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Abstract

Predictive control of TS fuzzy systems has been addressed in prior literature
with some simplifying assumptions or heuristic approaches. This paper presents
a rigorous formulation of the model predictive control of TS systems, so that
results are valid for any membership value (shape-independent) with a suit-
able account of causality (control can depend on current and past memberships
and state). As in most fuzzy control results, a family of progressively better
controllers can be obtained by increasing Polya-related complexity parameters,
generalising over prior proposals.
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1. Introduction

Takagi-Sugeno (TS) systems are a widely-used tool to exactly model non-
linear systems via the so-called sector-nonlinearity approach [1], on a compact
modelling region Ω. Subsequently, stability analysis and control design tasks
can be carried out on the TS models. Control techniques for TS fuzzy systems
based on LMIs [1] have been deeply developed in recent years, see the review
paper [2] and references therein. Of course, the TS+LMI approach is conser-
vative with respect to an “ideal” nonlinear control approach [3], but it allows
solving the problems via convex optimisation tools, derived from linear systems
and related to the linear parameter varying (LPV) approach [4]. As the model is
only valid on a compact set, the results are also limited to this modelling region,
usually the largest Lyapunov level set in Ω (slightly larger sets can be actually
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proven, see [5]) or an inescapable set in disturbance-rejection problems [6, 7].
A recent alternative to the LMI approach in TS systems is the asymptotically
exact geometric polytope manipulation approach in [8, 9], extending well-known
results in the robust-polytopic control field [10].

In realistic applications, there is always control saturation; most LMI condi-
tions conservatively require the control action to avoid saturation in the outer-
most Lyapunov level set [1], others allow saturation [11] but they cannot prove
improvement with respect to non-saturating laws or require iteration/Bilinear
Matrix Inequalities, see [12]. Note also that if the operation point is not at
the center of actuator range, constraints are non-symmetric; however, in an
LMI setup constraints must be forced to be symmetric in the vast majority of
cases. The above-referred geometric approach can naturally handle such non-
symmetric constraints.

Apart from sheer stability, optimality of a quadratic index for TS systems is
a problem that has been also addressed in many works in literature in the so-
called guaranteed cost setup [1, 12, 13, 14, 15]; the“guaranteed cost”terminology
stems from the fact that the controllers in such references only prove an “upper
bound” to the actual cost.

The above-referred works use a 1-step version of the Belmann equation, i.e.,
V (xk) ≥ L(xk, uk)+V (xk+1), L being some quadratic “step cost”, to prove that
V is a cost bound via some LMIs. Obviously, the natural multi-step extension
to the Bellmann equation is V (xk) ≥

∑N−1
j=1 L(xk, uk) + V (xk+N ); such optimi-

sations are the key point behind model predictive control (MPC) approaches,
very popular in applications nowadays [16]. Linear MPC under quadratic stage
and terminal cost are routinely solved via very efficient quadratic programming
(QP, convex) optimisation and, also, there are well-known stability and opti-
mality guarantees [17] emanating from classical LQR theory. In the uncertain
case, the so-called minimax predictive control is addressed in the well-known
references [18, 19, 10]; state an input constraints are naturally handled in the
resulting constrained optimisation setups (QP, LMI). These “uncertain” MPC
approaches can, of course, apply to TS systems but, they are conservative in the
same way as “robust linear” controllers are, as they do not exploit the fact that
membership functions are measurable in on-line operation so control can depend
on them. On the other hand, the “ideally” least-conservative framework would
be directly applying nonlinear MPC [20, 21] to the original nonlinear system
from which the TS model was originated; the main drawback is the fact that
computational cost of nonlinear MPC is high (convexity cannot be guaranteed)
and, in many cases, convergence of the optimisation iterations is, if they actually
converge, to a possibly local minimum.

So, fuzzy MPC stands in the“middle ground”between the well-developed lin-
ear/robust cases and the elusive nonlinear one. However, quite a few of the fuzzy
MPC earlier literature works have significant shortcomings. For instance, the
widely-cited work [22] resorts to clustering but, actually, it carries out nonlinear
MPC on the resulting identified fuzzy model, via nonconvex branch-and-bound
optimisation. The work [23] computes a linear MPC by “freezing” the member-
ships at a particular instant and assuming they will be constant in the future;
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this might work in practice, but it lacks theoretical justification in fast transients.
The work [24] presents an interesting approach in which a sequence of quadratic
cost bounds and state-feedback gains solves (suboptimally) the MPC problem.
The great advantage is its computational tractability; however, it is well-known
that even for the linear case, under constraints, the optimal value function is
not quadratic in the state, so the approach is conservative. Recent works such
as [25] discusses networked interval type-2 systems, but their results are still
based on the 1-step equation discussed above so they are not solving a “proper”
multi-step problem as most MPC literature understands. There are other related
works on LMI-based suboptimal MPC for Wiener and Hammerstein models [26]
or for input-output LPV systems (uncertain impulse-response coefficients) [27]
anyway, these non-TS representations are intentionally out of the scope of the
present manuscript, as well as other multi-agent/cooperative/stochastic versions
of MPC [28, 29].

Actually, the papers whose approach is more similar to the one pursued here
are, for instance, [30, 31, 32, 33]. Nevertheless, for brevity in this introduction,
further discussion and comparative analysis with these related results are pre-
sented in later sections of this manuscript, once notation and problem statement
have been established.

The objective of this paper is adapting the linear MPC for TS fuzzy models
in a rigorous way, suitably posing the problem and proposing linear matrix in-
equality conditions for the resulting optimisation. The key idea is introducing
the shape-independent concept to the model predictive control problem formu-
lation on TS fuzzy systems. This concept implies that the MPC is valid not only
for the actual non-linear system originating a TS model, but also for any other
possible realization of the membership functions. This is a source of conser-
vatism with respect ot pure nonlinear-MPC but, in exchange, systematic LMI
conditions can be posed. Importantly, the proposed controllers make use of the
fact that future memberships will be measurable at the moment of computing
the future control action, absent in other literature proposals.

The structure of the paper is as follows: Section 2 presents preliminary re-
sults, notation and problem statement; Section 3 presents the main contribution
on shape-independent fuzzy-MPC, prediction model and constraints; this sec-
tion is followed by a stability analysis in Section 5, where terminal cost and
controller are discussed in depth. Two brief sections present a shape-dependent
MPC variation and a comparative analysis and discussion. Section 7 develops
an example, and a conclusion section closes the paper.

2. Preliminaries

Considerer a nonlinear discrete-time system, given by:

xk+1 = fx(xk) + g(xk)uk (1)

where xk ∈ Rn represents the state vector, uk ∈ Rm the control actions and
fx(0) = 0. The above system can be expressed in compact regions X, U con-
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taining the origin as a Takagi-Sugeno fuzzy model with r rules in the form

xk+1 = f̃(µ, xk, uk) :=

r∑
i=1

µi(xk)(Aixk +Biuk) (2)

In this representation µi(x) are the membership functions which, for later ma-
nipulations, they will be grouped in the vector of memberships

µ(x) :=
(
µ1(x) µ2(x) . . . µr(x)

)T
(3)

which belongs to the standard simplex:

∆ :=

{
µ ∈ Rr |

r∑
i=1

µi = 1, µi ≥ 0

}
(4)

The regions where system (1) is modelled will be assumed to be polyhedra

X = {x ∈ Rn | Rx+ r ≤ 0}, U = {u ∈ Rm | Su+ s ≤ 0} (5)

where inequalities in vectors are understood to hold element-wise.
As discussed in the introduction, well-known LMIs have been developed to

synthesise state-feedback controllers for systems in the TS form (2). In particu-
lar, this paper will root on the so-called guaranteed-cost results [1, 12] and will
propose predictive controllers which improve on the obtained cost bounds.

2.1. Fuzzy predictive control: problem statement

Generic Predictive control problems [16, 17] are based on solving finite-
horizon constrained optimisation problems. Let us discuss how the predictive
control problem can be formally stated in a TS framework.

First, in a TS fuzzy system, let us define a membership-dependent cost index:

J∞(x0, {u0, u1, . . . }) :=

∞∑
k=0

L(µ(xk), xk, uk) (6)

In this way, some non-quadratic costs can be embedded into the framework of
this paper. If a controller uk = g(µ(xk), xk) is under operation, the infinite
cost is just a function of the initial state, to be denoted as J∞(x0). Abusing the
notation, if arguments are clear the above index will be shorthanded to J∞.

Then, the fuzzy version of the finite-time problems in predictive control
requires defining a N -step cost as:

JN (µ,u, x0) := V (µ(xN ), xN ) +

N−1∑
k=0

L(µ(xk), xk, uk) (7)

where, for convenience, memberships are arranged as a matrix:

µ :=

µ1(x0) µ1(x1) . . . µ1(xN )
...

...
. . .

...
µr(x0) µr(x1) . . . µr(xN )

 ∈ Rr×(N+1) (8)

4



and µ ∈ ∆N+1 will indicate that each column belongs to ∆. The term V (µ(xN ), xN )
will be denoted as terminal cost and the term L(µ(xk), xk, uk) as stage cost; u
denotes the set of control actions {u0, . . . , uN−1}. Under mild assumptions,
if there exists a controller such that V (µ(x), x) ≥ J∞(x), then stability can be
proved [17] for initial states such that JN (µ,u, x0) is finite.

Generic nonlinear predictive control (NMPC, [16]) would, subsequently, try
to obtain a sequence of future inputs u∗j , j = 0, . . . , N − 1 so that JN (µ,u, x0)
is minimised (understanding µ to be obtained from the simulated states under
u∗ from an initial condition x0). The basic problem of the above generic NMPC
approach is the fact that the optimisation problem is, in general, non-convex
and without guaranteed convergence or execution time bound in real-time im-
plementation, and also stability guarantees are missing.

Disregarding µ, system (2) can be considered as an uncertain polytopic one,
so such early linear minimax results cited in the introduction can be applied
to them to design robust controllers, but in such a case the knowledge of the
membership functions in on-line operation is not exploited.

The objective of this paper is providing a Polya-based asymptotically exact
solution to a shape-independent version of the above predictive control problem:

J∗(x0) := min
U

max
µ∈∆N+1

JN (µ, g(µ, U), x0) (9)

under suitable constraints, where u := g(µ, U) will denote a causal controller
parametrisation, detailed in Section 3. Causality refers to the fact that the
actual shape of the membership functions is unknown at design time but it will
be known when implemented, and future memberships will, too, be eventually
known. The proposed solution will be in LMI form.

2.2. Homogeneous polynomial notation

In order to solve fuzzy control problems, homogeneous polynomials in mem-
berships are widely used (for instance, in the asymptotically exact solutions in
[34, 35, 9], etc.) Considering a degree d ∈ N, d ≥ 1, and state x, all monomials
of degree d in the memberships can be expressed as

µα(x) := µα1
1 (x)µα2

2 (x) . . . µαrr (x) (10)

where α ∈ Nr is a vector of natural numbers (understood including zero) such
that |α| :=

∑r
i=1 αi = d. In the sequel, the following notation will be used to

denote a degree-d homogeneous polynomial in memberships, say Ξdµ, which will
be expressed as:

Ξdµ(x) :=
∑
|α|=d

µα(x)nαΞα (11)

where nαΞα are the polynomial coefficients, factorised as Ξα and a combinatorial
number nα, defined to be the multiset permutation of α in the set |α| = d, i.e.:

nα :=

(
|α|
α

)
=

(α1 + · · ·+ αr)!

α1! . . . αr!
(12)
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It can be proved that: ∑
|α|=d

µαnα = 1 (13)

In Appendix A, some well-knwon results on products of homogeneous poly-
nomials and Polya-theorem, later used, are recalled. State dependence µα(x)
will be shorthanded to µα if clear from the context.

Remark 1 In order to use this notation in TS models, we will understand∑
|ξ|=1

µξAξ :=

r∑
i=1

µiAi (14)

where ξ ∈ Nr is, forcedly, a vector with a single element equal to 1, being the
rest zero, and we understand Aξ to be equal to Ai, with i being the unique index
such that ξi = 1. As nξ = 1, we omit writing it at the left-hand side of (14).

Homogeneous polynomials in delayed instants. The appearence of memberships
of states from x0 to xN in the problem statement motivates extending the fuzzy
summation notation to encompass different instants.

This paper will discuss homogeneous polynomials in membership functions,
evaluated at several instants of time, arranged as (8), so µik := µi(xk). The
degree of the homogeneous polynomial at different time instants may differ: the
homogeneous polynomial in memberships at time k will, by assumption, have
degree dk. In order to compactly handle such situation, we will introduce a
degree vector d ∈ N1×(N+1), conformed with said elements dk.

Considering now (11), as a different vector α will be needed for different
instants, the definition of α will be generalised to being a matrix, using its k-th
column to index a particular monomial at instant k: considering a matrix of
natural numbers α ∈ Nr×(N+1), notation αk for k = 0, . . . , N , will denote the
k-th column of a matrix α, considering the first one to be indexed by zero, in
order to be consistent with the idea that the degrees correspond to µ(x0). Also,
in this matrix case, |α| will denote the vector of dimension 1× (N + 1) formed
by the column-wise sums, i.e., whose element at position j is |αk| =

∑r
i=1 αik.

Now, notation µα will represent a monomial in the membership functions
(at different instants of time), given by:

µα := ΠN
k=0µ

αk(xk) = Πr
i=1ΠN

k=0µ
αik
i (xk) (15)

and nα is

nα :=

N∏
j=0

nαk =

N∏
j=0

|αk|!∏r
i=1 αik!

(16)

It can be proved in a straightforward way that
∑
nαµ

α = 1.
The generalisation of (11) to the multiple-instant setting will be denoted by:

Ξdµ :=
∑
|α|=d

µαnαΞα (17)
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where d will now be a degree vector, d ∈ NN+1 indicating the degree at each
instant of time of the overall fuzzy summation.

Example 1 Consider a prediction horizon N = 3 and two rules, r = 2. Exam-
ple membership monomials for some degree matrices α are, say:

α =

(
3 0 0
4 0 0

)
⇒ µα = (µ1(x0))3(µ2(x0))4, nα = 7!

3!4!
0!

0!0!
0!

0!0! = 35

|α| = (7, 0, 0), |α1| = 7, |α2| = |α3| = 0

α =

(
2 1 0
0 0 4

)
⇒ µα = (µ1(x0))2µ1(x1)(µ2(x2))4, nα = 1

|α| = (2, 1, 4), |α1| = 2, |α2| = 1, |α3| = 4

3. Shape-independent fuzzy predictive control

Let us now completely state the shape-independent problem (9) rooting from
(7) and its associated constraints.

At the moment of computing uk in (7), memberships µ(x0), . . .µ(xk) will be
known; hence, we will search over controller depending on these memberships,
i.e., uk := gk(µ(x0), . . . , µ(xk), Uk), where Uk is a vector of numeric parame-
ters for gk(). Juxtaposing all controls, defining the set of control laws u :=
{u0, u1, . . . , uN−1}, and the set of numeric decision variables U := {U0, . . . , UN−1},
where Uk are those associated to control uk at instant k, we will express them
with the shorthand u := g(µ, U). A homogeneous polynomial structure for g
and U will be detailed shortly below.

Under the above causality constraints, then, the shape-independent fuzzy
MPC problem would amount to computing:

J∗(x0) := min
U

max
µ∈∆N+1

JN (µ, g(µ, U), x0) (18)

subject to, for k = 0, . . . N − 1,

xk+1 = f̃(µ, xk, gk(µ(x0), . . . , µ(xk), Uk)) (19)

gk(µ(x0), . . . , µ(xk), Uk) ∈ U (20)

xk ∈ X (21)

xN ∈ T (22)

where T is a so-called terminal set (see Section 5 for details on how to obtain it
to guarantee stability).

Note that, if memberships are considered as “uncertainty” and the controller
cannot depend on them, the above problem statement would be that of the
so-called minimax predictive control [18, 19]. Intermediate cases with partially-
known membership components [36, Eq. (27)], may also be conceived, but they
will be left out of the scope of the discussion for brevity.
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3.1. Relevant prior results in literature

As discussed in the introduction, some prior results on the topic have already
been dealt with in literature. The approaches may be classified as follows:

Infinite-horizon (guaranteed cost) fuzzy control. Sets N = 0, and conditions
such that V (µ(x), x) ≥ J∞(x0) are set up (usually in LMI form) to find both
V and an associated controller g(µ, x); if feasible, finiteness of the cost index
is guaranteed (and stability under mild well-known conditions). Conditions are
valid for any x0 (usually, in a certain ellipsolidal region), unknown at design
time. The reader is referred to, for instance, [1, 12, 13, 14]. Also, an output-
feedback setup can be found in [15].

On-line infinite-horizon fuzzy control. Adapting the above to a particular mea-
sured x0, the resulting LMIs yield Lyapunov functions and controller gains
depending on the measured state. The reader is referred to, for instance,
[32, 37, 38, 33]. These results are considered by their authors, too, to be model
predictive control; we are not proposing any notation/terminology debate here,
as it is just a matter of taste. The important fact is that, as the cost bound
is decreasing in time, it can be used to prove feasibility in future time and sta-
bility, see the cited references for details. Note that dependence on the first
membership µ(x0) can be removed, as it can be directly measured. This implies
a minor modification to the problem statement; for clarity in exposition, it will
be deferred, and discussed later on in Section 4.4.

One-step predictive control. We will classify with this label the literature works
where, given a measured x0, the control action u0 is itself a decision variable,
instead of resulting from a feedback gain as in the above-cited setups. Later
on, a terminal state-feedback setup uk = g(µ(xk), xk) is assumed from k = 1
onwards. See, for instance [30] for details on the approach. In our setup, this
proposal will amount to setting N = 1 (later on discussed in more detail).

Multi-step predictive control. This approach is the closest to the original MPC
idea: control variables u0, . . . , uN−1 are computed once x(0) is measured,
assuming that a terminal state-feedback controller is applied from instant N
onwards [16, 17]. In [31], a membership-dependent future control action is con-
sidered.

Next section will present the formulation of a more general proposal of the
above multi-step predictive control. In Section 6, a discussion and comparison
of our proposal with some of the above-referred approaches will be presented.

4. Main Result

Causal fuzzy controller parametrisation. As future values of membership func-
tions are unknown, the control action cannot depend on them, as discussed in
earlier sections. So, u0 will be chosen to be an homogeneous polynomial in µ(x0)
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with, say, degree c00, u1 will be a polynomial in µ(x0) and µ(x1), with degrees
c10 and c11 in µ(x0) and µ(x1), respectively, and so on with u2, . . . , uN−1.

We will introduce notacion c[0] = (c00, 0, 0, 0), c[1] = (c10, c11, 0, 0), . . . so ckl
indicates the degree of uk in µ(xl), for l ≤ k, 0 ≤ k ≤ N . Based on the above
discussion, we will consider a control action to be applied to the TS system (2)
to be given by:

uk =
∑
|α|=c[k]

µαnαuα,k (23)

where uα,k are control decision variables conforming Uk, and c[k] ∈ NN is a
user-defined degree vector, with the above-discussed causality constraints (i.e.,
elements k + 1 to N equal to zero). This parametrisation generalises that in
[31], being the one in that work recovered by setting c[k] = (1, 1, . . . , 1, 0, 0, . . . )
with a total of k − 1 ones, see Section 6 for further comparison.

4.1. Prediction model

1-step closed-loop model. With the above control law (23), at time k, the closed-
loop successor state would be:

xk+1 =

r∑
i=1

∑
|α|=c[k]

µα · µi · nα(Aixk +Biuα,k) (24)

We will vectorise all decision variables in uα,k, i.e., stacking them in a column
vector Uk defined as:

Uk := vec|α|=c[k](uα,k) (25)

using any arbitrary enumeration ordering for α, for instance lexicographic. Con-
versely, we will invert the vectorisation using notation uα,k = Eα,kUk where Eα,k
is a matrix that selects the suitable vector elements, according to the chosen or-
der in the vectorisation operation. With this notation, the input at instant k
can be written as:

uk =
∑
|α|=c[k]

nαµ
αEα,kUk (26)

Hence,

xk+1 =

r∑
i=1

∑
|α|=c[k]

µαµi(xk)nα(Aixk +BiEα,kUk) (27)

With suitable manipulations, using Corollary 2 and, if so wished Polya ex-
pansion (Corollary 1), we can express the closed-loop model (details omitted for
brevity) as:

xk+1 =
∑
|γ|=q[k]

µγnγGγ,k

(
xk
Uk

)
(28)

where, q[k] ≥ c[k] + ek, and

Gγ,k :=
1

nγ

∑
α,ξ∈Sc

[k]ek
γ

nαnγ−α−ξ
(
Aξ BξEα,k

)
(29)
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with Sc[k]ekγ defined according to (A.9) as

Sc
[k]ek
γ = {α, ξ ∈ Nr×(N+1) | |α| = c[k], |ξ| = ek, γ − α− ξ ≥ 0} (30)

and ek denotes the vector whose elements are all zero except the k-th one, equal
to 1. Abusing the notation introduced in Remark 1, Aξ, when indexed by a
matrix ξ such that |ξ| = ek, should be understood as the consequent matrix Ai,
where i is the row number at k-th column of the single element of ξ equal to 1.

Note also that, if we choose q[k] = c[k] +ek then no Polya expansion is carried
out; for any other larger choice of elements of q[k] the expression of the Polya
expansion in Corollary 1 is implicitly considered in (28).

Example 2 For instance, in a TS model with r = 2, N = 3, let us consider
predicting x2 from x1 with c[1] = (2, 2, 0), which respects causality ( u1 cannot
depend on µ(x2)). As e1 = (0, 1, 0), the above expression (28) with no Polya
expansion would entail q[1] = (2, 3, 0). Let us, for instance, show the element

G(
1 2 0
1 1 0

)
,1

=
1

6

(
4

[
A1 B1E(

1 1 0
1 1 0

)
,1

]
+ 2

[
A2 B2E(

1 2 0
1 0 0

)
,1

])
where E are suitable selection matrices (0, . . . , 0, I, 0, . . . , 0).

Prediction along the full horizon. In MPC, from an initial state x0, predictions
of x1, x2, . . .xN must be made. So, the above 1-step ahead prediction must be
nested, and expression (28) generalised.

For instance, given x0, we could predict x2 with an homogeneous controller
of degree vector c[0] := (c00 0 . . . 0) at instant 0, and a controller which, at
instant 1, can depend on memberships at instants 0 and 1, with degrees c[1] :=
(c10 c11 0 . . . 0), the prediction of x2, without any Polya expansion, would be:

x2 =

r∑
i=1

µi(x1)

Aix1 +Bi

 ∑
|β|=c[1]

µβnβEβ,1U1


=

r∑
i=1

µi(x1)

Ai
 r∑
j=1

µj(x0)

Ajx0 +Bj

 ∑
|α|=c[0]

µαnαEα,0U0


+ Bi

 ∑
|β|=c[1]

µβnβEβ,1U1

 (31)

Following similar steps, predictions of x3, . . .xN can be crafted as follows:
In expression (31) and in those of larger horizon, products of model matrices

at different instants appear in convolution-like formulae. In order to set a com-
pact notation for such products, let us consider the product of matrices from
instant j to k. The auxiliary degree vector 1jk, used in (34) and (35) below,
will be defined as the vector whose components j to k are equal to 1, being the
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rest equal to zero. Thus, matrices ξ such that |ξ| = 1jk are those in which a
single element is equal to one in each of the columns from j to k. Now, for such
ξ, we will define:

Aξ :=

k∏
l=j

Aξl (32)

Example 3 Considering an index matrix |ξ| = 123, in a 2-rule model, we would
have, say:

A(
0 0 1 0 0
0 0 0 1 0

) = A2A1, A(
0 0 0 0 0
0 0 1 1 0

) = A2
2

Note that in the model predictions, the above matrix would be multiplied by
µ2(x3)µ1(x2) (left) and µ2(x3)µ2(x2) (right).

With the above notations, the classical convolution formula in linear MPC
xk = Akx0 +

∑k−1
j=0 A

k−(j+1)Buj is extended to the TS case as follows:

Theorem 1 For any degree vector q ∈ NN+1, with qj ≥ maxi(cjj + 1, cij), j =
0, . . . , N − 1, the prediction of xk+1 as a function of x0 and future controls in
the form (26) can be expressed as:

xk+1 =
∑
|γ|=q

µγnγΞγ (33)

being

Ξγ :=
1

nγ

 ∑
ξ∈S10k

γ

nγ−ξAξx0 +
k∑
j=0

∑
α,ξ∈Dj,kγ

nγ−α−ξnαAξBβEα,jUj

 (34)

where S10k
γ is built as defined in (A.4), and:

Dj,kγ := {α, ξ, β ∈ Nr×(N+1), | |α| = c[j], |ξ| = 1(j+1)k, |β| = ej , γ−α−ξ−β ≥ 0}
(35)

Proof: Carried out by exhaustively repeating the analogous operations to
(31) for x3, etc., omitted for brevity because of the tedious nature of the devel-
opments. �

Finally, the k-step prediction, for degree vector q, can be written as

xk+1 =
∑
|γ|=q

µγnγGγ,k

(
x0

U

)
(36)

been U = (UT0 , . . . , U
T
N−1)T and Gγ,k is formulated by extracting out x0 and U

from Ξγ in (34), in order to express (33) in matrix form (36).
Hence, juxtaposing Gγ,k in column form, resulting in a matrix to be denoted

as Gγ , the full prediction from k = 1 up to k = N can be expressed as follows:
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x =


x1

x2

...
xN

 =
∑
|γ|=q

µγnγGγ

(
x0

U

)
(37)

4.2. Constraints on decision variables

This section discusses how to enforce the constraints on states and inputs.
Indeed, from prediction model (37), future states depend on x0 and U ; thus,
constraints (20)–(22) must be formulated as constraints on decision variables U .

Input constraints. Carrying out a Polya expansion, if so wished of (26), the
input at instant k can expressed, taking any degree vector h ∈ RN , so that
hj ≥ maxi(cjj , cij), j = 0, . . . , N − 1, as:

uk =
∑
|α|=c[k]

nαµ
αEα,kUk =

∑
|γ|=h

nγµ
γWγ,kU (38)

where Wγ,k, from (A.6), is defined as:

Wγ,k :=
1

nγ

∑
α ∈ Sc

[k]
γ

nγ−αnα (0 . . . 0 Eα,k 0 . . . 0) (39)

At this point, as (38) is an homogeneous polynomial, in order to enforce
uk ∈ U k = 0 . . . N , as required by constraint (20), we formulate the constraint
on the polynomial coefficients, in terms of the decision variables U , using matrix
S and vector s in (5) as:

S ·Wγ,k · U + s ≤ 0 ∀ |γ| = h, k = 0, . . . , N − 1 (40)

indeed, if the above holds, as
∑
nαµ

α = 1, we have

Suk + s =
∑
|γ|=h

nγµ
γ(SWγ,kU + s) ≤ 0

Finally, juxtaposing Wγ,k in column form, as a matrix to be denoted as Wγ , the
full prediction inputs from k = 1 to k = N − 1 can be expressed as follows:

u =


u0

u1

...
uN−1

 =
∑
|γ|=h

nγµ
γWγU (41)

Future state constraints. In a similar way (details omitted for brevity), the
condition xk ∈ X, for k = 1 . . . N − 1, required in (21), is expressed in term of
the decision variables U and the current state values x0, for any Polya expansion

12



of degree h such that hj ≥ maxi(cjj + 1, cij), j = 0, . . . , N − 1, as the sufficient
condition

R · 1

nγ

∑
α ∈ Sqγ

nγ−αnαGα,k

(
x0

U

)
+ r ≤ 0 ∀ |γ| = h, k = 0, . . . , N − 2 (42)

Finally, for stability reasons to be later discussed, the terminal set must be
defined as:

T := {x : xTN
(
P cµ
)−1

xN ≤ λ−1 ∀µ ∈ ∆} (43)

where P cµ is a homogeneous polynomial of degree c, following notation (17).
Taking the prediction model (28) for xN :

xN =
∑
|α|=q

µαnαGα,N−1

(
x0

U

)
(44)

and applying well-kwown Schur-complement manipulations, we have that xN ∈
T, required in (22), is equivalent to the matrix inequality: λ−1 ∑

|α|=q µ
αnα

(
Gα,N−1

(
x0

U

))T
∑
|α|=q µ

αnαGα,N−1

(
x0

U

) ∑
|σ|=l µ

σnσPσN

 ≥ 0

l = (0, 0, . . . , 0, c) (45)

If a Polya expansion of the polynomials above is done up to degree vector h ≥ q,
h ≥ l, the following (asymptotically exact) sufficient conditions for xN ∈ T in
LMI form are obtained, requiring the coefficients of the referred expansion to
be positive semidefinite:

∑
α ∈ Sqγ
σ ∈ Slγ

 nγλ
−1 nγ−αnα

(
Gα,N−1

(
x0

U

))T
nγ−αnαGα,N−1

(
x0

U

)
nγ−σnσPσN

 ≥ 0

∀ |γ| = h, l = (0, 0, . . . , 0, c), h ≥ q, h ≥ l (46)

4.3. LMI formulation of the model predictive control problem

Considering the cost index in (7), in order to cast the MPC problem as LMI,
the k-step cost L(µ(xk), xk, uk) is defined as the following expression, quadratic
in the state and inputs, but involving homogeneous polynomials of degree d in
the involved matrices:

L(µ(xk), xk, uk) = xTk

(
Hd
µ(xk)

)−1

xk + uTk

(
F dµ(xk)

)−1

uk (47)

and the terminal cost V (µ(xN ), xN ) is defined as:

V (µ(xN ), xN ) = xTN

(
P cµ(xN )

)−1

xN (48)

We are now in conditions of presenting the main result of this paper:
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Theorem 2 Given x0 and the degree-q prediction model (37), the cost index
J∗ in (9) fulfills J∗(x0) ≤ δ∗ if, for a degree vector h ∈ NN+1, h ≥ q, h ≥ f ,
h ≥ l (see (54) below for definitions of f and l), the following LMI optimisation
is feasible:

δ∗ := min
U

δ (49)

subject to:∑
α∈Sqγ
σ∈Sfγ

nγδ
(
xT0 UT

)
nγ−αnαG

T
α UTnγ−αnαW

T
α

∗ nγ−σnσdiag(Hσ1 , . . . ,HσN−1
, PσN ) 0

∗ 0 nγ−σnσdiag(Fσ0
, . . . , FσN−1

)

 > 0 (50)

R
1

nγ

∑
α ∈ Sqγ

nγ−αnαGα,k

(
x0

U

)
+ r ≤ 0 k = 0, . . . , N − 2 (51)

∑
α ∈ Sqγ
σ ∈ Slγ

 nγλ
−1 nγ−αnα

(
Gα,N−1

(
x0

U

))T
nγ−αnαGα,N−1

(
x0

U

)
nγ−σnσPσN

 ≥ 0 (52)

S
1

nγ

∑
α∈Sqγ

nγ−αnαWα,kU + s ≤ 0 k = 0, . . . , N − 1 (53)

∀ |γ| = h, f = (d, d, . . . , d, c), l = (0, 0, . . . , 0, c) (54)

Proof: Considering the index JN in (7) and (9), let us prove that

δ − JN (µ,u, x0) > 0, ∀µ ∈ ∆N+1 (55)

it the LMI conditions in the theorem hold, once u is parametrised as (26). In-
deed, replacing in JN the prediction model (linear in x0 and U), a quadratic ex-
pression in control decision variables U arises. In order to remove the quadratic
dependence on the decision variables U in (55), the Schur complement is applied,
resulting in the condition:
δ

(
xT0 UT

) ∑
|α|=q

µαnαG
T
α UT

∑
|α|=q

µαnαW
T
α

∗
∑
|σ|=f

µσnσdiag(Hσ1 , . . . , HσN−1 , PσN ) 0

∗ 0
∑
|σ|=f

µσnσdiag(Fσ0 , . . . , FσN−1)

 > 0

(56)

According to Definition 1 and Proposition 2, the degree of the polynomial (56)
can be extended to any complexity parameter h, being h ≥ f and h ≥ q. Thus,
the Polya expansion of (56) yields:
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∑
|γ|=h

µγ



nγδ
(
xT0 UT

) ∑
α∈Sqγ

nγ−αnαG
T
α UT

∑
α∈Sqγ

nγ−αnαW
T
α

∗
∑
σ∈Sfγ

nγ−σnσdiag(Hσ1 , . . . , HσN−1 , PσN ) 0

∗ 0
∑
σ∈Sfγ

nγ−σnσdiag(Fσ0 , . . . , FσN−1)

 > 0

(57)
As all µk ar positive, the inequality (57) will hold if the inequalities (50)

hold; henceforth, δ will be an upper bound of the cost index JN . Note that it
is also needed that future states belong to X, future control actions must lie in
U and the state at instant N must be driven inside the terminal set. In order
to ensure that, the constraints (51)–(53) have been added to the problem as
sufficient conditions to constraints (20)–(22) in Section 4.2. Note that (51) and
(53) are elementwise (scalar) constraints instead of full matrix inequalities. �

Feasible set of initial conditions. For fixed horizon, terminal cost and terminal
sets, the set of x0 yielding feasible LMIs (50)–(54) in Theorem 2 (if x0 were now
considered to be a decision variable) is a convex LMI set. Such a set will be
denoted as shape-independent feasible set.

4.4. Shape-dependent solution (known µ(x0)).

Note that the MPC problem stated in Section 3 is fully shape-independent.
Thus, any x0 in the shape-independent feasible set discussed on page 15 would be
guaranteed feasible for any TS system, whatever the value of µ(x0) happened to
be. However, in actual implementation this would be suboptimal, given the fact
that µ(x0) would be known so the solution needs not to be valid for“all”possible
µ(x0) but only for the currently measured value. So, if matrix µ contained only
the unknown memberships from instants 1 to N , the shape-dependent MPC
problem would be stated as:

J∗(x0) := min
U

max
µ∈∆N

JN (µ, g(µ, U), µ(x0), x0) (58)

subject to the same constraints as in the original problem. Note that the first
control action does not need to depend on the membership function µ(x0) so
the set of decision variables U can be considered to be an arbitrary scalar u0

for the first step (instead of using U0 defined in (25)), and the unaltered vectors
Uk in (25) for k = 1, . . . , N − 1.

This entails some minor modifications to the previously-presented setting
in Theorem 2: the part of the prediction model Gα computing x1 from x0 is
a single linear model x1 = A(µ(x0))x0 + B(µ(x0))u0, thus, the degree of all
polynomials involving µ(x0) can be set to zero, because all “vertices” are the
same. For brevity, details on these modifications are left to the reader.
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Note that the feasible set of x0 in problem (58) (and the associated con-
straints) would not be a convex LMI set as µ(x0) may be any arbitrarily com-
plex nonlinearity, see the example on Section 7. This set will be denoted as
shape-dependent feasible set.

5. Stability

As in classical predictive control, in order to prove stability, the terminal
set and terminal costs must be computed assuming there is a so-called terminal
controller which guarantees that the infinite cost (6) is bounded by the terminal
cost. Let us discuss the details.

5.1. Terminal Controller

Theorem 3 The system (2) is stabilizable and the cost index J∞ in (6), with

step cost (47), is bounded by V (µ(x0), x0) = xT0

(
P cµ(x0)

)−1

x0, with c ∈ N being

a degree parameter, if there exist matrices Pα, and Kα, for all |α| = c, such that
the following LMIs are feasible:

∑
α,ξ∈Sc1γ
σ∈Sdγ


nαnγ−αPα nαnγ−α−ξ(AξPα −BξKα)T nαnγ−αK

T
α nαnγ−αPα

∗ nγPθ 0 0
∗ 0 nσnγ−σFσ 0
∗ 0 0 nσnγ−σHσ

 > 0

(59)
for all γ ∈ Nr such that |γ| = q, with any arbitrarily chosen q ≥ max(c+1, d),

and all θ ∈ Nr such that |θ| = c, with Scγ , Sdγ and Sc1γ defined in (A.4) and (A.9),
and the control action is:

u(x) = Kc
µ(x)(P

c
µ(x))

−1x (60)

Proof: Omitted for brevity, as it closely follows well-known guaranteed-
cost results, see [1, 12, 35], plus some standard Polya-expansion argumentations
incorporated here. �

Optimal controller. It is straightforward to check that, for instance, adding the
condition

δI <
1

nγ

∑
α ∈ Scγ

nγ−αnαPα (61)

and minimising δ would guarantee that J∞ ≤ δ∗xT0 x0, δ∗ being the optimal
solution.
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5.2. Computation of terminal sets.

Consider the terminal set defined in (43). The developments below will
discuss how to obtain a bound on λ such that T ⊂ X and the control action
(60) is admissible, i.e., u ∈ U, for all x ∈ T. Note that, as T is a subset of every
Lyapunov level set1, once T is entered, the state trajectory will never leave T in
the future under the terminal control law computed with LMIs in Theorem 3.

Theorem 4 For a TS fuzzy system (2), with input (60), the terminal set T
verifies T ⊂ X and u(x) ∈ U for all x ∈ T, if λ is the minimum positive scalar
such that, for all |γ| = q, being q ≥ c,

λ ≥ 1

nγ

1

r2
i

Ri

 ∑
α ∈ Scγ

nγ−αnαPα

RTi (62)

∑
α ∈ Scγ

nγ−αnα

(
Pα KT

αS
T
j

SjKα λs2
j

)
≥ 0 (63)

where Ri denotes the i-th row in matrix R and Sj the j-th row of S; and i ranges
from one up to the number of rows of R, j from one to the number of rows of
S.

Proof: As the shape-independent levels sets of the Lyapunov function from
Theorem 3 are symmetric, because V (µ, x) = V (µ,−x), in order for such a
level set to lie inside the (possibly non-symmetric X), the referred level set must
belong to the symmetric set Xsym := {x | |Ri 1

−rix| ≤ 1 ∀i} ⊂ X. According to

[39], it is well known that the set xT
(
P cµ
)−1

x ≤ λ−1 is contained in X if

1

r2
i

Ri
(
P cµ
)
RTi ≤ λ ∀i (64)

Substituting P cµ =
∑
|γ|=c µ

γPγ by an arbitrary Polya expansion P cµ =

E(P cµ, q) where q ≥ c

λ ≥ 1

r2
i

Ri

∑
|γ|=h

µγ
∑
α ∈ Scγ

nγ−αnαPα

RTi =

=
∑
|γ|=q

nγµ
γ 1

nγr2
i

Ri

∑
α∈Scγ

nγ−αnαPα

RTi ∀i (65)

1Basically, as µ is unknown at design time, only the so-called shape-independent level
set {maxµ∈∆ V (µ, x) ≤ λ} can be proven to belong to any “true” shape-dependent level set
{V (µ(x), x) ≤ λ}, motivating the definition (43), see the discussion in [9, Section 7].
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So, from Theorem 8, a sufficient condition for the above is that each of the
homogeneous polynomial coefficients fulfills the inequality, which is what (62)
states.

On the other hand, the control action must belong to set U for all states
inside the sought level set. Again, as done with the state constraints, symmetry
of the level set and linearity in the state of the terminal controller needs to

enforce u ∈ Usym, where Usym :=
{
u|
∣∣∣ Sj−sj u∣∣∣ ≤ 1 ∀j

}
⊂ U.

If xT (P cµ)−1x ≤ (λ)
−1

, and the condition below holds,

1

s2
j

uTSTj Sju =
1

s2
j

xT (P cµ)−T (Kc
µ)TSTj SjK

c
µ(P cµ)−1x ≤ xT (P cµ)−1xλ︸ ︷︷ ︸ ≤ 1

then the control action will be admissible for all x in T. Concentrating on the
inequality over the braces, if congruence with matrix P cµ is applied and, later
on, a Schur complement, we get the equivalent condition:(

P cµ (Kc
µ)TSTj

SjK
c
µ λs2

j

)
≥ 0 ∀ j (66)

Finally, an arbitrary Polya expansion can be carried out, yielding∑
|γ|=q

µγ

( ∑
α∈Scγ

nγ−αnαPα
∑
α∈Scγ

nγ−αnαK
T
αS

T
j∑

α∈Scγ
nγ−αnαSjKα nγλs

2
j

)
≥ 0 ∀ j (67)

This inequality will hold if all the coefficients of the polynomial are positive,
which amounts to (63). �

5.3. Stability: main result

The first result to be stated considers the standard open-loop application of
the computed control actions until the terminal set is reached:

Theorem 5 Given x0, if F dµ ≥ 0 and Hd
µ > 0 for any µ ∈ ∆, and control

actions (26) are applied once the solution to the optimisation in Theorem 2 is
obtained, from instant k = 0 to k = N−1, and the terminal controller is applied
from instants N onwards, then, the system will reach the origin asymptotically
and the cost (6) will be bounded by δ∗.

Proof: Note that, the theorem 2 includes the condition (52), which forces
that control actions (26) steer the system to terminal set (43) within N steps.
If once the system is inside the terminal set the terminal controller is applied,
the system will reach the origin asymptotically with it. With regard to a bound
on cost (6), the terminal cost bounds the infinite cost (Theorem 3) once xN ∈ T
and the total cost (including the transient until T is reached) is bounded by δ∗

discussed in the statement and proof of Theorem 2. �
In predictive control setups, receding horizon implementation is a common

approach [17]. In our context, what we will understand as receding horizon
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implementation is solving problem (58) at each step, after current state is mea-
sured. Under such setting, we can state the following results.

First, inspired in [30], we will consider the particular case N = 1 which
renders the setup in Algorithm 2 of the cited work (except for minor changes in
the terminal LMIs and the use of a simpler non-fuzzy cost index).

Theorem 6 In the case N = 1, receding horizon implementation of the solution
to (58) is recursively feasible and stable.

Proof: With N = 1, application of the first control action u0 will drive the
state x1 to the terminal set. Following standard MPC argumentations analogous
to [30, Theorem 1] or [17], the terminal control action will be feasible at next
step, hence the solution to (58) will produce an equal or better cost bound,
which can be proven to be a Lyapunov function. For brevity, details are left to
the reader. �

For receding-horizon implementations with longer horizons, the following
theorem can be stated:

Theorem 7 Receding horizon implementation of the solution to (58) is recur-
sively feasible and stable, too, in the case the terminal controller (60) is polyno-
mial in the membership functions (quadratic Lyapunov function Pα ≡ P ), and
controller degree vectors c[k] in (23) fulfill:

c(i−1)(j−1) ≥ cij , i, j = 2, . . . , N − 1

and c(N−1)(N−1) ≥ c, with c being the complexity of the terminal controller gain
Kc
µ(x) in (60), and the Polya expansion degree vector h in Theorem 2 verifies

hi−1 ≥ hi, i = 2, . . . , N .

Proof: Under the conditions in the theorem statement, the terminal con-
troller is polynomial in the memberships. With such controller, a parametrisa-
tion of high enough degree on the control actions uk in (25), k = 1, . . . , N − 1
can allow an argumentation similar to the previous theorem, as follows.

Let us consider, for illustration a case with N = 4.
[k = 0] {�, h1, h2, h3, h4} Polya expansion

u0: {�, 0, 0, 0, 0}
u1: {�, c11, 0, 0, 0}
u2: {�, c21, c22, 0, 0}
u3: {�, c31, c32, c33, 0}
u4: {0, 0, 0, 0, c} Terminal control

The symbol � indicates that, as the membership µ(x0) is known when solv-
ing (58), fuzzy dependence on such variable is not necessary in the control
parametrisation.

One step later, the open-loop application of the solution from the previous
step would have complexity:
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[k = 1] {h1, h2, h3, h4, h4} Polya expansion

u1: {c11, 0, 0, 0, 0}
u2: {c21, c22, 0, 0, 0}
u3: {c31, c32, c33, 0, 0}
u4: {0, 0, 0, c, 0} Terminal control

u5: {0, 0, 0, 0, c} Terminal control

Hence, if we apply the optimisation problem arising from the first table in
receding horizon, in order to ensure feasibility and non-increasing cost bound,
computations with the complexities on the first table must be able to replicate
the second one (i.e., the second table must produce a feasible sub-optimal result
on the problem associated to the first one). To achieve the latter condition, we
need to take two facts into account:

1. measuring µ(x1) at next instant will ensure that fuzziness on it is not
needed (so � can indeed replicate the results with complexities h1, c11,
c21 and c31 for any value of these degrees).

2. Except the � ones, discussed above, each element of the first table must
be larger or equal than the corresponding element on the second one, i.e.,
c11 ≥ c22, c21 ≥ c32, c22 ≥ c33, and for the last action to be more powerful
than the terminal one, we need c33 ≥ c. Additionally, we need the Polya
expansion degrees to fulfill h1 ≥ h2 ≥ h3 ≥ h4.

The above discussion justifies the inequalities in the complexity parameters in
the theorem statement.

Once the complexity issues are cleared out so recursive feasibility and a
monotonically decreasing cost bound are proven, the standard MPC stability
argumentations can be applied, in the same way as commented in the proof of
Theorem 6, omitted, again, for brevity. �

In the above theorem, the motivation of considering a quadratic Lyapunov
function is to avoid the terminal controller being rational in the memberships.
Indeed, as the control actions from k = 1 to N − 1 are polynomial in the
memberships we cannot ensure that they can replicate the rational terminal
control law (this is why only N = 1 allowed to prove Theorem 6). In this way,
the stability results of, for instance [31], can be considered a particular case of
Theorem 7.

6. Discussion and comparative analysis

As discussed in the introduction, other references have dealt with predictive
control in a fuzzy context. Some comparative discussion with a few references
appears in the introduction and in Section 3.1, focusing the similarities and dif-
ferences with other guaranteed-cost and infinite-horizon proposals. We deferred
to this section a comparison with other more recent LMI-based results on similar
problems.

Regarding comparison with [40], their approach pursues similar goals to ours.
However, their determination of the terminal set and controller is conservative,
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in the sense that, first, their proposed controller is a PDC one (see their equa-
tion 4) and, second, they pose conditions for all i, j, l in their Theorems 1 and
2, where i affects the current process and Lyapunov function vertex model, j
affects the controller vertex and l is the next-instant Lyapunov function ver-
tex. In that way, say, controller vertex 1 proves stability and cost bounds for
every i and k so their results cannot be better than those from a robust linear
controller. Our terminal controller even for the same level of Polya complexity
parameter will, hence, prove a better cost bound. Note, however, that they
consider uncertainty in the TS vertex models as well as persistent disturbances
so such conservative steps are clearly justified and needed to synthesise the ter-
minal controller; on the other hand, our approach purposely does not consider
uncertain models, although incorporating polytopic uncertainty such as that in
[36] is indeed possible, by omitting dependence of the controller parametrisation
(23) on unknown components; if not component were known, our control actions
would be the plain scalars in minimax predictive control [19].

In [32], a state-dependent guaranteed-cost control is proposed so that, once
xk is measured, a cost bound γ can be guaranteed solving some LMIs ensuring
that control action does not saturate. As states get closer to the origin, better
cost bounds can be found by increasing the controller gain. In fact, when our
terminal set is eventually reached, the same bound would be obtained as LMIs
are equivalent. Our improvement lies in the fact that we allow full saturation
until the terminal set is reached.

One of the most relevant recent results related to our proposal is [31]. Indeed,
the problem statement is similar. The controller parametrisation in the cited
work, [31, eq. (10)], proposes a control action with multilinear dependence
on past memberships (uk depends on memberships up to k − 1). However, it
does not incorporate the membership at instant k, as we do. In that way, not
being“fuzzy”in the last computation has the advantage of avoiding multiple-sum
formulations so an elegant single-sum prediction model ensues, see [31, eq. (11)],
but loses expressive power. Actually, as already commented, using our notation,
the case in the above work is a particular case of our proposal setting c[k] in (23)
to be (1, 1, 1, 1, . . . , 1, 0, 0, . . . ) containing k− 1 ones, the rest zeros. Indeed, the
resulting prediction model with q[k] in (28) to be (1,1,1,1,...,1,0,0,...) containing
“k” ones would yield [31, eq. (11)] as a particular case. The LMI problem [31,
eq. (27)] is a particular case of our approach (Theorem 2). In summary, in
our proposal, we generalise the control action parametrisation from multilinear
to polynomials in past and current memberships (and Polya expansions), with
arbitrary degree, as well as membership-dependent cost-index weightings. last,
in the discussion of Theorem 7, we also argued that the stability results in Ding’s
work can be considered a particular case of ours.

As a last comparison, the work [30] is also relevant. Indeed, the proposed
terminal set in [30, eq. (35)] can be proved to be the same as (43).
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7. Examples

Consider a 2-rule TS system (2) with the local models and membership
functions defined as:

A1 =

(
−0.9 0.3

0 0.4

)
A2 =

(
0.8 0.6
−0.5 0.2

)
B1 =

(
0.4
1.1

)
B2 =

(
0.9
0.3

) (68)

µ1(xk) =
sin(0.5πxk(2)) + 1

2
µ2(xk) = 1− µ1(xk) (69)

Input and state constraints are defined as:

− 1 ≤ uk ≤ 1 − 5 ≤ xk ≤ 5 (70)

For simplicity, non-fuzzy weighing matrices H and F will be employed, with
d = 0:

H =

(
2 0
0 2

)
F = 2 (71)

Terminal set and controller. The terminal controller has been computed with
degree c = 1, with LMIs (59), (62) and (63) expanded to degree q = 20. The
terminal set T (shape-independent) is drawn with black line2 on Figure 1.

Feasible sets. The shape-independent predictive control problem (i.e., valid for
any µ(x0)) has been solved with horizon N = 4, and the chosen controller degree
parameters are:

c[0] = (1, 0, 0, 0, 0), c[1] = (1, 1, 0, 0, 0), c[2] = (1, 1, 1, 0, 0), c[3] = (1, 1, 1, 1, 0)

Furthermore, homogeneous polynomials have been expanded, to exploit Polya’s
theorem, to degree h = (4, 4, 4, 4, 1). The feasible set of this shape-independent
MPC problem has also been computed; it is a convex LMI set, presented in
Figure 1 with a purple3 line.

Additionally, the shape-dependent solution outlined in Section 4.4 has, too,
been computed, with controller complexities:

c[0] = (�, 0, 0, 0, 0), c[1] = (�, 1, 0, 0, 0), c[2] = (�, 1, 1, 0, 0), c[3] = (�, 1, 1, 1, 0)

and Polya expansion to degree vector h = (�, 4, 4, 4, 1). Note that the initial
zero in c[j] indicates that polynomials in the shape-dependent solution do not
depend on µ(x0) as it is directly replaced in the model matrices, as discussed in

2For sake of curiosity, the shape-dependent set that the terminal controller would actually
guarantee as valid is plotted in red (for the chosen memberships); however, such red set cannot
be used in the optimisation as µ(xN ) is not yet known at t = 0.

3Fixing any arbitrary direction and determining the point in the feasible set at a largest
distance from the origin in such direction is an LMI problem; this enables a reasonably easy
“ray-tracing” computation of the boundary (details omitted for brevity).
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Figure 2: Time response (state and control) of the trajectories on figure 1 for two initial
conditions.

the above-referred section. The shape-dependent feasible set was computed and
presented in green in Figure 1. As it depends on the actual values of the mem-
bership functions it is clearly non-convex (for the chosen memberships) and has
been approximately computed determining feasibility of the MPC optimization
problem point by point in a dense grid.

Simulation. For illustration, trajectories (using the less-conservative shape-dependent
solution) from x0 = (0, 4) (solid blue) and x0 = (0.8,−4.9) (dashed blue) are
shown in the phase plane in Figure 1, and in the time-domain, jointly with the
control action, in Figure 2. A third simulation with x0 = (4.8,−4.8) from the
shape-dependent feasible set also appears in Figure 1.

Comparative analysis. Let us compare our feasible set with that obtained in
[40, Theorem 3] with the same horizon N = 4, depicted in orange, in the
above figure. Importantly, the cited work tries to maximise the volume of an
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ellipsoidal feasible set via logdet convex optimisation subject to LMI constraints.
Conservatism of the proposed conditions there makes our approach to yield
significantly larger feasible sets both in the shape-independent case (purple) and
in the shape-dependent one (green). Considering x0 = (0, 4), the comparison of
the guaranteed cost bounds with different approaches is summarised on Table
1 below:

Table 1: Cost comparison with other literature for x0 = (0, 4).

Theorem 2 [32, Thm 3.1] [40, Theorem 3]

Cost bound: 10.89 13.63 45.72

Note that the main goal of the paper [40] is not to minimize the cost, but
to maximise the feasible area; hence, a large penalty with respect to [32] is
incurred. Nevertheless, our approach beats both [32] in cost and [40] in size of
the feasible set4.

Application example: fuzzy predictive control of a CSTR. Consider the contin-
uous stirred tank reactor (CSTR) in [15, Eq. (52)]. From a certain operating
point, state x1 is the reactive concentration increment, and state x2 is its tem-
perature increment. Control action u is a coolant temperature increment. The
state constraints (modelling region), as well as the input ones are set as:

− 0.5 ≤ x1 ≤ 0.5 − 10 ≤ x2 ≤ 10 − 10 ≤ u ≤ 10 (72)

From the nonlinearities ϕ1 and ϕ2 below, arising from the chemical kinetics,

ϕ1(x2) = k0 exp

(
− E/R

x2 + T eq

)
ϕ2(x2) = k0

(
exp

(
− E/R

x2 + T eq

)
− exp

(
−E/R
T eq

))
CeqA
x2

(73)

four membership functions are obtained via standard sector-nonlinearity. Re-
placing the relevant physical constants, the resulting discrete TS fuzzy model
(disturbance model omitted) is:

A1 =

(
0.8227 −0.0017
6.1233 0.9367

)
A2 =

(
0.9654 −0.0018
−0.6759 0.9433

)
A3 =

(
0.8895 −0.0029
2.9447 0.9968

)
A4 =

(
0.8930 −0.0006
2.7738 0.8864

)
(74)

B1 =

(
−0.0001
0.1014

)
B2 =

(
−0.0001
0.1016

)
B3 =

(
−0.0002
0.1045

)
B4 =

(
−0.000034

0.0986

)
(75)

4Actually, a suboptimal lower-gain terminal controller in our implementation of [32] was
needed to ensure feasibility of x0 with N = 4 (enlarging the terminal set), and an horizon of
N = 7 was needed in the implementation of [40] for x0 to be feasible.
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C1 = C2 = C3 = C4 =
(
0 1

)
(76)

The reader is referred to [15] for full modelling details.
The shape-dependent fuzzy predictive control problem (58) is proposed with

N = 3, c[0] = (�, 0, 0, 0), c[1] = (�, 1, 0, 0), c[2] = (�, 1, 1, 0), h = (�, 2, 2, 1), the
cost function is quadratic with values Q = 1 and R−1 = 0.25. The trajectories
of output and control action are the blue lines displayed in Figure 3. The
proposed fuzzy MPC problem had a computational time cost, on an Intel i7-
4790 @3.6GHz, 8GB RAM, of 0.56 seconds.

For comparison, we also programmed the controller proposed in [33] whose
output and control action are represented by the red dashed lines in Figure
3. Setting an initial state x = (0.35, 5.6)T , the achieved cost value JREAL =∑35

0 (y2
k+0.25u2

k) of our proposal is 345 whereas that of [33] is 379. The output-
feedback version in [15] was also tested, achieving a larger cost of 439, as intu-
itively expected (simulation omitted as results are not comparable, out of the
scope of this work).

8. Conclusions

This paper has presented a generalisation of the predictive control approach
to Takagi-Sugeno systems. The approach obtains better results than prior liter-
ature both in achieved cost and in the feasible region, due to a suitable control
action parametrisation as a function of future memberships and the use of Polya
relaxations. Of course, many guaranteed-cost results in prior literature are par-
ticular cases considering an horizon of a single sample; in fact, such results are
used to build the terminal controller and terminal cost needed in the develop-
ments.
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Appendix A.

Proposition 1 Consider the homogeneous fuzzy summations of degrees d and
c, respectively:

Md
µ =

∑
|α|=d

µαnαMα, Lcµ =
∑
|β|=c

µβnβLβ (A.1)

then their product

Md
µL

c
µ =

∑
|α|=d

µαnαMα

∑
|β|=c

µβnβLβ

 (A.2)

can be expressed as an homogeneous polynomial of degree d+ c,

Ξd+c
µ =

∑
|γ|=d+c

µγ

 ∑
α ∈ Sdγ

nαnγ−αMαLγ−α

 = Md
µL

c
µ (A.3)

where
Sdγ := {α ∈ Nr×(N+1)| |α| = d, α ≤ γ} (A.4)

Proof: See paper [35]. �

Definition 1 (Polya expansion) The degree q expansion of an homogeneous
polynomial Md

µ, denoted by E(q,Md
µ), with degree q ≥ d, is defined as the degree-

q homogeneous polynomial

E(q,Md
µ) :=

 ∑
|β|=(q−d)

µβnβ

 ·Md
µ (A.5)

Evidently from (13), E(q,Md
µ) = Md

µ.

Corollary 1 Using Proposition 1 with Lβ = 1, we can assert that

E(q,Md
µ) =

∑
|γ|=q

µγ
∑
α ∈ Sdγ

nαnγ−αMα (A.6)

where Sdγ was defined in (A.4).
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Theorem 8 (Polya theorem [34, 41]) The summation Md
µ is positive for all

µ ∈ ∆ if there exists q such that all coefficients of the expanded degree-q poly-
nomial E(q,Md

µ) are positive. Furthermore, if Md
µ > ε > 0 for all µ ∈ ∆ there

exists a finite q such that E(q,Md
µ) has all its coefficients positive.

Corollary 2 Proposition 1 can be used recursively for the product of three or
more summations. With three homogeneous polynomials of degrees d, c and l

Md
µ =

∑
|α|=d

µαnαMα, Lcµ =
∑
|β|=c

µβnβLβ , P lµ =
∑
|ξ|=l

µξnαPξ, (A.7)

the product of the three polynomials can be expressed as an homogeneous poly-
nomial of degree d+ c+ l,

Md
µL

c
µP

l
µ =

∑
|γ|=d+c+l

µγ

 ∑
α,ξ∈Sdlγ

nαnγ−α−ξnξMαLγ−α−ξPξ

 (A.8)

where the set Sdlγ is defined as:

Sdlγ := {α, ξ ∈ Nr×(N+1)||α| = d, , |ξ| = l, γ − α− ξ ≥ 0} (A.9)

Obviously, if any of d, c, l were equal to 1, the corresponding combinatorial
number nα, nβ, nξ would be omitted, as in Remark 1.

Proposition 2 The summation over a single instant k, Hq
µ(xk) in (11), can be

represented as a multi-instant sum (i.e., with α being a matrix):

Hq
µ(xk) =

∑
|α|=d

α∈Rr×(N+1)

µαnαHαk

where degree vector d is such that dk = q and the other values of the vector d
are arbitrary non-negative integers.

Proof: From the fact that
∑
|α|=di nαµ(xi)

α = 1 for all i and non-negative
natural di, we have

Hdk
µ(xk) =


N∏
i=0

i 6=k

∑
|α|=di
α∈Rr

nαµ(xi)
α


∑
|α|=dk
α∈Rr

µ(xk)αnαHα =
∑
|α|=d

α∈Rr×(N+1)

µαnαHαk

�
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