5 times smaller than the corresponding structure 

based on porous Si. Besides, in a planar structure only 

50 % emitted electrons are utilized, while in the stack-

ing thinned-down devices about all of them can be used 

that increases two times more the induced current. 

Thus, the induced current in this device can be only 2.5 

times lower than that in the porous Si based structure 

of the same volume. It should be also taken into account 

that the technology of planar structures is much sim-

pler and therefore the open circuit voltage and filling 

factor for them should be higher than those for deep 

pore or trench structures. Besides, it is not so easy to 

deposit Ni layer with the homogeneous thickness along 

their length. Such factors can essentially decrease the 

efficiency of converters based on porous Si. For these 

reasons it seems that the stacking thinned-down struc-

tures are more promising for the effective semiconduc-

tor converter than those based on porous Si. 

 

4. CONCLUSION 
 

Thus, the induced current in semiconductor conver-

tor of beta-radiation energy based on porous Si is calcu-

lated. The obtained values are compared with those for 

the convertor based on the stacking thinned-down pla-

nar Si p-n junctions. It is shown that the output param-

eters of the stacking thinned-down devices can be com-

parable or even higher than those of devices based on 

porous p-n junctions. 
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