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Sol-gel synthesis of filled aluminosilicates with macromolecules having a dendrimer morphology (Mcalc 

≈ 480000) was developed. The software package Gaussian B3LYP/6-31G(d) was used to assess the possible 

mechanism by which nuclei of dendrimer molecules are created, with the subsequent generation of crowns 

of branched ensembles capable of accommodating up to 80 wt % nano-AlOOH as a filler. The data fur-

nished by transmission electron microscopy of the samples are in agreement with the suggested mecha-

nism of generation and growth of dendrimers. The main results were obtained on fi lledaluminosilicate 

samples that contain 80 wt % nano-AlOOH and exhibit a high wear resistance in tribological tests. 
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1. INTRODUCTION 
 

The advanced industries, especially space industry, 

semiconductor optoelectronics and microelectronics 

develop on the base of multifunctional materials. Poly-

mer composite materials, in their turn, often play the 

major role in this process. Physical chemistry of high-

molecular compounds is actively developing in the 

frame of fundamental science and different technolo-

gies. It is a new field concerned with the synthesis and 

investigation of the structure and properties of three-

dimensional hyperbranched polymers and oligomers, 

the so-called dendrimers [1]. The polymers with such 

macromolecular ensemble morphology of both organic 

and inorganic compounds attract our attention because 

the number of branches increases exponentially by 

each chain growth act in three-dimensional macromo-

lecular ensembles synthesis. As a result, the macro-

molecules size and shape change that leads to major 

physical and physicochemical properties changes such 

as viscosity, solubility, moisture absorption, density etc. 

Some synthetic approaches allow obtaining regular 

dendrimer ensembles (DA), the macromolecules of 

which have well-defined molecular weight. Further-

more, it should be noted that a lot of physical and phys-

icochemical properties of dendrimer materials such as 

glass transition temperature mainly depend on the 

chemical nature of the terminal groups located on the 

spherical "macromolecules-dandelions" surface [2]. 

All above-mentioned arouses chemists' interest in 

the dendrimer macromolecules synthesis. Thus, the 

dendrimers based on simple and complex polyethers, 

polyamides, polyphenylenes, polysiloxanes, polycarbos-

ilanes etc. have been synthesized and described in sci-

entific literature [2]. The controlled synthesis of den-

drimeraluminosilicates (AS) combined with the product 

forming phase (for example, coatings on a substrate) is 

an innovative and cost-effective way that provides the 

necessary properties for ceramic composites [3]. 

The size, phase, structural and other morphological 

characteristics that determine the physicomechanical, 

physicochemical and service properties of end materials 

form during the AS synthesis. The traditional tech-

niques to obtain the nanostructured ceramic materials 

with the desired stoichiometry, homogeneity, high puri-

ty and specific micro- and supramolecular structures 

may not always lead to the goal [3, 4]. 

One microstructure can not determine the proper-

ties of material (physical body) consisting of macromol-

ecules. The formation of dendrimer AS amorphous 

structures with the desired stoichiometry and set mi-

crostructure is an innovative approach to develop next 

generation multifunctional materials.  

The research aim is to develop the low-temperature 

synthesis of amorphous AS, the macromolecules of 

which are the branched dendrimer ensembles capable 

to contain up to 80 % wt of filler nanoparticles (oxide, 

oxyhydroxide or aluminum nitride etc.) and form the 

so-called filled aluminosilicate (FAS). The materials 

made from such FAS correspond the technical specifi-

cations, for example have sufficient electric strength 

and high thermal conductivity [5, 6]. 

Our own technology to obtain aluminosilicates of 

dendrimer morphology, by which the material proper-

ties formation and modification are crucial, provides us 

the opportunity to develop such next generation low-

temperature synthesis materials with radically new 

properties. 

The prerequisites for such materials production 

technology development are as follows: 1) the possibil-

ity of preliminary quantum-chemical assessment of 

conformational states to predict the shapes and sizes of 

AS dendrimer crowns formation; 2) the capability to 

accommodate the maximum amount of filler nanoparti-

cles in the branched AS dendrimer crowns. 

One can obtain the dendrimer AS by a sol-gel meth-

od that include three-dimensional gel-precursor poly-

condensation by means of metalloxopolymer molecules 

сrosslinking in solutions (chemically controlled poly-

condensation). 

The monomeric or polymeric compounds and pre-

composites including the products required for techno-

logical processing in end ceramic elements are used in 

sol-gel processes as precursors. The advantage of pre-
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cursors is the opportunity to develop a wide range of 

nanocomposites: nanofibers and film materials, ceram-

ic-matrix composites, ceramic binders etc. 

The choice of precursors for low-temperature ceram-

ics synthesis is based on our own structural and chemi-

cal conception of intermolecular interactions and on the 

structure geometrical parameters calculation. Conse-

quently, our structural and chemical conception allows 

adjusting the precursors activity to their intermolecu-

lar structure applied to the sol-gel process [5].  

The precursor choice for low-temperature ceramics 

synthesis is based on the opportunity: 

– to calculate a priori the filling degree of the com-

pounds original system with the known or simulated 

hypothetical molecular geometry that consists of the 

necessary components for the desired end product; 

– to determine the quantity and types of possible in-

termolecular interactions; 

– to choose the most prospective precursors. 

The dendrimer AS provide the polymer materials 

with the controlled properties as their formation process 

is accompanied by three-dimensional branches growth. 

The macromolecules shape and rigidity change simulta-

neously with the molecular weight (MW) increase. This 

process is accompanied by the physicochemical proper-

ties change of the bodies consisting of dendrimer AS: 

phase state, viscosity, solubility, density etc. 

 

2. THE DENDRIMER AS SOL-GEL SYNTHESIS 
 

Many studies on the amorphous and crystalline AS 

and aluminophosphates synthesis have been published 

[1-3, 7-20]. This synthesis products are used as cata-

lysts, adsorbents, dielectrics, structural materials and 

in other fields of science and technology including med-

ical supplies. Silicic acid and aluminum nitrate have 

been chosen as starting reagents to form the dendrimer 

AS ensembles for the synthesis of dendrimer AS to 

obtain the filled tailored materials. The formation was 

carried out in three stages:  

– I stage: The silicic acid dissolution by the рН  7; 

– II stage: The aluminum nitrate hydrolysis; 

– III stage: Light polycondensation with gel-

precursor formation from oligosilicic acids and O3N-Al-

(OH)2. 

One interrupt stage III to obtain the FAS samples 

so that the well-proportioned and adequate dendrimer 

crowns form to inject the nanoparticles of monomeric 

precursor- powders by the mechanochemical mixing 

method with the simultaneous ultrasonic machining. In 

such a way one can obtain the FAS containing different 

quantities of fillers. 

The AS sample TEM photo displays the clearly 

structured picture of the AS dendrimer macromolecular 

ensembles obtained by the polycondensation (Fig. 2). 

 

3. ALUMINOSILICATE MORPHOLOGY COM-

PUTER VISUALIZATION 
 

Сomputer simulation is the only approach for the a 

priori research of gel-precursors microstructure in our 

study. The influence of the polymer molecule segments 

conformational states on the polymer chain rigidity was 

estimated by the geometrical optimization using the 

conformation computer calculation method (method 

B3LYP with basis set 6-31G).  

Stepwise polycondensation illustrating the alumi-

nosilicate fragment formation provides the computer 

simulation for aluminosilicate segments of the most 

probable conformations that counteract the intermolec-

ular сrosslinking and contribute to the oligomer den-

drimerization with crown formation. Indeed, the OH-

groups steric accessibility on the apices of the arcuate 

oligomer segments implies the great probability of 

chemical bonds between the arcuate segments that 

results in the formation of dendrimer morphological 

units, generations or crowns. Any conformer (I), (II), 

(III) or (IV) can serve as a center or nucleus to start the 

polycondensation processes (Fig. 3). That results in 

intensive crown formation because the unbound OH-

groups included into the (=Al-OH) ensembles enter into 

the condensation reaction with OH-groups bound to the 

(≡Si-OH)-groups. As already mentioned, both types of 

OH-groups are located on the arcuate segment apices 

and that is why they are dimensionally accessible. It is 

easy to notice that such polycondensation results in 

macromolecule formation in the form of DA (Fig. 2). 

Possible conformers (I)-(IV) (Fig. 3) formed from 

metadysilicic (MDS), orthosilicic (OS), metasilicic (MS) 

acid, AlОOН (Fig. 1) form at stage III as a result of 

polycondensation. Conformer (I) consisting of comono-

mers MDS, Al, OS and MS is represented by twelve 

simulated monomer units as a sequence of abbrevia-

tions MDS-Al-OS-MS-MDS-Al-OS-MS-MDS-Al-OS-MS 

and as a visualized model in Fig. 3. 
 

 
 

Fig. 1 – The micrograph of AlO(OH), the nanoparticles of 

which are located in the dendrimer ensembles crowns (the 

upper right figure). 

 

4. CONCLUSIONS 
 

A simple comparison between the visualized models 

(calculated by the quantum-chemical method) (Fig. 3) 

and the micrograph of AS dendrimer ensemble ob-

tained by means of TEM (Fig. 2) leads to the conclusion 

about the identity between the AS morphological pic-

ture obtained by TEM and the idea of oligomer seg-

ments participating in crown formation. In other 

words, the AS macromolecule formation starts with the  
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Fig. 2 – The TEM photos of the aluminosilicate and aluminiumoxyhydroxidedendrimer macromolecular ensembles. There are 

dendrimer design parameters on the upper left crown 
 

 
 

Fig. 3 – The oligomer AS conformer model capable of playing the role of DA nucleus and participating in crown formation visual-

ized by a computer program Gaussian 
 

dendrimer nucleus formation. Other arcuate oligomer 

segments grow on the nucleus around the dimensional-

ly accessible OH-groups that results in "macromole-

cules-dandelions" formation, i.e. the dendrimers, which 

are clearly visible in the TEM photos (Fig. 2). 

It is also shown that the polymer chain rigidity de-

pends on the gel-precursor microstructure. The oligo-

mer segment conformations change depending on the 

degree of Si-O-Al-O-Si rotational oscillations freedom. 

Сonformer population levels also depend on atomic 

radii and charges of Si and Al: Si charge varies from 

1.201 to 1.305, Al from 0.973 to 0.986. Al atom provides 

less steric hindrance. The most adequate conformation 

preventing the long-range order formation in structural 

elements is the conformation shown in Fig. 3 (IV). In 

other words, precisely these conformations participate 

in dendritic supramolecular structure formation, which 

in its turn form dendrimeraluminosilicates (Fig. 2). 

The quantitative parameters that determine the 

dendrimer AS macromolecular structure and sizes are 

the quantity of crowns (Nc) and the quantity of branch-

es (Nb) that are formed by every dimensional segment 

(Z) (element branching index) as well as by the quanti-

ty of generations (G) (Fig. 2). 

The synthesized dendrimer AS samples have 

crowns (Nc  3) and branches (Nb  3) that are well-

defined by the TEM method (Fig. 2). 
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