UNIVERSITAT
JAUME-I

Videogame design and development degree
Final degree project’s Technical Report

lon - Physics Puzzles and
Exploration 3D Videogame

Author: Héctor Ruiz Marco
Tutor: José Martinez Sotoca

Summary

In this document is presented the whole related work of the project. In it is
explained what type of project is as well as what are the phases that composes it.
The project consist mainly in a 3D playable demo made with Unity. Its main
characteristics are the use of default sphere physics for the puzzles and the use of
the terrain and tree modeling tools included in Unity for all the modeling involved
in the game world to enhance the exploration part of the game. The game is in
first person and is only made for PC.

Keywords: Unity, Videogame, 3D, First Person, Puzzle, Physics, Exploration

Index

Summary
Figures Index

Introduction
Project Specifications
Story
Mechanics
3D Design
Software
Motivation
Objectives
Justification

Initial Planning

Design

Visual Style

Mechanics
Puzzles
Feedback
Exploration

Environment

Architecture

Development

Initial Tests
Terrain tool
Tree tool
Shaders
Lighting
Camera Effects
Assets

Art Development
Game World
Modeling
2D Art
Sound

Technical Development

10
11
11
12
13
14
15
16
17

18

20
21
24
24
27
27
29
30

33
33
33
35
35
36
36
37
39
39
42
43
46
47

Main Menu
Physics
Effects
Sound
Ambiental
Area Music
Modifiers
Feedback
Footsteps
Physics
Camera
Antialiasing
Ambient Occlusion
Bloom
Environment
Fog
Particles
Light Shafts
Volumetric Lights
Shaders
Water
Toon
Cel Kernel
Animations
Scripts
Player Scripts
First Person Controller
Cursor Interactions
Player Walkable Area
Rider
Map Controller
Activator
Puzzles Scripts
Puzzle Controller
Spherescope Controller
Cable Controller
Micro Orb Controller
Audio Scripts
Background Music Controller
High Volume

47
49
50
50
50
51
51
51
51
52
52
52
52
53
53
53
54
57
58
59
59
60
60
62
63
63
64
65
66
67
68
68
69
69
70
70
70
71
71
71

Physical Sound VA

Debug Scripts 72

Take Screenshot 72

FPS Display 72

Menus Scripts 72

Fader 73

Scene Loader 73

Game Control 73

Effects Scripts 74

Position Lerper 74
Synchronized Position 76

Effects 76

Shaft Adapter 76

Rotator 76

Mesh Fader 77
Optimizations 78
Baking 78
Occlusion Culling 80

Post Processing Stack 81

Results 83
Final Planning 93
Conclusions 94
Objectives 94
Problems and Solutions 96
Final Bake 96
Terrain 97
Bibliography 99
References 99
Documentation 99
Assets 99

Tools 100

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:

Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 15:
Figure 16:
Figure 17:
Figure 18:
Figure 19:
Figure 20:
Figure 21:
Figure 22:
Figure 23:
Figure 24:
Figure 25:
Figure 26:
Figure 27:
Figure 28:
Figure 29:
Figure 30:
Figure 31:

Figures Index

Example of the World Map
Photo of a Superplexus

The Witness graphic style
Rime graphic style

Rocks’ style comparison

Color contagion in The Witness
Without Final Gather (left) and with Final Gather (right) comparison
Emissive foliage effect in The Witness
Grass style from Zelda: Breath of the Wild

Puzzle sketch

Black and white puzzles’ sequence in The Witness
Puzzles' learning and difficulty curves design
Keys’ sketch

Island map sketch

Architecture colors reference

Temple's architecture reference and temple's architecture sketch

Lighthouse's architecture reference and lighthouse's sketch

Romanic aqueduct

Terrain test full of grass

Terrain tool with optimized options

Material example without Global Illumination

Neon effect in a test map

Sun shafts effect in a test map

Natural ramp elevation in the terrain in the Unity Editor
Paint Height tool from Terrain tool

Raise/Lower Terrain tool from Terrain tool

Smooth Height tool from Terrain tool

Paint Texture tool from Terrain tool

Lighthouse model, floor model and wall model in 3dsmax

Example of different models made with 3dsmax

Figure 32:
Figure 33:
Figure 34:
Figure 35:
Figure 36:
Figure 37:
Figure 38:
Figure 39:
Figure 40:
Figure 41:
Figure 42:
Figure 43:
Figure 44:
Figure 45:
Figure 46:
Figure 47:
Figure 48:
Figure 49:
Figure 50:
Figure 51:
Figure 52:
Figure 53:
Figure 54:
Figure 55:
Figure 56:
Figure 57:
Figure 58:
Figure 59:
Figure 60:
Figure 61:
Figure 62:
Figure 63:
Figure 64:

Original texture (left) and modificated texture (right)
Skybox final version

Original grass (left) and modificated grass (right)

Image of the different cursor states

Final version of the island map

Final version of the game title

Canvas Scaler configuration

Particles in the title

Light Shaft intensity comparison

Objects as childs of the water plane in the Hierachy
Antialiasing settings

Ambient Occlusion settings

Bloom settings

With and without Height Fog effect comparison

Fire particles material

Fire particle system renderer

Final fire particles effect

Water foam effect

Shiny floating dots effect

Sun shafts effect

With and without Volumetric Light effect comparison
Water shader with and without transparent plane comparison
Standard shader (left) and Cel Shading shader (right) comparison
Diffuse Types, from left to right, basic, frontal and mixed
Cel Kernel shader material examples for the orbs
Catapult animation graph and catapult animation timeline
Player Scripts flow chart

FPC final configuration with Bobbing and Jump options deactivated
Defined footsteps sounds and Walkable mask from Player
Dock with bell and boat

Folded map in a stone next to the fireplace

Puzzle Scripts flow chart

Menu Scripts flow chart

43
44
45
45
46
46
47
48
48
49
52
53
53
54
55
56
56
57
57
58
59
59
60
61
62
63
64
65
67
68
68
69
73

Figure 65:
Figure 66:
Figure 67:
Figure 68:
Figure 69:
Figure 70:
Figure 71:
Figure 72:
Figure 73:
Figure 74:
Figure 75:
Figure 76:
Figure 77:
Figure 78:
Figure 79:
Figure 80:
Figure 81:
Figure 82:
Figure 83:
Figure 84:
Figure 85:
Figure 86:
Figure 87:
Figure 88:
Figure 89:
Figure 90:
Figure 91:
Figure 92:
Figure 93:
Figure 94:

Low tide (above) and high tide (below) comparison
Opened door (left) and closed door (right)
Rotating rings from the Gyro Temple

Mesh Fader effect when taking the red key
Baked Gl options

Lightmap Static option

Generate Lightmap UVs option

Occluder and Occludee Static options
Baking Occlusion process

Material example with HDR emission of 3
Bedroom

Statue elevator

Lighthouse outside and bridge

First zone of the island

Beach zone

First key zone

Second key zone

Hanging bridges zone

Third key zone

Gyro Temple

First puzzles sequence

Orb in catapult

Inverted puzzle waiting to be solved
Outdoor wood elevator

Broken wood bridge and shark rocks
Lighthouse from the distance

Final scene with lighthouse being illuminated

New bake settings

Lighthouse bake artifacts near the door and near the stairs

Rock arch reference

75
75
77
77
78
79
79
80
81
82
83
84
84
85
85
86
86
87
87
88
89
89
90
90
91
91
92
96
97
98

Introduction

Nowadays many video game developers focus too much on wanting to achieve
visual realism. In addition, they tends to complicate the game mechanics and
overload users causing frustration and boredom, even end up leaving the game.
The main objective of this project is to try to solve both problems. On the one
hand you want to demonstrate that you do not need to have realistic graphics for a
video game to look good. On the other hand is proposed a series of mechanics that
are simple and entertaining, as well as, easy and fast to understand and have a
curve of difficulty and learning well balanced.

Therefore, to achieve this, a demo of a videogame in Unity will be developed,
which on the one hand will contain an explorable scenario that is pleasing to the
eye and on the other hand a series of puzzles and small challenges based on
physics of spheres, which will require the ability of the player to be solved during
the game.

The graphic style will be very colorful, without practically any textures and with
flat colors. In addition, small details like particles and sound effects will be added
to increase the immersive effect.

Since the complete game design includes a wide variety of scenarios and puzzles,
only a small demo will be developed that will try to show the greatest possible
diversity of scenarios and puzzles without having to be part of the hypothetical
final version of the game.

The objective of the player will be, to roll a series of orbs to a specific point of the
stage through the interaction with the environment and the resolution of puzzles.
The orbs can only be moved on a series of rails and other elements that are on the
stage, like catapults. The demo will focus only on one of these orbs and their
corresponding scenario.

10

Project Specifications

Story

We put ourselves in the shoes of Kodo, a man in charge of the protection and
control of the city's lighthouses. The city is located on a central island, surrounded
by six lighthouses. These lighthouses formerly served to protect the city, but
wartime passed and that is why they are deactivated. However, Kodo receives a
letter from the king in which he tells him that it is time to turn on the lighthouses
again as a new danger approaches. To do this, Kodo should look for the six lon
orbs, which are the power source of each of the lighthouses. These orbs are each
one located on their corresponding island, contained in the Gyro temples, which
are responsible for keeping the orbs stabilized and charged all the time, because
due to the large amount of energy these orbs possess, they need to be far of the
lighthouses and the city and can not come into contact with any living being. The
goal of Kodo is to find each of the Gyro temples to gather the orbs and bring them
to their corresponding lighthouse. Since the orbs can not come into contact with
any living being, the islands have mounted rail systems whereby the orbs can roll
until they reach their lighthouse.

Figure 1: Example of the World Map

11

Mechanics

The complete designed game is divided into six islands, which can be explored and
completed in the order you want by navigating between them freely. However, the
demo developed in this project only focuses on one of these islands. Even so, the
navigation system will be implemented anyway, to show it as part of the project.

The game flow on each island can be separated into two parts. On the one hand
the exploration part, which corresponds to the route that goes from the lighthouse
to the temple and on the other hand the part of puzzles, which corresponds to the
way back that goes from the temple to the lighthouse.

The player will control Kodo in first person and must explore the six islands looking
for the orbs. On each island he will find three keys, which will allow he to
deactivate the Gyro temple of that island. Once deactivated, the orb is released
and begins its journey along the rails. This route, as a security measure contains
some stopping points in which the player must intervene solving puzzles, so that
the orb can continue rolling.

The mechanics of these puzzles are based on the so-called Plexus or Superplexus
[2], which consist of large transparent plastic spheres containing a
three-dimensional mazes inside which runs a metallic ball or a marble. These are
controlled by rotating the container sphere and the metal rings that hold it, as a
gyroscope. The goal is to make the complete journey from start to finish.

Figure 2: Photo of a Superplexus

12

3D Design

The visual style presented has is clean and colorful with high saturation, with flat
colors without barely any textures. The modeling is low-medium poly without
becoming very detailed and recharged. As visual references have been used the
videogames The Witness [3] and Rime [4]:

Figure 3: The Witness graphic style

Figure 4: Rime graphic style

13

Software

For the project development the next tools have been used:

- Unity 5.6.1f1: As the engine for the whole videogame, as well as other tools
included in Unity:

- Terrain tool: This tool offers the possibility to create terrain in the editor.
In addition, it also allows you to paint with different textures and to place

all type of grass and small plants.

- Tree tool: For modeling trees and bushes in the editor. This is faster than
using an external modeling tool.

- Monodevelop: As the programming tool, in C# language.

- Photoshop CSé6: As the 2D art tool for drawing elements like the interface, the
skybox, etc.

- 3dsMax: As the 3D modeling tool for all the 3D elements including structures like
arches and natural objects like rocks.

- MP3 Cutter Online: To cut sound files, for making them loopable or to remove
empty spaces on the sounds.

- Google Docs: To write all the documents related to the project. This are the
Technical Proposal and the final degree project’s Technical Report.

14

Motivation

At the beginning of last year (2016) a video game called The Withess was
published. This masterpiece contains everything I've always wanted in a video
game and everything that the majority lack. The visual style of the scenes is very
clean and colorful. The sound environment is very clear. The mechanics are based
on a simple concept that is gradually adding elements, which allows the player to
gradually learn the rules of that world. The curves of difficulty and learning are
very well balanced. The scenario can be freely explored and completed in any
desired order. All these elements make this video game a masterpiece.

It was this game that motivated me to make a kind of "The Witness 2", a game that
contained all these wonderful aspects, but from my point of view, with my rules of
game and with my own ideas.

In conjunction with this, at the end of the same year | was working on a video
game called Hexascope, which consists of solving puzzles using the spheres physics
as main mechanics. | really liked the result and | wanted to transfer part of what |
learned and the game concept to this project.

Therefore this project consists of the combination of both ideas in the same video
game.

On the other hand, this project is the second 3D video game I'm going to develop
and | want to see what I'm capable of and experience the most with the options
and tools offered by Unity 5 as a game engine. This includes optimization forms,
the terrain modeling tool and the tree creation tool, among others.

15

Objectives

- Obj 1: Make a playable demo of a 3D videogame for PC in first person that will
use the spheres physics as main mechanic and that will contain an free explorable
scenario.

+ Obj 2: The demo will focus exclusively on one of the six proposed islands, but
trying to show a variety of environments in it, including the navigation system.

- Obj 3: The scenarios of the game will be pleasing to the eye using a colorful
aesthetic without textures and the modeling will be low-medium poly without

excessive detail.

- Obj 4: The terrain, grass and tree tools included in Unity will be used to create
the scenario.

-+ Obj 5: It will be important that the game has a good sound environment.

+ Obj 6: The interface will be as clean and clear as possible.

- Obj 7: The sound and interface should transmit good feedback to the player.

- Obj 8: The difficulty and learning curves will be well balanced, allowing the

player to learn and understand the mechanics little by little without any kind of
tutorial.

16

Justification

As | mentioned before, many video game developers now choose to focus on
realistic graphics and on complicated or repetitive mechanics. In the videogame
industry such games abound. However, | think that videogames are a way of
abstracting us from the world around us and introducing us to a completely new
world that is unknown to us at first and that we learn its characteristics little by
little. If you use realistic graphics that are reminiscent of the real world, you
already know what surrounds you and all that immersive experience is diluted. The
same applies for the mechanics. If they are elaborated and complicated or very
monotonous they end up boring the player and he ends up stop playing.

In this project | want to avoid this kind of thing and | want to offer the player an
immersive experience in which appear situations that encourage him to continue
playing and exploring the world around him and to continue learning about
everything that the game proposes to him.

17

Initial Planning

The project is divided into different tasks established as follows with their time
estimations:

T1. Write the technical proposal [5h]
T2. Tests on Unity of lighting, shaders, optimization, terrains and others. [24h]

T3. Design: It includes all aspects of the demo that will be performed, such as
mechanics, scenarios, puzzles, models, interface, game flow, difficulty and
learning curves, sound and visual feedback, story, etc. [90h]

T4. Modeling: It includes all the elements of the scene realized in 3dsmax, like the
lighthouse, the Gyro temple, the rails, the catapults, the rocks, the puzzles, the
keys, etc. [50h]

T5. Programming: It includes the movement of the First Person Controller and the
camera, interaction with the stage, puzzles, normal sound and sound of physics,
control of the boat, catapults and many other details. [70h]

T6. Look for resources like sounds, textures and assets. [16h]

T7. Montage: It includes all the assembly tasks of the scenario in the Unity editor
that are terrain modeling, tree modeling, placing of textures and grass,
animations, modeling of bridges and placement on the stage of all the elements
such as puzzles, rails, temples, lighthouse, catapults and rocks, among others

T8. Write the Technical Report [45h]

T9. Prepare the final presentation [10h]

18

The following table shows in more detail all the tasks performed daily according to
the initial planning that was decided. In this planning that goes from Tuesday to
Saturday, every day is dedicated 4 hours to the indicated tasks, making a total of

300 hours:

SEMANAS MARTES MIERCOLES JUEVES VIERNES SABADOS
13, febrero / Billcbaside Pruebas de shaders y Pruebas de Buscar Texturas, Gz materllales.
19’ febrero felrsines, eijpal materiales iluminacion y efectos] Sonidos y Musica Flrdizlets palrializs
9 arboles, etc fuego
S Anadir Fog.
20, febrero / Anadir FPC. Script PhysicalSound | Script Activator y | Script Interactuator + .
26, febrero Crear Orbes PositionLerper Cursor Sprites MPEEll GIEiEl
2 de pruebas
Disenar, modelar y| Disenar, modelar y | Buscar shader Agua s S Testing Semanal
27!_; febrero / configurar Gyro, y | configurar Puerta + | Afadir Océano al Dlasggsir; gllb;is(r y Redactar parte de
p ENZAS Estatua Pared escenario ybox. la memoria final
- . Soporte de sonido Reconfigurar FPC ; Testing Semanal
?,Zmarzo / (\gti?g; ré\ée:iléz) para Activator y |(FirstPersonControlle Script WalkableAreas Redactar parte de
, Marzo PositionLerper r) la memoria final
13, marzo / Disenar el faro Disenar el faro Modelar el faro Modelar el faro Rlzztgilagrs:::?:zle
19, marzo (parte 1) (parte 2) (parte 1) (parte 2) la memoria final
Anadir particulas y .
20, marzo / efectos (Shafts, Transiciones entre Prgel?as de Buscar fuente de texto Ve S
2 Ambient nari Optimizacion daptar la interfaz Redactar parte de
26, marzo i€ escenarios. (Occlusion Culling) | ¥ 2¢aptarfaintertaz - memoria final
Occlusion...)
26, marzo / | Disefar habitacion | Modelar habitacion N.\o.de.lar habitacion N.\OQe_lar habitacion Testing Semanal
2. abril inicial del juego inicial (parte 1) inicial (parte 2) + inicial (parte 3) + Redactar parte de
» @ Materiales Materiales la memoria final
3, abril / Disenar escenario Disenar escenario Disenar escenario Disenar escenario TSI Sl
9. abril (parte 1) (parte 2) (parte 3) (parte 4) ekl [EE a
2 la memoria final
10, abril / Disenar puzzles Disenar puzzles CITEE (R pase Pintar terreno del el Selialrel
16. abril (parte 1) (parte 2) del escenario e ——— Redactar parte de
9 (parte 1) la memoria final
17, abril / Disenar puzzles Sonido de pasos del | Programar puzzles Sonidos puzzles e R-Ie-fjsaté?agrS::;?ta:?jle
23, abril (parte 3) FPC segun el suelo (parte 1) interacciones la memoria final
24, abril / ACE LG pase leUJa}r e Modelar arboles 'y | Poner arboles y rocas iestingisemanal
36 bril del escenario Poner césped en el rocas en el escenario Redactar parte de
p &l (parte 2) terreno la memoria final
1, mayo / Disenar puzzles Programar puzzles Disefiar MenUs BT L 2 al l,a TSN S
7’ (parte 4) (parte 2) interfaz titul(,) interfaz de los menus | Redactar parte de
p MENHE P P y y el titulo del juego | la memoria final
" Testing Semanal
?,4 m;)go ; Prog:?)?ratre p3L)lZZleS Prog?i?rat; at;zzles Buscar SFX I:Ei?c;:) t:ldj?;gf Redactar parte de
2 Yy la memoria final
15. mavo / Disefio Disefo y Bordear con piedras | Pruebas en diferentes | Testing Semanal
2 1’ Y - ramacic')nybarca programacion los acantilados ordenadores y Redactar parte de
» mayo [Prog catapultas de las islas pantallas (resolucion) | la memoria final
22, mayo / Anadir pequefos | Testing de la demo | Optimizar el juego Viesialny sl Testmg ol
2{3 mavo detalles final (Occlusion Culling) Redactar parte de la | proyecto final con
’ y memoria final otras personas

In the section of Final Planning will explain what changes have been

been the actual planning that has been carried out.

and what has

Design

The design is a very important part involved in any development of a video game,
since it includes from the artistic and sound section, to the mechanics and rules of
game passing through history and architecture among others. In this project it has
been necessary to design all this and much more.

One of the first things to do in order to start designing is to look for references and
create a factory of ideas. For this, all types of images and folders have been
compiled with references that include scenarios, artistic styles, different
architectures, natural elements, concrete objects, etc. For this project, almost
2000 reference images have been collected. Throughout this section will be
showing some of them that are more relevant.

On the other hand, once you have all the references it is time to start making
different sketches of all the aspects involved in the project. In this case, sketches
of the stage, the lighthouse, the temple, the puzzles and everything that is related
to the initial idea.

20

Visual Style

At the beginning of the project, it was unknown what the mechanics of puzzles
with spheres physics would consist of. The only thing that was known is that is
wanted to create a large stage, pleasing to the eye and freely explorable with a
camera in first person. For this, the first of all is the visual style, which as
previously mentioned, is based on games like The Witness and Rime, which give
much importance to the color and high saturation of the same, achieving very alive
landscapes. They use flat colors or very subtle textures that allow to highlight the
importance of shapes and reliefs with the use of lights and shadows. In addition
they use modeling without much detail almost low-medium poly. In order to apply
this visual style you must first study it. This is discussed in detail below.

Figure 5: Rocks’ style comparison

The first thing to analyze are the textures. If you compare the rocks of Figure 5
you can see that the ones on the left have a texture that is used to highlight the
shape of the rock while in the one on the right the texture is merely decorative
and the shape of the rock Is highlighted by light and shadows. In this project is
wanted to achieve the effect shown on the right, that is, the lighting is the one
who handle the shaping of the elements on the stage. To help highlight the relief,
the Ambient Occlusion effect will also be used.

21

Figure 6: Color contagion in The Witness

Figure 6 shows another of the effects to be achieved. It is the color contagion. On
the ground you can see how it reflects slightly the purple color of the plants on the
right or on the ceiling, on the left, you can see that it starts to take on a greenish
tonality due to the vegetation that is on the other side of the wall. To achieve this
effect is used what is called Final Gather. Through a series of bounces and
calculations by the scene, this effect is painting and accumulating color where it
bounces. To be able to apply this effect it will be necessary that the illumination
of the scene is baked, that is to say, that it is not calculated in real time but that
is applied with precalculated textures. This effect can be seen better in Figure 7.

Figure 7: Without Final Gather (left) and with Final Gather (right) comparison

22

Another important aspect of this visual style is the vegetation. In The Witness,
both the foliage of the trees, and the flowers and the grass, seem to have a
glowing appearance almost as if they were emitting light. To achieve this effect it
will be necessary to use the Emission property in the materials used for the leaves
of the trees. This effect can be seen in Figure 8.

Figure 8: Emissive foliage effect in The Witness

As for the grass, because it will be placed using the tool that comes integrated in
the tool of creation of land of Unity, it will be complicated to adapt it and to
modify it so that it resembles to the visual style raised. To do this, special
attention must be paid to the shape and color of the grass leaves. In the Figure 9 it
is possible to appreciate better the style of the grass that is wanted to try to
achieve.

Figure 9: Grass style from Zelda: Breath of the Wild

23

Mechanics

As for the mechanics, they started based on the so-called Marble Machines [1],
which are small circuits by which a series of marbles roll. The idea was that the
scenario of the game would be one of these circuits and that the player in first
person could interact with different elements and mechanisms to help the orb to
continue advancing correctly by the circuit until arriving at the lighthouse.
However the mechanisms of the Marble Machines are very advanced and require
many hours of design and modeling and there was no time for all the rest of the
things they wanted to do, so is chosen to simplify the idea. It kept the idea of the
circuit that carried the orb from its initial point to the lighthouse, but they were
only a series of rails by which the ball fell and roll. During this tour, the orb
encounters different obstacles and the player must solve them so that the orb
continues to advance. These obstacles require the resolution of puzzles, which are
puzzles based on spheres physics. As explained above, these puzzles are based, on
the one hand, on a previous project called Hexascope and on the other hand, in
the so-called Superplexus [2]. It is a combination of both concepts and the result is
explained below.

Puzzles

Along the stage you will find a kind of pedestals or stone columns that have a
spherical element of transparent glass in the upper part. This glass sphere is the
one that works as a superplexus and the player can rotate it on both its x-axis and
its y-axis. Inside the sphere there are one or more micro orbs that can be blue or
red. In turn, the sphere has one or more ring shaped exits, which may also be red
or blue. The initial concept is that the player must rotate the sphere to make the
orbs fall through the exits of their same color. A small initial sketch is shown in
Figure 10.

24

= /-[:’}!.“ e "1
x "] { \"r! 07 ;

d\h R?—:l‘j -‘1

” 18 ‘J b*"“\: e

—]——'-‘ ()‘1 r?i ‘T‘J Umer * Zf"l(;sﬁ's I’G;U’;‘éfo!

L—.‘

‘7\‘ BO'SE CO‘UY; E)uT Co}ur r-ec)l..hf‘ol

Figure 10: Puzzle sketch

However, the idea is that to this initial basic concept will be added small variants
that will gradually appear as you progress in the game. For the demo, only the
color variant of the base is added. The pedestal has a ring on the base that
normally lights up in blue when the puzzle is available to be solved. However there
will come a time when in some puzzles the base will be illuminated in red instead
of blue. The blue color indicates that it is a normal puzzle and the red color
indicates that it is an inverted puzzle. This means that if the base is red, instead
of introduce the orbs through the exit of the same color, you have to enter the
orbs through the exit of the opposite color. Therefore in inverted puzzles, blue
orbs must be inserted into the red exit and the red orbs into the blue exit. This
concept may seem strange or over complicated at first but thanks to the good
design of the learning curve, the player will learn this easily without any tutorial.
In The Witness is made a very good use of the learning curve, introducing the
mechanics of the puzzles little by little and increasing the difficulty progressively.
In Figure 11 you can see a sequence of puzzles in this game. Without needing to
explain what these puzzles consist of, you can see that each panel, how much
more complex it looks from left to right.

Figure 11: Black and white puzzles’ sequence in The Witness

25

In this project is wanted to try to follow this model of learning and difficulty
curves. In order to elaborate a learning curve it is necessary to try to follow the
thread of thought that the player will carry. For this you have to make use of
colors, shapes and even sounds that make you relate things in one way or another.
Considering this thread of thinking, you can start to assemble the puzzles. In
Figure 12 you can see a sketch that represents the sequence of puzzles that has
been designed for the demo following this model of learning.

Figure 12: Puzzles' learning and difficulty curves design

The first puzzles are based only on the superplexus itself, without taking into
account different colors or different exits, all being blue. In these, the player
learns only the control of the sphere and the basic concept of getting the orb to
fall through the exit, without paying special attention to the color.

In the following sequence of puzzles the red color and the red exit is introduced,
something that will inevitably already catch the attention of the player. Later both
colors are mixed and the player will next relate the colors and deduce that each
orb must fall through the exit of its same color. If the player incorrectly completes
a puzzle, it simply restarts, so if it is not able to deduce it, you can get it by try
and fail.

26

Finally the bases of red color are introduced, that also will catch the attention of
the player. Along with this, you will be forced to enter a red orb in a blue exit with
a puzzle that only has these two elements. At first the player will surprise him, but
will soon relate what has happened to the fact that the base is red. In this way,
without having to explicitly explain it through a tutorial, the player has learned
and deduced the mechanics of the puzzles, something that is much more
satisfactory. Therefore, there is no tutorial as such, but the mechanics are
explained on their own thanks to this learning curve.

Feedback

Since the puzzles are separated from each other and distributed on the stage, to
be able to know at each moment what is next, where to go and if they are doing
things right or wrong, different types of feedback are used.

On the one hand there is the visual feedback. When a puzzle is activated and ready
to be solved, it is marked with a vertical beam of light that can be seen from a
distance. Along with this, all the puzzles on the stage are interconnected
sequentially with a cable. This cable lights up as the puzzles are completed, so
following it is easy to know which way to go. Also, when the puzzle completes
correctly it lights up the same color as the base.

On the other hand is the sound feedback that is an auditory support to visual
feedback. When a puzzle is activated, it plays a 3D sound, which when being in
stereo, can be perfectly deduced from where it comes from. On the other hand,
when solving a puzzle, a sound of success or failure is reproduced according to
whether it has been correctly completed or not. Also, if done wrong, the puzzle
simply restarts.

Exploration

As already explained before, the mechanics of the game do not only consist of
completing puzzles. An important part is the exploration of the environment. In
order to perform this part, it is important to somehow get the player to have some
interest in explore the island. A secondary mechanic has been designed for this
purpose. This is the search of the three keys.

The first objective of the player as it is known, is to reach the Gyro temple where
the orb is located. However getting there is too simple and monotonous. To
improve the exploration experience, the player must find first three keys found in

27

different areas of the island. These keys are placed on pedestals under small
domes, so it is easy to see them from far. In addition the player will be able to
find a help map that will let you know where each key is located. Once the three
keys are obtained, they can be placed in the Gyro temple to unlock the orb that is
there. An initial sketch of the three keys is shown in Figure 13.

Figure 13: Keys’ sketch

When a key is collected, no indicator appears on the interface, so the player must
remember which keys has catched and which keys has not. This is intentional
because you want to maintain a clean and clear interface to increase the
immersion of the player in the environment. However, to help the player
remember which keys they have, each one is identified with a color (blue, green
and red) and this way you will also know which key goes in each Gyro temple slot,
since these also have each one a corresponding color.

28

Environment

The scenario of the hypothetical final game would consist of 6 islands arranged
along a circumference and a central island that would be the city, as shown in the
map of Figure 1. Each island contains a lighthouse and a temple with an orb to get.
The demo focuses only on one of these 6 islands.

It is chosen that the stage is formed by different islands for various reasons. The
first one is that you want to create an environment and a different environment
for each island. For example one island can be very leafy while another island can
be quite arid. However, since for the demo only an island is going to be realized,
different types of environments and plants are proposed in the same so that it
becomes more diverse.

Another reason is that is wanted to implement a navigation system so it is
necessary that the scenario is composed of different islands and areas
interconnected solely by the sea.

And the last reason is the limitation. Making islands is a natural way of limiting the
explorable space without the need for invisible walls or anything like that.
However, it could be freely navigated by it, so it would still be necessary to limit
the map in some way in the hypothetical final game. Anyway, the boat that is
proposed for the demo is in a completely closed area so you can not go out to sea.
Therefore this will not need to be implemented for the project.

Figure 14: Island reference model

29

Figure 14 shows one of the visual references that has been used to create the
island and in Figure 15 an initial sketch of it can be seen with an aerial view.

/.

Lighthouse —» @
A%
\

/

|

Figure 15: Island map sketch

Architecture

The project has some architectural elements such as Gyro lighthouses and temples.
For both types of structure is wanted to use white colors as a base simulating chalk
effect, dark gray for small details and blue for roofs. Figure 16 shows a reference
image that reflects this palette of colors in real buildings.

Figure 16: Architecture colors reference

As for the type of architecture is wanted to differentiate the temples from the
lighthouses. The temples would be rounded structures and of low height whereas
the lighthouses would be structures with straight sharp edges and very tall.

In Figure 17 you can see a reference image for the architecture of the temples,
together with a proper sketch.

‘]}\

Figure 17: Temple's architecture reference (left) and temple's architecture sketch (right)

31

As for the lighthouse, it has been based on the oriental stone lanterns, since they
are tall structures and with straight sides. In Figure 18 we can see both the
reference image and the subsequent sketch that has been made.

Figure 18: Lighthouse's architecture reference (left) and lighthouse's architecture sketch (right)

Another important structure is the large stone bridge that connects the lighthouse
with the island. For this structure it has been decided to rely on the typical Roman
stone aqueducts, as can be seen in Figure 19.

T g

Figure 19: Romanic aqueduct

32

Development

Initial Tests

First of all before starting to develop anything of the game is needed to do all
kinds of tests in Unity to see the different possibilities there are and know which
ones to use, as well as look for some complementary and alternative assets. The
following tests were carried out:

Terrain tool

The first tool to test is the terrain modeling tool. Is wanted to use this tool on one
side to accelerate the process of creating the environment and on the other side to
use the option of grass placement that comes integrated. The tests consist mainly
of seeing how the tool works and how optimized the grass rendering is. Being a
tool that is based on the operation of height maps to generate the terrain, you can
not model structures such as stone arches or structures that are wider above than
below. For each value of X and Z, there can only be one Y value of height.
Therefore this is a disadvantage that has this tool, since if you wanted to do
something more advanced would need to be molded separately with some external
tool such as 3ds Max or Blender.

Figure 20: Terrain test full of grass

To test the optimization of the grass, a test map with a simple terrain filled with
grass has been created as shown in Figure 20. In it a First Person Controller has
been placed, the one that comes by default in the standard assets of Unity. Doing
this and running the game in fullscreen, the fps were reduced to about 10,
therefore did not seem very optimized. In order to try to improve it, we have
studied the different options of this tool [5] and some of them have been
modified.

¥ ug ¥ Terrain g %y
(a2 [ad [|7 o | B8

Terrain Settings
Base Terrain
Diraw [+
Pixel Errar (e {1
Base Map Dist, . 1oo0 |
Cast Shadows
Material [Built In Legacy Diffuse ¢
Thickness [1
Tree & Detail Objects
Draw [
Bake Light Probes For Trees -
Detail Distance) Z00
Collect Detail Patches
Detail Densitz -
Tree Distance) 2000
Billboard Start =) [s8 |
Fade Length - 20 |
Max Mesh Trees . 5o |
Wind Settings for Grass
Speed {1 T
Size . 0.5
Bending > EE
Grass Tint I
Resolution
Terrain Width 1000
Terrain Length |1000
Terrain Height (100
Heightmap Resolution 513
Detail Resolution 1024
Control Texture Resolution [512
Base Texture Resolution 1024

Figure 21: Terrain tool with optimized options

34

One of these options is Detail Distance, which is the maximum distance at which
the grass is rendered. By default this is 250 which is the maximum but you can
reduce it so that it does not render grass that is far away and that you really can
not see. Another option is Detail Density that varies between 0 and 1 and the
default is 1. This value allows to define the density of grass that is in each unit of
area. The lower, the less grass there will be. Finally the most important option
that has turned out to be a big difference in optimization is Detail Resolution Per
Patch, which allows you to define the size of the square area that is rendered in a
single draw call. By default this value is 8, which is the minimum. However,
putting it to the maximum, which is 128, drastically reduces the nhumber of draw
calls needed to render. For this option to take effect, it is important to check the
Collect Detail Patches checkbox. Thanks to all these changes, especially the last
one, if you try again the scene, you get 60fps. The final options that have been
chosen are shown in Figure 21.

Tree tool

On the other hand is the tree modeling tool. It has been tried to model some test
trees and is quite easy and intuitive although it can be tedious if you want to make
trees with many branches. To reduce the workload, this tool will be used, but only
simple trees with few branches were modeled. This decision is also partly to
maintain the low-medium poly style of the game.

Shaders

As previously mentioned, the visual style is based on games like The Witness and
Rime, which give much importance to the color and high saturation of the same
and highlight the importance of shapes and reliefs using lights and shades. To try
to imitate this type of lighting has chosen to try different shaders of cel shading
and toon shading. Toon shading shaders already come by default in the Unity
standard assets. As for the shaders of cel shading, they have been obtained freely
in different web pages [6]. However, both types of shaders have finally been
discarded for not producing the desired effect and in return the standard shader
will be used with vibrant and flat colors and with a slight Emission effect to
increase the saturation. It is important that the Emission Global Illumination be
marked as None so that it does not illuminate the scene, as shown in Figure 22.

35

M_Temple_Roof @ %,
o Shader | Standard =
Rendering Mode | Opague ™
Main Maps
B o Albedo P
@ Metallic Cr 0
Smoothness -, 0,681 |
Source | Metallic Alpha al
-EhNurmaI Map 0.73
@ Height Map
@ Dcclusion
.EJEmissinn :]j’? [0,79411
Global Illumination #
@ Detail Mask
Tiling Xil2 ¥il12
Offset x 0 ¥ .0

Figure 22: Material example without Global Illumination

Even so, some materials have been kept with the toon shader for elements such as
rocks, trunks and some metals, to produce variations of saturation and interesting
reflections, which simulate streaks in the rocks or glitterings in some metals. In
addition, a own shader has been developed based on cel shading. This shader has
been used for orbs and causes objects to have a colored kernel inside them. The
shaders will be explained in more detail later.

Lighting

Lighting is an important aspect to take into account especially for the visual style
that is wanted to achieve. However real-time lighting consumes too much and
reduces fps drastically. This is mainly due to the amount of shadow casters in the
scene and the complexity of the models. Therefore bake lighting is used. Different
bake testing has been done with different options to know how it works and how to
configure it when the final bake is needed to be done.

Camera Effects

In Unity's standard assets a series of effects that can be applied to the camera are
included. These effects improve and enhance the visuals, but they consume too
much and greatly decrease the fps. Therefore, despite wanting to use many of
these effects, in the end has chosen to use only those strictly necessary such as
Antisliasing and Ambient Occlusion. Although the Ambient Occlusion will already

36

be calculated when the bake is done, this Ambient Occlusion in real time achieves
much more accurate results than the one that gets the bake, so that is why it has
been decided to use it. However being in real time, the fps suffer enough
especially when there is a lot of geometry.

Assets

In conjunction with the camera effects, it has been wanted to add another series
of effects that allow for example to simulate neon effect or height fog effect.
These effects have been obtained from the asset store or free form different web
pages.

On one side there is the asset MK Glow Free [7] that allows to create materials
that produce neon or incandescent effect. This requires the use of a camera effect
to be able to render these materials correctly, which also causes the fps to drop.
This effect is used as a feedback element in the different puzzles and in the wiring
of the stage as well as the buttons. Lets you know the player when an item is on or
off. On the way back, the player must follow the cables as they light up to know
what route should follow, so you could say that the cables also work as a guide.

Figure 23: Neon effect in a test map

On the other hand there is the Light Shafts asset [8] which allows to create
lightbeams as well as to simulate the effect of sun shafts and even of height fog. In
the project will be used for all these aspects. On the one hand, like dense fog

37

inside the lighthouse to give a more immersive effect. On the other hand as a sun
ray effect to improve the visuals. And finally as lightbeams like feedback
illuminating certain zones and puzzles so that the player knows in each moment
where he has to go and which way.

Figure 24: Sun shafts effect in a test map

Finally there is the Volumetric Lights asset [9] which allows to do things similar to
the previous asset, but in this case, the use that is going to give is the area
lighting. This will be applied to Pointlights and serves not only to illuminate the
geometry with which it impacts, but also to illuminate the entire spherical area.
This will be used for practically every spotlight in the scene, such as torches, door
panes and even the orb itself. The only purpose of the use of this asset is to
increase the immersive effect that is wanted to achieve in this project.

All these effects inevitably decreases the fps and being assets already prepared is
not possible to optimize them, or at least not in a relatively simple or comfortable
way.

38

Art Development

This section refers to any aspect of the artistic development that has been
necessary done for the project. This includes sound and both 2D and 3D art. Inside
3D art is also included all the scenario modeling done in Unity's editor.

Game World

To make all the game world, the terrain tool from Unity has been used. Thanks to
the initial tests carried out, this process has been able to be carried out more
quickly. In general the modeling of the terrain has not been difficult but it is true
that when trying to model ramps has been more complicated since this tool does
not offer any simple way to do this, but you have to do it by pulse, little by little.
One of these ramps can be seen in Figure 25.

Figure 25: Natural ramp elevation in the terrain in the Unity Editor

Paint Height has been used on one hand to create large terrain shapes and
elevations such as islands and beach areas. Thanks to this option you can model
terrain at different heights. For example, for beach areas a base height of 22 has
been used and for the island zones a base height of 70 has been used. This value
can be defined in the Height property as shown in Figure 26.

39

v up o Terrain [TES
1 - FIPAriciaE]

Paint Height
Hold shift to sample target height,

Brushes

Heo@:# ces® -yl g™
L R

Settings
Brush Size 9, 74
Opacity o 23

Height < (19 | Flatten |

Figure 26: Paint Height tool from Terrain tool

Later the Raise / Lower Terrain option was used to model more in detail the
different slopes and mounds of terrain as well as the ramps that join areas of
different heights. This tool is used more by pulse, as if it were sculpting in the
ground and it is easy to be mistaken so it is necessary to do it carefully.

v up ¥ Terrain m
- !n}|nﬁ|g"’|ﬁ'|5ﬁ'|ﬂ‘]

Raise / Lower Terrain
Click to raise. Hold down shift to lower.

Brushes

Heo@: 02 ® Wl @W
..#.ﬁ?’¢ﬁ..

Settings

Brush Size 9, 74

Opacity) 23
» Lighting

Figure 27: Raise/Lower Terrain tool from Terrain tool

40

Finally the Smooth Height option was used to smooth and round the terrain and
make the transitions between heights more progressive.

v g ¥ Terrain W
i - Parikinl

' Smooth Height

Brushes

Meoe@ +Co® i %
. oW

sﬂmnqi
Brush Size O 74 !

Figure 28: Smooth Height tool from Terrain tool

Once the whole terrain has been modeled, the Paint Texture option has been used
to paint with different textures previously elaborated. You can see these textures

and this option in Figure 29.

[w# o Terrain m
a2 i o T %

Paint Texture
Select a texture below, then click to paint

] (XXX iraad L
L X LTk

Textures

Figure 29: Paint Texture tool from Terrain tool

Modeling

To model all the elements and structures necessary for the project, the 3dsmax
tool has been used. It is not necessary to go into detail in the use of this tool, in
general it has been simple to use. As a curiosity, for the modeling of the lighthouse
and the temple has also been necessary to model two types of colliders, one for
the floors and another for the walls. These colliders are not rendered, they are
simply used to delimit the areas where the First Person can move. In Figure 30 you
can see the model of the lighthouse, along with the collider of the floor and the
collider of the walls.

Figure 30: Lighthouse model (left), floor model (middle) and wall model (right) in 3dsmax

42

Figure 31 shows some more models that have been made in 3dsmax for this project.

Figure 31: Example of different models made with 3dsmax

2D Art
For the elaboration of the different sprites and 2D images has been used Photoshop
as the main tool and Paint as the complementary tool.

On the one hand, it has been used to make the textures of some materials and the
stage terrain. These textures have not been made from scratch but they have been
retouched and modified to increase saturation and brightness, to change some
color or to be less marked so as to approach the visual style that is wanted to
achieve. This effect can be seen in Figure 32.

Figure 32: Original texture (left) and modificated texture (right)

43

On the other hand, it has been used to design and draw from scratch the skybox
that is used for the game. For this skybox it has simply been necessary to make a
blue gradient background, with a large sun peeping over the horizon and a couple
of clouds. The clouds have not been drawn from scratch but they have been
retouched to fit the skybox. At first it was necessary to make several versions with
the sun of different sizes and to test as it remains in Unity, since it is hard to
identify the correct proportions. Once the adequate size of the sun was achieved,
the final version of the skybox shown in Figure 33 could already be obtained.

Figure 33: Skybox final version

It has also been used to create different types of grass, plants and flowers,
retouching from other images. Some have even been used as is without retouching,
such as the poppies. Since the Unity Terrain tool allows you to choose the color of
the grass to be placed, some textures have been modified so that they are
grayscale so that the color is better suited, as shown in Figure 34. Some have also
been modified in shape and size to produce a better effect when placed on the
ground.

44

\

Figure 34: Original grass (left) and modificated grass (right)

Finally it has also been used to draw the different elements of the interface.

On the one hand the cursor and its different states as shown in Figure 35. The
cursor, because it is a small element that does not take much space on the screen,
has been decided to make small, so you can see the pixels.

Figure 35: Image of the different cursor states

On the other hand for the map of the island, which can consult the player during
the game. To elaborate this map has taken an orthogonal screenshot of the final
island version seen from above and later has been edited in photoshop to give a
drawing aspect. In addition, some indicators have been added to mark the location
of the three keys on the map. You can see the final version of the map in Figure
36.

45

Figure 36: Final version of the island map

Finally, for the title of the game that can be seen on the cover of this document
and also in Figure 37.

Figure 37: Final version of the game title

Sound

The sounds have not been developed from scratch but have been searched on
different pages that offer music and sound for free with a Creative Commons
license. Even so, it has been necessary to edit some sounds so that they can be
played in a loop or to eliminate silent spaces. For this has been used an online tool
called MP3 Cutter Online [11] very intuitive and easy to use that allows to do this
kind of thing.

46

Technical Development

The elaborated demo consists of only two scenes. On the one hand, the Main Menu
and on the other the Game World. Here is a brief explanation of the development
of the Main Menu, as it is somewhat more secondary and has not required so much
work. Subsequently, the rest of the Technical Development section will focus only
on the Game World, which is the scene that contains the entire game and
everything that has been developed.

Main Menu

In this scene you can choose to start playing or close the game with the buttons
New Adventure and Leave respectively. For them it has been necessary to look for
a suitable text font. Is also includes the game title previously developed. To place
these elements it was necessary to create a canvas in Unity. This canvas has been
configured so that both the title and the buttons adapt to the resolution of the
screen, as this may vary depending on the device. To do this, it was necessary to
add a Canvas Scaler, which has been configured as shown in Figure 38.

v /¥ canvas Scaler (Script) & %
UI Scale Mode | Scale With Screen Size $
Reference Resolutiol X 800 ¥ 600
Screen Match Mode | Match Width Or Height
Match O 0

Width Height
Reference Pixels Per 100

Figure 38: Canvas Scaler configuration

As for the menu background, it has been decided to place the lighthouse and a
part of the island in the distance and the skybox with the sun shining behind. Also
the boat has been placed floating in the water, since in the hypothetical final
game, it is an important element that allows the player to sail between islands.

To do something more dynamic in the main menu has been added a series of
effects. On the one hand, some particles have been added to the title and the
screen itself for some movement, as shown in Figure 39.

47

Figure 39: Particles in the title

On the other hand has been programmed a script that causes the sun to shine more
or less over time. This script can be applied to any Light Shaft of the
corresponding asset previously discussed. In this case a Light Shaft has been used
for the sun's rays and the effect remains as shown in Figure 40.

ng'ul,_ﬂd\[enturo

Leave

Figure 40: Light Shaft intensity comparison

48

Finally another script has been programmed that causes the tide to rise and low as
time goes by. In addition, the elements that are in the water like the boat or the
wooden boards, are also affected by this tide. It has simply been necessary to
place these objects as children of the object that acts as sea, as shown in Figure

41.

| = Hierarchy ' =
I Create ~ ‘o All
v €} MainMenu*
! GameController
» MusicController
SceneController
Dawn Light
» Main Camera
Shafts
ShaftsScreen
> Canvas
EventSystem
» Shugo
> Rocks
GlobalFocg
¥ Waterfloating
bk Boat

{

il

B Water
» WoodPlanks

Figure 41: Objects as childs of the water plane in the Hierachy

Finally, to pass from one scene to another a script is programmed that allows to do
both Fade In and Fade Out transitions. You can also use any image for the
transition. For this particular project it has simply been decided to use a blank

image as a transition.

Physics

Unity comes with its own functions and objects that are responsible for calculating
different types of physics. For this project only the physics for spheres have been
used, since they are the only physical elements of the game. This applies both to
the orb of the Gyro Temple and to the micro orbs of the puzzles. To use these
physics it was not necessary to program or modify anything other than to use the

49

default functions, so it has been relatively simple. However, a little trick has been
used for the physics to work correctly in the puzzles, because when the
superplexus were rotated, the micro orbs inside it behaved strangely even going
through the small obstacles inside the puzzle. This is due to the speed with which
the superplexus is rotated among other factors. To solve this problem what has
been done is to place the micro orbs as children of the rotating element. Thanks to
this small adjustment the physics function correctly.

Effects

To achieve a good ambience and a striking aesthetic, sound, camera and
environment effects have been added.

Sound
The sound has been a very important aspect in the development of the game, since

it has been wanted to take into account and to work it carefully and in detail. Both
2D sounds and 3D sounds have been created. 2D sounds sound homogeneously and
always at the same volume. The sounds in 3D adapt their volume taking into
account the distance to the object that has the AudiolListener, which in the case of
this project, is the First Person. The following explains the different types of sound
that have been created and programmed.

Ambiental

The ambient sound refers to all those sounds of the environment that make the
player more immersed in the Game World. Two types of ambient sound can be
distinguished. On the one hand, there are those sounds of some element. In the
project it has been used for example for the fire sound of the torches or the static
sound of the neon lights found in the puzzles. These sounds sound low and you
have to get closer to perceive them better. On the other hand, there are those
sounds of the environment, which do not come from a particular sound source. In
the project it has been used for the sound of the sea and the sound of the wind.
Both sounds are always present throughout the game, but a script has been
programmed that changes the volume of both sounds taking into account the Y
coordinate of the player, more specifically, their distance from sea level.
Therefore, when the player is closer to the sea, the sound of the wave is the one
that sounds stronger and when it is farther away, such as at the top of the
lighthouse, the sound of the wind is the one that sounds stronger.

50

Area Music

The game does not have background music that sounds throughout the entire game
world, but there is some melody that sounds depending on the area in which the
player is. For this a script has been programmed that allows to define areas with
colliders as triggers and to define which melody sounds when it is inside that zone.
In the project only this script has been used to define a particular melody when it
is in the area of the lighthouse, so that place transmits a sense of mysticism. In
addition, in this specific case it has been decided that the volume of the melody
depends on the distance to the sea as well as the sounds of waves and wind, using
the same script. In this way, the melody sounds louder the higher it is in the
lighthouse.

Modifiers

To give a greater sound realism, a Reverb effect has been applied inside the
lighthouse which makes the sounds resonate giving an echo effect. This effect does
not need to be programmed since Unity allows to add this type of modifiers in
spherical areas. Therefore, the only thing that has to be done is to place several of
these areas along the lighthouse.

Feedback

One of the objectives of the project is to get the player to receive good feedback
both visual and audible so that he can identify what happens. In the case of sound,
this feedback has been applied on the one hand to the cursor and on the other
hand to the puzzles. In the case of the cursor, when you point to an element with
which you can interact, a slight sound is played, and when interacting, another is
played a little more intense. Thanks to this the player can easily identify with
what elements can interact. As for puzzles, each time a micro orb exits a sound is
played and once the puzzle is completed, another sound is played that identifies
whether the puzzle has been resolved correctly or not. If not, the puzzle restarts,
playing a very loud negative sound.

Footsteps

The First Person Controller (FPC) that comes by default in Unity already comes
with its own step sounds. However they are very basic and repetitive sounds so is
opted to program a script called PlayerWalkableArea that allows you to improve
this and add different types of sounds depending on the type of floor being
stepped on. For this a vertical raycast has been used that leaves the base of the
FPC and that detects the collider of the ground on which it is walking in each
moment. Along with this, different tags have been defined to identify what

51

material each collider is. The tags that have been defined are stone, metal, wood,
water and earth. Subsequently, these tags have been assigned correspondingly to
the different elements of the scenario. In addition, the script also takes care of
varying slightly the pitch of the sounds of random form. As a negative point to this
method, since it works from colliders, there has been no way to define different
sounds for ground and for grass, since both elements use the same collider of the
terrain. One solution might be to try to define triggers for all grass areas but it
would be a slow, tedious and not very effective process.

Physics

An important part of the project focuses on the sphere physics which are used in
puzzles. To improve the sound experience has been decided to program a physical
sound script called PhysicalSound that ensures that the orbs reproduce sounds
when they collide and when they roll. The script is explained in detail in the
Scripts section.

Camera

As previously mentioned, the Post Processing Stack asset has been used, which
allows to use camera effects in a more comfortable and optimized way. The
effects that have been used are as follows.

Antialiasing

This effect is used to improve the quality of the rendered image, causing the edges
of the geometry not to be seen with sawtooth, but smoothed. To avoid consuming
many fps, is chosen to select the default quality of Antialiasing, as shown in Figure
42.

v Antialiasing =
Method | Fast Approximate Anti-aliasing ¢ |
Preset | Default § |

Figure 42: Antialiasing settings

Ambient Occlusion

This effect, like Antialiasing, serves to improve image quality. In this case, the
Ambient Occlusion is responsible for obscuring those areas where the geometry is
very close together. The options that have been chosen are shown in Figure 43.

52

Inﬂl itr | - _

Radius 11.5]
Sample Count | High ¢)
Downsampling [|
Force Forward Co/[|

High Precision (Foly/
Ambient Only (De| |

Figure 43: Ambient Occlusion settings

Bloom

The bloom effect has been used for two different purposes. On the one hand for
the camera to render the stage with more lighting and saturation, something that
is necessary to maintain the visual style presented. On the other hand, for the
neon effect, using materials with Emission and HDR lighting. This is explained in
more detail in the Optimizations section. Neon is used for wiring the stage and to
illuminate the puzzles and buttons. The options chosen are shown in Figure 44.

Intensity 0.5 |
Threshold (Gamm 2 : _
Soft Knee ——
Radius e p— 3|
Anti Flicker 4

Figure 44: Bloom settings
Environment
For the environment of the game have wanted to add small details that make it
look more careful with a greater immersion feeling.

Fog

Two types of fog have been used. On the one hand, the default type that is in
Unity, which allows to add mist based on the distance from the camera. This

53

effect has been added very slightly, so only those elements that are really far
away are affected by the fog. This effect also allows the horizon line to be blurred
to soften the line that separates the sky from the sea.

On the other hand the asset Light Shafts has been used to create a height fog
effect. This type of fog takes into account the height. It has been used for the
interior of the lighthouse to give a feeling of dense air and humidity. This effect
can be seen in Figure 45.

Figure 45: With and without Height Fog effect comparison

The Light Shafts asset is not mainly intended for this but has been configured in a
certain way that can achieve such effect. Of course, you have to make sure that
the collision mask is in Nothing so that no element blocks the fog effect.

Particles

A lot of particle effects have been used for different elements and specific areas.
All these effects have been configured using the Particle System implemented in
Unity and its use has been very similar for all the effects that have been
elaborated. To explain this process will be used as an example the fire particles
used in the fireplace and the torches.

The first task is to create the material of the particles as shown in Figure 46. For
these particles a sprite of a white circle has been used and an Additive material
has been chosen.

54

Particles_Fire Qg =
Shader | Particles/Additive &

Tint Color | 2

Particle Texture

Tiling X1 Y 1 g
Offset X 0 Y 0 |Select
Soft Particles Factor O |3
Render Queue | From Shader 3| 3000

'Particles_Fire

.—.l.'.".'-'1_EI||||:||I-' MNone

Figure 46: Fire particles material

Later an empty object has been created with the Particle System and the material
created has been placed in the Renderer tab as shown in Figure 47.

55

Render Mod Billboard $
Mermal Direction 1

N [re—
Sort Mode Youngestin Front]
Sorting Fudge 0

Min Particle Size 1]

Max Particle Size 0.3

Billboard Alignment View
Pivot X 0

Visualize Pivet]
Custom Vertex Streami |

Cast Shadows Off

Receive Shadows O

Mation Vecters Per Object Motian
Sorting Layer Default

Orderin Layer 0

Light Probes Blend Probes
Reflection Probes off

Ancher Override Mene (Transform)

Figure 47: Fire particle system renderer

Finally the different options such as colors, lifetime, shape, etc. have been
configured to achieve the desired fire effect, as shown in Figure 48.

Figure 48: Final fire particles effect

56

Below are other types of particles that have been created, such as foam when
walking on the water or when sailing with the boat (Figure 49) and the floating
white particles of the small temples where the keys are found (Figure 50).

Figure 49: Water foam effect

Figure 50: Shiny floating dots effect

Light Shafts

Aside from using the Light Shafts asset to reproduce the Height Fog effect, it has
also been used for other things. On the one hand for the effect of sunbeams. A
large Light Shaft has been created that covers the sun of the skybox and points in
the same direction as the directional light that is used as the sun. Then, a script is
programmed called SynchronizedPosition, which causes the Light Shaft to follow

57

the movement of the First Person Controller, so it is always present without
creating a huge one that covers the entire scenario.

In addition to emphasize this effect has been programmed a script called
ShaftAdapter that is in charge of increasing the intensity of the sunbeams when it
is in the zone of the lighthouse, of this form the rays pass between the columns
giving a very striking effect as it can be seen in Figure 51.

Figure 51: Sun shafts effect

Volumetric Lights

The Volumetric Lights asset has been used to give volume to pointlight type light
sources such as the orb. This effect illuminates the entire spherical area around
the light. To use this asset you must, on the one hand, add the Volumetric Light
script to a light source and on the other hand you have to place the Volumetric
Light Render script on the camera, so that this effect can be rendered. Figure 52
shows the effect of door crystal.

58

Figure 52: With and without Volumetric Light effect comparison

Shaders
Although the standard shader has finally been used for most materials, other
secondary materials have also been used.

Water

The water shader that comes in the Unity standard assets has been used to create
the plane material that has been used as the ocean. However the result that was
obtained was not the desired one so a second plane has been created with a
transparent material that highlight the coastline. In Figure 53 you can see the
comparison and the big visual difference that this supposes.

Figure 53: Water shader with and without transparent plane comparison

59

Toon

This shader is included in Unity and produces an effect similar to Cel shading. It
has been tested to use materials with this shader but the resulting aspect did not
resemble the raised visual style, so it has been discarded. In addition in the baked
lighting, these types of materials looked bad with shadows and stains throughout
the object.

Cel Kernel

An own invented shader has been programed using one of Cel Shading as a base.
The cel shading is characterized by interpreting lighting in a segmented way.
Instead of interpolating the light from the most illuminated point to the least
illuminated point, what it does is to stay with intermediate values, without
interpolating. These segments are called cuts. The comparison of a standard
shader and a cel shading shader can be seen in Figure 54.

Figure 54: Standard shader (left) and Cel Shading shader (right) comparison

The main modifications that have been made to create the Cel Kernel focus on the
type of diffuse and specular lighting, and to add properties that allow you to
customize colors and different values like number of cuts or the proximity of them.

On the one hand, three types of diffused lighting have been programmed, each
offering a different result. You can choose which one to use with the DiffuseType
property that has been created for this purpose. The first type is the basic one
that came by default in the shader of Cel Shading. Basic diffuse illumination is

60

calculated as the vector product of the normal surface by the direction of light.
The other two types are small modifications of the previous one, changing some of
the parameters that make the calculation. One of them is calculated as the vector
product of the normal surface by the direction of view (the FPC camera) producing
a frontal illumination effect. The other one calculates the vector product of the
two previous ones obtaining a very curious mixed effect, that is the one that has
been used mainly for the orbs. The comparison of the three types of diffuse
illumination can be seen in Figure 55.

Figure 55: Diffuse Types, from left to right, basic, frontal and mixed

On the other hand has been added specular lighting, which did not come in the
shader. But it has not been added with the aim of producing specular illumination
effect, but has been used for another purpose. This lighting has been used to
create the shader kernel effect, which is the main feature of this shader. The
effect that was wanted to be that any object with this shader will show a kind of
colored kernel in its interior. For this purpose the specular illumination has been
calculated in the same way as the type of diffuse frontal illumination. This
calculation interprets that the camera is the source of light, therefore, you look
from where you look, you will see the specular illumination in the center of the
object. Different properties have been added to customize the size and color of
the kernel, as well as the colors and intensity of the lights and shadows among
others. In Figure 56 you can see several examples of materials that can be
achieved with this shader.

61

Figure 56: Cel Kernel shader material examples for the orbs

Animations

To make some elements have predefined movements, animations have been made
using the Unity Animator tool. This has been used only to animate catapults and
elevators. For the catapults it has been necessary a single animation, which causes
the catapult to produce a launching movement. However for the elevators it has
been necessary to create two animations, one of rise and one of descent. In order
to activate these animations some triggers and booleans have been created that
are called from the scripts of these objects themselves (Catapult script and
Elevator script).

62

#2 Animator
| Layers | Parameters | Base Layer
(arliame

® Animation :
| @ [a| | > [M]

J CatapultShot ¢ Samples

» A Catapulta : Rotation
» A Box002Z : Rotation

l Add Property

| Dopesheet | Curves

Auto Live Link

Animations/Catapulta.controller

Figure 57: Catapult animation graph (above) and catapult animation timeline (below)

Scripts

For the demo behaviour it has been necessary to program very diverse scripts of all
kinds. The most relevant are grouped according to their main functionalities

below.

Player Scripts

As mentioned before the player will move around the game world using a First
Person Controller, a camera in first person. The FPC has been created using the
basic FPC that comes in the standard assets of Unity as a base, since it lacked
some functions necessary to achieve the desired result. The controls chosen for
the FPC are WASD for the movement, Shift for the sprint and the mouse to move

63

the camera. The following explains in detail how the FPC has been modified and
that other scripts are directly related to it.

First Person Controller

\ 4 A 4 L 4
Cursor Interactions Player Walkable Area [Map Controller]
A 4
Activator
Y
Rider]

Figure 58: Player Scripts flow chart

First Person Controller

The movement of the basic FPC was too abrupt so an acceleration value has been
added so that it does not go from speed 0 to maximum speed instantly but it does
it progressively. In addition this included some functions that were not necessary
for this project, so they have been eliminated. These are, on the one hand the
head bobbing effect of the camera, which tries to simulate the head swing of the
character and on the other hand the option to jump. The first option has been
eliminated because it was too dizzy and the second option simply because in this
game is not contemplated that you can jump.

In addition to this have been added some public functions that can be called from
other scripts. On the one hand, the Freeze() and UnFreeze() functions that block
the character's movement and hide the cursor (which is controlled by the
Cursorinteractions script). However the camera movement can still be used freely.
These functions are called from the PuzzleController script for when solving a
puzzle and from the MapController script when you are browsing the map. On the
other hand Ride() and UnRide() functions that work similar to Freeze() and
UnFreeze() but these are called by the Rider script when the boat is being
controlled. Finally the function SetFootstepSound() that allows to define the sound
clips that correspond to the steps including also the base pitch and volume. This
function is called from the PlayerWalkableArea script every time the FPC steps on

64

a new terrain type. Apart from these changes, the only thing that has been done is
to configure different options and values that already come by default in the FPC.
This includes defining the values of speed of movement and sprint as well as values
of movement and sensitivity of the camera among others.

v @l + First Person Controller [5cri|_1t] ﬁ &,
Scnipt FirstPersonController @
Is Walking -

Max Walk Speed 6
Max Run Speed 12
Acceleration '8, 0.015
Runstep Lenghten > 04 |
Stick To Ground Force 10
Gravity Multiplier 2
Mouse Look I
X Sensitivity 2
Y Sensitivity 2
Clamp Vertical Rot.l&/
Minimum X -85
Maximum X 55
Smooth
Smooth Time 15
Use Fov Kick -

> Fov Kick
Use Head Bob D

» Head Bob

» Jump Bob
Step Interval 5

¥ Footstep Sounds

Size s

Element 0 ~ Footstep01 ©

Element 1 + Footstep02 (o]
-

Figure 59: FPC final values configuration with Head Bobbing and Jump options deactivated

Cursor Interactions

This script is responsible for controlling the different states of the cursor, which
are Normal, Targeting and Pressed. These states have been defined using an
enumerator and each state has been assigned a sprite. To show a state or another

65

of the cursor, on the one hand a front raycast is used that leaves the camera of
the FPC and on the other hand is controlled which buttons of the mouse are
pressed. The front raycast, if it is detecting an object with the Interactable tag,
the cursor goes to Targeting state and if it does not detect any, it changes to
Normal. You can set the distance of the raycast in the inspector. If the left mouse
button is pressed, the cursor changes to the Pressed state. However, the Pressed
state performs no function unless it happens just after the Targeting state. If there
is nothing with which to interact, no matter if the mouse is pressed or not.

Apart from this, a higher state called Hide has been prioritized, which hides the
cursor if the FPC is in the Freeze() state, as previously explained. If any mouse
button is pressed while in the Freeze() state, it automatically exits from this state
by calling the UnFreeze() function. This has been done willfully so that the player
can decide when to stop interacting with a puzzle.

Player Walkable Area

Script in which are defined all the sound clips of steps for each type of terrain and
that is responsible for checking what type of terrain is stepping on the FPC at any
time through a vertical raycast. Each type of terrain has been defined with a
different tag so that raycast can detect it and know how to identify each terrain.

In addition, this script has another important function, which is to define the zones
where the FPC can be moved. For this a mask has been used which has been called
Walkable. This mask has been put to all those elements on which the player can
walk. This includes the lighthouse and the lands of the islands among others. If the
player tries to walk on something that does not have the corresponding mask, he
simply can not advance. On the other hand, to prevent the FPC from getting into
the sea, you could not use the mask since the land collider above the sea is the
same collider as the land under the sea. Therefore the player's movement on the Y
axis has been limited. That is, the player can not move from a certain height
downwards. In this case, this height is a little below the sea level, which is at 22 in
the Y coordinate. Therefore, the player can walk into water only in those areas
where he does not just cover but can not enter more. As an extra, when you step
on the water, other than sounding the corresponding sound, particles that produce
a foam effect are showed.

66

v (s ¥ Player Walkable Area (Script) ﬁ £,
Script PlayerwalkableArea o]
Mask | Walkable s
Has Collision v

¥ Footstep Default

Size 2

Element 0 ~ Footstep01 (o]

Element 1 + Footstep0D2 (a]
¥ Footstep Grass

Size 2

Element 0 «footstep_grass o]

Element 1 «footstep_grass o]
¥ Footstep Wood

Size 2 _

Element 0 #+9016_1354744657 @

Element 1 «+9016_1354744657 o
¥ Footstep Metal

Size 2

Element 0 ++9016_1354744657 @

Element 1 «+9016_1354744657 ©
¥ Footstep Water

Size 2

Element 0 « Water Step SOUND Effect o

Element 1 «Water Step SOUND Effect (a]

Figure 60: Defined footsteps sounds and Walkable mask from Player Walkable Area script

Rider

This script on the one hand is responsible for controlling when the player is
mounted or dismounted from the boat. To do this, the boolean IsRiding is used to
know if the player is already mounted or not and with that information the Ride()
or UnRide() function of the FPC is called. This script is activated when the player
interacts with the bells that are on the docks. If the boat is in that dock, then the
player is automatically mounted. To verify this, the distance between the bell and
the boat is calculated, and if it is at a distance of 15 units or less, it is valid. The
same rule applies when trying to moor. To do this you have to navigate to the dock
where you want to tie up and interact with the bell.

67

Figure 61: Dock with bell and boat

On the other hand, it is also responsible for allowing the player to operate the
boat with WASD. For the W and S keys a positive or negative AddForce is used to
give speed forward or backward. On the contrary for the keys A and D a positive or
negative AddTorque is used to give a turning force to the boat in one direction or
another.

Map Controller

It is responsible for showing and hiding the map when the M key is pressed. This
only works if the player has picked up the map before, which is located near the
fireplace as shown in Figure 62. When the map is displayed or hidden, The Freeze()
and UnFreeze() functions of the FPC are called respectively.

Figure 62: Folded map in a stone next to the fireplace

Activator

It is a very important script that is used in all those elements with which you can
interact. It acts as an intermediary and is responsible for calling other functions of
other scripts. For example when interacting with a button on a catapult, the

Activator calls the Shot() function of the Catapult script. This is configured from
the inspector, indicating which function or functions of which scripts are the ones
triggered by the Activator. This has been decided to do so for convenience, since
in this way when interacting with an object, the script that is activated is always
the same, the Activator that is in that object. Then the Activator is already in
charge of communicating with the rest of scripts and indicated functions.

Puzzles Scripts
An important part of the project are physical puzzles. For this have been necessary
several scripts explained below.

)
'

[Spherescope Eontroller]

l

[Puzzle Controller]

[Micro Orb Controller] [Cable Controller]

Figure 63: Puzzle Scripts flow chart

Puzzle Controller

This script is responsible for controlling each of the puzzles in the game. Since it
has many functions and variables, it is going to be explained without going into
much detail. The script is programmed so that it can be as customizable as
possible through all the public variables it has. You can configure all sorts of
options like what kind of puzzle it is (normal or inverted), how many orbs there are
and what they are, what is the next puzzle, what elements are illuminated, what
state it is in (available, solved, deactivated), etc. It has functions that allow to
check in which state the puzzle is, if different requirements are met to change
from one state to another, if it is necessary to reset the puzzle, etc. Apart from
this it is important to mention some details to understand how the puzzles work.

69

The puzzles are connected sequentially so that when one is solved, the next
becomes available. These sequences are also defined with a cable that runs
through all the puzzles connecting them and that is illuminating. This cable is
controlled by the CableController script. On the other hand, each puzzle has a
series of micro orbs inside and you have to get them rotating the superplexus.
These orbs are controlled with another script, called MicroOrbController. Finally,
the rotating element is controlled with a last script, called SpherescopeController.
All these scripts are called and consulted by the PuzzleController to be able to
manage correctly everything that happens in each puzzle. Each of them is
explained below.

Spherescope Controller

It has been decided to call spherescope to those elements with which the player
can interact and rotate them freely in the axes X and Y. This is used mainly to
handle the spheres of the puzzles. This script takes care of it. The W and S keys
rotate the object on the X axis, and the A and D keys rotate it on the Y axis. It also
has many public variables that can be configured in the inspector and allow you to
customize the type of rotation. For example, you can limit the rotation to the Y
axis only, with a maximum of 90° (both ways) and with a speed multiplier of x2.

Cable Controller

The only purpose of this script is to check the wiring status of the map and know
when it should turn on. To do this you have two public functions Activate() and
Deactivate() that are called from the PuzzleController and are responsible for
turning the cables on and off respectively. What it does is to change the material
of the cable to a material with neon effect to give the feeling that it ignites. For
each section of cable a CableController is necessary and all the cables are children
of a same Gameobject for comfort.

Micro Orb Controller

This script has all the micro orbs found in each of the puzzles. It serves to
configure the material and the value of the micro orb, as well as to control when it
leaves the puzzle and with which exit does it (red or blue). Micro orbs can be blue
or red. The blues have a value of 1 and the red ones have a value of -1. The same
applies for the two types of exits. When an orb crosses an exit ring, both color
values are multiplied, that is, the value of the orb by the value of the exit. This
means that if for example a blue orb (value 1) exits a red ring (value -1), the result
is 1 x -1 = -1. In normal puzzles, the results should always be positive, and in

70

inverted puzzles, they should always be negative. These values are read by the
PuzzleController to be able to identify if the puzzle is solved correctly or not.

Audio Scripts
Another very important part is the sound as previously explained. Here are some
scripts that have been programmed to manage the audio.

Background Music Controller

This script lets you define what music plays in the background inside an area that
is defined by a collider that acts as a trigger. When the FPC is inside the collider,
the defined music plays. When you leave the area, the music stops.

High Volume

This script controls the volume of the AudioSource that is in the same
GameObject. For this, the FPC position in the Y coordinate is taken into account.
Depending on this value, the sound sounds at a higher or lower volume. You can
define the minimum and maximum value of Y for which the sound plays at the
minimum and the maximum volume respectively. It also allows you to reverse this
calculation with a public boolean called Isinverted. This script is used for ambient
sounds of waves and wind, as well as for the slight music that sounds in the
lighthouse.

Physical Sound
This script is responsible for simulating two types of physical sounds for orbs.

On the one hand the sound of bounces and collisions. For this it has been necessary
to take into account when a collision happens and at what speed it do it. Having
this information, one sound can be reproduced for each collision and can be
reproduced at different volumes and different pitches depending on the speed
with which the crash occurred. The faster the hit, the higher and pitcher it sounds.

On the other hand the sound of sliding or rolling. For this it has been necessary to
take into account the speed and angular velocity of the orb, as well as if it is in
contact with some surface or not. Taking this data into account, a clinking sound
has been produced when the orb rotates on a surface. This sound is repeated to a
greater or lesser frequency and pitch taking into account the speed of the orb. The
faster it spins, the more frequent and pitcher the clinking is.

71

Debug Scripts

Some debug scripts have been used to help with the development of the game.
These scripts have not been developed from scratch but some changes have been
made.

Take Screenshot

This script saves a screenshot in the project's root folder when the T key is
pressed. A small modification has been programmed to be able to save them under
different names. This is to add at the end of the base name the current date and
time, so you can take as many captures as you want and will be saved in order by
date. This script has been very useful for taking out captures of the project as it
was progressing and in this way have a folder full of images of progress.

FPS Display

This script shows in the upper left corner of the camera the fps that the game is
running. Although in the editor of Unity this functionality already exists, if an
executable is mounted, the fps can not be shower, so this script has been used. In
addition a small modification has been made so that if the fps are less than 30, the
text is shown in red, and if it is greater than or equal to 30, it is shown in green.
Thanks to this is quicker to identify if the game is running at more than 30 fps or
not.

Menus Scripts
For the management of the menu and the different scenes it has also been
necessary to program some scripts. Below are the highlight ones.

Game Controller] [Fader]

I

[Scene Loader]

Figure 64: Menu Scripts flow chart

72

Fader

This script is responsible for displaying a transition on the screen that can be any
given image. It has two functions, Fadeln() and FadeOut(). Both show the
transition but one is input and one output. When the transition completes it calls
the ScenelLoader script.

Scene Loader

This script has a public function LoadScene() that given the index of the scene
loads that scene. This has been used to move from the Main Menu to the
GameWorld. This script is called by the Fader script, after completing a transition.

Game Control

Although the function to save and load game at the end has not been implemented
in the demo, if it has been programmed a script that takes care of it. For this it is
necessary to create as many variables as you want to save all the necessary
information of the progress of a game. In general this is something simple but long
and tedious so it has not finally been done. However something that is not so
simple is to save and load the position and rotation of the FPC and the FPC
camera. Therefore since this had more interest if it was done.

The first part was to store and load the position X, Y and Z coordinates. This part
has been relatively simple since it only consists on replacing the position of the
FPC with the position vector that has been saved.

On the other hand had to save and load the rotation of the camera so that it looks
exactly at the same point, something that has been quite more complicated,
especially because you have to work with rotations. For this, it has been necessary
to investigate more in depth how the camera movement of an FPC works. An FPC is
composed of two main elements. On the one hand a CharacterController that
allows to move the object (FPC) with the corresponding keys of movement (WASD
in this case). On the other hand a Camera, which can be rotated with the
movement of the mouse. However this rotation is based on the movement of two
axes. On the one hand the rotation on the X axis, which is applied to the FPC and
on the other hand the rotation in the Y axis that applies only to the camera.
Therefore, the X rotation of the FPC and the Y rotation of the camera must be
saved. The Save() function is now complete and writes the data to a file that is
saved externally. However the Load() function of the rotation has required a series
of transformations and more advanced -calculations with Quaternions and

73

eulerAngles that are not necessary to explain not to enter such level of detail. The
Load() function is responsible for reading the saved data from the external file and
loading it into the corresponding variables.

As a result, for the demo this script simply allows you to save and load the player's
position and rotation, but not the progress of the game.

Effects Scripts
As already mentioned, a series of effects have been made and for this it has been
necessary to program some scripts.

Position Lerper

It is a generic script that allows an object to move between two given positions. It
has the Activate() and Deactivate() functions that allow you to move the object
from its start point to its end point or vice versa. This has been used for example
for the tidal effect, causing the sea plane to rise and fall continuously. To indicate
that the effect has to occur indefinitely in a loop, the boolean Loop is used.

74

Figure 65: Low tide (above) and high tide (below) comparison

This script has also been used for many other movements such as the doors. With
the Activate() function the doors are opened, and with the Deactivate() function,
they close.

e = - = — - it

vl i - -41 pra— =

Figure 66: Opened door (left) and closed door (right)

75

Synchronized Position

Placing this script in a GameObject causes that object to move synchronously with
another object defined in the inspector. In addition you can indicate which axes
should be synchronized and which ones should not. This is used for example for the
seaplane, synchronized with the FPC in X and Z but not in Y. In this way however
much the player moves, the sea will remain, giving the impression that it is
infinite. Since the shader applied to the water uses textures that are applied in
world coordinates, however much the plane changes position the textures are
maintained in their global position so it is not noticed that the sea is moving in X
and Z .A part of this has also been used for the foam particles that are produced
when the FPC steps on water. These are synchronized in X and Z with the FPC and
in Y with the seaplane.

Effects

This script was originally intended to contain different functions that serve to
cause different effects, hence the generic name of Effects. However, it finally
only includes one effect. This effect is used in the main menu and causes the
LightShaft that acts as sunbeams to change his intensity between two values given
in the inspector.

Shaft Adapter

This script has a similar functionality to the Effects script, but in this case the
intensity of the LightShaft does not change with time, but it changes according to
the zone where the FPC is located. To do this a collider is used as a trigger that
defines a specific area. This is used for the area of the lighthouse, in which it has
been decided that the rays of sun are more intense for aesthetic reasons. When
leaving the zone of the lighthouse the intensity of the LightShaft low gradually
until reaching its base value, defined in the own inspector.

Rotator

With this script you can define that an element rotate in one or several specific
axes and at the established speed and direction. It has a public function called
Stop() that when called, causes the object to slowly slow down until it stops in the
same rotation that it was initially in. This is used for example for the three
rotating rings of the Gyro Temple, which stop when the three keys are entered.
Each key calls the Stop() function of each of the rings. The Activator script
explained above is used as the intermediary.

76

Figure 67: Rotating rings from the Gyro Temple

Mesh Fader

This script allows an object that has the Mesh Renderer element (a visible
geometry with an applied material), to gradually fade with the pass of time. It also
changes size as it fades. You can configure all these aspects from the inspector,
such as fade speed, scale multiplier for resizing and the object material. In order
to be able to produce the effect of fading it is necessary that the material used is
of Fade type, since these materials allow to change its opacity. This decreases the
opacity until the object becomes completely invisible. When this occurs it simply is
destroyed. This effect appears when collecting the keys of the pedestals in which
they are located. As geometry simply a sphere has been used, but any other
geometric models can be used.

Figure 68: Mesh Fader effect when taking the red key

77

Optimizations

In order to make the demo performed smooth and playable comfortably, many
optimization processes have had to be carried out. Some of them have already
been commented a bit in previous sections, but then they are all collected and
some more.

Baking

Real time illumination is a fps killer because of the many shadow casters a scene
can have. Moreover, in this game there is no need for real time lighting so baking
the scene is a good option.

It has been tested to make bakes with different options that affect the speed of
the bake and the quality of the textures that are calculated. Even so, with options
almost to the minimum, if the scene contains many objects, the bake can take
hours, especially if they are very big models like the lighthouse. The options that
have been decided to use for the final bake are shown in Figure 69. It is a balance
between quality and time.

[—
v v Baked GI

Baked Resolution 10 texels per unit
Baked Fadding z texels
Compressed [+

Indirect Resolution |1 texels per unit

Ambient Occlusion [«
Max Distance 50

Indirect . 1
Direct o 0
Final Gather [
Ray Count 512
Denoising [
Atlas Size | 1024

Figure 69: Baked Gl options

To increase the final bake quality, the Ambient Occlusion and Final Gather boxes
have been marked. On the one hand, there is the Ambient Occlusion, which
calculates which areas are difficult to access (by proximity of geometry) and
darken them, taking into account the value indicated in the Indirect option. On the
other hand is the Final Gather, which is responsible for calculating bounces of light
pigmenting the scene. This gives a more colorful look to the scene and makes it
more immersive.

78

In addition to this, for an object to be included in the bake calculation it is
important to check a couple of options. On one side is the Static box. From the
object inspector, on the top right there is an arrow next to the word Static, as
shown in Figure 70. Clicking on it opens a drop-down in which the Lightmap Static
option appears. This option must be selected so that the object is included in the
bake.

] * & Rails : | [=] Stati =
Tag | Untagged : Mothing
Prefab | Select E‘ufer]r‘thing
YA Transform _ ||v¥ Lightmap Static
Position Xxo :
Rotation x 0 Occluder Static
Scale 4 fl Batching Static
TT— Navigation Static

Occludee Static
Off Mesh Link Generation
Reflection Probe Static

Figure 70: Lightmap Static option

On the other hand there is another option that is chosen from the maya's own
geometry. This option is Generate Lightmap UVs. Checking this option gives
permission to generate UVs of illumination for all those elements that have this
model.

i Spherescope 2 Import Settings &l %

m Rig Animations

Meshes

Scale Factor 1

File Scale 0.0254
Mesh Compression | off

Read/Write Enabled
Optimize Mesh [
Import BlendShapes [
Generate Colliders -

<

(]

Keep Quads |
Swap UVs]
Generate Lightmap UVs E

Figure 71: Generate Lightmap UVs option

79

Occlusion Culling

Another method used to optimize the game is the Occlusion Culling. This method is
responsible for rendering only what is visible at each moment. Therefore, if for
example the player is inside the lighthouse, nothing that is outside of the
lighthouse is rendered even though it is inside the Frustum of the camera. To carry
out this method simply mark the Occluder Static and Occludee Static options on
those static objects that will not be moved, as shown in Figure 72.

| W Groupl
.

Tag | Untagged

¥ .« Transform
Position

Rotation
Scale

—

v

||=! Static =
Nothing
Everything
Lightmap Static
Occluder Static
Batching Static
MNavigation Static
Occludee Static
Off Mesh Link Generation
Reflection Probe Static

Figure 72: Occluder and Occludee Static options

For more accuracy, only the corresponding occlusion option can be marked for
each object. The Occluder Static option is marked on large objects that potentially
cover other smaller objects. The Occludee Static option is marked on those small
objects that are likely to be covered by larger ones. However, this project has not
been so accurate. Marking both options on both objects ensures that an object can
act as both Occluder and Occludee, but slows down the occlusion bake process.
Figure 73 shows a screenshot of the final scene occlusion bake.

80

Figure 73: Baking Occlusion process

Post Processing Stack

Due to the use of different assets the final fps obtained are around 15 and it would
be appropriate to obtain at least 30, so there had to find some alternatives.
Looking for the asset store has found an asset called Post Processing Stack [10],
which allows to use the effects of camera in a much more optimized way. These
effects include Antialiasing and Ambient Occlusion, which are the two main
effects that have been chosen to use to make the scenario look good. By being
optimized you can also use more of these effects without reducing the fps, as is
the case of Bloom. Thanks to Bloom you can achieve the same neon effect that is
achieved with the asset MK Glow Free, but in a more optimized way, so that the
MK Glow Free can already be discarded. To make the effect work correctly, you
must activate the HDR rendering option in the camera itself and make sure that
the elements that have to have a neon effect have materials with the Emission
property activated with a value greater than 1 in HDR. Shown in Figure 74.

81

Figure 74: Material example with HDR emission of 3

82

Results

The final result is the desired one, a playable demo that contains on the one hand
a three-dimensional scenario freely explorable and pleasing to the eye and on the
other hand a series of puzzles based on the physical of spheres. A series of
captures of the final project will be shown below. This will explain the game flow.

The player begins the adventure in a bedroom room, inside the lighthouse. In this
room lives the protagonist Kodo, who is in charge of the care of this lighthouse. In
Figure 75 you can see the room with all its furniture. This room has been made
octagonal by aesthetics since it is an out of the ordinary.

e b)

Figure 75: Bedroom

After leaving the room you reach the main room of the lighthouse, which is lit by a
series of torches on the wall, impregnating the entire room with an orange light. In
the center is a golden statue that works as an elevator as shown in Figure 76. At
the base of the statue there is a button that drives the elevator and allows the
player to climb to the top of the lighthouse. In the hands of the statue is where
you have to get to place the orb that is in the Gyro Temple, although the demo
does not reach this point. However, the final part is programmed when the orb is
already in the statute.

83

Figure 76: Statue elevator

After leaving the lighthouse you can observe how the sun dazzles and sneaks
between the columns. At the bottom there is a large, fairly long bridge that
communicates with the island, as shown in Figure 77.

Figure 77: Lighthouse outside and bridge

When arriving at the island the first thing that catches the attention is an area to
the right with a fireplace, in which is the map of the island. After picking it up,
you can start searching for the three keys. This is only a passing area of the island,
to communicate the lighthouse with the rest of areas. In Figure 78 you can see
what this zone looks like.

84

Figure 78: First zone of the island

Continuing it is reached a descent that leads to a zone of coast, with sand and
some palm trees as well as big rocks as shown in Figure 79. In addition this zone is
communicated by different wooden bridges.

Figure 79: Beach zone

In this area is found the first key, the blue one, which can be easily seen and
inevitably catches the player's attention, so if the map is not consulted, it is also
very easy to find. This key just like the others is located on a pedestal under a
small dome as shown in Figure 80.

85

Figure 80: First key zone

After picking up the first key and continuing along the coast you reach an ascent
that leads to another area, in which the blue and purple colors take on
importance, giving off a mystical air. In this area there is a small pond in the
center surrounded by trees and some rock formations. Also in this area grow
flowers that expand in circles of different sizes. In the center of the pond is the
second key, the green one, as shown in Figure 81.

Figure 81: Second key zone

Finally you reach the area where the last key is located. This area is formed by
small elevations of land that are interconnected by hanging wooden bridges. In this
area grow yellow trees and shrubs and, above all, many red poppies. In addition
there are vestiges of some type of old construction, since there are columns and

86

great blocks of stone by all the zone, although not in very good condition. This
zone can be seen in Figure 82.

Figure 82: Hanging bridges zone

As you can see in Figure 83, at the end of this area, after climbing a hill full of
poppies and columns on both sides, is the dome with the last key to be obtained,
the red one.

Figure 83: Third key zone

Finally, after having obtained the three keys, head to the Gyro Temple, which is
also down to the coast. In the temple can be seen in the center three metal rings
spinning at high speed and producing a deafening sound. In the center of the rings
is the orb. On the sides of this element are three raised areas in which you have to

87

place the three keys that have been collected. The color of the light beam
indicates which key goes on each pedestal. In this case, this is irrelevant since you
have the three keys so inevitably will go one key on each pedestal. The Gyro
Temple is shown in Figure 84.

|
Figure 84: Gyro Temple

When interacting with the pedestals, the corresponding key is automatically
placed in each one. Each key that is placed turns off one of the rotating rings.
When the three rings stop, the orb is released by shooting upwards, where it
reaches a rail by which it will begin to roll.

Here begins the second part of the demo, in which you have to solve the different
puzzles to help the orb to advance. The demo only reaches the second zone of
puzzles. The first zone of puzzles is located right next to the temple, in the same
zone of coast, as can be seen in Figure 85.

88

S
Eg i

il :,f:’. Selhig,
© R WS

R
] Y

Figure 85: First puzzles sequence

This first sequence of puzzles is formed by four puzzles, that when completed they
allow the use of a catapult, in which the orb is after having rolled by the first rail.
To activate the catapult simply press the button next to a pedestal. When
activated, the orb is thrown into a kind of funnel, which directs the second and
last rail of the demo. Figure 86 shows the catapult with the orb, as well as both
rails and the glass funnel.

Figure 86: Orb in catapult

Following the way back and the path of the orb you get to the second and final
sequence of puzzles made for the demo. This zone is activated after having used
the catapult. In this sequence of puzzles the red micro orb is introduced as well as

89

its corresponding output. In addition also inverted puzzles are introduced, which
are illuminated with a red light beam instead of blue, as can be seen in Figure 87.

Figure 87: Inverted puzzle waiting to be solved

After completing these puzzles could be terminated the demo, although there are
more things than have been made for the way back to the lighthouse. After
completing this zone would activate a wooden elevator, which allows to return to
the lighthouse by a different road, in which supposedly would find more sequences
of puzzles that would guide the orb. This elevator can be seen in Figure 88. This
elevator is programmed and works perfectly.

Figure 88: Outdoor wood elevator

90

Using the elevator you can go down to another zone of coast that communicates
with the first with a wooden bridge. However this bridge is broken so that to
return is made use of a boat. It is here that shows the small navigation system that
has been implemented. You can see the broken bridge in Figure 89. As a curiosity
have placed in that area a series of rocks in the sea that if seen from afar they
look like three sharks swimming in circles. This tries to simulate that the bridge
has been broken possibly by some shark.

Figure 89: Broken wood bridge and shark rocks

On the way back you can see a nice view of the lighthouse and the bridge shown in
Figure 90.

Figure 90: Lighthouse from the distance

91

Finally the final sequence is programmed in which the orb is placed in the statue
and the elevator rises to the top of the lighthouse. When it arrives at the top a ray
of light illuminates the orb and it begins to glow and diffract in different colored
rays of light. Slowly the screen turns white and the game ends and closes. You can
see this final scene in Figure 91.

Figure 91: Final scene with lighthouse being illuminated

92

Final Planning

Although all the initially planned tasks have been carried out correctly, the time
estimates are far from reality. The project should be designed in a way that lasts
approximately 300 hours. However, despite having planned it this way, it has
finally had to spend much more time. Almost all tasks have taken twice the
estimated time to complete satisfactorily. It has been wanted to do a varied
project that requires tasks of all kinds that cover the greatest possible number of
different subjects, but this has turned out to be negative because it has taken too
much time to develop.

The initial planning was planned so that they were dedicated 4 hours a day, from
Tuesday to Saturday. However it has ended up dedicating 5 or more hours, from
Monday to Sunday. It was also planned that Saturdays were dedicated exclusively
to advance the final memory, something that has been impossible to accomplish.
The report was made once the project was finished at the end of May. Therefore,
the entire month of June has been dedicated to writing the final report.

93

Conclusions

Objectives

The project has been successfully completed fulfilling all the stated objectives.
Each one will be explained in detail below.

- Obj 1: Make a playable demo of a 3D videogame for PC in first person that will
use the spheres physics as main mechanic and that will contain an free explorable
scenario.

Despite considering this goal accomplished, it is true that a section of the demo
was decided to skip because it consisted of repeating again the same process
already performed (create more rails, more puzzles, more catapults, etc.) and
time had to be spent on other more important tasks in the project.

+ Obj 2: The demo will focus exclusively on one of the six proposed islands, but
trying to show a variety of environments in it, including the navigation system.

In fact, only an island has been designed, modeled and assembled with its
lighthouse and its corresponding temple. In addition, the island has been designed
so that it is necessary to use the navigation system to complete it. This way, this
part of the game can be displayed correctly as part of the demo.

- Obj 3: The scenarios of the game will be pleasing to the eye using a colorful
aesthetic without textures and the modeling will be low-medium poly without
excessive detail.

The final visual style obtained corresponds to the established, being colorful, with
few textures and pleasing to the eye. As for the modeling perhaps some elements
like the lighthouse could be considered something more than low-medium poly,
but equally it has been well and does not disagree with the esthetics.

- Obj 4: The terrain, grass and tree tools included in Unity will be used to create
the scenario.

94

All these tools have been used although in some of them it is not to be deepened
as much as it is the case of the tool of creation of trees. As for the terrain tool and
grass has explored practically all the options, even optimizing the rendering of the
grass.

-+ Obj 5: It will be important that the game has a good sound environment.

Although the sound may sometimes go unnoticed, much attention has been paid to
this and it has been elaborated in detail. It is for example the case of ambient
waves and wind sounds that vary according to the height, or the case of the
different sounds of steps that reproduce when player steps on different types of
terrain like water, earth or even wood.

- Obj 6: The interface will be as clean and clear as possible.

The only element that appears as part of the interface is the cursor that allows the
player to know how to interpret what type of element is looking at.

- Obj 7: The sound and interface should transmit good feedback to the player.

Indeed the interface has been designed so that the player receives different type
of information. The interface is formed only by the cursor, which is responsible for
visually and auditory indicating when you can interact with an element and when
not, as well as knowing if it is interacting with something. The three cursor states
take care of this function perfectly.

As for the sound, other than playing when interacting or looking at an interacting
element, it is also found in other elements. In puzzles they can identify if they are
completed correctly or not, and in the orbs, let you know by a clinking sound when
the orb is spinning and if it goes fast or slow.

- Obj 8: The difficulty and learning curves will be well balanced, allowing the
player to learn and understand the mechanics little by little without any kind of
tutorial.

Both types of curve have been taken into account and have been elaborated
carefully based even on curves used in other video games.

95

Problems and Solutions

Throughout the development of the project have been appearing all kinds of
problems. Here are some of the most important ones.

Final Bake

Despite having previously prepared the bake and have done tests, for the final
bake it has been necessary to change some options because due to the large size of
the scene and the number of elements in it, the bake could not be performed.
When trying to make the bake, not only took a lot of time, but was unable to finish
and errors appeared as "Out of memory". To solve this, some options have had to
be changed that lower the quality, as shown in Figure 92.

¥ Lightmapping Settings

Lightmapper | Enlighten 4 |
Indirect Resolution 1 texels per unit
Lightmap Resolution 10 texels per unit
Lightmap Padding 2 texels
Lightmap Size | 1024 $ |
Compress Lightmaps
Ambient Occlusion o

Max Distance 50

Indirect Contribution == 1

Direct Contribution Cr 0
Final Gather W

Ray Count 512

Denoising o
Directional Mode | Directional 2]

Directional lightmaps cannot be decoded on SM2.0 hardware
& nor when using GLES2.0. They will fallback to
Mon-Directional hg__htrnapi.

Indirect Intensity) 1.5 |
Albedo Boost (1 |
Lightmap Parameters _ml

Figure 92: New bake settings

After modifying these bake options the bake has been able to realize with success,
obtaining a good result. Even so, some small graphical glitches have appeared in

96

some textures as can be seen in Figure 93. This may be due perhaps to some vertex
or badly closed edge in the geometry that has let the light through. It may also be
simply some miscalculation, since the lighthouse is a fairly large model.

Figure 93: Lighthouse bake artifacts near the door and near the stairs

Anyway the result looks great and the final scene works at 45 fps on average.

Terrain

One of the biggest problems when modeling has been the proportions. Because the
terrain has been modeled in the Unity editor itself, it was difficult to know the
size and size of elements such as bridges. The ideal would be to model these
elements in 3dsmax, however to avoid all these problems of proportions have been
looked for an alternative. This consists of building these elements directly on the
ground in the Unity editor, using basic geometric shapes such as scaled cubes and
cylinders. This is a rather tedious process but the result has been very good. This
method has been used for elements such as bridges, docks, the external elevator
and all the wiring of the stage.

Another problem that also arises from the fact of using the terrain tool of Unity, is
the limitations of this. As previously discussed, this tool uses heightmaps to model
terrain. Therefore, structures like the one shown in Figure 94 can not be
generated.

97

Figure 94: Rock arch reference

In a zone of the game it was proposed to create arches of stone to connect
different islands, but with this tool can not do this. So what was finally done was
to connect these islands with hanging wooden bridges.

98

Bibliography

References

[1] Marble Machines:
https://www.youtube.com/watch?v=3NJ7Fré6VrPU

[2] Superplexus
https://www.youtube.com/watch?v=9wohFfpLU7s

[3] The Witness
https://www.youtube.com/watch?v=SPMMKFX78x0

[4] Rime
https://youtu.be/PLszT6nHeAo

Documentation

[5] Terrain Settings
https://docs.unity3d.com/Manual/terrain-OtherSettings.html

Assets

[6] Cel Shading:
http://www.zehngames.com/developers/next-gen-cel-shading-con-unity-5/

[7] MK Glow Free:
https://www.assetstore.unity3d.com/en/#!/content/28044

[8] Light Shafts:
https://github.com/robertcupisz/LightShafts

99

http://www.zehngames.com/developers/next-gen-cel-shading-con-unity-5/
https://www.assetstore.unity3d.com/en/#!/content/28044
https://docs.unity3d.com/Manual/terrain-OtherSettings.html
https://www.youtube.com/watch?v=9wohFfpLU7s
https://www.youtube.com/watch?v=3NJ7Fr6VrPU
https://youtu.be/PLszT6nHeAo
https://www.youtube.com/watch?v=SPMMKFX78x0
https://github.com/robertcupisz/LightShafts

[9] Volumetric Lights:
https://github.com/SlightlyMad/VolumetricLights/

[10] Post Processing Stack:
https://www.assetstore.unity3d.com/en/#!/content/83912

Tools

[11] MP3 Cutter Online:
http://mp3cut.net/es/

100

https://github.com/SlightlyMad/VolumetricLights/
https://www.assetstore.unity3d.com/en/#!/content/83912
http://mp3cut.net/es/

