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Using the Landau theory of phase transitions the fragmentation of solids during the process of severe 

plastic deformation (SPD) is studied. In describing of appearing defect structures the density of grain 

boundaries, dislocations and entropy are introduced. This allows us to take into account the two channels 

of energy dissipation (thermal one and defects formation). In the deterministic case phase diagram is de-

termined establishing the domains of realization of different types of structures. The interaction effect of 

several types of defects is investigated on the formation of limiting structure in terms of internal energy. 

As shown, the grains size in limiting structures decreases with an increase of the elastic strain. Within the 

scope of the adiabatic approximation, at which change of the dislocations density follows the evolution of 

the density of the grain boundaries, the conditions of formation for two limiting structures are found. They 

correspond to the mode, in which there is a mixture of grains of different sizes. 
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1. INTRODUCTION 
 

Processing of metals by methods of severe plastic 

deformation (SPD) is one of the most perspective meth-

ods for obtaining materials with the improved physical 

and mechanical properties [1]. But at the same time, it 

is the multi-level process a theoretical description of 

which is quite complex task. The problem consists of 

choosing the main parameters and reasonably neglect-

ing the infinitude of others ones.  

At present for describing the destruction of quasi-

brittle materials [2,3], grain grinding during the pro-

cess of their processing by methods of severe plastic 

deformation [4-6], behavior of a thin layer of lubricant 

[7-9]  methods close to concept of Landau theory of 

phase transitions are developed. The evolution equa-

tions for the non-equilibrium variables can be derived 

by differentiating the multidimensional thermodynam-

ic potential [10]. However, the existing theory is based 

on generalization of the experimental data and can’t 

explain the reason for the formation of a limiting state 

[1], when for the next following cycle of SPD the grains 

cease fragmentation [11]. Also the connection between 

generation of several types of defects has not set, for 

example, such defects as grain boundary and disloca-

tion. Their interaction can provide the formation of 

stationary domains in the phase diagram.  

 

2. BASIC EQUATIONS 
 

The conservation law of energy must be performed 

for both the external interactions of the selected volume 

and the internal transformations of several types of 

energy as a result of the flow of irreversible internal 

processes. Combining the first law of thermodynamics 

and the law of energy transformation on the internal 

degrees of freedom it is possible to obtain thermody-

namic "identity" for density of internal energy u as 
 

     
 

    
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d d d  
N N

e
ij ij l l l l

l l

u T s T s h , (1) 

 

where ij,  ij
e  are tensor of stress and elastic part of 

strain tensor; T, s , Tl, sl are temperature and entropy 

of equilibrium and l-th nonequilibrium subsystem; φl 

and hl are conjugate pair of thermodynamic variables, 

which shows the imperfection of a material (energy and 

defect density the type of l). 

The nonequilibrium state is defined by set of pa-

rameters. The first two  ij
e  and s describe part of the 

system which has already come to an equilibrium dis-

tribution (reversible processes), and other two sl, hl 

parameters represent nonequilibrium part (irreversible 

processes) [12]. 

The relationship (1) is written down in general 

form. The specific model of kinetics of structural defects 

will be determined, if we will define the dependence of 

the internal energy or effective internal energy on all 

independent variables of a problem [13,10]. Since the 

exact analytical solution has not known, so let's consid-

er a simplified model. We will expand the effective in-

ternal energy into power series of its arguments. In this 

paper the two-level two-mode model is considered with 

the contribution of grain boundaries taking into ac-

count to the fourth degree relatively to their density 

[10]. 

The amount of modes is determined by the number 

of stable stationary solutions or maximums of internal 

energy. The number of levels is defined by the quantity 

of types of the considered defects. The grain boundary 

is the main structural defect during the process of SPD, 

but at the same time, dislocations take an important 

role in generation of power conditions for formation of 

grain boundaries.  

The internal energy is represented by the relation: 
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where u0, φkm, φgD are some coefficients which depend 

on the equilibrium variables s and  ij
e  as control pa-

rameters: 
 

       2 2 2
0

1
( ) ( )  

2

e e
ii iju s , (3)  

       
 

    
 

* 2 2
0 0

1
(  ) ( )

2

e e e
m m m ii m ii m ijg    

     e
m gm ijs s ,  (4)  

    *
1 1 2 e
m m m iie , (5)  

 

where λ, μ are elastic constants of the defect-free mate-

rial; gm is the variable which characterizes the activa-

tion of  formation the corresponding defect;  ,m m  are 

elastic constants, which caused by the existence of de-

fects; em is the defect annihilation, which is activated 

by acting stress;  eii ,   2( )e e e
ij ij ji  are first and second 

invariants of strain tensor. Repeated indexes mean 

summation. Since compression process of the deformed 

object is described, so for the further analysis the nega-

tive values of the first invariant of strain tensor  eii  are 

used.  

The components of strain  eij  are the control param-

eters, which represent the external influence, and they 

can be regarded as constants. In Eq. (2) the index of D 

belongs to dislocations, and the index of g to the grains 

boundaries.  

A polynomial of fourth degree with positive coeffi-

cients km in Eq. (2) can have two maximums (two 

modes). We will consider only simplified case of homo-

geneous distribution of dislocations, therefore the high-

est powers are neglected at the description of evolution 

of dislocations 2D and 3D [10].  

For calculations the following set of parameters was 

accepted: 
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The parameters that aren't listed are supposed to be 

equal to zero. 

 

 

3. PHASE DIAGRAM  
 

Let’s write down the equation of evolution: 
 

 
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,  (6) 

 

where 
lh
 is the times of relaxation; hl is the density of 

defects of l-type; u  is the effective internal energy [10]. 

The system of evolution equations is defined in explicit 

form: 
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Let’s use the adiabatic approximation   
g Dh h , at 

which the evolution of dislocations density follows the 

change of density of grains boundaries. In this case, we 

set     0
Dh Dh t  in Eq. (7) and express hD from this 

equation: 
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Substituting the dependence of the dislocations density 

(9) into Eq. (8), the Landau-Khalatnikov equation is 

obtained:  
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where derivative of the effective thermodynamic poten-

tial with respect to the density of grains boundaries 

  / ( )g gV h F h  specifies the thermodynamic force F: 
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that tends to bring the parameter hg to the attractor 

corresponding to steady-state value. The system is de-

scribed by thermodynamic potential: 
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This relationship is identical for a given type of defect 

to Eq. (2) at using the substitution (9). 

Steady-state density of grains boundaries hg is fixed 

by the extremum condition of potential (12), since at 

  / 0gV h according to Eq. (10)    0gh t . Besides, 

the minimums of potential correspond to unstable 

states, but its maximums meet the stable states [13]. 

Stationary condition leads to the expression: 
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Hence, the positions of extremums of potential depend 

on the parameters 
0
, 

g


1
, 

g


2
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g
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3
, 

g
 , 
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0
,

D
  

1D
  and 

don’t depend on the reference level of energy u0. These 

extremums define the regimes of fragmentation during 

the SPD process.  
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The solution of equation (13) is shown in Fig. 1, ac-

cording to which at small absolute values of invariant 

 eii  three steady-states exist. Two of them correspond to 

the maximums of potential V(hg) (solid and dashed 

lines) and one to the minimum of potential (dotted 

line). The first maximum can be achieved at zero and 

non-zero values of the density of the grains boundaries 

hg0 depending on the value  2( )eij . It takes non-zero val-

ues only in the case, when the value of strain  2( )eij  is 

lager than certain critical value. This is due to the fact 

that during SPD the process of fragmentation can oc-

cur, when the elastic strain  eij  and related with its 

stresses ij exceed yield stress. Steady–states in the 

SPD process can be reached only after fulfillment of 

this condition. If it fails, the system can also approach 

the stationary states but with other and lower rate.  
 

 
 

Fig. 1 − Dependence of the stationary values of the density of 

grains boundaries ,
m

go g
h h  on the second invariant of strain 

tensor 
2

( )
e

ij
 . The curves 1−4 correspond to the values 

0.01, 0.25, 0.42, 0.85
e

ii
       

 

According to the curves 1-3 the smaller of steady-

states hg0 corresponds to the large size of grain (dashed 

parts of curves), the bigger of steady-states (solid sec-

tions of curves) meet the smaller grain size. They are 

separated by unstable state (dotted line) for the values 

of the density of grains boundaries which correspond to 

the minimum of potential. It is noteworthy that zero 

maximum meets the coarse-grained polycrystal and a 

single crystal in the limit. In the case of single crystal 

at first zero maximum of potential is realized and only 

when it becomes non-zero the process of fragmentation 

starts proceeding.  

The sample is a single crystal (or coarse-grained 

polycrystal) for all curves shown in Fig. 1 for a value 

 2( ) 0e
ij . If we increase the value of strain  2( )eij , then 

a single crystal (hg0 = 0) is realized for a while. Accord-

ing to the curve 1 with an increase of  2( )eij  under the 

value, when zero and non-zero maximums of potential 

coexist, the process of fragmentation cannot realize, 

because these maximums are separated by potential 

barrier (dotted line). Then zero maximum becomes non-

zero (dashed line) and continuous process of fragmenta-

tion occurs. At further increase of strain the first max-

imum disappears coupled with potential barrier and 

the system by the first-order phase transition rapidly 

passes into the state, which is described by the second 

maximum of the potential (solid line). At the same time 

abrupt decrease of grains sizes takes place. It is known, 

that at the first-order phase transition the system can 

be in two metastable phases because of simultaneous 

presence of two maximums of thermodynamic potential 

[14]. Here this implies the coexistence of limiting struc-

tures with different grains sizes. 

In the case that is described by the curves 2 and 3 

as opposed to curve 1, realization of potential is impos-

sible, which has at once zero and non-zero maximums. 

In other respects the curves 1-3 are the same.  

If we continue to increase  eii  for absolute magni-

tude (curve 4), the continuous second-order transition 

is realized from single crystal to fragmented sample in 

the absence of potential barrier. Besides, the formation 

of only one limiting structure is possible.  

The critical value of second invariant of strain ten-

sor is obtained from Eq. (13) for hg0 = 0: 
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In the coordinates  2( )eij −  eii  Eq. (14) represents the 

second-order curve below which the steady-state solu-

tion of Eq. (13) exists corresponding to the maximum of 

V(hg) at the point of hg0 = 0.  
 

 
 

Fig. 2 − Phase diagram of the system with realization of do-

mains of two ( , )A A  and one ( , )B B limiting structures 

 

The phase diagram is depicted in Fig. 2. The lines 

correspond to loss of system stability. The curve 1 is 

defined by the expression (14), below which zero 

steady-state solution is possible. There isn’t channel of 

energy dissipation for the value hg0 = 0, which is relat-

ed with the formation of defect structure, and system is 
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a single crystal or close to it structure. The points 1-4 

in the phase diagram correspond to potential curves in 

Fig. 3, which possess the maximums. Their positions 

are defined by the parameters of the problem.  
 

 
 

Fig. 3 − Dependence of the thermodynamic potential V(hg) 

(12) on the density of grains boundaries hg. The curves 1−4 

correspond to the values of second invariant 
2

0.1, 0.25, 0.125( , 0.005)
e

ij
   and accordingly, the first invar-

iant 0.2, 0.2, 0.1, 0.02
e

ii
       (points 1−4 in Fig. 2) 

 

The domain A  corresponds to the realization of two 

non-zero maximums of potential V(hg) (curve 3 in 

Fig. 3). Here two limiting structures are observed with 

large (first maximum of potential) and small (second 

maximum of potential) size of the grains. 

The region A  of the diagram is similar to do-

main A , but with the main difference that first maxi-

mum of the potential is zero (curve 4 in Fig. 3). Since 

the first limiting structure is formed for the value  

hg0 = 0, so it is a single crystal. In this region as a re-

sult of SPD process the fragmentation of material may 

not be realized. It is worth noting that the transitions 

between maximums of potential are possible directly 

during SPD process. Owing to them in regions A , A  

two limiting structures are formed, which correspond to 

regime, that has the grains with different sizes. When 

SPD process is finished, it should be supposed that the 

sample has formed and the further transitions are not 

realized.  

In domain of large strain B  according to the curve 

2 in Fig. 3 one limiting structure is generated. It is 

shown that with increase in elastic strain  2( )eij  the 

grain size decreases and in the limit  2( )eij  the 

sample represents amorphous structure. 

The only one zero maximum of V(hg) (curve 1 in 

Fig. 3) is realized in the domain of small strains B . 

Here the system is a single crystal. 

 

4. CONCLUSIONS 
 

Study based on the principles of the Landau theory 

of phase transitions is presented. The two-level two-

mode model of non-equilibrium evolution thermody-

namics in expressions of internal energy was assumed 

as a basis. In the capacity of main structural defect the 

grain boundary and dislocation are chosen.  

This approach allows us to describe existence of lim-

iting grain structure (non-zero maximum of thermody-

namics potential) which is achieved as a result of SPD 

process. The coarse-grained state of material (in a limit 

single crystal) meets the zero maximum of energy and 

it is examined as a limiting structure which is equilib-

rium relatively to the ordinary plasticity in the context 

of theory. It is shown that transition from a coarse-

grained structure to fine-grained one during SPD pro-

cess can take place according to the scenarios of first- 

and second-order phase transitions. The phase diagram 

was build, where the values of first two invariants of 

elastic part of strain tensor  eii  and  2( )eij  define the 

domains of realization of various types of limiting 

structures. 
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