
 

MINISTRY OF EDUCATION AND SCIENCE OF UKRAINE 
SUMY STATE UNIVERSITY 

 
  
 

 
 
 
 

"ELEMENTARY NUMBER THEORY" 
lecture notes with tests 

for students of specialties  
"Informatics" and "Applied Mathematics" 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Sumy 
Sumy State University 

2016 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Electronic Sumy State University Institutional Repository

https://core.ac.uk/display/141451021?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

MINISTRY OF EDUCATION AND SCIENCE OF UKRAINE 
SUMY STATE UNIVERSITY 

 
 
 

 
 
 
 

"ELEMENTARY NUMBER THEORY" 
lecture notes with tests 

for students of specialties  
"Informatics" and "Applied Mathematics" 

 
 
 
 
 
 

 Approved at meeting of  
 Department of Applied and
 Computational Mathematics 
 as the abstract of lecture notes  
 for the discipline ”Elementary  
 number theory” 
 Record № 10 from 19.05.2015 

 
 

Sumy 
Sumy State University 

2016 



 

“Elementary Number Theory" lecture notes with tests /  
Yu.V. Shramko, E.I. Ogloblina. – Sumy : Sumy State University, 
2016. – 72 p. 

 
 
Department of Applied and Computational Mathematics 

 



 3 

 CONTENT  
  P. 

1.  DIVISIBILITY.......................................................................................4 

Problems for Unit 1 .............................................................................8 

2. PRIME NUMBERS................................................................................9 

3. DIVISION .............................................................................................10 

Problems for Unit 3 ...........................................................................15 

4. GREATEST COMMON DIVISOR (GCD) .......................................16 

5. THE EUCLIDEAN ALGORITHM....................................................18 

6. LOWEST (LEAST) COMMON MULTIPLE (LCM) ............ ..........21 

Problems for Unit 6 ...........................................................................22 

7. CONTINUED FRACTIONS ...............................................................24 

Problems for Unit 7 ...........................................................................31 

8. ARITHMETIC FUNCTIONS.............................................................32 

Problems for Unit 8 ...........................................................................37 

9. MODULAR ARITHMETIC................................................................39 

9.1. CLASSES OF CONGRUENCE..............................................................39 
9.2.  PROPERTIES OF CONGRUENCES THAT CHANGE MODULUS ............47 
9.3. FERMAT'S LITTLE THEOREM AND EULER'S THEOREM ON THE 

EXISTENCE OF THE UNIT ELEMENT MODULO m ..................................48 
Problems for Unit 9 ...........................................................................53 

10. LINEAR CONGRUENCES WITH ONE UNKNOWN..................54 

10.1. CONGRUENCES OF THE FIRST ORDER. SOLVING CONGRUENCES..54 
10.1.1. Application of Congruence’s Properties................................55 
10.1.2. Application of Convergents....................................................57 

10.2. MULTIPLICATIVE INVERSE............................................................59 
10.3. SYSTEM OF LINEAR CONGRUENCES WITH ONE UNKNOWN ..........61 

Problems for Unit 10 .........................................................................66 

REFERENCES .........................................................................................71 



 4 

1.  DIVISIBILITY 

In this course all numbers are integers unless otherwise specified. 
Thus, in the following definition d, n, and k are integers. 

Definition 1.1  
The number d divides the number n if there exists k such that 

n=d⋅k. 

Alternate terms are: 
d is a divisor of n,  
d is a factor of n, 
n is a multiple of d. 
This relationship between d and n is symbolized as d | n. The 

symbol d ł n means that d does not divide n. The integer k is called 
the quotient from division n by d. 

Note that the symbol d | n is different from the fraction symbol 
d/n. It is also different from n/d because d | n is either true or false, 
while n/d is a rational number. 

All factors of n that are unequal 1 or n are called proper 
(nontrivial) factors ; 1 and n are called trivial  factors of integer n. 

Theorem 1.1: Divisibility Properties  
For any n, m, d, and c the following properties hold: 

1. ∀ d | 0. 
2. if  0 | n ⇒ n = 0. 
3. 1 | n. 
4. (Reflexivity property) n | n. 
5. n | 1 ⇒ n = 1 or n = −1. 
6. (Transitivity property) d | n and n | m ⇒ d | m. 
7. (Multiplication property) d | n ⇒ for any a∈Z: d | a⋅n. 
8.  (Linearity property) d | n and d | m ⇒ d | a⋅n + b⋅m for all  

a and b. 
9. (Comparison property) If d and n are positive and d | n, then  

d ≤ n. 
10. (Integration property) If d | a, d | b and a= b + c ⇒ d | c. 



 5 

Definition 1.1  
If n is divisible by 2, then we say that it is even (or has even 

parity ). Otherwise, a number is odd (or has odd parity). 

Lemma 1.1 
Recall that |a| equals a if a > 0 and equals −a if a < 0. 
1. If d | a, then −d | a and d | −a. 
2. If d | a, then d | |a|. 
3. The largest positive integer that divides a nonzero number a is 

|a|. 

Examples 

Example 1.1 
Let x and y be integers. Prove that 2x + 3y is divisible by 17 if 

and only if (iff) 9x + 5y is divisible by 17. 

Solution 
Suppose that 17 | (2x + 3y). Then, according to multiplication 

property in theorem 1.1, we get 17 | [13(2x + 3y)] or  
17 | (26x + 39y).  

Further, we decompose the right side into sum as follows: 
17 | (17x + 34y + 9x + 5y) ⇒ 17 | 17⋅(x + 2y) + (9x + 5y). 

Finally, according to integration property in theorem 1.1, we 
have 17 | (9x + 5y). 

And conversely, producing the similar set of operations, we 
obtain 
17 | (9x + 5y) ⇒ 17 | [4(9x + 5y)],  
or 17 | (36x + 20y) ⇒ 17 | (34x + 17y + 2x + 3y) ⇒ 

17 | 17(2x + y) + 2x + 3y.  
Thus we have proved that 17 | 2x + 3y. 

Example 1.2 
Prove that for any integer , , ,m p q n such that ( ) ( )pqmn|pm +−  

is an integer, ( ) ( )pnmq|pm +−  is also the integer. 
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Solution 
Let ( ) ( )pnmq|pm +−  be an integer. We can denote this in 

similar way: Zt
pm

pqmn ∈=
−
+

1 .  

It is necessary to prove that Zt
pm

npmq ∈=
−
+

2  or Ztt 21 ∈− . Let 

us show this. We obviously obtain: 

( ) ( ) ( )( )
Zqn

pm

q-npm

pm

qnpqnm

pm

npmq

pm

pqmn ∈−=
−

−=
−

−−−=
−
+−

−
+

. 

Therefore Ztt 21 ∈−  and, finally, Zt
qm

npmq
2 ∈=

−
+

. 

Example 1.3 

N is a five-digit number 9a0,aaaaaN i01234 ≤≤= . It is known 

that the number N is divisible by 41.  
Prove if we shift digits of the number in a circular manner, then 

we will get new numbers divisible by 41 too. 

Solution 

 012
2

3
3

4
4 aa10a10a10a10N ++++= . 

Let us shift the last digit a0 to the first position, as follows: 

123
2

4
3

0
4

1 aa10a10a10a10N ++++= . It is the new number. 

Prove that it is multiple of 41. 
Let us try to separate the number N out from the right side of the 

expression for 1N . Multiplying by 10, we get 

 12
2

3
3

4
4

0
5

1 a10a10a10a10a10N10 ++++= . 

Then add and subtract a0. It yields: 

0012
2

3
3

4
4

0
5

1 aaa10a10a10a10a10N10 −+++++= . 

By combining the first and last terms of expression, we obtain 
the number N as a summand: ( ) Na99999N110aN10 0

5
01 +=+−= . 

Further, taking into account that 
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 99999|41271
41

11111
,11111999999,N|41 ⇒=⋅= , 

we come to conclusion that in the right side both terms are multiples 
of 41. Thus 11 N|41N10|41 ⇒  

Example 1.4 
Prove that ( )mm|30 5 − . 

Solution 
First, let us factorize 30: 

 !356530 ⋅=⋅= . 

Hence it is necessary to prove that ( )mm −5  will be the multiple 

of 5 and !3 , simultaneously. 
Secondly, we introduce the number of combinations for n by k.  

( )( ) ( )
Z

!k

1kn...2n1nn
C k

n ∈+−⋅⋅−−= . 

It follows that the product of k consecutive integers divided by 
!k  is an integer.  

Therefore, we need to represent ( )mm −5  via the product of 5 
consecutive integers, for such product is divisible by 5!=30*4. All 
the more, considering term will be divisible by 30. Also, we can 

show that ( )mm −5  is the product of 3 consecutive integers and 
factor 5. 

Thus we have for the first case: 

 ( ) ( ) ( )( )5 4 2 21 1 1m m m m m m m− = − = − + =  

( ) ( )( ) ( ) ( )( )2 21 1 4 5 1 1 4m m m m m m m m= − + − + = − + − +  

( ) ( ) ( )( ) ( )( ) ( ) ( )5 1 1 2 1 1 m 2 5 1 1m m m m m m m m m m+ − + = − − + + + − + . 

( )( ) ( )( ) ( )( ) ( )( )2m1mm1m2m|30Z
!5

2m1mm1m2m ++−−⇒∈++−−

 
And finally, for the second case, we obtain 
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( ) ( ) ( ) ( )1 1 1 1

Z
3! 6

m m m m m m− + − +
= ∈ ⇒  

( ) ( ) ( ) ( )6| 1 1 30 | 5 1 1m m m m m m⇒ − + ⇒ − + . 

This completes the proof. 

PROBLEMS FOR UNIT 1 

Problem 1.1 
Find all positive integers d such that d divides both n2 + 1 and  

(n + 1)2 + 1 for some integer n. 

Problem 1.2  

N is a six-digit number. 5a,9a0,aaaaaaN 0i012345 =≤≤= . If 

we rearrange last digit a0=5 to the first place, we will get N4N1 = . 
Find this number N. 

Problem 1.3 
Prove that  
1. ( )( )1n21nn|6 ++ . 

2. ( )44 nmmn|30 − . 

Problem 1.4 
Prove that  

( )( ) ( )nn...2n1n|2n +⋅⋅++  

Problem 1.5 

Prove that the last digit of number 12N
n2 +=  is 7. 
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2. PRIME NUMBERS 

Definition 2.1 
An integer p ≥ 2 is prime if it has only trivial divisors. An integer 

greater than or equal to 2 that is not prime is composite. 
Note that 1 is neither prime nor composite. 

Lemma 2.1 
An integer n ≥ 2 is composite iff it has factors a and b such that 

1 < a < n and 1 < b < n. 

Lemma 2.2 
If n > 1, then there is a prime p such that p | n. 

Definition 2.2 
Let p be a prime. If you know that a|pα  and 1p +α ł a , then α is 

the highest power of occurrence of the prime p to an integer a. 

Theorem 2.1: The Fundamental Theorem of Arithmetic 
Every integer a greater than 1 can be written uniquely in the 

following form: 

 k321

k321 p...pppa αααα ⋅⋅⋅⋅= , 

where ip  are distinct primes and αi are positive integers – the highest 

power of occurrence of prime pi to an integer a. 

Theorem 2.2: Euclid’s Theorem 
There are infinitely many primes. 

Proof. 
Suppose there exist only a finite number of primes, say 

1 2, , . . . , .      np p p  

Let N = p1p2 · · pn + 1. By the fundamental theorem of 
arithmetic, N is divisible by some prime p. That prime must be one of 
p1, . . . , pn since that list is assumed to be exhaustive. But it is seen 
that N is not divisible by any of the pi. This is a contradiction; it 
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follows that the assumption that there are only finitely many primes 
is not true. 

We shall use the following notations: 
The set of divisors of an integer 31 2

1 2 3 ... k
ka p p p pα αα α= ⋅ ⋅ ⋅ ⋅  is 

31 2
1 2 3{ ... , 0 , 1, }k

k i iD p p p p i kβ ββ β β α= ⋅ ⋅ ⋅ ⋅ ≤ ≤ = . 

The number of divisors of an integer 31 2
1 2 3 ... k

ka p p p pα αα α= ⋅ ⋅ ⋅ ⋅  

equals  

 ( ) ( )( ) ( )1...11a k21 +⋅⋅++= ααατ . 

Theorem 2.3 

If a > 1 is composite, then a has the least prime divisor p n≤  

Example 2.1 

Consider the number 97. Note that 97 100 10< = . The primes 
less than 10 are 2, 3, 5, and 7. None of them divides 97, and so 97 is 
prime. 

Useful Facts 
Bertrand’s Postulate. For every positive integer n, there exists 

prime p such that  

 n p 2n≤ ≤ . 

3. DIVISION 

Let a, b be any integers. Without loss of generality by Lemma 
1.1, we can assume that a > 0, b > 0. 

Theorem 3.1 
The pair of integers a, b (a > b) can be uniquely submitted with 

pair of integers q, r, satisfying these two conditions: 
1. a = b⋅q +r. 
2. 0 ≤ r < b. 
The integer r is called the remainder in division of a by b.  

If r = 0, then q is called the quotient, other wise it is called the 
partial quotient . 
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Corollary 3.1 
The number d divides the number n iff in division of n by d the 

remainder is r = 0. 

Criteria for number divisibility 
Criteria for number divisibility are important in factorization of 

large integers. 
To obtain criteria for divisibility, we will apply the method of 

remainders. Any non-negative integer can be represented in decimal 
form as follows: 

012
2

3
3

1n
1n

n
n aa10a10a10...a10a10N ++++++= −

− .  

We don’t know digits 01231nn a,a,a,a,...,a,a − , but we can analyze 

remainders of the division of 10i (i=0,1,…, n) by some numbers. 
1. Criteria for divisibility of N by 2k 

– Divisibility by 2 
Obviously, the number 10nan+10n-1an-1+…+10a1 is divisible by 2. 

If a0 is divisible by 2, then N will be divisible by 2. 
– Divisibility by 4=22 

Since the number 10nan+10n-1an-1+…+102a2 is divisible by 4, 
then N will be divisible by 4 if 10a1+ a0 is divided by 4. 
– Divisibility by 8=23 

Number 10nan+10n-1an-1+…+103a3 is divisible by 8. So, if 
102a2+10a1+ a0 is divisible by 8, then N will be divisible by 8, and 
so on. 
 – Generalization for 2k 

If the last k digits of the number N are divisible by 2k, then N 
will be divisible by 2k. 

2. Criteria for divisibility of N by 3 and 9 
We can rewrite number N as follows: 

1

1 2 1 1 1 0
1

999...9 999...9 ... 99 9 ...n n n n
n n

N

N a a a a a a a a− −
−

= + + + + + + + + + =��� ���
�����������������

 

1
1

n

i
i

N a
=

= +∑ . 
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It is evident that 9|N1, 3|N1 
So, if the sum of digits of the number N is divisible by 3 or 9, 

then N is divisible by 3 or 9. 
3. Criteria for divisibility of N by 5k 

 012
2

3
3

1n
1n

n
n aa10a10a10...a10a10N ++++++= −

− . 

If the number composed of the k last digits of the number N is 
divisible by 5k, then N is divisible by 5k. The proof is the same as for 
divisibility of N by 2k 

4. Criteria for divisibility of N by 7 

 012
2

3
3

1n
1n

n
n aa10a10a10...a10a10N ++++++= −

− . 

Consider remainders of division of ten’s powers by 7. We have 
10: 10=1⋅7+3, the remainder is 3 
102: 100=14⋅7+2, the remainder is 2 
103: 1000=142⋅7+6=143⋅7 - 1, the remainder is 6 or -1 
104: 10000=1428⋅7+4, the remainder is 4 
105: 100000=14285⋅7+5, the remainder is 5 
106: 1000000=142857⋅7+1, the remainder is 1 
We have obtained all type of division remainders by seven. If we 

continue process of division, then we will get the remainders from 
considered above set. Now we can formulate criterion for 
divisibility by 7. 

a. Criteria for three-digit numbers 
 N = 100a2 + 10a1+a0 = 98a2 + 2a2 + 7a1 + 3a1 + a0 = 98a2 + 7a1 + 
+ 2a2 + 3a1 + a0=7(14a2 + a1) + 2a2 + 3a1 + a0. 

If  2a2 + 3a1 + a0 is divisible by 7, then N is divisible by 7 too. 

Example 3.1 
Check whether numbers 581 and 163 are divisible by 7 or not. 

Solution  
5⋅2 + 8⋅3 + 1 = 35. It is divisible by 7, so 581 is divisible by 7 

too. 
1)  1⋅2 + 6⋅3 + 3 = 23. It isn’t divisible by seven. Since 23 has the 
remainder 2, then 163 has the same remainder. 
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b. Criteria for n-digit numbers 
Note that 103 has the remainder -1 and 106

 has the remainder 1. 
Represent the considering number via the sum of three-digit 

numbers: 

 3 6
2 1 0 5 4 3 8 7 610 10 ...N a a a a a a a a a= + + + =  

2 1 0 5 4 3 5 4 3 8 7 6 8 7 6143 7 142857 7 ...a a a a a a a a a a a a a a a= + ⋅ − + ⋅ + + =  

1 2

5 4 3 8 7 6 2 1 0 5 4 3 8 7 6

7

143 7 142857 7 ... ...
N N

a a a a a a a a a a a a a a a⋅ + ⋅ + + − + −
⋮

��������������� �����������
 

 
�8 7 6 5 4 3 2 1 0 2 2 1 0 5 4 3 8 7 6... , ...nN a a a a a a a a a a N a a a a a a a a a

++ −

= = − + −
������

 

If N2 is divisible by 7, then N is divisible by 7 too. 

Example 3.2 
Check if the number N=23 161 320 is divisible by 7.  

Solution 
N2=320 – 161 + 23 = 182. 182:7=26. So, N=23 161 320 is 

divided by 7. We have 23 161 320:7 = 3 308 760. 
5. Criteria for divisibility of N by 11 

 012
2

3
3

1n
1n

n
n aa10a10a10...a10a10N ++++++= −

− . 

Consider the remainders of the division of ten’s powers by 11. 
10: 10=0⋅11+10 = 1⋅11 – 1, the remainder is 10 or -1 
102: 100=9⋅11+1, the remainder is 1 
103: 1000=90⋅11+10=91⋅11 - 1, the remainder is 10 or -1 
104: 10000=901⋅11+1, the remainder is 1 

 ...aaaaN,aaaaaa...aN 32102012345n +−+−==
+−+−+

 

If  N2 is divisible by 11, then N will be divisible by 11 too. 

Example 3.3 
Check if the numbers N=23 161 320 and N=1 186 680 are 

divisible by 11.  
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Solution 
1) N2= 0 – 2 + 3 – 1 + 6 – 1 + 3 – 2 = 6. It isn’t divisible by 11. 

So, N=23 161 320 isn’t divisible too. 
2) N2= 0 – 8 + 6 – 6 + 8 – 1 + 1 = 0. It is divisible by 11, 

therefore N=1 186 680 is divisible by 11 too. 
6. Criteria for divisibility of N by 13 
Criterion for divisibility by 13 matches the criterion of 

divisibility by 7. 

Example 3.4 
Check that N = 3 040 232 is divisible by 13. 

Solution 
232 – 40 + 3 = 195. 195:13=15. Then 3 040 232 is divisible by 

13. 
7. Criteria for divisibility of N by d = 10k + 1 (31, 41, 61,…) 

 00

A

123n aA10aaaa...aN +==
�����

. 

Multiply N by k: ( ) ( )00 kaA1k10AAAkakA10kN −−+=−++= . 

Since k isn’t divisible by 10k + 1, we see that N will be divisible 
by 10k + 1 if N2 = A – ka0 is a multiple of 10k + 1.  

This criterion can be applied until the divisibility or lack of it 
become apparent. 

8. Criteria for divisibility of N by d = 10k – 1 (19, 29, 59,…) 

 00

A

123n aA10aaaa...aN +==
�����

. 

Multiply N by k:  

 ( ) ( )00 kaA1k10AAAkakA10kN ++−=−++= . 

Since k isn’t divisible by 10k – 1, it follows that N will be 
divisible by 10k – 1 if N2 = A + ka0 is a multiple of 10k + 1.  

This criterion can be applied until the divisibility or lack of it 
become apparent. 
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Example 3.5 
Check that N = 3 040 232 is divisible by 31. 

Solution 
Here, the divisor is 31, then it is necessary to use the eighth 

criteria. We get 
31 = 10⋅3+1, k = 3, A=304 023, a0 = 2. 
If 02 a3AN −=  is divisible by 31, then N is divisible by 31: 

1. N2 =304 023 – 3⋅2 = 304 017. 
2. A = 30 401, a0 = 7, 30 401 – 3⋅7 = 30 380. 
3. A=3 038, a0 = 0, 3 038 – 3⋅0 = 3 038. 
4. A=303, a0 = 8, 303 – 3⋅8 = 279. 
5. A=17, a0 = 9, 27 – 3⋅9 = 0. 
It is clear that  0 is divisible by 31, so N = 3 040 232 is divisible 

by 31 too. 3 040 232:31 = 98072. 

PROBLEMS FOR UNIT 3 

3.1.  Check that a is divisible by m 
m=35 m=39 m=55 

1. a=351645 6. a =437931 11. a =747615 

2. a=236215 7. a =294177 12. a =502205 

3. a =590835 8. a =735813 13. a =1256145 

4. a =236810 9. a =294918 14. a =503470 

5. a =564655 10. a =703209 15. a =1200485 

m=31 m=91 m=29 
16. a =238173 21. a =1559649 26. a =394197 

17. a =159991 22. a =1047683 27. a =264799 

18. a =400179 23. a =2620527 28. a =662331 

19. a =160394 24. a =1050322 29. a =265466 

20. a =382447 25. a =2504411 30. a =632983 
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4. GREATEST COMMON DIVISOR (GCD) 

Without loss of generality (see Lemma 1.1), we can assume that 
all factors of integers are positive. 

Definition 4.1 
An integer is a common divisor of n others if it divides all of 

them. 
We denote the set of numbers that are common divisors of  

a1, a2, …, an by C (a1, a2, …, an). 

Example 4.1 
1. The set of common divisors of 18 and 30 is 
C (18, 30) = {−1, 1,−2, 2,−3, 3,−6, 6}. 
2. The set of common divisors of 10, 30, 100 and 130 is 
C (10, 30, 100, 130) = {−1, 1,−2, 2,−5, 5,−10, 10}. 

Definition 4.2 
The greatest common divisor of n nonzero integers a1, a2, …, an 

is the largest integer from the set C (a1, a2, …, an), except that  
gcd(0, 0) = 0. 

Denotation of the greatest common divisor for integers  
a1, a2, …, an is  

 gcd (a1, …, an). 

Example 4.2 
For results obtained in Example 4.1, we have 
1. gcd (18, 30) is the largest integer from the set  

C (18, 30) = {−1, 1,−2, 2,−3, 3,−6, 6}. Then gcd (18, 30) = 6. 
2. gcd (10, 30, 100, 130) is the largest integer from the set  

C (10, 30, 100, 130) = {−1, 1,−2, 2,−5, 5,−10, 10}. Then gcd (10, 30, 
100, 130) = 10. 

Definition 4.3 
If gcd (a1, a2, …, an) = 1, then integers a1, a2, …, an are called 

coprime numbers (relative primes). 
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Definition 4.4 
If the greatest common divisors of all pairs 

( , ) ( , 1, 2,..., )i ja a i j n=  from integers a1, a2, …, an are equal 1, then  

a1, a2, …, an are called pairwise prime numbers. Pairwise prime 
numbers are coprime numbers, but not conversely. 

Example 4.3 
Numbers (5, 15, 21, 31) are coprime numbers, because  

gcd (5, 15, 21, 31) = 1. But gcd (5,15) = 5 ≠ 1, gcd (15,21) = 3 ≠ 1. 
Gcd (3, 7, 11, 13) =1, then numbers (3, 7, 11, 13) are coprime, 

and gcd (3,7) =1, gcd (3,11) =1, gcd (3,13) =1, gcd (7,11) =1, 
gcd (7,13) = 1, gcd (11,13) =1. Thus, the numbers are pairwise 
prime numbers. 

Lemma 4.1 
gcd( , ) gcd( , ).a b b a=      

Lemma 4.2 

gcd( , ) gcd(| |, | |).a b a b=   

Lemma 4.3 
If a ≠ 0 or b ≠ 0, then gcd(a, b) exists and satisfies condition 

 0 < gcd(a, b) ≤ min{|a|, |b|}. 

Example 4.4 
It follows from considered lemmas that gcd(48, 732) =  

= gcd(−48, 732) = gcd(−48,−732) = gcd(48,−732). We also know 
that 0 < gcd(48, 732) ≤ 48. If d = gcd(48, 732), then  
d | 48. To find d, we just need to check all positive divisors of 48 that 
also divide 732. 

If two numbers have the greatest common divisor equal 1, 
then they have only trivial common factors. 

Lemma 4.4 
If g = gcd(a, b), then gcd(a/g, b/g) = 1. 

Examples 4.5 
g = gcd(15,21) = 3, gcd(15/3, 21/3) = gcd(5,7) = 1. 
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Lemma 4.5 (Bezout’s Lemma) 
The greatest common divisor of two numbers is a linear 

combination of those two: for all integers a and b there exist integers 
s and t such that  

 gcd(a, b) = sa + tb. 

 

5. THE EUCLIDEAN ALGORITHM 

We can efficiently compute the greatest common divisor of two 
numbers. 

First we simplify the problem. Since gcd(a, b) = gcd(|a|, |b|)  
(and gcd(0, 0) = 0), we just need to obtain a method for computing 
the gcd(a, b) of nonnegative a and b. And, since gcd(a, b) = 
= gcd(b, a),  we will consider the case a > b > 0. 

Lemma 5.1 
If a > 0, then gcd(a, 0) = a. 

Lemma 5.2  
If a > 0, then gcd(a, a) = a. 

Lemma 5.3 
Let a > b > 0. If a = bq + r, then gcd(a, b) = gcd(b, r). 

Proof. 
If we show that the two sets of common divisors C(a, b) and  

C(b, r) are equal, then this will suffice to prove the whole lemma, 
because there will be the same greatest element in both sets. Recall, 
the sets are equal iff they possess the same elements. Let us prove the 
last statement. 

First, suppose that there exist d ∈ C(a, b) such that d | a and d | b. 
Let us note that r = a – bq.⋅Therefore, according to Theorem 1.1(10), 
we make a conclusion that d | r. Thus, d | b and d | r, and so d belongs 
to C(b, r). 

We have shown that any element of C(a, b) is an element of  
C(b, r), so it implies  
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C(a, b) ⊆ C(b, r). 

On the other hand, let us assume that there exist d ∈ C(b, r) such 
that d | b and d | r. Since a = bq + r, we again apply Theorem 1.1 (10) 
to show that d | a. So d | a and d | b, and, therefore, d ∈ C(a, b).  
That is, then d ∈ C(a, b).  

QED  
The Euclidean algorithm uses Lemma 5.3 to compute the 

greatest common divisor of two numbers. Let us consider the 
algorithm. 

Choose a, b∈Z such that a > b. Construct a chain of a division 
with the remainders as follows: 
Step 1: a = b⋅q0 + r1,  0 < r1 < b, gcd(a, b) = gcd(b, r1); 
Step 2: b = r1⋅q1 + r2,  0 < r2 < r1, gcd(b, r1) = gcd(r1, r2)⇒ 
⇒ gcd(a, b) = gcd(r1, r2); 
Step 3: r1 = r2⋅q2 + r3,  0 < r3 < r2, gcd(r1, r2) =gcd(r2, r3) ⇒ 
⇒ gcd(a, b) = gcd(r2, r3) 
………………………………………… 
Step n: rn-2 = rn-1⋅qn-1 + rn, 0 < rn < rn-1,  gcd(rn-2, rn-1) =  
= gcd(rn-1, rn) ⇒ gcd(a, b) = gcd(rn-1, rn); 
Step n+1: rn-1 = rn⋅qn 
Since there is no remainder in the last division, we get gcd(rn-1, rn) = 
= rn  ⇒ gcd(a, b) = rn. 

One can say that for any numbers a and b the last nonzero 
remainder in a chain of division with the remainders is gsd(a, b). 

Example 5.1 
Compute gcd(803, 154), a = 803, b = 154 

Step 1:   gcd(803, 154) = gcd(154, 33), since 803 154 5 33= ⋅ + , 
a = bq0+r1, q0 = 5, r1 = 33,  154330 << . 
Step 2:  gcd(154, 33) = gcd(33, 22), since 154 33 4 22= ⋅ + , 
b = r1q1+r2, q1 = 4, r2 = 22,  33220 << . 
Step 3:    gcd(33, 22) = gcd(22, 11) since 33 = 22·1 + 11,  
r1 = r2q2+r3, q2 = 1, r3 = 11,  22110 << . 
Step 4:     gcd(22, 11) = 11 since 22 = 11 · 2, r2 = r3q3, q3 = 2, r4 = 0. 
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Hence, gcd(803, 154) = gcd(22, 11) = 11. 

Recall that Bezout’s lemma asserts that for given a and b, there 
exist two numbers s and t such that gcd(a, b) = s · a+t · b. We can use 
Euclidean algorithm to find s and t by tracing the steps of division in 
reverse order. 

Example 5.2 
Express gcd(803, 154) as a linear combination of 803 and 154. 

We will use the considered above Example 5.1. 
From step 3:  11 = 33 – 22 · 1; 
From step 2:  22 = b – 33 ·4, or 11 = 33 – (b – 33 · 4) 1 =  
= – b · 1 + 33 · 5; 
From step 1:  33 = a – b · 5, or 11 = – b · 1 + (a – b · 5) · 5 = 
 =– 26 · b + a · 5. 

Hence, we can express gcd(803, 154) = 11 as a linear 
combination of 803 and 154 as follows below: 

11 = 803·5 + (– 26)·154, s=5, t = – 26   or  g = a·5 + b·(– 26). 

Lemma 5.4 (Generalization)  

Let  

 0 0 0 1 1 1, ,..., n n na cq r a cq r a cq r= + = + = + ⇒  

( ) ( )0 1 0 1gcd , ,..., , gcd , , ,...,n na a a c c r r r⇒ = . 

Example 5.3 
Compute gcd(261, 135, 48). 

Step 1:  Divide a0 =261 and a1 =135 by c= 48. We get: 261 = 48·5 + 
+ 21, r10=21;   135 = 48·2 + 39, r11 = 39. 
Step 2:  Find gcd(48, 39, 21). Divide c = 48 and r11= 39 by r10 = 21. 
We obtain 48 = 21·2 + 6, r20 = 6, 39 = 21·1 + 18, r21 = 18 
Step 3:  Find gcd(21, 18, 6). Divide r10 = 21 and r21= 18 by r20 = 6.  
It yields:  21 = 6·3 + 3, r30 = 3, 18 = 6·3 + 0, r21 = 0. Zero is divided 
by any numbers.  Gcd(18,6) = 6. 
Step 4:  Find gcd(6, 3): gcd(6, 3) = 3. 
Hence, gcd(261, 135, 48) = 3. 
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6. LOWEST (LEAST) COMMON MULTIPLE (LCM) 

Definition 6.1 
An integer is a common multiple of n others if it is divided by all 

of them. 
We denote by M(a1, a2, …, an) the set of numbers that are 

common multiples of a1, a2, …, an. The set M is infinite. 

Definition 6.2 
The lowest common multiple of n nonzero integers a1, a2, …, an 

is the least  integer from the set M(a1, a2, …, an).  
Designation of the lowest common multiple for integers 

 a1, a2, …, an is lcm(a1, …, an). 

Lemma 6.1 

 ( ) ( )b,agcd

ba
b,aLcm

⋅= . 

Proof 
Let d = gcd(a, b), then a = a1⋅d, and b = b1⋅d, gcd(a1, b1) = 1 

(according to lemma 4.4). M denotes any common multiple of a and 
b. Then M = k⋅a. The number M/b is an integer, because M is 
multiple of b. We will get after the series of transformations 

 
1

1

1

1

b

ka

db

dka

b

ka

b

M === . 

Since gcd(a1, b1) = 1, we see that k is divisible by b1 and 

1k b t= ⋅ , t∈Z. 

1
1

11

1

1 ta
b

tab

b

ka

b

M === , Zt,t
d

ba
t

d

dba
tbaM 1

1 ∈⋅=
⋅⋅

=⋅⋅= . 

Hence, we can express the set of common multiples of a and b 
by the formula  

 ( ) Zt,t
b,agcd

ba
M ∈⋅⋅= . 
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If t = 1, then we obtain the lowest common multiple of a and b 
as follows: 

( ) ( )b,agcd

ba
b,aLcm

⋅= .  QED. 

PROBLEMS FOR UNIT 6 

6.1. Compute ( )gcd a,b  with Euclidean algorithm and ( )lcm a,b  

with Lemma 6.1 

 
1.    a = 1232,  
       b = 1672 

2.    a = 1 329,  
       b = 2 136 

3.     a = 1 359,  
        b = 8 211 

4.    a = 5 427, 
       b = 32 877 

5.    a =    5 894, 
       b = 3 437 

6.     a =12 606, 
       b =  6494 

7.    a =29 719, 
       b = 76 501 

8.   a =162 891, 
       b = 32 176 

9.     a =469 459, 
       b = 579 203 

10.   a =738 089,  
        b = 3 082 607 

11.   a =179 370 199,  
        b = 4 345 121 

12.   a =3 327 449, 
        b = 6 314 153 

13.   a =12 870, 
        b = 7 650 

14.   a =41 382, 
         b = 103 818 

15.   a =3 640, 
        b = 14 300 

16.   a =24 700, 
        b = 33 250 

17.   a =7 650, 
        b =  25 245 

18.   a =56 595, 
        b = 82 467 

19.   a =35 574, 
        b = 192 423 

20.   a =25 245,  
        b = 129 591 

21.   a =10 140, 
        b = 92 274 

22.   a =36 372,  
        b = 147 220 

23.   a =46 550,  
         b = 37 730 

24.   a =1 403,  
        b = 1 058 

25.   a =213 239, 
        b = 512 525 

26.   a =138 285,  
        b = 356 405 

27.   a =72 348, 
        b = 5 632 

28.   a =354 295, 
        b = 543 440 

29.   a =24 789, 
        b = 35 286 

30.   a =32 893, 
        b = 72 568 
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6.2. Compute gcd(a, b, c) with Lemma 5.4 

1.   a = 529, b = 1541, c = 1817 
2.   a = 67 283, b = 122 433,  
      c = 221 703 

3.   a = 549 493, b =863 489, 
      c =  133 125 

4.   a = 738089, b = 3082607,  
      c = 28 303 937 

5.   a = 1767, b =2223,  
      c = 11 913 

6.   a = 476, b = 1258, c = 21 114 

7.   a = 3445, b =4225,  
      c = 5915 

8.   a = 572, b = 5746, c = 1118 

9.   a = 19 074, b =13 566, 
      c = 8211 

10.  a = 1073, b = 3683,  
       c = 34 481 

11.  a = 1012, b = 1474,  
       c = 4598 

12. a = 988, b = 2014, c = 42 598 

13.  a = 2585, b = 7975, 
       c = 13 915 

14. a = 874, b = 1518, c = 20 142 

15.  a = 2227, b = 9911, 
       c = 952 

16. a = 1253, b = 252, c = 406 

17.  a = 2743, b = 3587, 
       c = 6963 

18.  a = 4345, b = 6523,  
       c = 10967 

19.  a = 7683, b = 5161, 
       c = 12 909 

20.  a = 5174, b = 12 337,  
       c = 13 403 

21.  a = 10 047, b = 6749, 
       c = 16 881 

22.  a = 6766, b = 16 133,  
       c = 17 527 

23.  a = 11 229, b = 7543, 
       c = 18 867 

24.  a = 7562, b = 18 031,  
       c = 19 589 

25.   a = 13 593, b = 9131, 
        c = 22 839 

26.  a = 9154, b = 21 827,  
       c = 23 713 

27.   a = 17 139, b = 11 513, 
        c = 28 797 

28.  a = 11 542, b = 27 521,   
       c = 29 899 

29.   a = 18 321, b = 12 307,  
        c = 30 783 

30.  a = 12 338, b = 29 419,  
       c = 31 961 
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7. CONTINUED FRACTIONS 

Theorem 7.1. General Form 
A continued fraction is an expression of the form 

 

s
1s

2s

3

2
2

1
1

1
q

b

.....q

b
q

b
q

α

α

+
+

+
+

+=

−

−……

⋮

 

where α, qi and bi are either rational numbers, real numbers, or 
complex numbers.  

If bi = 1 for all i, then the expression is called a simple continued 
fraction. If the expression contains finitely many terms, then it is 
called a finite continued fraction; otherwise, it is called an infinite 
continued fraction. The numbers qi are called the partial quotients. 

Theorem 7.2 
The continued fraction expression of a real number is finite iff 

the real number is rational. 

Every rational number 
b

a
 can be represented by the simple 

continued fraction as follows: 

 1
1 1 1 1

2
22

11 1

2

1 1 1
1

ra
q q q q

b rb b qq
rr r
r

= + = + = + = + =
++
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1 1

2 2
3 3

3
2

1

1 1
...

1 1
...

1
n

n

q q
q q

r qq
r

q
q−

= + = = +
+ +

++

+

. 

We can obtain all qi and r i by Euclidean algorithm. The 
continued fraction has as many terms, as many steps are in this 
algorithm. 

Simple continued fractions ( ), gcd , 1
a

a b
b

=  can be written in a 

compact form using a chain of partial quotients: 

 [ ]n21 q,...,q,q
b

a = . 

Example 7.1 

Represent rational number 
13

151
Q =  by a continued fraction. 

Solution 
Gcd(151,13) = 1. 

 
151 8 1 1 1

11 11 11 11
13 5 113 13 1 1

88 8
5

Q = = + = + = + = + =
+ +

 

1 1
11 11

1 1
1 1

3 1
1 1

55
3

= + = + =
+ +

+ +
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1 1 1
11 11 11

1 1 1
1 1 1

1 1 1
1 1 1

2 1 1
1 1 1

3 13 1
2 2

= + = + = +
+ + +

+ + +
+ + +

+

. 

The chain of partial quotients is [ ]2,1,1,1,1,11
13

151= . 

Rational numbers obtained from only a limited number of terms 
in a continued fraction are called convergents. For example, in the 
simple continued fraction  

 

n
1n

3

2

1

q

1
q

...

1
q

1
q

1
q

b

a

+

+
+

+=

−

 

the convergents are  

 1 1 2 1 3 1
2

2
3

1 1
; ; ;....;

1
q q q

q q
q

δ δ δ= = + = +
+

 

1

2
3

1

1
1

...

1
......

1

n

n
n

a
q

bq
q

q
q

δ

−

= + =
+

+

+
+

⋮

. 

A sequence of convergents is approximation of a rational 
number.  
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Convergent properties 

Property 7.1 
An approximated rational number lies between two neighboring 

convergents closer to the right. 
The method of the convergent computation 

Let us denote the ith convergent by
i

i
i Q

P=δ . Then, 
1

11
11 Q

P

1

q
q ===δ , 

and 
2

2

2

21

2

21

2
12 Q

P

0q1

1qq

q

1qq

q

1
q =

+⋅
+=+=+=δ . 

We assign 0Q,1P 00 == . Then 
021

021

2

2

2

21
2 QqQ

PqP

Q

P

0q1

1qq

+
+==

+⋅
+=δ , 

For convergent 3δ , we have 

( )
( ) 3

3

123

123

10213

10213

0
3

21

0
3

21

3 Q

P

QQq

PPq

QQqQq

PPqPq

Q
q

1
qQ

P
q

1
qP

=
+
+=

++
++=

+







+

+







+

=δ . 

For any convergent iδ   we get 
i

i

2i1ii

2i1ii
i Q

P

QQq

PPq =
+
+=

−−

−−δ . 

Thus we have deduced the recursion formula for calculation of 
the ith  convergent. 
The results of convergent computations can be placed into the table.  
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Table 7.1 – The results of convergent computations 
і 0 1 2 .... 

iq   
1q  2q  .... 

iP  1 
11 qP =  0122 PPqP +=  .... 

iQ  0 1Q1 =  0122 QQqQ +=  .... 

     
j ... n 

jq  .... 
nq  

21 −− += jjjj PPqP  .... 
2n1nnn PPqPa −− +==  

21 −− += jjjj QQqQ  .... 
2n1nnn QQqQb −− +==  

Property 7.2 
For any 0i > , the following formula takes place: 

( )i
1ii1ii 1PQQP −=− −− . 

Property 7.3 
For any 1i > , the following formula takes place: 

( )
1

1

1

−
−

−=δ−δ
ii

i

ii QQ
. 

Property 7.2 is used for solving the Diophantine equation 
1byax =+ . 

We write down property 7.2 for the last two columns of 
 the table 7.1: 

( )1 1 1 , , ,
n

n n n n n nP Q Q P P a Q b− −− = − = =  then ( )1 1 1
n

n naQ bP− −− = − . 

1. If n is even, then ( )1 1 1 11, 1n n n naQ bP a Q b P− − − −− = ⋅ + ⋅ − = . 

We have got a solution to the Diophantine equation: 

1n1n Py,Qx −− −== . 

2. If n is odd, then 1 1 1 11, 1n n n naQ bP or a Q b P− − − −− = − − ⋅ + ⋅ = . 

Therefore, we have obtained a solution to the Diophantine 
equation: 1 1,n nx Q y P− −= − = . 
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Example 7.1 

Compute all convergents for the number 
151

13
 and solve the 

Diophantine equation 151 13 1x y+ = . 

Solution 

We will use Example 7.1. Number 
151

13
Q =  can be written as the 

chain of partial quotients: [ ]151
11, 1, 1, 1, 1, 2

13
= . Construct the table. 

 1
0 1 1 1 1

1

11
1, 0, 11, 1, 11

1o

P
P Q P q Q

Q
δ= = = = = = = = , 

2 2 1 0 2 2 1 01 11 1 12, 1 1 0 1,P q P P Q q Q Q= + = ⋅ + = = + = ⋅ + =  

2
2

2

12
12

1

P

Q
δ = = = , 

3 3 2 1 3 3 2 11 12 11 23, 1 1 1 2,P q P P Q q Q Q= + = ⋅ + = = + = ⋅ + =  

3
3

3

23
11.5

2

P

Q
δ = = = , 

4 4 3 2 4 4 3 21 23 12 35, 1 2 1 3,P q P P Q q Q Q= + = ⋅ + = = + = ⋅ + =  

4
4

4

35
11.667

3

P

Q
δ = = ≈ , 

5 5 4 3 5 5 4 31 35 23 58, 1 3 2 5,P q P P Q q Q Q= + = ⋅ + = = + = ⋅ + =  

5
5

5

58
11.6

5

P

Q
δ = = = , 

6 6 5 4 6 6 5 42 58 35 151, 2 5 3 13,P q P P Q q Q Q= + = ⋅ + = = + = ⋅ + =  

6
6

6

151
11.615

13

P a

Q b
δ = = ≈ = . 
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і 0 1 2 3 4 5 6 

iq   11 1 1 1 1 2 

iP  1 11 12 23 35 58 151 

iQ  0 1 1 2 3 5 13 

        

Verify property 7.1 

Number 
151

11.615
13

≈  is between 1 11δ =  and 2 12δ =  closer to 

2 12δ = , because 11.615 11 0.615 11.615 12 0.385− = > − = . 

Number 
151

11.615
13

≈  is between 2 12δ =  and 3 11.5δ =  closer 

to 3 11.5δ = , because |11.615 12 | 0.385 |11.615 11.5 | 0.115− = > − = . 

Number 
151

11.615
13

≈  is between 3 11.5δ =  and 4 11.667δ =  

closer to 4 11.667δ =  , because 

|11.615 11.5 | 0.115 |11.615 11.667 | 0.052− = > − = . 

Number 
151

11.615
13

≈  is between 4 11.667δ =  and 5 11.6δ =  

closer to 5 11.6δ = , because  

|11.615 11.667 | 0.052 |11.615 11.6 | 0.015− = > − = . 

Number 
151

11.615
13

≈  is between 4 11.667δ =  and 5 11.6δ =  

closer to 5 11.6δ = , because  

|11.615 11.667 | 0.052 |11.615 11.6 | 0.015− = > − = . 

Number 
151

11.615
13

≈  is equal to the last convergent 6

153

13
δ = . 

Now, we can solve the Diophantine equation 151 13 1x y+ =  
using property 7.2. 

( )6

6 5 6 5 1PQ Q P− = −  or 5 58 1a b⋅ − ⋅ =  or ( )5 58 1a b⋅ + ⋅ − = . 
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The solution to equation is 5, 58x y= = − . 

PROBLEMS FOR UNIT 7 

7.1. The rational number 
b

a
 is represented via the chain of partial 

quotients. Compute all convergents for the number 
b

a
, find a and b 

from the table of convergents and solve a Diophantine equation 
1byax =+ . 

 

1.   
[ ]2,1,4,3,1,2

b

a =
 2.   

[ ]8,6,1,1,2
b

a =
 3.   

[ ]1,7,2,1,3,0
b

a =
 

4.   
[ ]5,4,2,1,1

b

a =
 5.   

[ ]3,2,3,4,3,0
b

a =
 6.   

[ ]5,1,1,1,3
b

a =
 

7.   
[ ]9,2,4,3,1,2

b

a =
 8.   

[ ]5,2,4,1,13
b

a =
 9.   

[ ]5,2,3,1,4,0
b

a =
 

10. 
[ ]7,4,1,3,22

b

a =
 11. 

[ ]3,2,30,1,2
b

a =
 12. 

[ ]5,4,3,24,1
b

a =
 

13. 
[ ]1,1,3,2,1,25,1

b

a =
 14. 

[ ]1,1,5,3,2,11
b

a =
 15. 

[ ]5,1,3,2,5,31
b

a =
 

16. 
[ ]1,1,3,2,1,25,1

b

a =
 17. 

[ ]1,1,5,2,1,13,1
b

a =
 18. 

[ ]2,1,3,2,1,8,2
b

a =
 

19. 
[ ]4,1,1,1,2,7,2

b

a =
 20. 

[ ]2,1,1,5,2,7,3
b

a =
 21. 

[ ]1,3,2,41,2
b

a =
 

22. 
[ ]1,5,1,17,2

b

a =
 23. 

[ ]3,1,1,19,3
b

a =
 24. 

[ ]1,1,5,3,1,1,2
b

a =
 

25. 
[ ]3,1,1,19,3,11,2

b

a =
 26. 

[ ]2,1,1,11,3,9,5
b

a =
 27. 

[ ]3,1,1,7,3,1,21
b

a =
 

28. 
[ ]2,1,3,2,1,23,2

b

a =
 29. 

[ ]2,2,1,1,29,3
b

a =
 30. 

[ ]2,1,2,1,1,47,1
b

a =
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8. ARITHMETIC FUNCTIONS 

 
In this section we shall consider several important arithmetic 

functions. 

8.1. The floor function (The integer part function) 
Every real number x can be written uniquely as x n= +α , where 

n Z∈  and 0 1α≤ < . We call n the integer part or the floor  of x and 
denote it by [x] or  x ; and α is called the fractional part of x and is 

denoted by {x}. Thus, for x ∈ R, [x] is the greatest integer not 
exceeding x. 

The fractional part of x is commonly thought of as the part after 
the decimal point, but this notion is correct only for positive x.  
We define the fractional part  by 

 {x} = x – [x] for x ∈ R. 

Example 8.1 
Find integer and fractional parts for numbers 123.45; 0.83;  

-0.01; -10.56. 

Solution 
1. [123.45] = 123; {123.45} = 123.45 – [123.45] = 123.45 –  
– 123 = 0.45. 
2. [0.83] = 0;  {0.83} = 0.83 - [0.83] = 0.83 – 0 = 0.83. 
3. [–0.01] = –1; {–0.01} = –0.01 – [–0.01] = –0.01 – (–1) = 0.9. 
4. [–10.56] = –11; {–10.56} = –10.56 – [–10.56] = –10.56 –  
– (–11) = 0.44. 

An integer part function is used for prime factorization of n! 
We can find the highest power of prime p occurring in the prime 
decomposition of an integer a by this function. 

Example 8.2 
Find the exponent of the highest power of prime 2 in the prime 

decomposition of the integer 13! 
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Solution 
13! = 1⋅2⋅3⋅4⋅5⋅6⋅7⋅8⋅9⋅10⋅11⋅12⋅13. 
From this product write down the set of numbers that will be 

multiples of 2. Denote this set by S2: 
S2 = {2, 4, 6, 8, 10, 12}; 
The number of members of S2 (the cardinality 2S  of S2) is 6. 

This operation corresponds to the computation of the integer part of 

the number 6
2

13 =




 . 

From S2 write down the set of numbers that will be multiples of 
22. Denote this set by S4: 

S4 = {4, 8, 12}. The cardinality of S4 equals 3
2

13
2

=




 . 

From S4 write down the set of numbers that will be multiples of 
23. Denote this set by S8: 

S8 = {8}. The cardinality 8S is 1
2

13
3

=




 . 

From S8 write down the set of numbers that will be multiples of 
24. Denote this set by S16: 

S16 = {∅}; 16S = 0
2

13
4 =




 . 

The total power of prime 2 in prime factorization of 13! is 

 6 + 3 + 1 = 10. 

The integer 210 is the factor of 13!, and 211 does not divide it. 
Hence, the exponent of the highest power of a prime p 

occurring in the prime decomposition of an integer n! is given by 

 npnp
p

n

p

n

p

n kk
k

>≤











++












+







=α +1

2
,,... . 
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Example 8.3 
The number of positive divisors of an integer n – ( )nτ , the sum 

of positive divisors of an integer n – ( )nσ , the Euler’s totient 

function – ( )nφ . 

If the prime factorization of n > 1 is k21

k21 p...ppn ααα ⋅⋅⋅= , then  

the number of positive divisors (factors) of this number is 

( ) ( ) ( )( ) ( )1...11p...ppn k21k21
k21 +⋅⋅++=⋅⋅⋅= αααττ ααα , (8.4.1) 

if αpn = , then ( ) ( ) ( )1pn +== αττ α ; 

and the sum of positive divisors (factors) of this number is 

( )
1p

1p
...

1p

1p

1p

1p
p...pp

k

1
k

2

1
2

1

1
1

k21

k21

k21

−
−⋅⋅

−
−⋅

−
−=⋅⋅⋅

+++ ααα
ααασ , (8.4.2) 

if αpn =  , then ( ) ( )
1p

1p
pn

1

−
−==

+α
ασσ . 

Example 8.4 
Compute the number and the sum of factors for the integer 18. 

Solution 
The prime factorization of 18 is 18 = 2⋅32. The integer 18 has 

positive divisors: 1, 2, 3, 6, 9, 18. The number of these divisors is 6, 
( ) 618 =τ .  

In the prime factorization of 18 the prime number 2 has power 1 
and the prime number 3 has power 2. We can compute ( )18τ  using 
formula (8.41): 

 ( ) ( ) ( )( )218 2 3 1 1 2 1 2 3 6τ τ= ⋅ = + + = ⋅ = . 

Both results coincide. 
The sum of factors is ( )18 1 2 3 6 9 18 39σ = + + + + + = . 

By formula (8.4.2), we get 
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( ) ( ) ( )( )
( ) 39133

13

13313
3

13

13

12

12
3218

232
2 =⋅=

−
++−⋅=

−
−⋅

−
−=⋅= σσ 1. 

Both results are correct. 

Definition 8.1 
The Euler’s totient function (phi-function) for an integer n 

counts the number of positive integers less than n and relatively 
prime to it.  

Designation of the Euler’s totient function for an integer n is 
( )nφ . 

Example 8.5 
The integer 7 has six positive numbers less than 7 and relatively 

prime to it: 1, 2, 3, 4, 5, 6. The integer 2 has one such number – 1. 
The integer 6 has two such numbers – 1 and 5. 

8.2. Computation of a value of Euler’s function 
If the number p is prime, then  

 ( ) 1pp −=φ ; (8.7.1) 

If αpn = , then  

 ( ) ( ) 







−=−=−= −−

p

1
1p1ppppp 11 αααααφ ; (8.7.2) 

If k21

k21 p...ppn ααα ⋅⋅⋅= , then  

 ( ) ( ) ( ) ( ) ( )=⋅⋅=⋅⋅⋅= k21k21

k21k21 p...ppp...ppn αααααα φφφφφ  

( )( ) ( )=−⋅⋅−−= −−− 1
kk

1
22

1
11

kk2211 pp...pppp αααααα  

( )( ) ( ) =−⋅⋅−−⋅⋅= −−− 1p...1p1pp...pp k21
1

k
1

2
1

1
k21 ααα  









−⋅⋅








−








−=

k21 p

1
1...

p

1
1

p

1
1n . (8.7.3) 

                                                 
1 ( ) ( )( ) 1k,1a...aa1a1a 1k2k21k2 ≥++++−=− −+  
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Example 8.6 
Compute phi-function for integers 13, 25, 10, 100, 1000. 

Solutions 
1)  13 is prime, therefore from formula (8.7.1)  

( ) 1211313 =−=φ ; 
2) 25 = 52 , then from formula (8.7.2) 

( ) ( ) ( ) 2015555525 22 =−=−== φφ ; 

3) 10 = 2⋅5, then from formula (8.7.3)  
( ) ( ) ( ) ( ) ( )( ) 41512525210 =−−==⋅= φφφφ , they are 1, 3, 7, 9; 

4) 100 = 22⋅52, then from formula (8.7.3)  

( ) ( ) ( ) ( ) ( )( )2 2 2 2 2 2100 2 5 2 5 2 2 5 5φ φ φ φ= ⋅ = = − − =  

( )( )2 5 2 1 5 1 10 4 40= ⋅ ⋅ − − = ⋅ = ; 

5) 1000 = 23⋅53, then from formula (8.7.3) 

( ) ( ) ( ) ( ) ( ) ( )3 3 3 3 3 2 3 21000 2 5 2 5 2 2 5 5φ φ φ φ= ⋅ = = − − =  

( )( )2 22 5 2 1 5 1 100 4 400= ⋅ ⋅ − − = ⋅ = . 

Definition 8.2 
( )1τ , ( )1σ , and ( )1φ  are defined to be 1.  

Definition 8.3 
We say that function f is multiplicative if 

( ) ( ) ( )f m×n =f m ×f n  for all relatively prime positive integers m, 

and n, when f(1) = 1. 

Theorem 8.1 
Functions ( )nτ , ( )nσ , and ( )nφ are multiplicative. 
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PROBLEMS FOR UNIT 8 

8.1  
a. Find the exponents of the highest powers of primes a and 

b, occurring in the prime factorization of an integer n! 

1. 
3, 5,

337!

a b

N

= =
=

! 6. 
2, 13,

271!

a b

N

= =
=

 11. 
2, 11,

745!

a b

N

= =
=

 

2. 
2, 7,

234!

a b

N

= =
=

 7. 
5, 13,

234!

a b

N

= =
=

 12. 
5, 11,

652!

a b

N

= =
=

 

3. 
2, 11,

381!

a b

N

= =
=

 8. 
3, 5,

931!

a b

N

= =
=

 13. 
7, 11,

734!

a b

N

= =
=

 

4. 
3, 11,

534!

a b

N

= =
=

 9. 
2, 7,

491!

a b

N

= =
=

 14. 
3, 7,

439!

a b

N

= =
=

 

5. 
5, 7,

625!

a b

N

= =
=

 10. 
3, 11,

834!

a b

N

= =
=

 
 

b Calculate how many zeros the factorial of a number n! 
ends with (the number of trailing zeros) 
15. 356!N =  21. 534!N =  27. 399!N =  

16. 428!N =  22. 749!N =  28. 923!N =  

17. 295!N =  23. 957!N =  29. 847!N =  

18. 345!N =  24. 367!N =  30. 537!N =  

19. 650!N =  25. 841!N =   

20. 728!N =  26. 791!N =   
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8.2  
Compute ( )nτ , ( )nσ , and ( )nφ  for an integer n. The prime 

factorization of n > 1 is k21

k21 p...ppn ααα ⋅⋅⋅=  

1.   
8 32 3 13 17a = ⋅ ⋅ ⋅  2.   

5 33 5 11 13a = ⋅ ⋅ ⋅  3. 
7 33 7 17 19a = ⋅ ⋅ ⋅  

4.   
4 25 7 19a = ⋅ ⋅  5.   

9 7 22 3 5 29a = ⋅ ⋅ ⋅  6. 
6 52 3 5 17a = ⋅ ⋅ ⋅  

7.   
3 4 32 3 5 31a = ⋅ ⋅ ⋅  8.   

5 23 7 37 41a = ⋅ ⋅ ⋅  9. 
2 35 7 29a = ⋅ ⋅  

10. 
3 7 22 3 7 59a = ⋅ ⋅ ⋅  11. 

5 25 7 13 43a = ⋅ ⋅ ⋅  12. 
3 63 7 17 23a = ⋅ ⋅ ⋅  

13. 
5 22 5 31 43a = ⋅ ⋅ ⋅  14. 

8 22 7 23 53a = ⋅ ⋅ ⋅  15. 
8 23 11 19 23a = ⋅ ⋅ ⋅  

16. 
4 35 7 19 41a = ⋅ ⋅ ⋅  17. 

5 22 5 7 61a = ⋅ ⋅  18. 
6 2 22 7 11 37a = ⋅ ⋅ ⋅  

19. 
2 2 23 5 11 23a = ⋅ ⋅ ⋅  20. 

5 2 23 7 11 79a = ⋅ ⋅ ⋅  21. 
7 23 5 7 71a = ⋅ ⋅ ⋅  

22. 
6 4 32 3 5 41a = ⋅ ⋅ ⋅  23. 

6 4 32 3 5 41a = ⋅ ⋅ ⋅  24. 
6 32 5 101a = ⋅ ⋅  

25. 10353 27 ⋅⋅=a  26. 97732 227 ⋅⋅⋅=a  27. 10173 23 ⋅⋅=a  

28. 71732 245 ⋅⋅⋅=a  29. 411132 249 ⋅⋅⋅=a  30. 53532a 349 ⋅⋅⋅=  
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9. MODULAR ARITHMETIC 

9.1. CLASSES OF CONGRUENCE 

Let us consider the example of distribution of the set of integers 
into a finite number of classes with some relationships among these 
numbers. 

Let us take the number 7p = . This number has 7 different 
remainders – 0, 1, 2, 3, 4, 5, 6, and there are not any other remainders 
of the division of any integers by 7. So, we can form a table of the 
distribution of integers into the classes corresponding to such seven 
remainders. 

Table 9.1 – The distribution of integers into classes by remainders 
from division by 7 
Remainders→ 

Quotient ↓ 
0 1 2 3 4 5 6 

1 7 7+1=8 7+2=9 7+3=10 7+4=11 7+5=12 7+6=13 
2 14 15 16 17 18 19 20 
3 21 22 23 24 25 26 27 
… … … … … … … … 
20 140 141 142 143 144 145 146 
… … … … … … … … 
33 231 232 233 234 235 236 237 
… … … … … … … … 
q 7q 7q+1 7q+2 7q+3 7q+4 7q+5 7q+6 

… … … … … … … … 
This table has 7 columns with integers and infinite numbers of 

rows because infinite set of integers is distributed into 7 classes. 
All numbers from class 0 have common property such that they 

are divided by 7. We can denote this class as 7q. All numbers of 
class 1 have the remainder r=1 from division by 7 and we denote this 
class as 7q+1. We denote classes 2, 3, 4, 5, 6 as 7q + 2, 7q + 3, 7q + 
+4, 7q + 5, 7q + 6 respectively. 
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In number theory the devisor 7 is called modulus, and all 
numbers of one class are called congruent modulo 7. We say that 
141 is congruent to 15 modulo 7 because these numbers are in the 
same class 7q + 1. We denote this fact as: ( )141 15 mod7≡ .  

Numbers of different classes are not congruent modulo 7. 
233 is not congruent to 25 modulo 7 because 233 belongs to the class 
7q + 2 and 25 belongs to the class 7q + 4. We denote this fact as 

( )233 25 mod7≡/ . 

Generalizing the consideration, we can make a conclusion. 
For every integer m called modulus, we can consider the set of 

m remainders {0, 1, 2, …, r i, …, m-1}. Each remainder r i of this set 
forms a corresponding number class. This class is denoted as 

im×q+r , q∈Z, r i < m. All numbers from the class im×q+r  are 

congruent to each other modulo m. This fact is denoted as 
( )mmodbarmqb,a i ≡⇒+∈∀ . Another notation is mqba += .  

Definition 9.1.1 
The relationship ( )moda b m≡  is called congruence modulo m. 

Numbers from different  classes are not congruent modulo m. 
This fact is denoted as  

( )mmodba,ji,rmtb&rmqa ji ≡/≠+∈∀+∈∀ . 

Definition 9.1.2 
Each number of the class is called residue with respect to other 

numbers from the same class. 

Definition 9.1.3 
A system that includes one residue from each class is called 

 a complete residue system modulo m. In particular, {0, 1, . . . , 
m−1} is the set of the least nonnegative residue modulo m. 

For example, the set of numbers {7, 15, 142, 234, 144, 26, 13} 
forms a complete residue system modulo 7, because the residue of 
each classes belongs to it. The set of the least nonnegative residue 
modulo 6 is the set {0, 1, 2, 3, 4, 5, 6}. 
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Each residue of the class m q×  is congruent to 0 modulo m 

( ) Zq,mmod0mq ∈∀≡ . If we add/ subtract a residue of this class to 
(from) any side of an arbitrary congruence modulo m, then the 
congruence will not be altered. 

For example, let us consider a congruence modulo 7. We have: 

 ( ) ( ) ( )7mod1417mod7641,7mod641 −≡⇒−≡≡ . 

Really, 41 = 7⋅5 + 6, 7⋅5∈7⋅q, then ( )7mod057 ≡⋅  and 

( )7mod641≡ . On the other hand, 

41 = 7⋅6 – 1, 7⋅6∈7⋅q, then ( )7mod067 ≡⋅  and ( )7mod141 −≡ . 

Thus, ( )7mod1766 −=−≡ . 
This example shows that we can consider a negative residue as 

well as a nonnegative one. 

Lemma 9.1.1 
For any a, b >0 and positive m, the following statement holds. 

If ( )mmodba ≡ , then ( )mmodmba −≡  and ( )mmodbma ≡− . 
Let us consider the complete system of the least nonnegative 

residue modulo m. This system can be separated into two subsystems 
as specified out below. 

1. First, if m is odd, then the residues 0, 1, 2, …, 
2

1m−
 will 

remain the same, and from the residues 1
2

1m +−
, 2

2

1m +−
…, 

1m−  we will subtract modulo m. As a result, we will obtain the 

system of the residues 
1

{0, 1, 2, ..., }
2

m−± ± ± . 

2. Secondly, if m is even, then the residues 0, 1, 2, …, 
2

m
 will 

not be altered, and from the residues 1
2

m + , 2
2

1m +−
…, 1m−  we 
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will subtract modulus m. Thus, we will obtain the system of residues 

{ 1,..., 2, 1, 0,1,2,..., }
2 2

m m− + − − . 

Definition 9.1.4 
The complete system of the least nonnegative residues modulo m 

can be split into two subsystems. There are m residues in both 
subsystems. Each subsystem is called the least absolute residue 
system modulo m. 

Example 9.1.1 
Construct the least absolute residue system: 1) modulo 7;  

2) modulo 8. 
Solution 

1) The least nonnegative residues modulo 7 are { }0,1,2,3,4,5,6. 

3
2

17 =−
, so the least absolute residue system modulo 7 is  

{ }0,1,2,3,4 7,5 7,6 7− − − =(0, ±1, ±2, ±3} or { }3, 2, 1,0,1,2,3− − − ; 

2) The least nonnegative residues modulo 8 are { }0,1,2,3,4,5,6,7. 

4
2

8 = , so the least absolute residue system modulo 8 is 

{ }0,1,2,3,4,5 8,6 8,7 8− − − ={ }3, 2, 1,0,1,2,3,4− − − . 

 
Properties of congruences modulo m 

Theorem 9.1.1 
For any integers a, b, c, and m > 0 the following properties hold: 

1. Reflexivity property ( )moda a m≡  

This property means that any integer can be uniquely represented 
as mr0,rqma <≤+⋅=  for arbitrary positive divisor m  
(Theorem 3.1). 
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2. Symmetry property ( ) ( )mod moda b m b a m≡ ⇒ ≡  

This property signifies that both numbers have the same 
remainder in division by m. 

For example: ( ) ( )24 38 mod7 38 24 mod7≡ ⇒ ≡ . Indeed, 

37538and37324 +⋅=+⋅= . So, both numbers have the same 
remainder 3 in division by 7. 

3. Transitivity property 
If ( )mba mod≡  and ( )modb c m≡ , then ( )mca mod≡ . 

For transitivity, assume that a leaves the same remainder as b on 
division by m, and that b leaves the same remainder as c. The all 
three leave the same remainder as each other, and in particular a 
leaves the same remainder as c. 

For example: ( ) ( ) ( )24 38 mod7 , 38 150 mod7 24 150 mod7≡ ≡ ⇒ ≡ . 

The all three have the same remainder of 3 on division by 7. 
Actually, 3721150,37538,37324 +⋅=+⋅=+⋅= .  

Theorem 9.1.2 
For any a, b∈Z and positive m>1, m∈Z, ( )mba mod≡  iff 

( )ba|m − . 

Proof 
Clearly if ( )ba|m − , then  

( )mmodbamqbamqba ≡⇒+=⇒=− . 
On the other hand,  
( ) ( )ba|mmtbamtbammodba −⇒=−⇒+=⇒≡ .  

So, the difference of any two numbers from the same class 
belongs to class 0, 

( )mmod0ba ≡− . 

Theorem 9.1.3 
If ( )mba mod≡  and ( )mmoddc ≡ , then 
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1) ( )mmoddbca +≡+  and ( )mmoddbca −≡−  – algebraic 
addition. 

Consequence: ( ) ( )mmodcbammodbca −≡⇒≡+ ;  

2) ( )mmodbdac≡  – multiplication;  

3) ( )mmodba nn ≡  for all 1n ≥  – powering; 

4) ( )mmodkbkaZk ≡∈∀  – multiplication by number; 

5) ( )1 1, , , , , gcd , 1,a b a b k Z m k∀ ∈ =   

( ) ( )1 1 1 1, : mod moda k a b k b a b m a b m= ⋅ = ⋅ ≡ ⇒ ≡ ; 

6) If ( ) ( ),mmodyxandn,1i,mmodba ii ≡=≡  then  

( )mmodybxa in
n

0i
in

in
n

0i
in

−

=
−

−

=
− ∑∑ ≡  for all polynomials with 

integer coefficients. 

Proof 
1) ( )mmodba ≡  implies that Zt,btma ∈+⋅= ; ( )mmoddc ≡  

means that Zq,dqmc ∈+⋅= . 
The addition of both equations produces 

( ) ;dbqtmdqmbtmca +++⋅=+⋅++⋅=+  

( ) ( )mmoddbcammod0sm;Zsqt +≡+⇒≡⋅∈=+ . 

Similarly, if we add two congruences such that ( )mmodbca ≡+ , 

and ( )mmodcc −≡− , then we will get  

( )mmodcba −≡ . 

2) ( )mmodba ≡  means that Zt,btma ∈+⋅= ; ( )mmoddc ≡  

signifies that Zq,dqmc ∈+⋅= . Product of both equations yields 

 ( ) ( )a c mt b mq d mtmq mtd bmq bd⋅ = + + = + + + =  

( ) ;m mtq td bq bd= + + +  

 ( ) ( )mbdacbqtdmtq modmodm0msZ;s ≡⇒≡∈=++ . 

3) ( )mmodba nn ≡  is got by successive multiplication of 
congruences by themselves. Hence, property (3) is indeed true. 
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4) ( ) mqbammodba +=⇔≡ , we multiply the last expression 
by k: 

 ( )mmodkbkamqkbkaZqkq,mkqkbka 11 ≡⇒+=⇒∈=+= . 

5) ( )1 1, : moda k a b k b a b m= ⋅ = ⋅ ≡ ⇒  

( )1 1 1 1modka kb m or ka kb mq⇒ ≡ = + . According to Integration 

property in Theorem 1.2, we can write mq|k . Since ( ) 1k,mgcd = , it 

follows that 1kqq,q|k = . So, we have 111 mkqkbka += . Finally, by 
dividing the last expression by k, we will get 

( )mmodbamqba 11111 ≡⇒+= . 
6) Let us consider a congruence  

( )mmod0xaaxa...xaxa in
n

0i
in01

1n
1n

n
n ≡=++++ −

=
−

−
− ∑ . 

Taking into account that ( ) ( )mod , 1, mod ,i ia b m i n and x y m≡ = ≡  

or ;mqba iii +=  mtyx += , we obtain 

 ( )
0 0 0

n

n-i n-1
i 0

mq m q
n n n

n i n i n i
n i n i n i

i i i

a x b x b x− − −
− − −

= = = =
= + = + ≡∑ ∑ ∑ ∑  

( )
0

mod
n

n i
n i

i

b x m−
−

=
≡∑ . 

Further, the right side of obtained congruence can be rewritten as 
follows: 

 ( )
0 0

y+mt
n n

n in i
n i n i

i i

b x b
−−

− −
= =

= =∑ ∑  

( ) ( )( )11 1

0

... n-i-1
n-i n-i

n
n i n in i n i

n i
i

b y С y mt С y mt mt
− − −− − −

−
=

= + + + +∑ . 

By denoting 

ZtmtymС...tyСq in1in1in2in-1i-n
i-n

1in1
i-n ∈+++= −−−−−−−−− , we have 

 ( ) ( )
0 0 0 0

y mt mq
n n n n

n i n i n i
n i n i n i n i

i i i i

b b y mq b y b
− − −

− − − −
= = = =

+ = + = + =∑ ∑ ∑ ∑  



 46 

0 0

q
n n

n i
n i n i

i i

b y m b−
− −

= =
= +∑ ∑ . 

By introducing Zqbq
n

0i
in1 ∈=∑

=
− , we get  

 1
0 0 0 0

q
n n n n

n i n i n i
n i n i n i n i

i i i i

b x b y m b b y mq− − −
− − − −

= = = =
= + = + ≡∑ ∑ ∑ ∑  

( )
0

mod
n

n i
n i

i

b y m−
−

=
≡∑ . 

As a result, we deduce ( )mmodybxa in
n

0i
in

in
n

0i
in

−

=
−

−

=
− ∑∑ ≡ . 

Examples 9.1.2 
Take two congruences ( )7mod523 ≡  and ( )7mod405 ≡ . 

1) The sum of ( )7mod523 ≡  and ( )7mod405 ≡  is ( )7mod928 ≡ . 

The obtained congruence is true because ( )7mod18 ≡  and 

( )7mod192≡ . The difference between them is ( )7mod122 ≡− . 

Such congruence is correct, because ( )7mod52 ≡−  and 

( )7mod512≡ . 

2) The product of given congruences is ( )7mod208015≡ . One can 

see that ( )7mod115≡  and ( )7mod12080129772080 ≡⇒+⋅= . 
Hence, this congruence is correct. 
3) Raise the first congruence to the second power: 

 ( )( ) ( ) ( )2 2 23 52 mod7 3 52 mod7 9 2704 mod7 ;≡ ⇒ ≡ ⇒ ≡  

 ( )9 2 mod7 ; 2704 7 386 2≡ = ⋅ + ⇒ ( )2704 2 mod7≡ . 

 So, if ( )3 52 mod7≡  is true, then ( )2 23 52 mod7≡  is indeed true. 

4) Multiply through the congruence ( )3 52 mod7≡  by 10. We obtain 

( )30 520 mod7≡ ; 30 7 4 2= ⋅ + ; 520 7 74 2= ⋅ + . Both numbers 30 
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and 520 leave the same remainder 2 when divided by 7; hence 

( )3 10 52 10 mod7⋅ ≡ ⋅  is true. 

5) Take the congruence ( )7mod405 ≡ . Both integers of this 
congruence are divided by 5. The greatest common divisor of 5 and 7 
is 1. Divide the congruence by 5: 5/5=1; 40/5=8. The congruence 

( )7mod81≡  is correct. 

6) Find the remainder of the division 261348  by 13 without 
calculator. 

Solution 
To solve this problem means to find the least positive residue of 

the residue class modulo 13 with the representative 261348   
( ) ( ) 113,9gcd;139;13mod913489103131348 =<≡⇒+⋅= . The 

integer 9 is the least positive residue for the integer 1348 modulo 13. 
Then using property (6), we can write ( )13mod91348 2626 ≡ . 

Similarly, we will reduce the integer 269  taking into account 
property (6). 

 ( ) ( ) ( )13mod336138199 13131313224 ≡+⋅=== ; 

 ( ) ( )313 12 4 3 33 3 3 3 3 81 3 3 3 mod13 ;= ⋅ = ⋅ = ⋅ ≡ ⋅  

 ( ) ( )33 3 27 3 13 2 1 3 3 mod13; 3 13⋅ = ⋅ = ⋅ + ⋅ ≡ < . 

Thus we have obtained that the remainder of the division 261348  
by 13 is 3. 

9.2.  PROPERTIES OF CONGRUENCES THAT CHANGE MODULUS 

Theorem 9.2.1 
If ( )mba mod≡ , then  

1) for :mkm,bkb,aka,Zk,m,m,b,a,b,a 111111 ⋅=⋅=⋅=∈∀  the 
following congruence holds: 

( )111 modmod mbaor
k

m

k

b

k

a ≡














≡






 . 
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For example, we have  

( ) ( )7mod17317
5

35
;17

5

85
;31

5

155
;35mod85155 ≡⇒===≡ ; 

2) ( )kmmodkbkaZk ≡∈∀  – multiplication by number.  

For example, multiply the congruence ( )11mod231 −≡  by 5. 

We obtain ( )55mod10155 −≡ . This congruence holds because both 
integers belong to the same residue class modulo 55 with the least 
positive residue 45; 
3) 1, : | and |d d Z if d m d a∀ ≥ ∈ ⇒  

| ( | and | | )d b if d m d d a⇒ ⇒b . 

For example, ( ) ( ) x|33144,93gcd;144mod93x ⇒=≡ ; 

4) if ( ) ( )1 2mod , and mod , and......, anda b m a b m≡ ≡   

( )mod ka b m≡ ⇔  then ( )( )2mod , ,..., ka b Lcm m m m≡ 1 . Moreover, 

if  ( )1 2gcd , ,..., 1km m m = , then ( )k21 m...mmmodba ≡ . 

For example, 
a) Suppose ( ) ( ) ( )3 mod5 , 3 mod11 , 3 mod7x x x≡ ≡ ≡ , we get 

( )3 mod5 11 7x ≡ ⋅ ⋅ .  

b) Assume that ( ) ( ) ( )3 mod5 , 3 mod35 , 3 mod21x x x≡ ≡ ≡ , 

( )5,35,21 105lcm = , then ( )3 mod105x ≡ . 

9.3. FERMAT 'S L ITTLE THEOREM AND EULER 'S THEOREM ON THE 

EXISTENCE OF THE UNIT ELEMENT MODULO m  

Theorem 9.3.1. (Fermat’s little theorem) If p is a prime and a is a 
coprime to p (gcd(a,p)=1), then  

( )aa|p p − . 
This is the same as  

( )pap mod11 ≡− . 

Theorem 9.3.2. (Euler’s theorem) If m > 0 and a is a coprime to m 
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(gcd(a,m)=1), then 
( ) ( )ma m mod1≡ϕ . 

Example 9.3.1. Check, if ( )11mod116710 ≡  

Solution 
Consider the following congruence: 

( ) ( ) 111,167gcd11mod2167 =⇒≡ .  
Hence, with Fermat’s little theorem 9.3.1, 

( )11mod2167 1010 ≡ , 

( ) ( ) ( ) ( )11mod11113323222 2222510 =−=⋅−≡== . 

Then ( )11mod116710 ≡  and Fermat’s little theorem holds. 

Example 9.3.2. Find the remainder from the division of 144323   
by 13. 

Solution 
We have 

( ) ( ) ( ) ( )13mod32313mod323;13modx23 144314431443 −≡⇒−≡≡ . 
Taking into account that gcd(3,13)=1, then with Fermat’s little 

theorem we can write ( ) ( )13mod13 12 ≡− . 
Further, raising the congruence to the 120th power, we get 

( )( ) ( ) ( ) ( )13mod1313mod13 144012012012 ≡−⇒≡− . 
Obviously, 1443 = 1440+3, so we have 

 ( ) ( ) ( )
( )

( ) ( )1443 1440 3 1440 3 3

1 mod13

3 3 3 3 3 27
+

≡

− = − = − − ≡ − ≡ − ≡
�����

 

( )27 3 13 12 mod13≡ − + ⋅ ≡ . 

Hence, the remainder from the division 144323  by 13 is equal 12. 

Example 9.3.3. Find the last three digits of the integer 159913 . 

Solution 
Let us rephrase this problem as follows: find the remainder 

from the division of 159913  by 1000. 
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A solution to the problem will be the congruence: 
( )1000modx131599 ≡ . 

Obviously, ( ) 11000,13gcd = . As 1000 is composite, then 
33 521000 ⋅= . Hence, Euler’s theorem is correct for this number: 

( ) ( )1000mod113 1000 ≡ϕ , 

 ( ) ( ) ( )( ) 40010045522521000 232333 =⋅=−−=⋅= ϕϕ . 

We have ( )1000113400 ≡  – Euler’s theorem. 
The exponent 1599 is not divisible by 400, but 1600 400 4= ⋅ . 

Multiplying the congruence by 13, we obtain 
( )1000modx13131600 ≡ . Using property (3) in Theorem 9.1.10, we 

can write down that ( ) ( )1000mod11313
44001600 ≡= . So, 

( )1000mod1x13 ≡ . Then, taking into account property (1) in 
Theorem 9.1, we add the modulus 1000 to the right side of the 
congruence: 

( ) ( ) 11000,13gsd;77131001;1000mod1001x13 =⋅=≡ . 

Finally, we divide the last congruence by 13 using the property 
(5) in Theorem 9.1: 

( )1000mod77x ≡ . 

The answer for the task is that the remainder from the 
division of 159913  by 1000 equals 77, and the last three digits of 
the integer 159913  are 077. 

Example 9.3.4. Find the remainder from the division of 128348   
by 21. 

Solution 
Let us write the congruence for the solution of this task: 

( )21modx348128 ≡ . 
It should be noted that gcd(348,21) = 3. Then, according to the 

property (3) in Theorem 9.2.1, we can conclude that x|3 .  
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By introducing new variable y3x = , we obtain that 

( )21mody3348128 ≡ . 
Let us divide the congruence by 3 using the property (1) in 

Theorem 9.2.1: 

( ) ( )128 127 127348 348 348 3 mod21 348 116 mod7 ,y y= ⋅ ≡ ⇒ ⋅ ≡  

( )3348 7 5; 116 7 16 4 348 5 mod7 ,= + = ⋅ + ⇒ ≡  

( ) ( ) ( )
(6)

127
116 4 mod 7 5 4 mod7

prop

y≡ ⇒ ⋅ ≡ . 

Obviously, ( ) 17,5gcd = , then, according to Fermat’s little 

theorem, we get ( )7mod156 ≡ . 

( ) 55551216127
2161216127 ⋅==⇒+⋅= +⋅ . 

Since ( ) ( ) ( )7mod157mod15
2166 ≡⇒≡  (the property (3) in 

Theorem 9.1.10), and ( ) ( )21127 65 4 5 5 4 20 mod7 ,⋅ = ⋅ ⋅ ≡  

( ) ( )20 6 mod7 6 mod7y≡ ⇒ ≡ . 

Finally, using back substitution for y3x = , we obtain 

( ) ( )21mod63x7mod6y ⋅≡⇒≡ . 

The answer for the task is that the remainder from the 
division of 128348  by 21 equals 18. 

Example 9.3.5. Find the remainder from the division of 
5050 343143 +  by 17. 

Solution 
Let us write the congruence for the solution of the given task: 

( )17modx343143 5050 ≡+ . 
First, according to property (1) in Theorem 9.1.3, we see that 

stated above problem splits into two congruences: 
( ) ( )17modx343;17modx143 2

50
1

50 ≡≡ .  
Obviously, 21 xxx += . 

So, we shall solve each problem separately and then find the sum 
of the solutions. Let us start with the first one. We have 
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1. ( )17modx143 1
50 ≡ . 

 ( ) ( )
9.3.1

16gcd 143,17 1; 17 143 1 mod17 ,
Th

is prime= ⇒ ≡  

 ( )
( )

( )17mod143143143143231650 22

17mod1

31650 ≡⋅=⇒+⋅=
≡
�����

, 

 ( ) ( )2 2143 17 8 7 143 7 mod17 143 7 mod17 ,= ⋅ + ⇒ ≡ ⇒ ≡  

 ( )17mod27231715217497 22 −≡⇒−⋅=+⋅== . 

Thus ( )17mod2x1 −≡  is a solution to the first congruence. 
2. Now, we will consider the second congruence. We get 

( )17modx343 2
50 ≡ . 

 ( ) ( )
9.3.1

16gcd 343,17 1; 17 343 1 mod17 ,
Th

is prime= ⇒ ≡  

 ( )
( )

( )17mod343343343341231650 22

17mod1

31650 ≡⋅=⇒+⋅=
≡
�����

, 

 ( ) ( )2 2343 17 20 3 343 3 mod17 343 3 mod17 ,= ⋅ + ⇒ ≡ ⇒ ≡  
23 9 17= < . 

Thus we have obtained  ( )17mod9x2 ≡ . 
3. Finally, the total solution to the given problem is 

( )17mod792xxx 21 =+−≡+= . 

The answer for the task is that the remainder from the 
division of 5050 343143 +  by 17 equals 7. 
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PROBLEMS FOR UNIT 9 

9.1. Find the remainder from the division 
1. 
6617 by 7 
 

2. 
2100+3100 by 5 

3. 
11802 by 1000 

4. 
172001 by 1000 

5. 
192402 by 100 
 

6. 
17852 by 11 

7. 
19671968 by 11 

8. 
383175 by 45 

9. 
109345 by 14 
 

10. 
439291 by 60 

11. 
293275 by 48 

12. 
6617 by 7 

13. 
11753 by 11 
 

14. 
570+750 by 12 

15. 
580+7100 by 13 

16. 
550+13100 by 18 

17. 
111841 by 7 
 

15. 
580+7100 by 13 

16. 
550+13100 by 18 

20. 
122751 by 10 

21. 
343741 by 26 
 

22. 
1782741 by 22 

23. 
111201 by 1000 

24. 
71199 by 1000 

25. 
3157 by 100 
 

26. 
1778 by 100 

27. 
1979 by 100 

28. 
7114 by 100 

29. 
11203 by 100 
 

30. 
7332 by 100 
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10. LINEAR CONGRUENCES WITH ONE UNKNOWN 

10.1. CONGRUENCES OF THE FIRST ORDER. SOLVING 

CONGRUENCES  

Definition 10.1.1 
An expression of the form  

( )mbax mod0≡+  or ( )mbax mod≡  

is called a congruence of the first order or a linear congruence with 
one unknown. 

Definition 10.1.2 
A solution of the first order congruence modulo m  is a class 

of numbers 1 ,x mt t Z+ ∈  such that substitution of each residue 

into the congruence yields the equivalent congruence 
( )modb b m≡ . 

As a rule, the number 1x  belongs to the least absolute residue 

system modulo n or the least nonnegative residue system modulo n. 
To study existence of solutions of such congruence, we shall 

consider several situations: 
First , we introduce case ( ) 1, =ma . 

If x  ranges over a complete residue system modulo m , then the 
number ax also takes on values from such system with the precision 
to a sequence order. Thus, there exists only one x congruent to b . 

Conclusion 
If condition ( ) 1, =ma  takes place, then the congruence 

( )mbax mod≡  has a unique solution. 

Secondly, let us consider the congruence ( )mbax mod≡  and 

assume that ( ) 1, >= dma : 

( ) mtbaxmbax +=⇒≡ mod . 
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If bdmdad ||,| ⇒ , then the congruence’s terms can be 
written as follows: 

( ) ( ) 1,,,,, 1111111 ===== mbmadmmdbbdaa . 
Hence, according to a property of congruences, such congruence 

can be divided by d . Finally, we get 

( )111 modmbxa ≡ . 

From the above, it has a unique solution ( )11 modmxx ≡  or 

11 xtmx += . On the other hand, if we consider the complete system 

of incongruent residues to modulus 1dmm = , then we will be able to 

see that there will be solutions in the interval [ ]m,0  as follows: 

( ) 1111111 1,...,2,, mdxmxmxx −+++ . 

Here, the total number of solutions is d . The solutions are 
incongruent modulo m  and, consequently, each of them forms their 
own class of residues. 

Conclusion 
In the case condition( ) 1, >= dma  holds, then the congruence 

will possess at least one solution if bd | . There will be exactly d  
solutions (d  classes of solutions). The first of them could be 
obtained from the given congruence divided by d , the rest are 
calculated as follows: 

( ) 11112 1,..., mdxxmxx d −+=+= . 

A linear congruence can be solved by several methods. 

10.1.1. APPLICATION OF CONGRUENCE’S PROPERTIES 

Examples 
а) Solve the congruence: ( )17mod2515 ≡x . 

Solution 

First, let us consider gcd of 15 and 17. Since ( )15,17 1= , then 

the congruence possesses a unique solution. Further, using properties 



 56 

of congruence, we can simplify it. Here, both 25 and 15 have 
common multiplier 5 that is coprime to modulo 17. Hence, by 
applying the properties of congruence, we can divide equation by 5: 

( )17mod53 ≡x . The number 5 corresponds to the least absolute 
residue – 12, which is multiple of 3. Finely, we cancel off equation 

( )17mod123 −≡x  by 3, this yields: ( )4 mod17x ≡ − . Thus, the 

congruence has a unique solution from the least absolute residue 
system modulo 17 or from the least nonnegative residue system 
modulo 17: 13174 =+−=x . 

b) Solve the congruence ( )10 35 mod55x ≡ . 

Solution 

We get ( )10,55 5 1, 5 | 35= > .  

Hence, the congruence has just five solutions. 

Then cancellation by 5=d  produces 

( )2 7 mod11x ≡ . 

Taking into account ( )2,11 1= , we can make a conclusion that 

such congruence possesses a unique solution 

( ) ( ) ( )2 7 11 mod11 2 18 mod11 9 mod11x x x≡ + ⇒ ≡ ⇒ ≡ . 

In the same way, the given congruence ( )10 35 mod55x ≡  will 

have five solutions of the obtained above form as follows: 

( ) ( )0 19 mod55 , 9 11 1 18 mod55 ,x x≡ ≡ + ⋅ =  

( )2 9 11 2 31 mod55x ≡ + ⋅ = , 

( ) ( )3 49 11 3 42 mod55 , 9 11 4 53 mod55x x≡ + ⋅ = ≡ + ⋅ = . 

If we again add extra modulus 11, then we will get 

( )5 9 5 11 64 9 mod55x ≡ + ⋅ = ≡ . 

Thus solutions 43210 ,,,, xxxxx  are incongruent modulo 55 and 

( )5 0 mod55x x≡ . 
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Finely, we have obtained five incongruent classes that are 
solutions of given congruence. In a general form, solution may be 
written as follows: 

( ) [ ] [ ]9 11 mod55 , 0,..., 1 0,...,4x t t d≡ + = − = . 

c) Solve the congruence ( )10 33 mod55x ≡ . 

Solution 

We obtain that ( )10,55 5 1,= >  but 33 is not multiple of 5, thus 

the congruence has no solutions. 

10.1.2. APPLICATION OF CONVERGENTS  

Consider the case ( )mbax mod≡ , ( ) 1, =ma . 
Let us expand the given below ratio into continued fraction 

nq

q
q

a

m

1

...

1

2
1̀

+

+
+= .  

We shall get a set of partial quotients nqqq ,...,, 21 . According to a 

well-known scheme, we will built continued fractions: 
i

i
i Q

P=δ . Let 

us consider the last two terms from the set: 

a

m

Q

P

Q

P

n

n
n

n

n
n ==δ=δ

−

−
− ,

1

1
1 .  

It follows from properties of continued fractions that 

( )n
nnnn PQQP 111 −=− −− . Hence, ( )n

nn aPmQ 111 −=− −− . Since 1−nQ  is 

an integer, we may suppose that 1−nmQ  is a modular period which 

can be truncated. This leads to ( ) ( )maP n
n mod1 1

1
−

− −= . Multiplying 

both parts of the expression by number ( ) bn1− , we obtain 

( ) ( )mbbPa n
n mod1 1

1 ≡− −
− .  
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Thus the solution of the congruence will be 

( ) ( )mbPx n
n mod1 1−−≡ . 

Example 
Solve the congruence ( )337mod179256 ≡x . 

Solution 
We have  
( ) 1337,256 = .  
Therefore, the congruence possesses a unique solution. Let us 

expand fraction  
256

337
 into continued one as follows: 

1 2

337 81 256 13
1 , 1; 3 , 3;

256 256 81 81
q q= + = = + =  

3 4

81 3 13 1
6 , 6; 4 , 4;

13 13 3 3
q q= + = = + =  

5

3
3, 3

1
q= = . 

Form the table. 
 

і 0 1 2 3 4 5 

iq   1 3 6 4 3 

iP  1 1 4 25 104 337 

iQ  0 1 3 19 79 256 

 
It follows from the obtained above data that 

 1 45, 104, 179nn P P b−= = = = ⇒  

( ) ( )4 104 179 81
1 104 179 mod337 ; 55

337 337
x

⋅
⇒ = − ⋅ = + . 

Thus the solution is ( )337mod81≡x . 
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10.2. MULTIPLICATIVE INVERSE 

Definition 10.2.1 
If a′  is a solution of the congruence ( )max mod1≡ , then a′  is 

called a (multiplicative) inverse of a  modulo m , and we say that 
a  is invertible modulo m . We shall denote 1a a−′ = . 

Since we know methods of solutions of linear congruences 
involving one unknown, we may find an answer to the question: 

Does there exist any element from the complete residue system 
modulo m having multiplicative inverse?  

First, let us consider the congruence 

( )max mod1≡ . 

As the right side of the congruence equals 1 then, according to a 
condition of the solution’s existence, we deduce ( ) 1, =ma . If values 

of a  were elements from the least nonnegative system modulo m  –
such system is the base for all class of numbers – then, obviously, the 
congruence could be nonsolvable. For example, 5,15 == am . 
Hence, from the system under consideration it is necessary to throw 
away all multiples of modulus. So, we will get the reduced residue 
system containing ( )mϕ  elements. Finally, for any element from the 

reduced residue system modulo m  the inverse of a  will be a 
solution of the congruence ( )max mod1≡ : 

( ) ( )max m mod1−ϕ≡ . 

Therefore, if the modulus m  is composite, then the inverse 
element exists just for the reduced residue system modulo m. Thus, 
for an arbitrary a  from mentioned above class the inverse is defined 
by formula as follows:  

( ) ( )maa m mod11 −ϕ− ≡ . 

However, if the modulus is a prime number p  then the reduced 
residue system modulo p  will coincide with the complete residue 



 60 

system.  
We have come to a conclusion that for any element from the 

complete residue system modulo p  the inverse exists and is a 
unique: 

( )paa p mod21 −− ≡ . 

Using continued fractions, it will be easy to find the inverse as 
follows: 

( ) 1n
1n1 P1a −

−− −= . 

Example 
Obtain the multiplicative inverse for number 131a =  modulo 
437m= . 

Solution 

Let us consider the fraction
437

131

a

m
= . We are going to expand 

the fraction via chain of partial quotients. This produces   

 1 2

437 44 131 43 44 1
3 , 3; 2 , 2; 1 ,

131 131 44 44 43 43
q q= = = = = 3 1;q =  

4

43
43, 43

1
q= = . 

Thus [ ]437
3,2,1,43

131
= . 

Then we build a table of convergents. 
і 0 1 2 3 4  

iq   3 2 1 43  

iP  1 3 7 10 437 m 

iQ  0 1 2 3 131 a  

Using their properties, one can write the following: 

( )4

4334 1−=⋅−⋅ QPQP  or 
( )

1131103437
437mod0

=⋅−⋅
≡
��� . 

Therefore, we come to a conclusion that 
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( ) ( )10 131 1 mod 437− ⋅ ≡ . 

Finely, we have ( )437mod101311 −≡−  or 

( )437mod4271311 ≡− . 

Answer 
The multiplicative inverse of 131=a  modulo 437=m  equals 

101 −=−a  (in the absolute least residue system) and corresponds to 
4271 =−a  in the least nonnegative residue system. 

10.3. SYSTEM OF L INEAR CONGRUENCES WITH ONE UNKNOWN  

Consider a system of congruences involving one unknown with 
respect to different modulus  

 

( ) ( )
( ) ( )

( ) ( )

1 1 1 1 1

2 2 2 2 2

mod , , 1,

mod , , 1,

mod , , 1.k k k k k

a x b m a m

a x b m a m

a x b m a m

≡ =
 ≡ =


 ≡ =

… … … … … … …
 (1) 

Let us assume that kmmm ,...,, 21  are pairwise prime numbers such 

that ( ) jikjkimm ji ≠=== ;,1;,1,1, . 

Definition 10.3.1 
A solution of the system of congruences with one unknown is 

an integer α  that satisfies all congruences simultaneously. 

First, we simplify this system. Since ( ) kima ii ,1,1, == , then 

there exists the inverse 1−
ia  for ia  such that 

( )iiii maaa mod1: 11 ≡⋅ −− . Further, multiplying every system’s 

equation by its own inverse, we obtain the equivalent system 

 

( )
( )

( )

1 1

2 2

mod ,
mod ,

mod .k k

x c m
x c m

x c m

≡
 ≡

 ≡

… … … …
 (2) 
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Thus, if we solve the system (2), then we will thereby know the 
solution to the system (1). 

To answer the questions about the existence and structure of the 
solution of the system (2), we introduce the Chinese remainder 
theorem: 

Let kmmm ,...,, 21  be pairwise coprime positive integers and let 

kccc ,...,, 21  be integers satisfying the inequalities 

kimc ii ,1,10 =−≤≤ . Then, there exists a unique integer α  such 

that ic  will be the remainder on dividing α  by im , i. e., 

( )ii mc mod≡α . 

Proof 
We shall prove the theorem by constructing a number α . Denote 

by M  the gcd of all moduli. Since they are pairwise coprime, then 

kmmmM ...21= . Further, we build a system of numbers as follows: 

kimmmmm
m

mmmm

m

M
M kii

i

ki

i
i ,1,......

......
1121

21 ==== +− . 

Being pairwise coprime with im , each iM  has an inverse  

( ) ( )i
m

ii mMM i mod11 −ϕ− ≡ . 

Let us construct the integer ∑
=

−=α
k

i
iii cMM

1

1 . 

It is obvious that the solution to the system (2) is a residue class 
that satisfies a congruence 

( )Mx modα≡ . 

Indeed, let us substitute α  to the first congruence of the system 
(2): 

( )11
1

2
1

221
1

11 mod... mccMMcMMcMM kkk ≡+++ −−− . 

Here all terms, starting from the second one, are divided by 1m , 

since 1m  is a factor of k,2i,M i = . Therefore, all of them are 
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congruent to 0 modulo 1m . As stated above, ( )1
1

11 mod1 mMM ≡−  

and, consequently, ( ) 1, 11 =mM . Finally, there will remain only 

equivalent congruence ( )111 modmcc ≡ . 
In the second equation, the only term incongruent to 0 modulo 

2m  is 2
1

22 cMM − . Thus, α  is the solution for the second congruence, 
etc. 

Clearly, the solution, according to its structure, satisfies every 
congruence in the system.  

Conclusion 
The solution to the system (2) exists and it is a class of 

integers ZtMtx ∈+α= , . 
Consider an example for the solution of the system with several 

congruences. 

Example 
Solve a system of congruences 

( )
( )
( )

743 16 mod13 ,
59 128 mod5 ,
136 82 mod3 .

x
x
x

≡
 ≡
 ≡

 

Solution 
There is the system of three congruences modulo prime numbers.  
STEP 1. Let us simplify the system. We substitute the least 

residues of appropriate moduli for numbers in each of congruences. 

( )
( )

( )

2 3 mod13 ,
4 3 mod5 ,

1 mod3 .

x
x
x

≡
 ≡
 ≡

 

We bring the system to the type (2): 

( ) ( )
( )

( )
( ) ( )

( )
( )

( )

2,13 1

4,5 1

2 3 13 mod13 2 16 mod13 8 mod13 ,

4 3 5 mod5 4 8 mod5 2 mod5 ,

1 mod3 .

x x x

x x x

x

=

=

≡ + ⇒ ≡ ⇒ ≡


≡ + ⇒ ≡ ⇒ ≡
 ≡
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This yields the reduced system as follows: 

( )
( )
( )

8 mod13 ,
2 mod5 ,
1 mod3 .

x
x
x

≡
 ≡
 ≡

 

According to the Chinese remainder theorem, a solution to such 
system exists, and it is a unique. 

STEP 2. Let us consider the first congruence ( )8 mod13x ≡ . We 

can rewrite it via such equality: 

 1138 tx += . (*) 

Since x  is a solution for every congruences, we substitute it into 
the second congruence and deduce value for unknown 1t : 

 ( ) ( )1 18 13 2 mod5 13 6 mod5t t+ = ⇒ ≡ − ⇒  

( ) ( )1 13 6 5 3 mod5 3 9 mod5t t⇒ ≡ − + ⋅ ⇒ ≡ . 

Taking into account that ( )3,5 1= , we divide both parts of the 

congruence by 3: 

( )1 3 mod5t ≡ , this yields 21 53 tt += . 

Then we substitute 1t  into formula (*); this produces 

 ( ) 222 5134751339853138 tttx ⋅+=⋅++=++= , 

 ( )47 mod13 5x ≡ ⋅ . 

 We get 

 251347 tx ⋅+= . (**) 

STEP 3. Further, we substitute the obtained above expression for 
x  into the third congruence: 

 ( ) ( )2 247 13 5 1 mod3 65 46 mod3t t+ ⋅ ≡ ⇒ ≡ − ⇒  

( ) ( )2 2 2 31 mod3 1 mod3 1 3t t t t⇒ − ≡ − ⇒ ≡ ⇒ = + . 

If we replace 2t  by its expression in (**), we obtain 



 65 

( ) 333 3513112351365473151347 tttx ⋅⋅+=⋅⋅++=+⋅+= . 

Thus we have 

( )112 mod13 5 3x ≡ ⋅ ⋅  or ( )112 mod195x ≡ . 

Answer 

( )112 mod195x ≡ . 

Solution check 

( )
( )

( )

2 112 224 13 17 3 2 112 3 mod13 ,
4 112 448 3 mod5 ,
112 3 37 1 112 1 mod3 .

⋅ = = ⋅ + ⇒ ⋅ ≡
 ⋅ = ≡
 = ⋅ + ⇒ ≡

 

Solution is correct. 

Remark 
1. If in the system (1) there is a congruence ( )iii mbxa mod≡  

possessing properties ( ) iii bddma |,1, >= , then, by dividing it by 

d , we get an expression 






≡
d

m

d

b
x

d

a iii mod  and, further, we will 

substitute the obtained congruence into the system.  
If in the new deduced system moduli are still pairwise coprimes, 

then, according to the Chinese remainder theorem, such system 
possesses a unique solution. But in this case an i -th congruence has 

just d  solutions: ( ) ( )1,0,mod −=+≡ dtm
d

m
tcx ji

i
ji . Therefore, it 

is necessary to consider d  systems, having an appropriate solution of 
congruence in the system’s i-th position.  

2. A system of two equations  

( )
( )

1 1

2 2

mod ,

mod

x c m

x c m

≡
 ≡

 

is solvable iff two conditions hold ( ) 1, 21 >= dmm  and 12| ccd − . 
Otherwise, the system has no solutions. In the case conditions are 
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met and a solution exists, then it will be found by modulo gcd of 1m  

and 2m . 

3. If a system contains more than two congruences ( 2>k ) with 
modules having gcd greater than 1, then we must check its solution 
step-by-step. When at least one of obtained congruences is 
nonsolvable, then such system is inconsistent at all. If the solution 
exists, then it will be congruent modulo gcd of all moduli. 

 

PROBLEMS FOR UNIT 10 

Problem 1 
Obtain inverse for a  modulo m. 
 

1. 
142,

439

a

m

=
=

 

2. 
137,

932

a

m

=
=

 

3. 
95,

308

a

m

=
=

 

4. 
37,

107

a

m

=
=

 

5. 
37,

217

a

m

=
=

 

6. 
113,

311

a

m

=
=

 

7. 
221,

367

a

m

=
=

 

8. 
41,

101

a

m

=
=

 

9. 
31,

142

a

m

=
=

 

10. 
93,

133

a

m

=
=

 

11. 
23,

691

a

m

=
=

 

12. 
137,

323

a

m

=
=

 

13. 
97,

323

a

m

=
=

 

14. 
101,

931

a

m

=
=

 

15. 
103,

1031

a

m

=
=

 

16. 
91,

323

a

m

=
=

 

17. 
137,

837

a

m

=
=

 

18. 
59,

311

a

m

=
=

 

19. 
97,

433

a

m

=
=

 

20. 
113,

923

a

m

=
=

 

21. 
89,

323

a

m

=
=

 

22. 
47,

311

a

m

=
=

 

23. 
67,

691

a

m

=
=

 

24. 
64,

531

a

m

=
=

 

25. 
64,

743

a

m

=
=

 

26. 
71,

531

a

m

=
=

 

27. 
83,

323

a

m

=
=

 

28. 
93,

531

a

m

=
=

 

29. 
128,

1025

a

m

=
=

 

30. 
29,

531

a

m

=
=
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Problem 2 
Solve the system of congruences, simplifying it first. 

1. 

( )
( )
( )








≡
≡
≡

.13mod623x457

,19mod245x138

,17mod132x913

 

2. 

( )
( )
( )








≡
≡
≡

.17mod623x457

,11mod245x138

,23mod132x913

 

3. 

( )
( )
( )








≡
≡
≡

.23mod623x457

,17mod245x138

,29mod132x913

 

4. 

( )
( )
( )








≡
≡
≡

.13mod741x579

,19mod545x338

,17mod429x253

 

5. 

( )
( )
( )








≡
≡
≡

.19mod741x579

,23mod545x338

,31mod429x253

 

6. 

( )
( )
( )








≡
≡
≡

.23mod741x579

,29mod545x338

,37mod429x253

 

7. 

( )
( )
( )








≡
≡
≡

.13mod241x279

,19mod945x138

,17mod529x353
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8. 

( )
( )
( )








≡
≡
≡

.17mod241x279

,23mod945x137

,31mod529x353

 

9.  

( )
( )
( )

,

.23mod241x279

17mod945x137

,37mod529x353









≡
≡
≡

 

10. 

( )
( )
( )








≡
≡
≡

.37mod541x271

,29mod345x438

,17mod519x347

 

11. 

( )
( )
( )








≡
≡
≡

.19mod541x271

,23mod327x438

,31mod519x347

 

12. 

( )
( )
( )








≡
≡
≡

.23mod541x271

,17mod327x438

,37mod519x347

 

13. 

( )
( )
( )








≡
≡
≡

.37mod341x371

,29mod175x639

,17mod219x547

 

14. 

( )
( )
( )








≡
≡
≡

.19mod341x371

,23mod145x638

,31mod219x547

 

15. 

( )
( )
( )








≡
≡
≡

.23mod341x371

,17mod145x638

,37mod219x547
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16. 

( )
( )
( )








≡
≡
≡

.37mod241x571

,29mod195x838

,17mod319x747

 

17. 

( )
( )
( )








≡
≡
≡

.19mod241x571

,23mod195x838

,31mod319x747

 

18. 

( )
( )
( )








≡
≡
≡

.23mod241x571

,17mod195x838

,37mod319x747

 

19. 

( )
( )
( )








≡
≡
≡

.37mod225x771

,29mod395x925

,17mod719x437

 

20. 

( )
( )
( )








≡
≡
≡

.41mod225x771

,23mod395x925

,31mod719x437

 

21. 

( )
( )
( )








≡
≡
≡

.23mod225x771

,17mod395x925

,37mod719x437

 

22. 

( )
( )
( )








≡
≡
≡

.37mod245x797

,29mod495x1025

,17mod579x333

 

23. 

( )
( )
( )








≡
≡
≡

.41mod245x797

,23mod495x1025

,31mod579x333
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24. 

( )
( )
( )








≡
≡
≡

.23mod245x797

,17mod495x1025

,37mod525x337

 

25. 

( )
( )
( )








≡
≡
≡

.37mod295x707

,29mod405x625

,17mod571x733

 

26. 

( )
( )
( )








≡
≡
≡

.19mod295x707

,23mod405x625

,31mod571x733

 

27. 

( )
( )
( )








≡
≡
≡

.23mod295x707

,17mod405x625

,37mod571x733

 

28. 

( )
( )
( )








≡
≡
≡

.37mod395x507

,29mod605x925

,17mod171x398

 

29. 

( )
( )
( )








≡
≡
≡

.11mod395x507

,19mod605x925

,31mod171x398

 

30. 

( )
( )
( )








≡
≡
≡

.41mod395x507

,13mod605x925

,11mod171x398
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