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We carry out quantum chemistry calculations on armchair graphene nanoribbons (AGNRs) using den-

sity-functional theory. PVE/SVP results for the dependence of energies of the highest occupied (HOMO) 

and lowest unoccupied molecular orbitals (LUMO) as well as energy gaps on AGNR widths and lengths are 

presented. We compare the HOMO and LUMO energies of a series of AGNRs with those energies of fuller-

ene C60 and its soluble derivative, PCBM, to ascertain whether it is possible to use such AGNRs as electron 

acceptors in organic solar cells. The influence of Stone-Wales defects embedded in the frameworks of 

AGNRs on their electronic properties is also studied. 
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1. INTRODUCTION 
 

Graphene, a perfect single layer of carbon atoms 

that are bonded together in a hexagonal honeycomb 

lattice, has become a focus of attention from both exper-

imentalists and theorists since the discovery of Geim 

and Novoselov [1]. Unique properties of graphene pre-

determine its great influence on nanotechnologies [2-8]. 

However, the absence of a band gap of graphene sets 

the limits on the efficiency of graphene-based electronic 

and optoelectronic switching devices. Novel methods of 

a band gap opening are essential to advance its poten-

tial electronic applications. One effective way of creat-

ing a band gap in graphene is to confine charge carriers 

to a one-dimensional (1D) systems, namely graphene 

nanoribbons (GNRs), representing long stripes of gra-

phene [9]. A variety of interesting edge and width-

related phenomena emerge from the 1D nature of 

GNRs, whose properties depend considerably on their 

structures [10-12]. Thus, GNRs with armchair edges 

(AGNRs) are expected to exhibit width-dependent elec-

tronic band gaps, whereas zigzag GNRs (ZGNRs) are 

predicted to reveal spin-polarized edge states [9,13]. 

Recently, few effective methods have been proposed for 

the synthesis of GNRs [11,13-15]. Despite their fasci-

nating properties, GNRs are not as popular as other 

carbon allotropes, fullerenes or single-walled carbon 

nanotubes (SWCNTs). For example, fullerene deriva-

tives (for instance, phenyl-C61-butyric acid methyl ester 

or PCBM) are widely utilized in production of organic 

solar cells (OSCs) [16-18]. They used as electron accep-

tors in the process of exciton dissociation. To obtain 

effective charge separation and thereby high perfor-

mance of OSCs, one should carefully select the relative 

arrangement of the LUMO levels of a donor and an 

acceptor. Bulky graphite and two-dimensional (2D) 

graphene are not suited for their employment as elec-

tron acceptors in OSCs. PCBM, in turn, has the strictly 

fixed LUMO level and good solubility, and it gives the 

best fit to the OSCs design. On the other hand, there 

exists a series of papers on structural and electronic 

properties of finite-length SWCNTs and GNRs. They 

showed that LUMO energies of SWCNTs and GNRs 

exhibit oscillating behavior on going from ‘short’ to 

‘long’ models [19-22]. Thus, it is worth comparing elec-

tronic properties of PCBM and GNRs, and figure out 

whether the latter suitable for the effective separation 

of electrons and holes. 

To the best of our knowledge, relatively low quanti-

ty of works is devoted to the investigations of the elec-

tronic properties of GNRs [9, 10, 23, 24]. Thus, for in-

stance, the recent comprehensive work of Wu and Chai 

studied ZGNRs only [9]. However, one can definitely 

see that electronic properties of GNRs are strongly de-

pendent on their edge shape. Therefore, here we select-

ed finite-size AGNR models, because the case of short 

AGNRs is of special interest. It was already shown, 

when SWCNTs are shortened, their energy levels be-

come quantized, which makes them suitable for various 

applications such as quantum dots and single-electron 

transistors [25]. From this point of view, it is very in-

teresting to compare structural and electronic proper-

ties of finite-length SWCNTs and AGNRs. 

Motivated by the above considerations, herein, we 

study structural and electronic properties of AGNRs of 

various lengths and widths by techniques based on 

density functional theory (DFT). 

 

2. COMPUTATIONAL METHODS 
 

In this paper, a series of polycyclic aromatic hydro-

carbons represents finite-size AGNRs. The edge sites of 

AGNRs are saturated by hydrogen atoms to avoid the 

dangling. Fig. 1 represents a rectangular AGNR, with 

width a and length b.  

Thus, studied models are labeled as AGNR[a,b]. In 

particular, AGNR [5, 1] is a pentacene molecule. For all 

calculations, we used Orca 3.0.3 program package [27] 

employing the DFT method with the PBE functional 

[28, 29]. The PBE has been demonstrated to be a reliable  
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Fig. 1 – Representative model of AGNR[5,7], where width  5, 

length  7. Hydrogen atoms omitted for clarity 
 

and commonly used functional for study of different 

nanostructures [30, 31]. To calculate equilibrium geom-

etries of the studied structures, we used SVP (split va-

lence polarization) basis set, which is equivalent to the 

commonly used 6-31G* basis set [32]. In SVP the inner 

shell atomic orbitals are described by a single basis 

function, and two basis functions are provided for each 

valence shell atomic orbital, augmented by a set of po-

larization functions. 

 

3. RESULTS AND DISCUSSIONS 
 

Now we present theoretical predictions for the HO-

MO and LUMO energies of studied AGNRs as a func-

tion of the nanoribbon length (Fig. 2). 
 

 
 

Fig. 2 – HOMO and LUMO energies (eV) vs. AGNRs length. 

AGNR [3, 7] (■, HOMO (black), LUMO (green)), AGNR [4, 7]  

(♦, HOMO (orange), LUMO (yellow)), AGNR[5, 7] (●, HOMO 

(light-blue), LUMO (grey)) 
 

For all considered AGNRs, we can see the monoton-

ic increase in the HOMO energy with increasing AGNR 

length for all studied models. The wider models AGNR 

[5, b] exhibit the lowest absolute value of HOMO and 

the highest of LUMO energy among AGNRs studied. 

This is not surprising, because such an AGNR, consist-

ing of more quantity of carbon atoms, resembles prop-

erties of real 2D graphene better. In turn, AGNR [4, b] 

shows intermediate values of the HOMO and LUMO, 

and AGNR [3, b] exhibit the maximum gap between the 

HOMO and LUMO (Eg) (Fig. 2). For any AGNR, energy 

values of monotonically increasing HOMOs and de-

creasing LUMOs yield a deceasing Eg (it is roughly 

equal to the band gap in semiconductors). It should be 

noted, that the most interesting range of Eg for nano-

photonics is ~ 1-3 eV, therefore the short AGNRs, 1-7 

carbon rings long, are suited well for the design of 

promising AGNR-based application. Also, the change of 

the lengths of nanoribbons can be used to ‘fine-tune’ the 

electronic properties of AGNRs. Having analyzed Fig. 2 

and Fig. 3, we may conclude that all studied AGNRs 

exhibit semiconducting properties.  
 

 
 

Fig. 3 – Eg (eV) for studied AGNRs vs. their lengths. AGNR 

[3, b] (■), AGNR [4, b] (♦), AGNR[5, b] (●), (b  1-7). The 

unfilled enlarged symbols denote Eg values for AGNRs with 

the Stone-Wales defect (SWD) [a, 7], (a  3-7) 
 

AGNR [3, b] are characterized by larger Eg among 

all studied models. Clear tendency of Eg to diminish on 

going from AGNR [a, 1] to AGNR [a, 7] (a  3-5) reflects 

the fact of the energy gap disappearing in the case of 

2D graphene (Fig. 3). The comparison of the present 

results with the Owens’ work shows the same trends: 

gradual decrease in Eg as the length of the ribbon in-

creases; ionization potential that follows the HOMO 

energy according to Koopmans’ theorem also diminish-

es with the increasing length of AGNR [23]. 

It is interesting to compare electronic properties of 

AGNRs with those properties of fullerene C60 and its 

soluble derivative, PCBM ([6,6]-phenyl-C61-butyric acid 

methyl ester), that are widely used for the design of 

novel OSCs. The substitution of the commonly used 

electron acceptor may lead to the increase in efficiency 

of such types of OSCs as the energy levels of AGNRs 

can be ‘fine-tuned’ by the alternation of their lengths.  

According to recent literature data, C60 and PCBM 

have the following energetic properties: – 6.400 (HO-

MO), – 3.661 (LUMO), and 2.739 (Eg) eV; – 6.047 (HO-

MO), – 3.503 (LUMO), and 2.544 (Eg) eV, respectively 

[26]. On comparison of the shortest AGNRs among 

studied, i.e. polycyclic aromatic hydrocarbons, with C60 

and PCBM it can be seen that C60 energy levels are 

sufficiently lower (HOMO) and slightly lower (LUMO) 

than the corresponding levels of AGNRs (Fig. 2). The 

same holds true for PCBM: lower mutual arrangement 

of the frontier energy levels in comparison with those of 

AGNRs. Eg of AGNRs is smaller than that of fullerene 

counterparts on ~ 1 eV in the case of AGNR [4, 1] and 

[5, 1] (Fig. 3). AGNR [3, 1] have roughly the same Eg 

comparing with C60 and PCBM. AGNR [3, 2], [4, 2], and 

[5, 2] exhibit an increase in HOMO energies, and de-

crease in LUMO energies, yielding a reduction of Eg. 

Electronic properties of these AGNRs show the consid-

erable difference with those of C60 and PCBM. Further 

elongation of AGNRs leads to the gradual increase in 

HOMO and decrease in LUMO energies. The longest 

AGNRs [3, 7], [4, 7], and, at a larger degree, [5, 7] re-

semble properties of 2D graphene, and it is of no use to 
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employ them in pristine form as electron acceptors in 

the OSCs. These data witness that despite the consid-

erable alternation in energies of the frontier orbitals, 

the present model AGNRs could not be effective equiva-

lents of widely used fullerene derivatives to substitute 

them in the design of OSCs. 

Thus, our results on AGNRs of various lengths and 

widths show that the values of HOMO and LUMO lev-

els as well as Eg are length- and width-dependent. 

However, the direct substitution of PCBM on short 

AGNRs does not provide the necessary level of power 

conversion, because of non-optimal mutual arrange-

ment of the HOMO and LUMO energy levels. 
 

Table 1 – Energies of HOMOs, LUMOs and Eg (eV) for pristine and defective AGNRs [a, 7], (a  1-3) 
 

 AGNR [3, 7] AGNR [4, 7] AGNR [5, 7] 

 HOMO LUMO Eg HOMO LUMO Eg HOMO LUMO Eg 

Pristine – 4.242 – 3.434 0.808 – 4.009 – 3.735 0.274 – 3.940 – 3.871 0.069 

Defective – 3.986 – 3.670 0.316 – 3.927 – 3.890 0.037 – 3.906 – 3.898 0.008 
 

   

   

AGNR[3,7] AGNR[4,7] AGNR[5,7] 

 

Fig. 4 – Fragments of surfaces of pristine (top) and defective (bottom) AGNR [3, 7], AGNR [4, 7], and AGNR [5, 7]. Hydrogen 

atoms omitted for clarity 
 

At the same time, a careful adjustment of length can 

help researchers in obtaining AGNRs with ‘fine-tuned’ 

properties. 

Next, we present theoretical predictions for elec-

tronic properties of the AGNRs with Stone-Wales de-

fects (SWD) to check, whether their introducing can 

help scientists to alter electronic properties of AGNRs. 

A Stone–Wales defect is a defect that involves the С-С 

bond rotation by 90° with respect to the midpoint of the 

bond, yielding two five-membered and two seven-

membered cycles, instead of four adjacent six-membered 

cycles. AGNR [5,7] with one introduced SWD show mod-

erate shifts in HOMO and LUMO energies (~ 0.03 eV in 

each case), at the same time, Eg decreases notably and 

the band gap becomes almost vanish (0.008 eV) (Table 1, 

Fig. 3). Defective AGNR [4, 7] exhibits the same trend, 

but the absolute values of changes increase: HOMO and 

LUMO energies are changed on introducing an SWD  

(~ 0.08 and 0.15 eV, respectively), and its Eg also de-

creases (0.037 eV) (Table 1).  

The larger value of Eg in the case of AGNR [4, 7] is 

the result of their larger deviation from 2D graphene. In 

the case of narrower AGNR [3, 7], we can see even more 

energy shifts: ~ 0.25 eV for HOMO and 0.24 eV for LU-

MO. This leads to the substantial decrease in Eg, alt-

hough it remains a non-zero value (0.316 eV) (Fig. 3). 

To summarize the data obtained, the wider AGNR 

the better it resembles properties of real graphene, and 

vice versa the narrow AGNRs are similar to polycyclic 

aromatic hydrocarbons. At any rate, the introducing 

defects in AGNRs’ structure can help one to modify 

their electronic properties. The remarkable case is de-

fective AGNR [3,7], in which we can see considerable 

HOMO and LUMO shifts and the large Eg drop. Such a 

scenario is caused by the relatively higher ratio of 'dis-

turbed’ to ‘undisturbed’ carbon atoms in comparison 

with defective AGNR [4, 7] and AGNR [5, 7]. 

To explain energy difference of frontier orbitals of 

defective and pristine AGNRs, we should involve into 

consideration С-С bond lengths adjacent to the SWD 

spot (Fig. 4). Four adjacent six-membered cycles consist 

of 19 C-C bonds (Fig. 4). Their length are approximate-

ly equal to 1.440 Å for the bonds parallel to the direc-

tion of the AGNR axis (from the bottom to the top of the 

page), and to 1.434 Å for the bonds diagonal to the di-

rection of the axis. The latter tend to be elongated in 

the defected AGNR. As a result of a mutual redistribu-

tion, there arise novel C-C bonds, perpendicular to the 

AGNR axis. They are rather short with bond lengths of 

~ 1.360-1.370 Å. Also, rearrangements occur in hepta-
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gons and pentagons of the SWD, although it does not 

lead to outputs of these rings from the plane of AGNRs. 

Large C-C bonds alternations as well as reorganization 

of the surface of AGNR result in changes in electronic 

properties of AGNRs. The effect is more notable in the 

case of AGNR [3, 7] as the SWD/carbon atoms ratio is 

the largest among all studied nanoribbons. The orien-

tation of the SWD on the AGNRs’ surface also may 

leads to the alternation of their HOMO and LUMO 

energies. 

Thus, the introducing of defects into AGNRs net-

work can be a promising way to improve their electron-

ic properties. The data obtained as well as recent suc-

cesses in design of GNRs with ‘atomic accuracy’ allows 

us to expand our predictions to a practical side. 

 

4. CONCLUSION 
 

We have presented the DFT study on the electronic 

and structural properties of AGNRs. 21 AGNRs of dif-

ferent widths and lengths have been investigated: 

AGNR [a, b], (a  3-5; b  1-7). HOMO and LUMO en-

ergies of all studied models exhibit the same trend: 

monotonic increase in the HOMO and corresponding 

decrease in the LUMO. The behavior of frontier orbitals 

of AGNRs and their structural analogues, SWCNTs, on 

elongation is opposite: the monotonic character alters 

on oscillations. 

In terms of structure, the widest models used herein 

resemble properties of 2D graphene better, therefore 

they have the energetically close HOMO and LUMO 

and the smallest energy gap. AGNRs [4, b] have inter-

mediate values of HOMO and LUMO, and the narrow 

AGNRs [3, b] exhibit the largest Eg.  

In comparison with pristine fullerene, C60, and its 

soluble derivative, PCBM, AGNRs demonstrate such a 

mutual arrangement of frontier orbitals that cannot be 

effectively used in the design of OSCs. However, a con-

venient way to alter the electronic properties of AGNRs 

is their step-by-step elongation.   

For all studied AGNRs, the introduction of SWDs 

into their frameworks moderately modifies HOMO and 

LUMO energies; at the same time, the energy gaps 

undergo substantial changes. The effects of the SWD 

defect are especially considerable in the case of the nar-

rowest AGNR [3, b]. Our future studies will be devoted 

to investigations of electronic properties of a broader 

range of AGNRs both carbon and boron nitride. 
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