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Abstract: A group of 36 biphenyl derivatives structurally related to honokiol were 

synthesised by means of Suzuki coupling reactions. Their cytotoxicities were evaluated 

and compared to that of honokiol. Some of the compounds were then evaluated for their 

ability to downregulate the secretion of the VEGF protein and the expression of the VEGF, 

hTERT and c-Myc genes, the two latter involved in the activation of telomerase in tumoral 

cells. Some of the synthetized derivatives showed promising pharmacological features as 

they exhibited IC50 values in low micromolar range, good therapeutic margins and a 

multiple mode of action on tumor cells based on the inhibition of VEGF and, at the same 

time, of the expression of genes related to the activation of telomerase. 

Keywords: honokiol analogues, angiogenesis, gene regulation, VEGF, telomerase, 

hTERT, c-Myc 

 

Molecules containing biaryl moieties are relatively common within natural products. For their 

preparation, Nature has developed an ample array of biosynthetic strategies (1). A number of these 

biaryl natural products belong to the biogenetic class of lignans (2). Honokiol (Figure 1), has aroused a 

great degree of interest because of their various pharmacological properties. This product and many 

derivatives thereof, both of natural and synthetic origin, have been reported to display anti-oxidative, 

anti-inflammatory, anti-tumor, anti-diabetic, anti-microbial, anti-neurodegenerative, anti-depressant, 

pain control, gastrointestinal, cardiovascular and liver protective properties, among others (3,4). 

We have been investigating a range of analogues of natural products (5) for their cytotoxicity and 

potential value in anticancer therapy (6). The latter feature may be related to the ability of the 

compounds to disrupt microtubule dynamics (7), to inhibit the angiogenesis process (8) or to inhibit 

the expression of genes related to telomerase activation (9) among other alternative mechanisms. 

Thanks to the intense studies on genes that mediate cancer progression and therapeutic resistance, 

many gene targets that regulate apoptosis, proliferation and cell signaling have been identified. 
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Multiple cumulative genetic and/or epigenetic changes are needed to cause cancer. Molecules that can 

inhibit expression of such genes are powerful tools in cancer research (10). In this sense, 

methodologies focused on sequence-specific gene suppression strategies involving antisense 

oligonucleotides and ribozymes or else involving gene silencing using RNA interference (RNAi) have 

been developed (11). However, their adaptation as broadly applicable functional genomic and 

therapeutic tools has proven difficult because of problems regarding stability and poor efficiency of 

delivery. 

  

Figure 1. Structure of honokiol 

Many experiments have shown that targeting a single gene can inhibit the growth and proliferation 

of tumor cells (12). However, interference targeting a single gene has limitations in the prevention and 

treatment of cancer as it is known that tumorigenesis results in many cases from multiple gene 

mutation. Therefore, therapies targeting multiple genes may have better effects on malignant tumors. 

In most solid tumors, angiogenesis is an important process for tumor growth and metastasis (13). 

Many different mediators are involved in this process, including VEGF, which has been shown to play 

a critical role in pathological angiogenesis (14). VEGF levels in serum are tightly associated to a more 

aggressive disease state and may serve as a marker to evaluate diagnosis. Blocking VEGF expression 

can inhibit tumor growth and prevent metastasis (15). 

Most cancer cells also exhibit telomerase activity. The latter mantains the length of the telomeres, 

thus preserving genomic stability (16). Telomerase is a ribonucleoprotein composed of two main 

subunits which, in the case of human beings, are called human telomerase RNA (hTR) and human 

telomerase protein (hTERT). Many studies have demonstrated that interference in the expression of the 

hTERT gene can efficiently inhibit the growth and tumorigenicity of cancer cells (17), as the hTERT 

gene is a rate-limiting factor in telomerase synthesis and activity. Equally important is the c-Myc gene, 

which has been found to be amplified in various types of human cancers such as, for example, lung 

carcinoma (18), breast carcinoma (19) and colon carcinoma (20). The result of the expression of this 

gene, the c-Myc protein, is a transcriptional factor with an important role in cell proliferation, 

differentiation, invasion and adhesion of tumor cells (21). It is also involved in the activation of hTERT 

gene transcription (17). 

Since on one hand tumoral cell secretion of VEGF is an important factor in metastasis and, on the 

other hand, telomerase is responsible for the immortality of tumoral cells, we consider that the 

potential multiple ability (22) of some compounds to perturb microtubule dynamics and, at the same 

time, to inhibit VEGF secretion by tumoral cells and the expression of the VEGF, hTERT and c-Myc 

genes is a goal worth pursuing. 
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As the natural biphenyl derivative honokiol displays valuable anticancer activity, we decided to 

prepare a number of synthetic biphenyl derivatives, such as 1-36 (Figure 2), and to investigate their 

behavior in each of the aforementioned three types of biological activities. In fact, many of these 

compounds can be viewed as analogues of honokiol that differ in the relative positions of the C-allyl 

and OH groups. In some cases, hydroxyl functions have been replaced by OMe groups. The C-allyl 

groups were introduced by means of Claisen rearrangement (23) in precursors having O-allyl groups. 

The latter have also been used in the biological evaluations. It is worth noting that the biphenyl moiety 

present in all compounds can be considered a privileged structure (24) that may prove useful in the 

development of lead compounds. Indeed, small molecules have always aroused interest in cancer 

therapy (25). 

 

 

Figure 2. Structure of biphenyl derivatives investigated in this study. 
 

Chemistry 
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The starting materials for the synthesis of compounds 1-36 were hydroxylated biphenyl derivatives 

prepared by means of palladium-catalyzed Suzuki coupling (26). The phenolic functions were then O-

allylated and the resulting O-allyl derivatives subjected to Claisen rearrangement (Scheme 1) under 

Lewis acid catalysis (23). Compounds with O-allyl groups ortho or para to the other benzene ring (1, 

2, 5, 8-11, 14-17) gave single compounds in the Claisen rearrangements. Those having O-allyl groups 

meta to the other benzene ring (3, 4, 6, 7, 12, 13, 18 and 36) gave mixtures of regioisomeric 

rearrangement products. In the case of compounds 6, 12 and 18, the mixtures could be 

chromatographically resolved into their individual components. These were then subjected to 

biological evaluation. However, compounds 3, 4, 7, 13 and 36 gave mixtures which could not be 

separated into pure components. No biological evaluation of such mixtures was carried out. 
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Scheme 1. Synthesis and structures of biphenyl derivatives. 

 

Methods and Materials 

Chemistry 

Conditions for O-allylations (27) 

A mixture of the appropriate phenol (10 mmol) and K2CO3 (2.07 g, 15 mmol) was dissolved in 

acetone (15 mL). Allyl bromide (1.1 mL, ca. 12.5 mmol) was then added dropwise and the reaction 

mixture was stirred at reflux for 5 h. The mixture was then cooled, and the volatiles removed under 

reduced pressure. Addition of a 10% aqueous NaOH solution (10 mL) was followed by extraction with 

Et2O (3 x 15 mL). The organic layers were then washed with brine and dried on anhydrous MgSO4, 

followed by removal of all volatiles under reduced pressure. This afforded an oily material which was 

subjected to column chromatography on silica gel (hexane-EtOAc mixtures) to yield the desired O-

allylated derivative. Yields were in the range between 50 and 85%. 

Conditions for Claisen rearrangements (28) 

A mixture of the appropriate O-allylated derivative (4 mmol) in dry hexane (40 mL) was treated 

dropwise under N2 with a 1M solution of Et2AlCl in dry hexane (8 mL for compounds having one O-

allyl group and 16 mL for compounds having two O-allyl groups). The mixture was then stirred at 
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room temperature until consumption of the starting materials (ca. 2 h, TLC monitoring). The mixture 

was then cooled in an ice bath, followed by slow dropwise addition of a 2M aqueous HCl solution (40 

mL). The mixture was poured into a separation funnel, and the organic phase was separated from the 

aqueous layer, which then was additionally extracted with EtOAc (4 x 15 mL). The combined organic 

layers were washed with brine, desiccated over anhydrous Na2SO4, followed by removal of all 

volatiles under reduced pressure. This afforded an oily material which was subjected to column 

chromatography on silica gel (hexane-EtOAc mixtures) to yield the desired C-allyl derivative. Yields 

were in the range between 30 and 60%. Crystallization of the solid products purified by means of 

column chromatography was performed using methanol. 

Physical data of individual compounds are given in the Supporting Information section. 

Biology 

Cell culture 

Cell culture media were purchased from Gibco (Grand Island, NY, USA). Fetal bovine serum 

(FBS) was a product of Harlan-Seralab (Belton, U.K.). Supplements and other chemicals not listed in 

this section were obtained from Sigma Chemicals Co. (St. Louis, Mo., USA). Plastics for cell culture 

were supplied by Thermo ScientificTM BioLite. All tested compounds were dissolved in DMSO at a 

concentration of 10 mg/mL and stored at –20ºC until use. 

Cell lines were maintained in Dulbecco’s modified Eagle’s medium (DMEM) containing glucose 

(1 g/L), glutamine (2 mM), penicillin (50 IU/mL), streptomycin (50 µg/mL) and amphotericin B (1.25 

µg/mL), supplemented with 10% FBS. 

Cytotoxicity assays 

The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT; Sigma Chemical Co., St. 

Louis, MO) dye reduction assay in 96-well microplates was used, as previously described (29). Some 5 

x 103 cells of HT-29, MCF-7 or HEK-293 cells in a total volume of 100 µL of their respective growth 

media were incubated with serial dilutions of the tested compounds. After 3 days of incubation (37 C, 

5% CO2 in a humid atmosphere), 10 µl of MTT (5 mg/ml in PBS) were added to each well and the 

plate was incubated for further 4 h (37 C). The resulting formazan was dissolved in 150 µL of 0.04 N 

HCl/2-propanol and read at 550 nm. All determinations were carried out in triplicate. 

ELISA analysis 

HT-29 cells at 70–80% confluence were collected after serum starvation for 24 h. Cells were 

incubated at the concentrations showed in Table 2 of the corresponding drugs in DMSO for 72 h (Fig. 

3). Culture supernatants were collected and VEGF secreted by HT-29 cells was determined using 

Invitrogen Human Vascular Endothelial Growth Factor ELISA Kit according to the manufacturer’s 

instructions. 

RT-qPCR analysis 
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HT-29 cells at 70–80% confluence were collected after serum starvation for 24 h. Cells were 

incubated at the concentrations showed in Table 2 of the corresponding drugs in DMSO for 48 h. Cells 

were collected and the total cellular RNA from HT-29 cells was isolated using Ambion RNA 

extraction Kit according to the manufacturer’s instructions. The cDNA was synthesized by MMLV-RT 

with 1-21 g of extracted RNA and oligo(dT)15 according to the manufacturer’s instructions. 

Amplification of the genes was performed by use of a StepOnePlus™ thermalcycler. Fast TaqMan 

Gene Expression Master Mix containing the appropriate buffer for the amplification conditions, 

dNTPs, thermostable DNA polymerase enzyme and a passive reference probe was used. Each of the 

genes were amplified using predesigned primers by Life Technologies TaqMan® Gene Expression 

Assays, Hs99999903-m1 (-actin), Hs00900055-m1 (VEGF), Hs00972646-m1 (hTERT) and 

Hs00153408-m1 (c-Myc). 

Statistical analysis 

Data are expressed as the mean ± SEM. Statistical analyses were done using Microsoft Excel and 

GraphPad Prism®. Differences between means were determined using one-way ANOVA with 

Dunnett's Multiple Comparison Test, and considered to be statistically significant at ≤0.05. 

 

Results and Discussion 

Cytotoxicity of the biphenyl derivatives 

The cytotoxic ability of compounds 1-36 was measured by means of their IC50 values towards the 

tumoral cell lines HT-29 and MCF-7 and towards the non-tumoral cell line HEK-293 (see Table 1). 

We have also evaluated the therapeutic safety margin of each compound as expressed by means of the 

and coefficients. These are obtained by dividing the IC50 value of each compound for the 

nontumoral HEK-293 line by those for the HT-29  and the MCF-7  tumoral cell line, 

respectively. The higher the value of either coefficient, the higher the therapeutic safety margin for the 

corresponding compound. 

The observed IC50 values are in the low to medium micromolar range. In general terms, these 

biphenyl derivatives exhibit the same cytotoxicity range in the HT-29 line as in the MCF-7 line. 

Compounds 3, 6 and 36 showed comparable or better IC50 values than honokiol towards the HT-29 cell 

line and, in addition, exhibited a markedly higher therapeutic margin than honokiol ( > 7). 

Compounds 4, 9, 15 and 16 exhibited better IC50 values than honokiol towards the MCF-7 cell line 

even though only 4 and 15 exhibited a higher therapeutic margin than honokiol ( > 3). 

Thirteen compounds (3, 6, 10, 12, 13, 15, 16, 17, 20, 22, 25, 28 and 36) were selected for further 

biological evaluations. The selection was made on the basis of products showing either comparatively 

low IC50 values (high cytotoxicity) or else  > 1 (good safety margin). 
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Table 1. IC50 values (µM) and selectivity coefficients for biphenyls 1-36.a 

Compound HEK-293 HT-29 MCF-7 * ** 

Honokiol 35 ± 7 25 ± 3 18.2 ± 0.5 1.5 1.9 

1 320 ± 30 227 ± 24 247 ± 24 1.4 1.3 

2 67 ± 6 101 ± 13 80.0 ± 0.9 0.7 0.8 

3 258 ± 5 27 ± 12 242 ± 4 9.7 1.1 

4 49 ± 5 208 ± 14 14 ± 4 0.2 3.6 

5 70 ± 30 210 ± 30 109 ± 15 0.3 0.7 

6 >100 11 ± 3 110 ± 14 >9 1 

7 104 ± 12 232 ± 22 230 ± 30 0.4 0.5 

8 140 ± 30 >100 230 ± 50 >1.4 0.6 

9 21 ± 5 69.5 ± 0.7 18 ± 4 0.3 1.2 

10 110 ± 9 56.0 ± 0.7 228 ± 13 2.0 0.5 

11 31 ± 6 180 ± 10 214 ± 10 0.2 0.1 

12 >100 70 ± 40 97 ± 5 >1.5 >1 

13 120 ± 40 70 ± 30 210 ± 3 1.6 0.6 

14 60 ± 30 219 ± 13 52.9 ± 2.1 0.3 1.2 

15 26 ± 5 38 ± 12 2.9 ± 0.14 0.7 8.7 

16 4.5 ± 2.3 32 ± 10 6.5 ± 2.2 0.1 1.1 

17 53 ± 13 44 ± 6 130 ± 40 1.2 0.4 

18 48 ± 3 >100 187 ± 14 0.5 0.3 

19 240 ± 11 290 ± 40 230 ± 50 0.8 1.0 

20 138 ± 14 120 ± 30 123 ± 5 1.2 1.1 

21 85 ± 10 105 ± 11 66 ± 6 0.8 1.3 

22 56 ± 18 60 ± 30 46.4 ± 0.6 0.9 1.2 

23 131 ± 13 175 ± 18 129 ± 13 0.7 1.0 

24 81 ± 3 >100 176 ± 23 0.8 0.5 

25 93 ± 4 79 ± 23 56 ± 13 1.2 1.7 

26 189 ± 9 >100 182 ± 7 1 1.1 

27 320 ± 70 23 ± 3 350 ± 30 0.6 0.7 

28 121 ± 19 69 ± 8 107 ± 12 1.7 1.1 

29 57 ± 3 50 ± 10 88 ± 14 0.3 0.3 

30 170 ± 40 147.7 ± 2.1 282 ± 20 0.4 0.7 

31 271 ± 8 290 ± 30 530 ± 40 0.5 0.7 

32 260 ± 30 270 ± 30 150 ± 40 0.9 0.6 

33 270 ± 30 280 ± 40 239 ± 6 0.1 0.2 

34 >100 209 ± 7 235 ± 3 0.2 0.2 

35 292 ± 10 240 ± 50 303 ± 9 0.1 0.5 

36 130 ± 30 19 ± 9 190 ± 30 7.1 0.7 
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aValues are the average ( s.d.) of three different measurements performed as described in 
the Experimental Section. b = IC50 (HEK-293) / IC50 (HT-29). c = IC50 (HEK-293) / IC50 
(MCF-7). Values of  and  have been rounded off to a decimal figure. 

 

Table 2. Concentrations for testing selected compounds. 

Concentration Biphenyl derivatives 

10 M 6, 36 

20 M Honokiol, 3, 16, 17 

40 M 10, 12, 13, 15, 22, 25 

60 M 28 

90 M 20 

  

 

Effect of biphenyl derivatives on VEGFA protein secretion and VEGF gene inhibition into HT-29 

The influence of the synthetic biphenyl derivatives on the secretion of the VEGFA protein and the 

expression of the VEGF gene was performed on the HT-29 line. The thirteen aforementioned 

compounds were tested at concentrations that were close to their respective IC50 values in the HT-29 

line (see Table 2). 

The amount of VEGFA protein was first determined by means of the ELISA procedure (30), as 

described in the Methods and Materials Section. Figure 3 shows the percentage of VEGFA secreted to 

the culture medium after 72 h of incubation in the presence of each of the selected compounds at 

concentrations showed in Table 2. The values observed when cells were treated only with DMSO were 

used as the control (standardized to 100%). 

Most of the studied derivatives showed an ability to diminish the secretion of VEGFA (Fig. 3) (31). 

Compound 16 showed an activity (59%) similar to that of honokiol at the same concentration whereas 

36 showed a 61% decrease in VEGFA secretion at half the concentration of honokiol. The strongest 

effect was observed with compounds 25 and 28, which were able to lower VEGFA protein secretion to 

40% and 47% of the control value, respectively, an effect stronger than that observed for honokiol 

(55%). However, it should also be noted that 25 and 28 were acting at a concentration twice and three 

times, respectively, higher than that of the natural product. 
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Figure 3. VEGFA protein secretion from HT-29 cells determined by means of the ELISA procedure. 
At least three measurements were performed in each case. Bars represent mean values of VEGFA 
secretion (percentage values related to control) and error bars indicate standard errors of the mean. The 
statistical analysis was evaluated using one-way ANOVA with Dunnett's Multiple Comparison Test (P 
< 0.001). 

In order to find out whether the selected biphenyl derivatives were able to downregulate the 

secretion of VEGFA protein by means of a mechanism based on interference at the transcriptional 

level, we tested the ability of the compounds to inhibit the expression of the VEGFA gene. In this case, 

HT-29 cells were incubated for 48 h with the selected derivatives at the concentrations shown in Table 

2, as well as with DMSO as the control test. The real time quantitative PCR (RT-qPCR) methodology 

(32) was then used as described in the Experimental Section to determine the percentage of VEGFA 

gene expression related to the control value. The results are shown in Figure 4. 

Seven of the thirteen studied synthetic derivatives showed an ability to diminish the expression of 

VEGFA gene to a noticeable degree (< 50% of the control value, with honokiol showing a 38% value). 

The most active compound was 6, which inhibited gene expression to 16% of the control value and at 

the lowest concentration of all of the tested compounds (half the concentration of honokiol). At the 

same concentration as the natural product, biphenyl derivatives 16 and 17 were able to decrease the 

expression of the VEGFA gene to less than 40% of the control value. Finally, compounds 12, 15 and 

22 lowered the expression of the VEGFA to 23, 24 % and 35%, respectively, of the control value, even 

though at a concentration twice higher than for honokiol. We can observe that most of these 

compounds display one allyloxy group at one at least of the two aromatic rings and the ortho position 

is usually not occupied. Furthermore, the most frequent substitution patterns for the oxygen atoms in 

these structures are meta-meta, meta-para and para-para. 
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Figure 4. Expression percentage of the VEGFA gene after 48 h of incubation of HT-29 cells 
determined by means of the RT-qPCR methodology. At least three measurements were performed in 
each case. Error bars indicate standard errors of the mean. The statistical analysis was evaluated using 
one-way ANOVA with Dunnett's Multiple Comparison Test (P < 0.001). 

It is worth mentioning here that the results discussed above do not show a good correlation 

between the VEGFA amount excreted to the medium and the degree of gene expression. This suggests 

that these compounds exert the control of VEGFA production at a phase different from that of gene 

transcription (33). 

Effect of biphenyl derivatives on the inhibition of the hTERT and c-Myc genes 

In order to determine whether the studied compounds were able to downregulate the expression of 

the hTERT and c-Myc genes, we have performed an RT-qPCR analysis on HT-29 tumoral cells. The 

cells were incubated for 48 h in the presence of DMSO (control) and the selected compounds (see 

Table 2). Figures 5 and 6 show the results observed for the expression of the hTERT and c-Myc genes, 

respectively. 

 

Figure 5. Expression percentage of the hTERT gene after 48 h of incubation. At least three 
measurements were performed in each case. Error bars indicate standard errors of the mean. The 
statistical analysis was evaluated using one-way ANOVA with Dunnett's Multiple Comparison Test (P 
< 0.001). 
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Figure 6. Expression percentage of the c-Myc gene after 48 h of incubation. At least three 
measurements were performed in each case. Error bars indicate standard errors of the mean. The 
statistical analysis was evaluated using one-way ANOVA with Dunnett's Multiple Comparison Test (P 
< 0.001). 

Honokiol and several of the synthetic biphenyl derivatives were able to inhibiting hTERT gene 

expression to levels below 50% of the control (45% for honokiol). Again, compound 6 and 36 deserve 

mention as they were able to lower hTERT gene expression to 34 % and 42%, respectively, of the 

control and at concentration one half that of the natural product (Fig. 5). Compounds 12 and 25 also 

diminished the expression of the gene to about 25% of the control value although at a concentration 

twice higher than that of honokiol. In this case, the most frequent substitution patterns for the oxygen 

atoms in the most active derivatives are meta-meta or meta-para. 

As regards the downregulation of the expression of the c-Myc gene (Fig. 6), compounds 13, 15, 16, 

22, 25 and 36 were able to diminish the expression of this gene to levels below 45% (the value for 

honokiol) of the control value. As above, compound 36 is also noteworthy as it caused a decrease of 

gene expression to 36 % of the control at half the concentration of honokiol. Compounds 15 and 25 

were also quite active, with gene expression reduced to 13% and 7%, respectively, of the control value, 

but at a concentration twice than that of honokiol. Another compound that showed a noticeable activity 

was 16, which lowered gene expression to 23% of the control at the same concentration as the natural 

product. Thus, the most frequent oxygen substitution patterns in this case are para-para or meta-para. 

Conclusions 

Thirty-six biphenyl derivatives structurally related to honokiol have been synthesized and 

biologically evaluated. All of them bear either O- or C-allyl groups. 
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IC50 values were first determined for all these biphenyl derivatives towards the HT-29, MCF-7 and 

HEK-293 cell lines. Some of these derivatives exhibited comparable or lower IC50 values than 

honokiol towards the HT-29 cell line or else higher therapeutic margin ( values) than the natural 

product. 

Thirteen of the derivatives (3, 6, 10, 12, 13, 15, 16, 17, 20, 22, 25, 28 and 36) were then selected 

for further biological evaluation on the basis of showing either comparatively low IC50 values or else  

> 1 (good safety margin). These derivatives were specifically evaluated for their ability to inhibit the 

secretion of the VEGFA protein and to inhibit the expression of the VEGFA, hTERT and c-Myc genes. 

We observed that, in general, the most active derivatives in these particular types of biological 

properties exhibited in many cases substitution patterns meta-meta or meta-para in their oxygen atoms. 

Table 3 summarizes the results obtained for compounds that showed the highest activity in 

simultaneously inhibiting the VEGFA protein secretion and the expression of the VEGFA, hTERT and 

c-Myc genes. All these derivatives exhibit two oxygen functions (OH or OR) and also two allyl units, 

either of the C-allyl or the O-allyl type. 

Table 3. Compounds with the highest activity in simultaneously inhibiting the VEGFA protein 
secretion and the expression of the VEGFA, hTERT and c-Myc genes. 

Biological 
activity 

IC50 (M) 
HT-29 

25 11 38 79 19 

 1.5 >9 0.7 1.2 7.1 

% VEGFA 
secretion 

55 76 58 40 61 

% VEGFA 
gene expr. 

36 16 24 42 55 

% hTERT 
gene expr. 

45 34 45 25 42 

% c-Myc 
gene expr. 

45 58 13 7 36 

 

Compound 6 turns out to be a very promising derivative as a potential anticancer agent because it 

is able to simultaneously diminish the expression of all three targeted genes at a concentration in the 

low micromolar range (half the concentration used for honokiol). In addition, 6 exhibits the highest 

therapeutic margin of all the tested derivatives, honokiol included, and has no free hydroxyl groups. 
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This feature could be advantageous because, as it is not able to form glucuronide conjugates, it may 

exhibit a lower metabolization rate. Compounds of this type therefore deserve to be the object of 

further pharmacological investigation. 
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