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ABSTRACT 

 

Sunlight exposure induces signalling pathways leading to the activation of melanin 

synthesis and tanning response. MicroRNAs (miRNAs) can regulate the expression of 

genes involved in pigmentation pathways by binding to the complementary sequence in 

their 3’-untrastaled regions (3’UTRs). Therefore, 3’UTR SNPs are predicted to modify 

the ability of miRNAs to target genes, resulting in differential gene expression. In this 

study, we investigated the role in pigmentation and sun-sensitivity traits, as well as in 

melanoma susceptibility, of 38 different 3’UTR SNPs from 38 pigmentation-related 

genes. A total of 869 individuals of Spanish origin (526 melanoma cases and 343 

controls) were analysed. The association of genotypic data with pigmentation traits was 

analysed via logistic regression. Web-based tools for predicting the effect of genetics 

variants in microRNA-binding sites in 3’UTR gene regions were also used. Seven 

3’UTR SNPs showed a potential implication in melanoma-risk phenotypes. This 

association is especially noticeable for two of them, rs2325813 in the MLPH gene and 

rs752107 in the WNT3A gene. These two SNPs were predicted to disrupt a miRNA-

binding site and to impact on miRNA-mRNA interaction. To our knowledge, this is the 

first time that these two 3’UTR SNPs have been associated with sun-sensitivity traits. 

We state the potential implication of these SNPs in human pigmentation and sensitivity 

to sunlight, possibly as a result of changes in the level of gene expression through the 

disruption of putative miRNA-binding sites.  
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INTRODUCTION 

 

Cutaneous melanoma incidence is increasing rapidly among white-skinned populations 

(1). Melanoma incidence reveals a clear relationship between pigmentation traits and 

sunlight damage, with individuals with fair skin, green and blue eyes, red and blond 

hair, high naevus count, freckles, and inability to tan showing greater melanoma 

susceptibility (2). These phenotypic traits has been shown to be genetically determined 

by genes implicated in pigmentation and tanning ability (3,4), and genetic variations in 

these genes have been associated with the susceptibility to melanoma (5–11). Factors 

that are mainly involved in the aetiology of melanoma are not only of 

pigmentary/genetic nature, but also of environmental nature (12). Chronic sun exposure 

thus plays a key role in causing melanoma through DNA damage (13). 

 

Ultraviolet (UV) exposure stimulates the synthesis of melanin in melanosomes via 

activation of human pigmentation pathways, with the aim of protecting skin from the 

harmful effects of sunlight (14). Gene expression can be regulated by a wide range of 

mechanisms. Recently, posttranscriptional regulatory processes – specifically controlled 

by mRNA-binding factors – have emerged as a fundamental and effective cellular 

mechanism to regulate gene expression, and alterations in these processes can cause 

numerous pathologies including immunological disease (15), neurodegeneration (16), 

and tumour development (17,18). Therefore, differential gene expression may be as 

important for disease susceptibility as non-synonymous coding changes.  

 

Among the mRNA-binding factors, microRNAs (miRNAs) – short non-coding RNA 

molecules (22-24 nt) encoded by intronic or intergenic sequences – act as key gene 
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regulators by repressing mRNA translation or by destabilizing/degrading mRNAs in the 

cytoplasm, via perfect or imperfect binding to their complementary base pair sequence 

in the 3’untranslated region (3’UTR) of the mRNA target (19). Therefore, the 3’UTR 

region is emerging as critically important in regulating gene expression (17), and 

polymorphisms in the miRNA-binding sites of the 3’UTR of genes may alter the 

binding efficiency and miRNA-mRNA gene expression regulation. In support of this 

hypothesis, recent studies have identified variants in the 3’UTR of genes that increase 

the susceptibility for melanoma (20), lung (21), colorectal (22) and ovarian cancer (23) 

by affecting the ability of miRNAs to bind. In particular, two sequence changes in the 

3’UTR of the CDKN2A gene have been significantly correlated with melanoma risk 

(24), but also with a shorter progression time from primary to metastatic melanoma 

(25).  

 

Here, we hypothesise that differences identified in nucleotide composition of 3’UTRs 

SNP sites of genes previously associated with pigmentation and/or skin cancer can be a 

reason for causing differences in human pigmentation, sensitivity to sunlight, and thus 

in melanoma susceptibility. In the current study, we describe the role of 38 different 

3’UTR polymorphisms from 38 different candidate pigmentation and melanoma 

susceptibility genes in a population of Spanish origin. Additionally, we use miRNA 

binding prediction tools to identify variants affecting putative miRNA-binding sites, and 

to predict their impact on miRNA-mRNA interaction.  
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METHODS 

 

Study subjects and data collection 

A total of 526 melanoma cases and 343 cancer-free controls were included in this study. 

Melanoma cases were recruited at the Departments of Dermatology of four Spanish 

hospitals: Gregorio Marañon General University Hospital (Madrid), La Paz University 

Hospital (Madrid), Ramon y Cajal University Hospital (Madrid) and Castellon Province 

Hospital (Castellon). Volunteer cancer-free control samples were recruited from the 

Madrid College of Lawyers, Gregorio Marañon Hospital, Valencia Clinic Hospital and 

Castellon Province Hospital. We carefully selected all cases and controls included in the 

current study to account for confounding variables. As far as it was possible, controls 

were frequency-matched to the cases by age, sex and place of birth. All individuals were 

Caucasians of Spanish origin with the same genetic background, since there is evidence 

of high genetic homogeneity within different Spanish geographical regions (26). 

 

Each participant completed a standardised questionnaire to collect information on sex, 

age, pigmentation characteristics (eye colour, hair colour, skin colour, number of naevi 

and presence of solar lentigines), history of childhood sunburns, and personal and 

family cancer history.  

 

Genomic DNA from cases and controls was isolated from peripheral blood lymphocytes 

using the traditional saline method or the DNAzol procedure (Invitrogen, Eugene, OR, 

USA) or the MagNA Pure LC Instrument according to the manufacturer’s protocol 

(Roche Molecular Biochemicals AQ2, Mannheim, Germany). DNA concentration was 

quantified in samples before genotyping by using a Nanodrop 2000 spectrophotometer 
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or Quant-iT PicoGreen dsDNA Reagent (Invitrogen, Eugene, OR, USA). Genomic 

DNA was amplified using the GenomiPhi DNA Amplification Kit (GE Healthcare Bio-

Sciences AB, Uppsala, Sweden). Samples were diluted to a final solution of 50 ng/ml 

and stored at -20ºC.   

 

The study was approved by the Ethics Committee of the Biomedical Research Institute - 

INCLIVA (Valencia, Spain). Written informed consent was obtained from all 

participants. 

 

SNP Selection  

Previous literature and information of public databases were used to perform our 

candidate gene list. We selected genes previously associated with pigmentation 

pathways and/or melanoma risk (7–9,27,28), preferably including direct targets of 

functional miRNA that happen to be deregulated in melanoma. Ensembl BioMart 

(http://www.ensembl.org/biomart/martview) was used to retrieve germline variants 

from all genes selected. Filters were used to ensure that all SNPs were located within 

the 3’UTRs. SNP codes, locations, minor and ancestral alleles and their frequencies, 

were obtained from the NCBI (www.ncbi.nlm.nih.gov/SNP), HapMap 

(www.hapmap.org) and Ensembl Variation (www.ensembl.org/info/genome/variation) 

databases. From the data retrieved, Haploview v4.2 was used to identify tag-SNPs that 

optimally capture allelic variation among SNPs, using a pairwise SNP approach with a 

minimum r
2
 threshold of 0.8 (29). To ensure a high genotyping success rate, a minor 

allele frequency (MAF) threshold of 0.1 in the Caucasian population from the 

International 1000 Genomes Project (http://www.1000genomes.org/) was established in 

the SNP selection process. Forty-five tag-SNPs were finally selected.  
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Genotyping 

SNPs genotyping was conducted by the Spanish National Genotyping Centre (CeGen-

PRB2, Santiago de Compostela) as a contract service using the iPLEX Gold 

MassARRAY technology, according to manufacturer’s protocol (Sequenom, San Diego, 

CA, USA). All assays were performed in 384-well plates, including a negative control 

and a trio of Coriell samples (Na10860, Na10861 and Na11984) for quality control. 

Genotyping specificity was assessed by adding three DNA duplicates (two intra-assays 

and one inter-assay) per plate, yielding 100% consistent replication results. In addition, 

cases and control samples were always included in the same run. SNPs with a 

genotyping rate lower than 90% (10% missing data) were excluded for further analysis. 

 

Identification of potential microRNA binding sites 

The potential effect of 3’UTR polymorphisms on miRNA binding was examined using 

MirSNP (http://cmbi.bjmu.edu.cn/mirsnp) (30) and miRNASNP 

(http://www.bioguo.org/miRNASNP/) (31).  

 

MirSNP employs the miRanda target prediction algorithm 

(http://www.microrna.org)(32), with stringent 7-nt seed site pairing as major criteria for 

prediction consistency. To increase precision, we only considered target sites with an 

alignment score cutoff ≥ 140, energy cutoff ≤ −10 kcal/mol, and miRSVR score ≤ −0.1.  

 

MiRNASNP uses two miRNA target prediction tools: TargetScanHuman 

(http://www.targetscan.org/) (33) and miRanda (32). MiRNASNP also incorporates 

RNAhybrid (http://bibiserv.techfak.uni-bielefeld.de/rnahybrid) (34) to quantify the 
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binding energy changes in the interaction of miRNAs with the wild-type target 

sequence compared to the derived 3’UTR sequence. Only the duplexes with 

hybridization free energy ≤ −20 kcal/mol were chosen (35).  

 

Identification of validated pathways targeted by in silico predicted microRNAs  

In order to further investigate the miRNAs predicted to bind to the two 3’UTR SNPs 

highly associated with phenotypic traits (hsa-miR-149-5p, hsa-miR-892b, hsa-miR-185-

3p and hsa-miR-762), we used DIANA-miRPath v2.0 

(http://www.microrna.gr/miRPathv2) to identify the miRNA targeted pathways. The 

output provides intuitive heat maps and enriched KEGG pathway visualizations for 

easier inspection (36). 

 

In silico quantitative analysis of tissue-specific expression  

Data from the Genotype-Tissue Expression (GTEx) project (dbGaP accession No. 

phs000424.v6.p1) was used for external validation and to evaluate differential tissue-

specific gene expression regarding 3’UTR SNP genotypes 

(http://www.gtexportal.org/home/).  

 

Statistical Analysis 

For each polymorphism studied, Fisher’s exact test was used both to check for 

deviations from Hardy-Weinberg equilibrium (HWE) among controls and to compare 

differences in allele counts between cases and controls. In order to account for 

differences between populations, allele frequencies of our Spanish population were 

compared to those of both a North European population (CEU) and a Southern one from 

Tuscany (TSI) using Fisher’s exact test.  
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Associations between the genotyped genes and various pigmentation characteristics 

were assessed via logistic regression. Association analyses were done for all samples 

pooled, with eye colour (blue/green versus brown/black), hair colour (brown/black 

versus blond/red), skin colour (fair versus brown), number of naevi (≥50 versus <50), 

presence of lentigines (yes versus no), and childhood sunburns (yes versus no) as the 

outcome variables. This was performed for four different patterns of inheritance: 

dominant (major homozygotes versus heterozygotes plus minor homozygotes), over-

dominant (major homozygotes plus minor homozygotes versus heterozygotes), 

recessive (major homozygotes plus heterozygotes versus minor homozygotes), and 

additive (counting additively for each copy of minor allele). Genotype-related odds 

ratios (ORs), their corresponding 95% confidence intervals (CIs) and associated P-

values were estimated. Association analyses with phenotypic traits were adjusted by 

sex, since sex-differentiated allelic effects for pigmentation traits, sensitivity to sunlight 

and melanoma have been previously shown (38–40). 

 

In order to assess associations among genotypes and melanoma risk, genotype-related 

ORs, their corresponding 95% CIs and associated P-values were estimated via 

unconditional logistic regression. Multivariate logistic regression was also carried out 

combining sex and all significant risk factors revealed in Table S1. This was also done 

for all four patterns of inheritance. 

 

Statistical analyses and plots were conducted using R statistical framework 

(http://www.R-project.org). All genetic analyses were performed estimating the effect 

of the minor allele in the Spanish population. Unknown and missing values were 
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excluded at each specific analysis. All P-values were two-sided, and those less than 0.05 

were considered statistically significant.  
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RESULTS 

 

The role of 38 polymorphisms in as many pigmentation and melanoma susceptibility 

genes was initially investigated. No evidence of departure from HWE for any of the 38 

SNPs was found. Two 3’UTR polymorphisms revealed differences in minor allele 

frequencies (MAFs) between cases and controls: ADAMTS20 rs6582463 and HOXB7 

rs15689. We did not observe differences in MAFs between cases and controls for any 

other SNP (Table S2). 

We compared Spanish allele frequencies to those of CEU and TSI subjects, using the 

1000 Genomes Project (phase 3) allele counts as the reference (Table S2). Spanish 

MAFs differed significantly from CEU frequencies in three SNPs (7.89%): rs4733967 

(ADAM9), rs3212369 (MC1R), and rs1690916 (MDM2). Seven SNPs presented 

different allele frequencies from those reported in TSI population data: rs6582463 

(ADAMTS20), rs742106 (DTNBP1), rs12952 (EXOC2) rs8022 (KIT), rs995030 

(KITLG), rs14983 (MMP7), and rs1551306 (TPCN2). In spite of these differences, 

allele frequencies in Spain were very similar to those from both a North European 

population (CEU) and a Southern one (TSI), with a high correlation (R
2
) of 0.916 and 

0.913, respectively (Figure S1).  

 

Association analysis  

Evidence of association with phenotypic characteristics for the thirty-eight 3’UTR SNPs 

was assessed. Considering a P-value threshold of 0.05, 17 SNPs were associated with at 

least one sun response trait, and 11 SNPs showed association with at least one 

pigmentation trait (Figure 1). Among them, we further investigated the 7 SNPs that 
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presented the most potential allelic effects for phenotypic traits in the Spanish 

population (P-value < 0.01). The rs2325813 SNP, located in the MLPH gene, was 

correlated with the presence of more than 50 naevi (P=8.97x10
-4

). Two SNPs, HOXC8 

rs4142680 and WNT3A rs752107, correlated with the presence of lentigines 

(P=6.57x10
-3

 and P=4.53x10
-4

, respectively); while LYST rs6696123 showed 

association with an absence of lentigines (P=2.56x10
-3

). Two more SNPs, rs10270 in 

the CLIP1 gene and rs4980113 in the KCNMA1 gene, were associated with dark hair 

colour (P=1.44x10
-3

 and P=2.67x10
-3

, respectively). Finally, KIT rs8022 was correlated 

with light eye colour (P=8.88x10
-3

) (Table 1). 

 

Likewise, we carried out an association analysis between genotypes and melanoma risk. 

Five SNPs showed a tendency to correlate with melanoma susceptibility in the Spanish 

population. Among them, three SNPs (HOXB7 rs1589, MARCKS rs28558559 and 

ADAM9 rs4733967) showed a melanoma protective effect (OR<1). On the other hand, 

PTCH2 rs41269085 and ADAMTS20 rs6582463 displayed a melanoma risk effect 

(OR>1) (Table S3).  

 

For the association results to be adjusted by the confounding variables, we performed a 

multivariate analysis including phenotypic risk factors (hair colour, solar lentigines and 

the presence of childhood sunburn) and sex as covariates. Polymorphisms located in 

HOXB7, MARCKS, ADAM9 and PTCH2 remained significant after the adjustment, with 

no substantial changes in allelic effects, confirming the putative role of these variants in 

melanoma susceptibility. Additionally, KCNMA1 rs4980113 and IRF4 rs9391997 were 

marginally associated with melanoma protection (Table S3). 
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Variants affecting microRNA binding sites in human pigmentation 

All 3’UTR polymorphisms that presented association with phenotypic characteristics 

and/or melanoma were analysed by two specialized web-based programmes for 

predicting miRNA-binding sites in the 3’UTR.  

 

Cross-prediction was required for verifying the predicted target sites. After applying all 

sequential filtering steps, eight of all 3’UTR polymorphisms evaluated had at least one 

miRNA predicted to bind (Table 2). Three 3′UTR variants interrupted miRNA-mRNA 

interaction or reduced miRNA-mRNA interaction by increasing the free energy of the 

corresponding duplexes after the minor allele introduction in the target sequence. 

Conversely, three variants created new miRNA target sequences or enhanced miRNA 

binding efficiency by decreasing hybridization free energy. Two variants both 

disrupted/decreased and created/enhanced multiple miRNA target sequences in the 

sequences studied (Table 2).  

 

Once miRNAs of interest were identified using binding prediction tools, we used an in 

silico approach to identify pathways that are under the regulation of the predicted 

miRNA signature. The four selected miRNAs and the targeted KEGG (Kyoto 

Encyclopedia of Genes and Genomes) pathways are displayed in Figure 2. Among all 

the significant targeted KEGG pathways, we identified three of them involved in 

pigmentation and skin cancer: “Wnt signalling pathway-hsa04310” (P=4.24x10
-5

), 

“MAPK signalling pathway-hsa04010” (P=1.07x10
-4

) and “Basal cell carcinoma-
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hsa05217” (P=2.52x10
-3

). Figure S2 represents in detail these three KEGG pathways, 

highlighting the specific target genes of the selected miRNAs.  

We further evaluated the association between the genotype of both MLPH rs2325813 

and WNT3A rs752107 and the gene expression levels in sun-exposed skin by using the 

GTEx portal. Individuals carrying rs752107*T allele, which was predicted to decrease 

miRNA-mRNA binding efficiency, seem to present increased expression of WNT3A in 

sun-exposed tissue (Figure S3). No changes in MLPH expression regarding genotype 

were observed.   
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DISCUSSION 

 

In the current study, 38 tag-SNPs located in the 3’UTRs of pigmentation-related genes 

were successfully genotyped in 869 individuals from Spain, with the intention of 

detecting novel genetic variants with putative phenotypic implications. Since 3’UTRs 

are critical regulatory elements in gene expression (41), polymorphisms located in this 

region of genes associated with pigmentation pathways may contribute to pigmentation 

characteristics and sensitivity to sunlight, as well as to melanoma susceptibility.  

 

This study allowed us to observe interesting associations between genotypic and 

phenotypic traits in our population. Despite detecting several candidate 3’UTR SNPs 

with a potential implication in pigmentation and sensitivity to sunlight, we could not 

validate them since associations did not reach genome-wide nor candidate gene levels of 

statistical significance. Perhaps our restricted sample size resulted in limited statistical 

power to detect unequivocal associations for these SNPs. Replication of our findings in 

a larger study is therefore essential before drawing any firm conclusion. It is noted that 

adjusting analyses by sex has conferred strength to our results, excluding bias from the 

sexual disparity in pigmentation and melanoma incidence and outcome observed in 

previous studies (38–40,42,43). 

 

The first interesting finding was the reasonably strong association of rs2325813, located 

in the 3’UTR of the MLPH gene, with high naevus count. The human MLPH gene 

(OMIM #606526) has been shown to be involved in mature melanosome transport 

within melanocyte before being transferred to keratinocytes. MLPH gene encodes a 
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member of the exophilin subfamily of Rab effector proteins known as melanophilin, 

which acts as a link between the small GTPase melanosome-bound RAB27A and the 

actin-associated motor protein MYO5A (44). This protein complex plays a crucial role 

in the melanosome motility in melanocytes, and aberrations in any of the complex 

components has been shown to result in perinuclear localization of melanosomes and 

therefore failure to transfer mature melanosomes to adjacent keratinocytes, eventually 

causing hypopigmentation (45). Human individuals homozygous for a pathogenic 

MLPH mutation (c.102C>T; p.R35W) display Griscelli syndrome type 3, a pigmentary 

disorder characterized by a hypopigmented phenotype (45–47). The naevus-associated 

SNP in this work, rs2325813, is predicted to disrupt a binding site of two miRNAs (hsa-

miR-185-3p and hsa-miR-762). The presence of the minor allele in the target sequence 

enhances miRNA binding efficiency, repressing mRNA translation of MLPH, and 

ultimately limiting the formation of RAB27A/Melanophilin/Myosin-5a complex. Thus, 

reduction of MLPH gene expression may cause an abnormal accumulation of mature 

melanosomes around the nucleus of melanocytes, resulting in light pigmentation and 

poor tolerance to sunlight. Interestingly, our results are consistent with the well-known 

correlation between melanocytic naevus number, a main risk-prediction factor for 

melanoma incidence, and the propensity to burn, rather than tan, of light-skinned 

individuals (48). Therefore, genes implicated in functions related with melanosome 

trafficking, especially the RAB27A/Melanophilin/Myosin-5a membrane transport 

pathway, would be relevant candidates for additional investigation in further 

pigmentation and melanoma studies.  

 

WNT/β-catenin signalling has a pivotal role in the formation of melanocytes, since this 

pathway has been implicated in promoting the development of neural crest-derived 
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melanocytes (49,50). In humans, the WNT pathway is significantly up-regulated in 

solar lentigines, suggesting that overstimulation of melanocytes proliferation and 

differentiation play a crucial role in the pathogenic mechanism of solar lentigines (51). 

Interestingly, in this work we identify a polymorphism, rs7352107, located in the 

3’UTR of the WNT3A gene that is strongly associated with the presence of solar 

lentigines. WNT3A (OMIM #606359) encodes a WNT ligand that acts through the 

WNT/β-catenin pathway promoting melanocyte differentiation, and may promote 

melanoma differentiation as well (49). Furthermore, the minor allele of rs7352107 is 

predicted to decrease the binding efficiency to the 3’UTR gene region of two 

microRNAs (hsa-miR-149-5p and hsa-miR-892b), leading to a weaker miRNA-mRNA 

interaction and therefore a higher level of secreted WNT3A ligand. This probably 

enhances the activation of the WNT/β-catenin signalling and subsequently the 

proliferation of melanocytes. These observations, together with the results from 

Yamada and cols. (2014) (51), suggest that abnormal regulation of melanogenesis via 

gene expression changes is expected to be involved in several pigmentary disorders and 

in melanoma risk phenotypes. Thus, studies focusing on the regulation of WNT/β-

catenin signalling could potentially clarify the causal mechanisms of pathogenic 

hyperpigmentation and hypopigmentation conditions.  

 

The miRNAs predicted to bind to MLPH rs2325813 (hsa-miR-185-3p and hsa-miR-

762) and to WNT3A rs7352107 (hsa-miR-149-5p and hsa-miR-892b) seem to target 

genes involved in pigmentation mechanisms and skin cancer. Remarkably, out of all 

significant pathways, “Wnt signalling pathway” and “MAPK signalling pathway” were 

the only ones targeted by three of the four miRNAs. Furthermore, “Basal cell 

carcinoma” pathway was also targeted by hsa-miR-185-3p and hsa-miR-762. These 
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observations may corroborate the importance of these miRNAs in both human 

pigmentation and skin cancer pathways. Based on GTEx project data, genes encoding 

for these miRNAs, except for hsa-miR-892b, are expressed in sun-exposed skin (Figure 

S3), confirming the expression of these miRNAs in skin tissue, and suggesting a 

possible role of these miRNAs in skin regulation and function.     

 

Additionally, five polymorphisms displayed a notable statistical association with 

phenotypic characteristics. Among these SNPs, we would like to highlight that the 

variant rs4142680, located in the 3’UTR of HOXC8, displays an interesting 

predisposition tendency towards sun-damaged phenotypes. The HOXC8 gene has been 

shown to be massively up-regulated in melanoma cancerous cells as a consequence of 

diminished miR-196a levels, leading to an aggressive melanoma phenotype via the 

overexpression of several tumorigenic target genes (52). Curiously, the web-based 

miRNA binding prediction analysis in this work showed an intermediate free energy (-

16.60 kcal/mol) for binding hsa-miR-4509 to the 3’UTR sequence containing the 

rs4142680*T allele, and predicted that presence of the C allele may break the putative 

binding site. Thus, the association between rs4142680*C and the presence of solar 

lentigines may be the result of increased HOXC8 expression that could be possibly 

promoting melanocyte proliferation. 

 

In summary, we analysed the potential implications of 3’UTR polymorphisms in 

pigmentation, sensitivity to sunlight and skin cancer. A plausible cause of the action of 

these 3’UTR SNPs in the appearance of different sun-related benign pigmented skin 

lesions might be the differential gene expression attained by disrupting putative 
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miRNA-binding sites. Specifically, we detected two potential associations with well-

recognised skin cancer risk traits that modify miRNA-mRNA interactions: rs2325814 in 

the 3’UTR of the MLPH gene and rs752107 in the 3’UTR of the WNT3A gene. Future 

functional studies will be needed to determine the exact implications of these 

polymorphisms. In addition, we detected five genes that might contribute to 

pigmentation variation in our population. The fact that MLPH, LYST and CLIP1 

functions have been related to intracellular membrane trafficking and pigment disorders 

reinforces the need to explore more deeply the role of melanosome transport pathways 

in pigmentation and tanning ability. Similarity, the study of genes that are at least 

partially involved in melanocyte proliferation and differentiation, such as WNT3A, 

KCNMA1, KIT and HOXC8, may allow for the detection of novel low-penetrance genes 

involved in human pigmentation and in susceptibility to skin cancer. 
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Table 1. 3'UTR variants highly associated with phenotypic traits in the Spanish population (P-value < 0.01) 

Trait Gene SNP rs# Genotype 

Protective 

phenotype 

Risk 

phenotype Inheritance 

mode 
OR (95% CI) P-value 

N (%) N (%) 

Naevi MLPH rs2325813 TT 591 (82.3) 75 (69.4) Additive 2.03 (1.36-3.02) 8.97E-04 

   
CT 121 (16.9) 29 (26.9) 0 / C / CC 

  

   
CC 6  (0.8) 4 (3.7) 

   
Lentigines WNT3A rs752107 CC 196 (56.2) 216 (45.3) Over-dominant 1.66 (1.25-2.21) 4.53E-04 

   
CT 118 (33.8) 218 (45.7) CC+TT / CT 

  

   
TT 35 (10.0) 43 (9.0) 

   
Lentigines LYST rs6696123 TT 100 (28.6) 182 (38.1) Additive 0.73 (0.60-0.90) 2.56E-03 

   
CT 184 (52.6) 231 (48.3) 0 / C / CC 

  

   
CC 66 (18.9) 65 (13.6) 

   
Lentigines HOXC8 rs4142680 TT 138 (39.4) 160 (33.6) Over-dominant 1.47 (1.11-1.94) 6.57E-03 

   
CT 143 (40.9) 240 (50.4) TT+CC / CT 

  

   
CC 69 (19.7) 76 (16.0) 

   
Hair colour CLIP1 rs10270 GG 328 (46.1) 83 (56.8) Over-dominant 0.55 (0.37-0.80) 1.44E-03 

   
AG 321 (45.1) 45 (30.8) GG+AA / AG 

  

   
AA 63 (8.8) 18 (12.3) 

   
Hair colour KCNMA1 rs4980113 GG 182 (25.5) 47 (32.2) Over-dominant 0.57 (0.40-0.83) 2.67E-03 

   
CG 377 (52.9) 57 (39.0) GG+CC / CG 

  

   
CC 154 (21.6) 42 (28.8) 

   
Eye colour KIT rs8022 GG 416 (73.5) 229 (80.9) Over-dominant 0.62 (0.43-0.89) 8.88E-03 

   
GT 139 (24.6) 48 (17.0) GG+TT / GT 

  

   
TT 11  (1.9) 6 (2.1) 

   
SNP, single nucleotide polymorphism; N, number of individuals; %, percentage of individuals per group among the total; OR, 

odds ratio per minor allele; CI, confidence interval 
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Table 2. Candidate microRNAs predicted to bind to 3'UTR SNPs showing association with pigmentation traits, sensitivity to 

sunlight and melanoma susceptibility 

Gene 
3'UTR 

SNP rs# 

Allele 

change 

miRNA predicted to 

bind to the target 

site ¹ 

Effect on 

miRNA 

binding ² 

Free energy of 

miRNA-mRNA 

binding for WT 

(kcal/mol) ³ 

Free energy of 

miRNA-mRNA 

binding for MA 

(kcal/mol) ³ 

Energy 

change 

(kcal/mol) 
4
 

DTNBP1 rs742106 G==>A hsa-miR-1293 decrease -26.40 -23.80 -2.60 

  
G==>A hsa-miR-4782-5p create 0.00 -21.30 21.30 

E2F1 rs3213180 C==>G hsa-miR-1182 break -31.30 0.00 -31.30 

FOXO3 rs9400241 A==>C hsa-miR-2115-5p break -28.40 0.00 -28.40 

  
A==>C hsa-miR-22-3p create 0.00 -24.10 24.10 

KIT rs8022 G==>T hsa-miR-548as-3p create 0.00 -20.80 20.80 

MLPH rs2325813 T==>C hsa-miR-185-3p enhance -29.00 -31.70 2.70 

  
T==>C hsa-miR-762 enhance -28.80 -31.50 2.70 

MYO5A rs7176482 A==>G hsa-miR-198 break -25.70 0.00 -25.70 

  
A==>G hsa-miR-525-5p break -21.90 0.00 -21.90 

SOX9 rs1042667 A==>C hsa-miR-1181 create 0.00 -23.60 23.60 

WNT3A rs752107 C==>T hsa-miR-149-5p decrease -29.90 -27.60 -2.30 

  
C==>T hsa-miR-892b decrease -30.50 -28.20 -2.30 

SNP, single nucleotide polymorphism; 3'UTR, 3’untranslated region; WT, wild-type target allele; MA, minor allele target allele 

¹ The prediction of miRNA-binding sites was performed using MirSNP and miRNASNP 

² The effect of the SNP on miRNA binding was given by MirSNP. These effects can be classified following four categories: a) 

decrease – reduction of the binding efficacy, b) enhance – increase of the binding efficacy, c) break – disruption of the binding 

site, or d) create – creation of a new binding site.   

³ The free energy value of miRNA-mRNA binding was obtained from miRNASNP 
4
 Energy change (kcal/mol) indicates difference in minimum free energy of binding before and after introduction of the minor 

allele 
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FIGURE LEGENDS  

 

Figure 1. Manhattan plots display the significance of associated allelic effects (-log10 

P-values) for each phenotypic trait. (a) naevus count, (b) solar lentigines, (c) childhood 

sunburns, (d) skin colour, (e) hair colour, and (f) eye colour. Each dot represents one of 

the 38 3’UTR SNPs genotyped. Black dots indicate SNPs with a significant fold change 

(P-values < 0.05). All rs numbers of polymorphisms highly associated with phenotypic 

traits are displayed next to the corresponding dot. All values displayed are from the 

most significant pattern of inheritance. 

 

Figure 2. Heat map of selected miRNAs versus pathways. Darker colours represent 

higher significance. The attached dendrograms on both axes represent hierarchical 

clustering results for miRNAs (by exhibiting similar pathway targeting patterns) and 

pathways (by related miRNAs). Arrows indicate pathways involved in pigmentation and 

skin cancer. 
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SUPPLEMENTARY MATERIAL 

 

Table S1. Classification of the Spanish individuals studied by age, sex and phenotype 

 

Table S2. Minor allele frequencies in different European populations and in Spanish 

cases and controls 

 

Table S3. Association analysis between SNPs and melanoma susceptibility in the 

Spanish population  

 

Figure S1. Comparison of minor allele frequencies between our Spanish sample and 

two different European populations 

 

Figure S2. Enriched KEGG pathways involved in pigmentation and skin cancer risk 

that are targeted by miRNAs predicted to interact with highly-associated 3’UTR 

pigmentation SNPs 

 

Figure S3. Box plot showing WNT3A expression according to SNP rs752107 genotype 

 

Figure S4. Expression in different tissues of the four miRNAs predicted to interact with 

highly-associated 3’UTR pigmentation SNPs 
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Figure 1. Manhattan plots display the significance of associated allelic effects (-log10 P-values) for each 
phenotypic trait. (a) naevus count, (b) solar lentigines, (c) childhood sunburns, (d) skin colour, (e) hair 
colour, and (f) eye colour. Each dot represents one of the 38 3’UTR SNPs genotyped. Black dots indicate 

SNPs with a significant fold change (P-values < 0.05). All rs numbers of polymorphisms highly associated 
with phenotypic traits are displayed next to the corresponding dot. All values displayed are from the most 

significant pattern of inheritance.  
Figure 1  
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Figure 2. Heat map of selected miRNAs versus pathways. Darker colours represent higher significance. The 
attached dendrograms on both axes represent hierarchical clustering results for miRNAs (by exhibiting 

similar pathway targeting patterns) and pathways (by related miRNAs). Arrows indicate pathways involved 
in pigmentation and skin cancer.  

Figure 2  
209x148mm (150 x 150 DPI)  
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Table S1. Classification of the Spanish individuals studied by age, sex and phenotype 

  

Controls  
(N=343) 

Cases  
(N=526) P-value¹ 

  
N % N % 

Age Mean ± SD 52.45 ± 15.95 52.63 ± 15.63 0.269 

 
< Mean 144 41.98 239 45.44 

 

 
> Mean 143 41.69 280 53.23 

 

 
Unknown 56 16.33 7 1.33 

 
Sex Female 172 50.15 270 51.33 0.780 

 
Male 167 48.69 251 47.72 

 

 
Unknown 4 1.17 5 0.95 

 
Eye Colour Dark 239 69.68 337 64.07 0.102 

 
Light 101 29.45 183 34.79 

 

 
Unknown 3 0.87 6 1.14 

 
Skin Colour Dark 151 44.02 228 43.35 0.887 

 
Fair/Pale 185 53.94 287 54.56 

 

 
Unknown 7 2.04 11 2.09 

 
Hair Colour Dark 308 89.80 406 77.19 4.60E-06 

 
Light 33 9.62 113 21.48 

 

 
Unknown 2 0.58 7 1.33 

 
Lentigines No 180 52.48 170 32.32 1.76E-12 

 
Yes 131 38.19 347 65.97 

 

 
Unknown 32 9.33 9 1.71 

 
Naevi number ≤ 50 271 79.01 447 84.98 0.395 

 
> 50 38 11.08 72 13.69 

 

 
Unknown 34 9.91 7 1.33 

 
Childhood 

sunburns 

No 220 64.14 170 32.32 6.64E-27 

Yes 91 26.53 347 65.97 
 

 
Unknown 32 9.33 9 1.71 

 
N, number of individuals; %, percentage of individuals per group among the total 

¹ Fisher’s exact test P-value excluding unknown values at each specific analysis. 

Significant results are presented in bold 
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Table S2. Minor allele frequencies in different European populations and Spanish cases and controls 

Gene SNP #rs Chr mA 
Spanish population CEU population TSI population 

HWE P-value MAF Controls MAF Cases P-value¹ MAF P-value² MAF P-value² 

ADAM9 rs4733967 8 T 0.364 0.234 0.209 0.234 0.146 0.017 0.262 0.164 

ADAMTS20 rs6582463 15 C 0.411 0.270 0.317 0.038 0.389 0.155 0.243 0.006 

BNC2 rs7035049 9 A 0.652 0.401 0.382 0.42 0.404 0.701 0.346 0.234 

CLIP1 rs10270 12 A 0.896 0.290 0.320 0.917 0.318 0.691 0.322 0.759 

DCT rs17791924 14 G 0.326 0.449 0.447 0.961 0.465 0.652 0.439 0.827 

DTNBP1 rs742106 6 A 1.000 0.359 0.389 0.222 0.354 0.536 0.299 0.024 

E2F1 rs3213180 20 C 0.577 0.050 0.069 0.102 0.091 0.127 0.051 0.650 

E2F2 rs3820028 4 G 0.829 0.469 0.485 0.554 0.520 0.293 0.477 1.000 

EDN1 rs9296344 6 C 0.363 0.061 0.048 0.229 0.071 0.321 0.070 0.338 

EXOC2 rs12952 6 G 0.414 0.273 0.292 0.384 0.273 0.803 0.383 0.004 

FOXO3/FKHRL2 rs9400241 6 C 0.328 0.329 0.324 0.875 0.273 0.148 0.364 0.281 

GNA11 rs397454 19 T 1.000 0.124 0.113 0.542 0.101 0.559 0.126 0.736 

HOXB7 rs15689 17 G 1.000 0.284 0.237 0.028 0.247 0.863 0.210 0.156 

HOXC8 rs4142680 15 C 0.658 0.426 0.395 0.21 0.394 0.190 0.425 0.482 

HRK rs10507275 12 A 0.102 0.159 0.163 0.841 0.136 0.412 0.131 0.275 

IRF4 rs9391997 6 G 0.157 0.459 0.483 0.349 0.500 0.499 0.472 1.000 

KCNMA1 rs4980113 10 C 0.589 0.496 0.533 0.128 0.490 0.454 0.490 0.169 

KIT rs8022 5 T 0.815 0.134 0.128 0.769 0.131 1.000 0.079 0.037 

KITLG rs995030 12 A 1.000 0.219 0.204 0.507 0.192 0.581 0.131 0.007 

LYST rs6696123 13 C 0.187 0.426 0.399 0.294 0.429 0.595 0.430 0.607 

MARCKS rs28558559 6 C 0.272 0.146 0.126 0.219 0.116 0.579 0.126 0.831 

MC1R rs3212369 16 G 1.000 0.187 0.195 0.064 0.146 0.040 0.206 0.929 

MCAM rs7914 11 A 1.000 0.224 0.240 0.451 0.263 0.378 0.201 0.302 

MCL1 rs878471 22 G 0.269 0.424 0.446 0.373 0.424 0.762 0.421 0.662 

MDM2 rs1690916 12 A 0.489 0.374 0.360 0.574 0.515 0.001 0.327 0.291 

MLPH rs2325813 1 C 1.000 0.093 0.110 0.295 0.131 0.225 0.117 0.555 

MMP7 rs14983 11 A 0.640 0.224 0.227 0.525 0.212 0.593 0.168 0.037 

MYO5A rs7176482 9 G 0.573 0.400 0.412 0.88 0.343 0.108 0.472 0.056 

NF1 rs1801052 17 G 0.063 0.254 0.246 0.734 0.308 0.085 0.262 0.677 

NFAT5 rs7359387 16 G 1.000 0.150 0.137 0.513 0.101 0.391 0.140 0.143 

PAX3 rs12620338 2 A 0.309 0.200 0.197 0.902 0.192 0.925 0.215 0.587 

PTCH2 rs41269085 2 T 0.437 0.168 0.165 0.947 0.162 0.920 0.168 0.923 

PTEN rs701848 10 C 0.207 0.379 0.399 0.421 0.348 0.249 0.402 0.767 

RGS20 rs72614663 8 G 0.269 0.140 0.143 0.888 0.101 0.127 0.187 0.082 

SLC24A4 rs11160072 14 G 0.552 0.163 0.149 0.788 0.162 0.678 0.107 0.101 

SOX9 rs1042667 11 C 0.653 0.394 0.386 0.801 0.394 0.939 0.336 0.137 

TPCN2 rs1551306 11 A 0.829 0.465 0.448 0.49 0.465 0.821 0.542 0.017 

WNT3A rs752107 11 T 0.897 0.295 0.300 0.829 0.293 0.935 0.290 0.874 

SNP, single nucleotide polymorphism; Chr, chromosome; mA, minor allele; MAF, minor allele frequency; CEU, Northern Europeans form Utah; 

TSI, Southern Europeans from Tuscany; HWE, Hardy-Weinberg equilibrium 

¹ Fisher's exact test P-values for the comparison of minor allele frequencies between Spanish cases and controls 

² Fisher’s exact test P-values for the comparison of Spanish minor allele frequencies obtained from our sample to CEU and TSI frequencies 

Significant results are presented in bold 
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Table S3. Association analysis between SNPs and melanoma susceptibility in the Spanish population 

   
Non adjusted Adjusted ¹ 

Gene SNP rs# mA OR (%95 CI) P-value OR (%95 CI) P-value 

ADAM9 rs4733967 T 0.34 (0.17-0.70) 0.0024 0.26 (0.10-0.63) 0.0026 

ADAMTS20 rs6582463 C 1.25 (1.01-1.54) 0.0390 1.16 (0.91-1.48) 0.2389 

BNC2 rs7035049 A 0.77 (0.53-1.13) 0.1884 0.66 (0.42-1.04) 0.0732 

CLIP1 rs10270 A 1.15 (0.93-1.42) 0.1857 1.18 (0.66-2.09) 0.5735 

DCT rs17791924 G 1.14 (0.86-1.49) 0.3618 0.74 (0.50-1.09) 0.1312 

DTNBP1 rs742106 A 1.14 (0.93-1.39) 0.2126 1.16 (0.91-1.47) 0.2332 

E2F1 rs3213180 C 1.42 (0.94-2.16) 0.0906 1.41 (0.86-2.32) 0.1652 

E2F2 rs3820028 G 1.06 (0.88-1.29) 0.5283 0.99 (0.78-1.24) 0.9091 

EDN1 rs9296344 C 0.78 (0.51-1.17) 0.2360 0.79 (0.46-1.36) 0.3961 

EXOC2 rs12952 G 1.11 (0.89-1.38) 0.3580 1.11 (0.85-1.44) 0.4415 

FOXO3 rs9400241 C 0.91 (0.60-1.40) 0.6783 0.84 (0.66-1.07) 0.1576 

GNA11 rs397454 T 0.87 (0.62-1.22) 0.4240 0.68 (0.45-1.01) 0.0593 

HOXB7 rs15689 G 0.78 (0.63-0.97) 0.0264 0.77 (0.59-1.00) 0.0483 

HOXC8 rs4142680 C 0.83 (0.62-1.10) 0.1971 0.82 (0.65-1.04) 0.0968 

HRK rs10507275 A 0.44 (0.19-1.05) 0.0602 0.45 (0.18-1.12) 0.0826 

IRF4 rs9391997 G 1.29 (0.92-1.80) 0.1422 0.67 (0.48-0.93) 0.0152 

KCNMA1 rs4980113 C 0.86 (0.71-1.04) 0.1220 0.79 (0.62-1.00) 0.0462 

KIT rs8022 T 0.85 (0.62-1.19) 0.3474 1.63 (0.48-5.58) 0.4228 

KITLG rs995030 A 0.92 (0.72-1.16) 0.4719 0.84 (0.60-1.17) 0.3104 

LYST rs6696123 C 0.82 (0.61-1.09) 0.1655 0.85 (0.67-1.08) 0.1745 

MARCKS rs28558559 C 0.32 (0.11-0.93) 0.0300 0.23 (0.06-0.81) 0.0164 

MC1R rs3212369 G 1.06 (0.83-1.35) 0.6679 1.32 (0.59-2.95) 0.5016 

MCAM rs7914 A 1.14 (0.87-1.51) 0.3498 1.21 (0.86-1.69) 0.2695 

MCL1 rs878471 G 1.20 (0.84-1.72) 0.3238 1.30 (0.85-2.00) 0.2261 

MDM2 rs1690916 A 0.83 (0.56-1.24) 0.3688 0.90 (0.72-1.14) 0.4006 

MLPH rs2325813 C 1.20 (0.87-1.66) 0.2556 0.65 (0.15-2.85) 0.5742 

MMP7 rs14983 A 1.37 (0.73-2.57) 0.3240 1.36 (0.64-2.88) 0.4216 

MYO5A rs7176482 G 1.13 (0.79-1.62) 0.5110 1.15 (0.75-1.75) 0.5168 

NF1 rs1801052 G 0.92 (0.56-1.50) 0.7274 0.82 (0.45-1.50) 0.5239 

NFAT5 rs7359387 G 0.87 (0.62-1.20) 0.3880 1.06 (0.72-1.55) 0.7821 

PAX3 rs12620338 A 0.68 (0.35-1.34) 0.2656 0.47 (0.20-1.06) 0.0710 

PTCH2 rs41269085 T 2.29 (1.00-5.39) 0.0421 0.66 (0.46-0.95) 0.0263 

PTEN rs701848 C 1.26 (0.96-1.65) 0.0998 1.04 (0.82-1.31) 0.7560 

RGS20 rs72614663 G 2.15 (0.70-6.65) 0.1587 3.14 (0.79-12.46) 0.0818 

SLC24A4 rs11160072 G 0.87 (0.65-1.17) 0.3649 0.86 (0.59-1.23) 0.4043 

SOX9 rs1042667 C 0.96 (0.72-1.27) 0.7573 0.87 (0.69-1.10) 0.2360 

TPCN2 rs1551306 A 0.86 (0.61-1.20) 0.3748 0.84 (0.59-1.20) 0.3419 

WNT3A rs752107 T 1.14 (0.71-1.82) 0.5913 0.72 (0.51-1.00) 0.0500 

SNP, single nucleotide polymorphism; mA, minor allele; OR, odds ratio per minor allele; CI, confidence interval 

Bold indicates significant P-values and their Odds Ratio according to the most significant model (dominant, over-dominant, 

recessive or additive) 

¹ Adjusted for childhood sunburns, hair colour, lentigines and sex, via multivariate logistic regression 
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Figure S1. Comparison of minor allele frequencies between our Spanish sample and two different European 
populations. A) Northern Europeans from Utah (CEU), and B) Southern Europeans from Tuscany (TSI). Dark 

dots represent values that significantly differ from 1000 Genome Project data, when sample size was 

considered.  
Figure S1  

191x240mm (150 x 150 DPI)  
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Figure S2. Enriched KEGG pathways involved in pigmentation and skin cancer that are targeted by miRNAs 
predicted to interact with highly-associated 3’UTR pigmentation SNPs. Yellow denotes genes targeted by one 

miRNA of the list. Orange denotes genes targeted by more than one miRNA of the list.  

Figure S2  
265x470mm (150 x 150 DPI)  
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Figure S3. Box plot showing WNT3A expression according to SNP rs752107 genotype. T is the minor allele. 
Data taken from GTEx Portal.  

Figure S3  
135x96mm (150 x 150 DPI)  
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Figure S4. Expression in different tissues of the four miRNAs predicted to interact with highly-associated 
3’UTR pigmentation SNPs. A) hsa-miR-185-3p; B) hsa-miR-762; C) hsa-miR-892b; D) hsa-miR-149-5p. Red 

arrow indicates sun-exposed skin tissue. Data taken from GTEx Portal, and images downloaded from 

GeneCards webpage.  
Figure S4  
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