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ABSTRACT : 

 

The APC/C-Cdh1 ubiquitin-ligase complex targets cell cycle regulators for 

proteosomal degradation and helps prevent tumor development and accumulation of 

chromosomal aberrations. Replication stress has been proposed to be the main 

driver of genomic instability in the absence of Cdh1, but the real contribution of 

APC/C-Cdh1 to efficient replication, especially in normal cells, remains unclear. Here 

we show that, in primary MEFs, acute depletion or permanent ablation of Cdh1 

slowed down replication fork movement and increased origin activity. Partial inhibition 

of origin firing does not accelerate replication forks, suggesting that fork progression 

is intrinsically limited in the absence of Cdh1. Moreover, exogenous supply of 

nucleotide precursors, or ectopic overexpression of RRM2, the regulatory subunit of 

Ribonucleotide Reductase, restore replication efficiency, indicating that dNTP 

availability could be impaired upon Cdh1 loss. Indeed, we found reduced dNTP 

levels in Cdh1-deficient MEFs. Importantly, DNA breakage is also significantly 

alleviated by increasing intracellular dNTP pools, strongly suggesting that genomic 

instability is the result of aberrant replication. These observations highlight the 

relevance of APC/C-Cdh1 activity during G1 to ensure an adequate supply of dNTPs 

to the replisome, prevent replication stress and the resulting chromosomal breaks 

and, ultimately, suppress tumorigenesis.  
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INTRODUCTION:  
 

The ubiquitin-proteasome system plays a pivotal role in cell cycle control by 

mediating the precise spatial and temporal proteolysis of critical components of the 

cell cycle machinery1, 2.  During mitosis and the subsequent G1 phase, this process 

is initiated by the Anaphase Promoting Complex or Ciclosome (APC/C), a 

multisubunit E3 ubiquitin ligase whose activity is mostly controlled by the regulated 

binding of two alternative cofactors, Cdc20 or Cdh1, that recruit specific substrates3, 4. 

Cdc20 activates APC/C during early mitosis and towards the end of the mitotic phase, 

Cdh1 takes over and facilitates exit from mitosis by targeting for degradation protein 

kinases such as Plk1, Aurora A and Aurora B, mitotic cyclins, and even Cdc205. 

During G1, APC/C-Cdh1 keeps Cdk activity low by promoting proteolysis of Skp2, a 

component of the SCF complex that, in turn, mediates proteosomal degradation of 

the Cdk inhibitors p27, p21 and p57. On the other hand, APC/C-Cdh1 ubiquitylates 

Geminin, the inhibitor of Cdt1, and is thus believed to promote replication origin 

licensing6, 7. At the end of G1, Cdh1 is phosphorylated by Cdk2 and dissociates from 

the APC/C complex that will remain inactive until the following mitosis.   

Cdh1 has been shown to be dispensable for the mitotic cell cycle in different 

organisms8-10. However, targeted deletion of the Cdh1 gene in mouse cells, or 

depletion of the protein in human cells, induce premature entry into S phase and 

genomic instability11-13. Moreover, genetic ablation of Cdh1 in early mouse embryos 

leads to perinatal lethality of newborn pups, and Cdh1 heterozygous mice show 

increased susceptibility to epithelial tumor development11. Cdh1 is thus considered to 

act as a haploinsufficient tumor suppressor, and loss of genomic integrity has been 

proposed to facilitate cell transformation in its absence 14,15. 
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Accurate and complete duplication of the genetic material is essential to preserve 

genomic stability. However, cells are frequently exposed to endogenous or 

exogenous insults that compromise the replication process leading to replicative 

stress16. The most detrimental consequences of aberrant replication are the 

generation of DNA double-strand breaks, that can lead to chromosomal 

rearrangements, and the loss of genomic segments as a result of mitotic entry with 

under-replicated regions17. These adverse outcomes can be restricted through 

activation of the ATR and Chk1-dependent S phase checkpoint, that helps stabilize 

stalled forks, inhibit late origin firing and arrest cell cycle progression18. Still, in cases 

of moderate or low replication stress full activation of the checkpoint may not be 

achieved, leading to mitotic defects and chromosomal aberrations.  

We have previously reported that Cdh1-null mouse embryonic fibroblasts (MEFs) 

accumulate chromosomal translocations and show non-disjunction figures and 

chromosome fragments in mitotic spreads11. However, the underlying molecular 

dysfunction leading to chromosomal aberrations was not defined. We now show that, 

in primary MEFs lacking Cdh1 expression, genomic instability is accompanied by 

altered replication dynamics, and we have identified the resulting replication stress as 

the main source of DNA breaks in these cells. Moreover, insufficient supply of dNTPs 

to the replication machinery seems to be behind the replication defects observed 

upon Cdh1 loss.  

 

RESULTS :  
 
Acute depletion of Cdh1 in primary MEFs induces accumulation of DNA breaks. 

To get further insight into the role of APC/C-Cdh1 in preserving chromosomal 

integrity, we induced acute depletion of Cdh1 in primary MEFs homozygous for Cdh1 
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conditional allele (Cdh1(lox/lox)) using adenovirus expressing the Cre recombinase 

(Adeno-Cre). Efficient downregulation of the protein following infection was confirmed 

by western blot (Figure 1A). Using flow cytometry, an increased proportion of γH2AX-

positive cells was detected in MEFs infected with Adeno-Cre (Figure 1B). 

Interestingly, this difference was more significant in cells that did not incorporate the 

thymidine analog EdU (EdU-negative cells), suggesting that DNA damage 

preferentially occurred in cells that had already completed the bulk of replication. 

Similar results were obtained when comparing γH2AX expression in control and 

Cdh1-depleted MEFs by immunofluorescence microscopy (Figure S1). Importantly, 

no change was detected in H2AX phosphorylation upon infection of primary MEFs 

carrying wild type Cdh1 alleles with the same adenoviruses (Figure 1B). Moreover, 

equivalent observations were made with Cdh1-deficient primary MEFs (Figures S2A, 

S2B and S3A). Increased detection of 53BP1 foci in Cdh1-depleted or Cdh1-deficient 

MEFs (Figures 1C and S2C) further confirmed the induction of spontaneous DNA 

lesions upon Cdh1 loss. Finally, to directly visualize and quantify DNA breaks in 

single cells, we performed alkaline comet assays. As shown in Figure 1D, Adeno-

Cre-mediated Cdh1 depletion strongly induced DNA breakage, whereas infection 

with the same virus had no effect on DNA integrity in wild type MEFs. Likewise, 

Cdh1-deficient MEFs also showed significantly higher levels of DNA breaks 

compared to control MEFs (Figure S2D). Together, these results indicate that 

absence, or strong downregulation of the Cdh1 protein, promote accumulation of 

endogenous DNA damage.  

Signs of replicative stress in the absence of Cdh1 

Since replication stress is one of the most common sources of endogenous DNA 

damage in mammalian cells19, 20, we looked for signs of replicative stress in Cdh1-
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mutant MEFs. An increased presence of cells with RPA foci was detected in 

Cdh1(lox/lox) MEFs following expression of adenoviral Cre recombinase (Figure 2A), 

as well as in MEFs constitutively deficient for Cdh1 (Figure S3B). Phosphorylation of 

Chk1 kinase and p53 protein were also moderately induced upon acute depletion of 

Cdh1 (Figure 2B), suggesting a mild activation of the DNA damage response. Finally, 

we observed that following incubation of asynchronous cultures with EdU, replicating 

MEFs devoid of Cdh1 incorporated less of the thymidine analog than control MEFs 

(Figure 2C). We conclude that, upon acute or persistent loss of Cdh1 expression, 

primary MEFs show signs of inefficient DNA synthesis and replication stress.  

Slow replication fork progression and increased origin activation in the 

absence of Cdh1 

The findings outlined above prompted us to compare replication dynamics in the 

presence or absence of Cdh1. We first assessed replication fork progression rates by 

measuring IdU tracks on stretched DNA fibers (Figure 3A). As shown in Figure 3B, 

replication fork movement in Cdh1(lox/lox) MEFs was notably slower following 

infection with Adeno-Cre (Figure 3B). Similarly, fork speed was lower in Cdh1 null 

MEFs than in control cells (Figures 3C and 3D). Moreover, the distance between 

adjacent replication origins was shorter in Cdh1-depleted and Cdh1-deficient MEFs 

(Figures 3E and 3F), indicating increased origin firing in these cells, and suggesting 

the compensatory activation of dormant origins21-23. As expected, no such differences 

in fork speed or Inter Origin Distance (IOD) were detected in wild type MEFs infected 

with the same adenoviruses (Figures 3G and 3H).  

To compare the overall duration of the S phase in control and Cdh1-deficient MEFs, 

we labeled them with two pulses of the thymidine analogs CldU and IdU, separated 
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by a chase period of 0 to 8 hours (Figure 4A), and determined what fraction of the 

cells that had incorporated the first analog (CldU) were also positive for IdU at each 

time point. As shown in Figure 4C an increasing difference between the two cell 

cultures became obvious at longer chase times (4 hours onward). Based on these 

data (Figure 4D) we estimated that S phase can be up to 28% longer in cells lacking 

Cdh1 than in control cells (12,8 hours vs 9,9 hours). Therefore, the increased origin 

activity observed upon Cdh1 ablation, does not fully compensate for the slow 

progression of replication forks. Collectively, these results confirm that the replication 

process is inefficient in the absence of Cdh1, and that inactivation of the APC/C-

Cdh1 complex in cycling cells leads to replication stress.  

Slow replication fork progression in Cdh1-mutant cells is not due to enhanced 

origin usage 

Increased origin firing has been shown to result in reduced fork rate, possibly due to 

competition for limiting factors 24. To verify if this was the case in the absence of 

Cdh1, we used the Cdc7 kinase inhibitor, PHA-767491, to partially inhibit replication 

origin firing and analyze the effect on fork speed25. Phosphorylation of MCM2 in 

Ser53, which is mediated by Cdc7, was similarly reduced following PHA-767491 

treatment in Cdh1(lox/lox) MEFs infected with Adeno-Cre or with control adenovirus 

(Figure 5A), as well as in Cdh1-deficient and control MEFs (Figure S4A). As 

expected, PHA-767491 produced a highly significant increase in IOD in both control 

and mutant cells (Figure 5B and S4B). However, whereas treated control cells 

showed a faster progression of replication forks, presumably because they attempt to 

compensate for the impaired origin activity, no detectable changes in fork speed 

were observed in Cdh1-depleted or Cdh1-deficient MEFs after treatment (Figures 5C 

and S4C). Therefore, slow replication fork movement in the absence of Cdh1 is 
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independent of the elevated frequency of origin activation, and fork velocity seems to 

be intrinsically limited in the absence of Cdh1.  

Replication dynamics and chromosomal stability are restored in Cdh1-mutant 

cells by nucleoside supplementation 

Adequate supply of nucleotides for DNA synthesis is a major determinant of 

replication efficiency26, 27. Therefore, we tested whether addition of nucleotide 

precursors to the culture medium would improve replication dynamics in cells lacking 

Cdh1 expression. Indeed, exogenous supply of nucleosides to Cdh1-depleted or 

Cdh1-deficient MEFs, greatly accelerated replication fork progression in these cells, 

but had negligible effects on fork speed in the corresponding control MEFs (Figure 

6A and 6C). Notably, nucleoside supplementation also increased IOD in these cells 

(Figure 6B and 6D), suggesting that the compensatory use of dormant origins 

observed upon Cdh1 loss, is no longer required. Alkaline comet assays revealed that 

nucleoside supplementation substantially reduced DNA breakage in mutant cells 

while having minimal impact on control cells (Figure 6E). These results strongly 

suggest that replication stress is the main source of chromosomal instability in the 

absence of Cdh1. Intriguingly, the same beneficial effects on fork velocity, IOD, and 

DNA damage were observed with dNTPs (Figure S5), possibly implying that, despite 

their predicted lack of cell-permeability, nucleotides could efficiently traverse the cell 

membrane (perhaps after partial or complete dephosphorylation).  

Intracellular dNTP pools are limiting in Cdh1-deficient MEFs  

The fact that replication efficiency could be restored in Cdh1-depleted or -deficient 

MEFs with exogenous nucleosides, supports the idea that nucleotide pools could be 

insufficient in these cells. Quantification of intracellular pools of all four dNTPs in 
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control and Cdh1-null cells confirmed a moderate but significant decrease in dCTP 

and dTTP in mutant cells and a similar tendency in dATP and dGTP (Figure 7A). 

Whether or not this mild reduction could restrain replication is unclear, but it is 

possible that dNTP concentrations could be further diminished locally, in the vicinity 

of replication forks or replication factories, where nucleotide levels have a greater 

impact on genome duplication efficiency.  

Ribonucleotide Reductase (RNR) is a key enzyme for dNTP synthesis and its 

regulatory subunit RRM2 is rate-limiting for this process28, 29. To increase intracellular 

dNTP pools using a genetic strategy, we ectopically overexpressed RRM2 in control 

and Cdh1-deficient MEFs (Figure 7B). As shown in Figures 7C and 7D, RRM2 

overexpression significantly improved replication fork progression and restored 

genomic stability in Cdh1-null MEFs, further confirming our previous observations. 

These results could suggest that RRM2 might be downregulated in the absence of 

Cdh1. Yet, RRM2 was reported to be a substrate of APC/C-Cdh130, thus predicting 

higher RRM2 protein levels in cells lacking Cdh1. However, RRM2 expression was 

only modestly elevated in asynchronous Cdh1-deficient MEFs or even in cultures 

enriched for S phase cells (20 hours after release from G0 arrest) (Figure S6A). 

Therefore, in these mutant cells, even the slightly elevated RRM2 protein levels 

seem to be insufficient to ensure an adequate supply of dNTPs to the replisome.  

Two other enzymes involved in dNTP synthesis, Thymidine Kinase 1 (TK1) and 

Thymidylate Kinase 1 (TMPK), have also been described as targets of APC/C31, 

suggesting that their stabilization could mediate the defective dNTP homeostasis in 

Cdh1-null cells. Interestingly, overexpression of their non-degradable mutant forms in 

NIH-3T3 cells was shown to cause a marked increase in the dTTP pool size, growth 

retardation and higher gene mutation rates31. However, we did not find either TK1 or 
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TMPK to be upregulated in Cdh1-depleted or Cdh1-deficient MEFs, whereas another 

known substrate of APC/C-Cdh1 such as Aurora A, was clearly stabilized in the 

same cells (Figure S6B). Consistently, as shown in Figure 7A, dTTP pools were not 

enlarged but rather decreased in mutant MEFs.  

Premature entry into S phase contributes to induce replication stress in the 

absence of Cdh1 

Premature entry into S phase upon Cdh1 deletion or depletion has been attributed to 

increased Cdk activity during G132 and could lead to replication stress.  To test this 

hypothesis, we first assessed whether limited inhibition of Cdk activity could prevent 

precocious S phase entry in Cdh1-deficient MEFs. As shown in Figure 8A, following 

a G0 arrest, cell cycle re-entry in the presence of a low dose of Roscovitine, reduced 

the percentage of EdU-positive mutant cells to levels comparable to those of control 

cells at all time points tested, indicating normalization of the timing of S phase onset. 

DNA fiber analysis on samples collected 15h after release from G0, when most cells 

have initiated replication, revealed that treatment with the Cdk inhibitor partially 

improved replication fork progression in Cdh1-deficient cells (Figure 8B). A similar 

recovery was detected on asynchronous cultures treated with the same dose of 

Roscovitine, although fork velocity was not fully restored (Figure 8C). In agreement 

with these observations, DNA breakage was also partly reduced by drug treatment in 

mutant cells after cell cycle re-entry (Figure 8D) or during asynchronous growth 

(Figure 8E). Together, these results suggest that increased Cdk activity in G1 and 

the resulting accelerated entry into S phase, restrain replication fork movement in the 

absence of Cdh1. However, the fact that this phenotype cannot be fully rescued by 

Roscovitine indicates that additional factors contribute to the alterations in DNA 

replication observed in Cdh1-null cells. 
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DISCUSSION :  
 

In this study we have used primary MEFs either deficient in Cdh1 or conditionally 

depleted of the protein to gain further insight into how APC/C-Cdh1 activity in G1 

determines replication dynamics, prevents replicative stress and protects genomic 

integrity.  

Using alkaline comet assays, we were able to directly quantify DNA breaks in Cdh1-

proficient or Cdh1-deficient cells, and enhanced DNA breakage in the absence of 

Cdh1 was substantiated. These findings are in agreement with the previously 

reported increase in DNA damage markers such as γH2AX in primary mouse and 

human cells lacking Cdh1 expression33,34. Our results showing differential γH2AX 

staining in proliferating cells that are not replicating their DNA, support the idea that, 

upon Cdh1 loss, most of the DNA damage is generated in G2, when the bulk of 

genomic DNA has already been duplicated, or during mitosis. Consistently, Cdh1-

mutant MEFs show increased presence of 53BP1 foci, which are typically found in 

G1 cells suffering from mild replication stress and mark chromosomal lesions 

generated during G2/M35. In this regard, aberrant mitosis with lagging chromosomes, 

anaphase bridges and micronuclei, have been observed in the absence of Cdh1 in 

MEFs, human fibroblasts and U2Os cells11, 12, 34. Interestingly, similar mitotic defects 

have been associated with low but persistent replication stress, that would fail to fully 

activate the DNA damage response36, 37. Importantly, Cdh1 mutant MEFs showed 

mild activation of the DNA damage response. 

Several studies have proposed defective replication to be the underlying cause of 

genomic instability upon Cdh1 loss11, 33, 34, 38. However, a direct analysis of replication 

dynamics in primary cells lacking Cdh1 expression was missing. Our results provide 
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the first evidence of slow replication fork movement and altered origin usage in the 

absence of Cdh1 in non-tumoral cells. A similar reduction in fork velocity was recently 

found in Cdh1-depleted HeLa cells32, although no significant changes in origin activity 

were detected, perhaps reflecting differential sensitivities to Cdh1 loss between 

normal and transformed cells. Nevertheless, the increased origin activation rate 

found in Cdh1-mutant MEFs, proved to be secondary to the observed deceleration of 

replication forks, as origin activity was normalized when fork velocity was restored. 

Intriguingly, budding yeast Cdh1 was shown to be required for optimal firing 

efficiency of a subset of origins39. While analyses of individual origin usage are not 

yet possible in mammalian cells, we cannot rule out that specific origins could be 

suboptimally activated in Cdh1-deficient MEFs. On the other hand, replication origin 

licensing is believed to be restrained in the absence of Cdh1 owing to Cyclin A and 

Cyclin B stabilization in G1 and increased Cdk1 and Cdk2 activities6. Accordingly, we 

previously reported a moderate reduction in MCM4 and MCM5 chromatin loading in 

Cdh1-null MEFs11, and similar observations were made in Cdh1-depleted U2Os 

cells34. Since a full load of helicase complexes are required when cells are 

challenged with replicative stress, and dormant origins must be activated21, 23, the 

consequences of impaired fork progression in the absence of Cdh1 could be 

aggravated due to insufficient availability of backup licensed origins.  

Shortage of building blocks for DNA synthesis could be a prevalent underlying defect 

leading to aberrant replication, as nucleoside supplementation has been shown to 

limit replication stress induced by a variety of triggering factors, including 

oncogenes40-42. Normal replication dynamics were also restored in Cdh1-mutant 

MEFs by exogenous supply of nucleotide precursors, suggesting that dNTP 

availability is compromised in the absence of Cdh1. Consistently, we found reduced 
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levels of intracellular dNTP pools in cells devoid of Cdh1. Remarkably, DNA 

breakage was also significantly alleviated by exogenous nucleosides, further 

demonstrating that genomic instability in the absence of Cdh1 is mostly caused by 

replication stress.  

Intracellular dNTP levels are determined by the interplay between the synthetic and 

hydrolytic pathways43. RNR catalyzes the rate-limiting step for dNTP synthesis, and 

its cell cycle-dependent activity is dictated by RRM2 levels, which, in turn, are 

restricted by proteosomal degradation driven by SCF-Cyclin F in G2, and by APC/C-

Cdh1 in G130, 44. This dual proteolytic control may explain why, in the absence of 

Cdh1, RRM2 expression is only moderately increased in asynchronous cultures. 

Moreover, the recent finding that Cyclin F is itself a substrate of APC/C-Cdh1 

suggests that, upon Cdh1 loss, RRM2 degradation in G2 could be enhanced45. TK1 

and TMPK could be similarly affected by alternative degradation pathways 

upregulated in the absence of Cdh1. In this regard, TMPK was shown to be a 

substrate of both APC/C-Cdh1 and APC/C-Cdc2031, and Cdc20 is itself targeted for 

degradation by APC/C-Cdh1. TK1 proteolysis has only been linked to APC/C-Cdh1, 

and the protein is notably upregulated in HeLa cells following Cdh1 depletion.31. 

However, additional or alternative control mechanisms could operate in normal 

primary cells to help balance its steady-state levels, particularly in the absence of 

Cdh1.  

Nevertheless, the fact that replication defects and genomic instability are significantly 

alleviated in Cdh1-mutant cells by ectopic RRM2 overexpression suggests that, in 

these cells, endogenous RNR activity could be insufficient to maintain the required 

concentration of dNTPs or to counterbalance another dysfunction perturbing dNTP 

homeostasis. More importantly, this observation opens-up the interesting possibility 
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of using genetic strategies to upregulate RRM2 levels in vivo, in mouse models of 

Cdh1 deficiency, and determine the real contribution of replicative stress to perinatal 

lethality of Cdh1-deficient pups and to increased tumor susceptibility of Cdh1 

heterozygotes. A similar approach has been successfully used to reduce fragile site 

breakage and improve survival of ATR mutant mice41. 

Our results show that limited inhibition of Cdk activity in Cdh1-deficient cells delays 

entry into S phase, and partially improves replication fork progression and 

chromosomal stability. Therefore, the precocious S phase onset induced upon Cdh1 

deletion contributes to defective replication, perhaps by preventing full activation of 

the transcriptional program required for efficient replication, which includes nucleotide 

biosynthesis enzymes. However, full recovery of the phenotype is only achieved by 

increasing intracellular dNTP pools, suggesting that, in the absence of Cdh1, several 

mechanisms may contribute to limit dNTP availability or to create a scenario where 

higher than normal dNTP levels would be required to compensate for additional 

defects in the replication machinery.  

In summary, we have formally established using primary cells, that loss of the 

APC/C-cofactor Cdh1 disrupts normal replication dynamics, triggers replication stress 

and, as a consequence, undermines genomic integrity.  Moreover, we have identified 

the primary defect leading to aberrant replication, as APC/C-Cdh1 seems to be 

required to ensure an adequate supply of dNTPs to the replisome. Understanding the 

role of APC/C-Cdh1 in preserving nucleotide homeostasis in mammalian cells will 

require further investigation, but our findings further underscore the relevance of this 

ubiquitin-ligase complex to prevent replication stress and its pathological 

consequences, including developmental defects and cancer predisposition46,47. 
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METHODS :  

MEFs isolation and treatments:  

The Cdh1lox/lox and Sox2-Cre mouse strains were previously described11.  Mice were 

housed under standard conditions in the pathogen-free animal facility of the 

University of Salamanca following the animal care standards of the institution. 

Primary MEFs were isolated from E13,5-E14,5 embryos and cultured using routine 

procedures. To obtain Cdh1-deficient embryos (Cdh1(-/Δ); Sox2-Cre, referred as 

Cdh1(-/-) for simplicity) crosses were established between Cdh1(lox/lox) female mice 

and Cdh1(-/+); Sox2-Cre male mice. Control embryos (Cdh1(+/lox), referred as 

Cdh1(+/+) ) were obtained from the same crosses. Wild type embryos (referred as 

Cdh1(wt/wt)) were obtained from crosses between wild type C57BL/6 mice.  

Cells were treated with 20 µM PHA-767491 (Sigma) for 4 hours or with 3 µM 

Roscovitine (Sigma) for the indicated time. Nucleosides (EmbryoMax, Millipore) were 

used at 30 µM during 72 hours and refreshed 24 hours before harvesting cells. 

dNTPs (Sigma) were used at 10 µM.  

Viral infections :  

Adenoviruses expressing the Cre Recombinase (Ad5CMVCre) or control 

adenoviruses (Ad5CMVEmpty) were supplied by the University of Iowa (Gene 

Transfer Vector Core Facility) and used at 300 pfu/cell. Cells were processed 4 days 

after infection. For RRM2 overexpression murine RRM2 cDNA (kindly provided by Dr. 

Robert S. Weiss, Cornell University, USA) was subcloned in pBABE-puro and MEFs 

were retrovirally transduced in the presence of 8 µg/ml polybrene (Sigma). Infected 

cells were selected for three days in 1 µg/ml puromycin (Sigma).  
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Flow Cytometry :  

For EdU labeling and detection, MEFs were incubated with 10 µM EdU (Invitrogen) 

for 1 hour before harvesting, and processed according to manufacturer´s instructions 

(Click-iT-EdU Flow Cytometry Assay Kit, Invitrogen). For γH2AX detection, MEFs 

were fixed in 4% paraformaldehyde, permeabilized in 70% ethanol, blocked in 10% 

goat serum, and stained with anti-H2AX(pS139)-Alexa Fluor 647 (N1-431, BD). DNA 

was stained with 7-AAD or Propidium Iodide (Invitrogen). Flow cytometry data were 

acquired on a FACSCalibur (BD Biosciences) and analyzed using FlowJo software 

(Tree Star, Ashland, OR).  

Immunofluorescence :  

Cells were grown on glass coverslips, fixed in 4% paraformaldehyde, permeabilized 

with 0,1% Triton-X100 in PBS, and stained with mouse anti-phospho-H2AX (Ser139) 

(Millipore, #05-636), rabbit anti-53BP1 (Novus, #NB100-304) or rat anti-RPA32 (Cell 

Signaling, #2208). For RPA immunostaining, soluble proteins were extracted prior to 

fixation with 0,5% Triton-X100 in 20mM Tris-HCl pH 8, 50 mM NaCl, 3 mM MgCl2 , 

300 mM sucrose. For EdU staining cells were processed following manufacturer´s 

instructions (Click-iT-EdU AlexaFluor 594 Imaging Kit, Invitrogen). To estimate S 

phase duration, MEFs were pulse-labeled with CldU and IdU (10 µg/ml) for 30 min 

and fixed in cold Methanol for 5 min. Staining was performed essentially as 

described48 using rat anti-BrdU antibody (Abcam, #ab6326) to detect CldU and 

mouse anti-BrdU antibody (BD, #347580) to detect IdU.  

Alkaline Comet assay :  

Alkaline comet assays were performed as previously described49 with some 
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modifications. Briefly, 30 µl of a cell suspension at a density of 1 x 106 cells/ml were 

mixed with 65 ul of low melt agarose (0,5 %), cast on pre-coated slides and placed at 

4ºC for 20 min. Slides were immersed in lysis buffer (1% Triton-X100, 10% DMSO in 

2,5M NaCl, 100mM Na2EDTA, 10 mM Tris Base, 250 mM NaOH pH 10), for 1 hour at 

4ºC, then in alkaline buffer (1mM Na2EDTA, 300mM NaOH) for 20 min at 4ºC, and 

then electrophoresed at 4ºC in the same buffer at 0.9 V/cm and 300 mA for 20-30 

min. For neutralization, slides were soaked in 400mM Tris pH 7.5, and then washed, 

fixed in ethanol for 3 min and allowed to dry at room temperature. DNA was 

subsequently stained with Ethidium Bromide (0.5 µg/ml) and visualized by 

fluorescence microscopy (Nikon Eclipse 90i). Comet parameters were measured 

using the OpenComet software. At least 100 measurements were made for each 

sample. Tail moment is defined as the product of the comet tail length and the 

fraction of total DNA in the tail.  

Single-molecule analysis of DNA replication :  

MEFs were pulse-labeled with 50 µM CldU (20 min) followed by 250 µM IdU (20 min), 

harvested, and resuspended in 0.2M Tris pH 7.4, 50 mM EDTA and 0.5% SDS. 

Stretched DNA fibers were prepared essentially as described50. For immunodetection 

of labeled tracks, fibers were incubated with primary antibodies for 1 hour at RT and 

with the corresponding secondary antibodies for 30 min at RT, in a humidity chamber. 

DNA was stained with anti-single-stranded DNA antibody (Millipore) to assess fiber 

integrity. Images were obtained in a Nikon Eclipse 90i microscope with a Plan Apo-

Chromat VC 60X objective. The conversion factor used was: 1 µm = 2.59 kb. At least 

150-200 tracks/sample were measured for fork rate estimation, and at least 40 fibers 

with two or more origins were scored for IOD estimation.  
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dNTP pool measurements :  

1.5-2 x 107 cells were harvested in 0.5 mL mixture of ice-cold 10% trichloroacetic acid 

and 15 mM MgCl2. After centrifugation of the cell debris, the resulting acidic solution 

was neutralized twice with Freon (1,1,2-trichloro-1,2,2-trifluoroethan/ 

TOA(Thioctylamine) (5/1.4, v/v) mixture. The upper layer was transferred to an empty 

tube, and after adjustment of pH to 4.5 with acetic acid, and addition of isotope-

labeled internal standards, the samples were loaded onto the Oasis WAX columns 

(Waters, Milford, USA) for solid phase extraction (SPE). Eluates from SPE were 

evaporated to dryness under nitrogen at 37ºC. The residues were reconstituted in 50 

µL sample injection solution and analyzed by LC-MS/MS. 

Immunoblotting :  

MEFs were lysed in Laemmli buffer and 50 µg of total protein were separated by 

SDS-PAGE, transferred to nitrocellulose membranes (Bio-Rad) and probed with 

antibodies against Cdh1 (AR38, a generous gift from Dr J Gannon, Cancer Research 

UK), phospho-p53 (S15), phospho-Chk1 (S345) (Cell Signaling; #9284, #2348), 

Aurora A (BD; #610938), phospho-MCM2 (S53), MCM2, RRM2, TK1, TMPK and 

GAPDH (AbCam: #ab109133, #ab119921, #ab191800, #ab59271, #ab71756, 

#ab8245). Secondary antibodies were HRP-conjugated (DAKO) and blots were 

developed with ECL reagents (Western Lightning Plus, Perkin Elmer).  

Statistical analysis :  

In column graphs mean ± s.d. is shown and statistical analysis was performed using 

Student´s t-test. Variance was similar in all groups compared. The distribution of Tail 

Moment values, Fork Speed and IOD (shown in scatter dot plots) was compared 
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using the Mann-Whitney test (GraphPad Prism 6). Unless otherwise stated, all 

experiments were replicated (biological replicas) at least three times (n = 3).  
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FIGURE LEGENDS : 

 

FIGURE 1: Genomic instability following acute depletion of Cdh1 in primary 

MEFs. A. Immunoblot analysis of Cdh1 levels in primary MEFs obtained from 

embryos with the indicated genotype, either uninfected (Uninf) or infected with empty 

adenovirus (Cont) or adenovirus expressing Cre recombinase (Cre), and collected 

four days later. GAPDH was used as loading control.  B. Flow cytometry analysis of 

γH2AX levels in the same primary MEFs infected with empty adenovirus (Ad-Control) 

or adenovirus expressing Cre (Ad-Cre). Left, representative density plots showing 

γH2AX and EdU fluorescence intensities in the indicated primary MEFs. Right, 

quantification of γH2AX positive cells or γH2AX positive, EdU negative cells in 

primary cultures of Cdh1(lox/lox) MEFs (top histogram) or wild type MEFs (bottom 

histogram) infected with the indicated adenoviruses. C. Left, representative images of 

53BP1 and DAPI immunofluorescence staining of the indicated MEFs. Right, 

quantification of the percentage of cells with 53BP1 foci in each culture. D. Top, Tail 

moment values obtained in alkaline comet assays with Cdh1(lox/lox) or wild type 

MEFs infected with the indicated adenoviruses. Black line indicates median value. 

Bottom, representative images of cells stained with Ethidium Bromide showing comet 

head and tail.  

* P < 0,05 , **P < 0,01 , ****P < 0,0001, n.s. not significant. Error bars indicate s.d. 

Scale bar : 10 µm 

 

FIGURE 2: Signs of replicative stress in Cdh1-depleted MEFs. A. Left, 

representative images of RPA immunofluorescence staining in Cdh1(lox/lox) MEFs 

infected with the indicated adenoviruses. Right, quantification of the percentage of 

cells with RPA foci in each culture. B. Left, the level of the indicated proteins or 
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phospho-proteins (pS15-p53, pS345-Chk1) was analyzed by immunoblotting in 

whole cell lysates from Cdh1(-/lox) and Cdh1(lox/lox) MEFs  infected with Adeno-cre 

or control adenovirus.  GAPDH was used as loading control. Right, band intensity 

was quantified for the indicated phospho-proteins and normalized to loading control. 

Relative fold change over samples infected with control adenovirus. is shown. C. Top, 

representative flow cytometry histogram overlay showing EdU fluorescence intensity 

in asynchronous control and Cdh1-deficient MEFs. Bottom, quantification of mean 

EdU fluorescence intensity in different primary MEFs with the indicated genotype. 

* P < 0,05 , **P < 0,01 ; Error bars indicate s.d. ; Scale bar : 10 µm 

 

FIGURE 3: Replication defects in Cdh1-deficient and Cdh1-depleted MEFs. A. 

Schematic drawing of a DNA fiber after pulse labeling with CldU (red) and IdU 

(green). Green track measurements allow quantification of fork speed. Origins are 

identified based on the pattern of green and red staining as shown in the diagram 

and the distance between two adjacent origins on the same DNA fiber defines IOD. 

B,C,G. Scatter plots showing fork rate values measured on stretched DNA fibers 

obtained from Cdh1(lox/lox) MEFs (B) or wild type MEFs (G) mock infected (Ad-

Control) or infected with Adeno-Cre (Ad-Cre) and processed 4 days after infection, 

and from control and Cdh1-deficient MEFs (C). D. Representative 

immunofluorescence images of stretched DNA fibers from the indicated MEFs 

showing CldU (red) and IdU (green) staining. E,F,H. Scatter plots showing IOD 

values for Cdh1(lox/lox) or wild type MEFs (E,H) treated as above, and for control 

and Cdh1-deficient MEFs (F). Median fork rate and IOD values (indicated by a black 

line) are : 0.96 and 0.86 Kb/min and 129.5 and 99.4 Kb for control and Cdh1-deficient 

MEFs, 1.02 and 0.71 Kb/min and 145.23 and 112,02 Kb for Cdh1(lox/lox) MEFs 
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mock infected or infected with Adeno-Cre , and 1.08 and 1.04 Kb/min and 146.06 

and 142.17 Kb for wild type MEFs infected with the sane adenoviruses.  

* P < 0,05 , ****P < 0,0001, n.s. not significant (n=2 in G,H). Scale bar : 10 µm 

 

FIGURE 4: Extended S phase in the absence of Cdh1. A. Schematic outline of 

experiment. Cells were first labeled with CldU for 30 minutes, allowed to grow for a 

variable period of chase time (0-8 hours) and labeled again with IdU for 30 minutes 

before fixation and processing for detection of CldU and IdU. B. Representative 

images of immunofluorescence staining of CldU (red), IdU (green) and DAPI (blue) in 

control and Cdh1-deficient MEFs, corresponding to the 6 hour chase time point. 

Merged images of CldU and IdU immunostaining are also shown. C. Top, 

quantification of CldU/IdU double positive cells within the CldU labeled cell population, 

at different chase time points, in control and Cdh1-deficient MEF cultures. Bottom, 

linear plot of the same data shown above. The dotted line corresponds to the linear 

regression fit that allowed us to estimate the duration of the S phase (time required to 

have zero double positive cells).  

* P < 0,05 , **P < 0,01 ; Error bars indicate s.d. ; Scale bar : 10 µm 

 

FIGURE 5: Slow fork progression is not caused by increased origin activity in 

Cdh1-mutant cells. Cdh1(lox/lox) MEFs were infected with control adenovirus or 

with Adeno-Cre and four days later, were either mock-treated, or treated with the 

Cdc7 kinase inhibitor PHA-767491 for four hours. A. Left, immunoblot analysis of 

MCM2 phosphorylation (pSer53-MCM2). Right, quantification of the phospho-MCM2 

band intensity normalized against loading control (GAPDH) and total MCM2 protein 

for each sample. B. Scatter plot showing IOD values obtained with stretched DNA 
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fibers from the indicated, PHA-treated or untreated cell cultures. Median values 

(indicated by a black line) are 141,7 and 176 Kb for mock infected cultures either 

untreated or PHA-treated and 107.5 and 158.4 Kb for the corresponding Adeno-Cre 

infected MEFs. C. Replication fork speed distribution for the same samples as in B. 

Median values (shown with a black line) are 1.03 and 1,11 Kb/min for untreated or 

PHA-treated mock infected cultures and 0.73 and 0.7 Kb/min for the equivalent 

Adeno-Cre infected cells.  ****P < 0,0001, n.s. not significant. 

 

FIGURE 6: Replication defects and DNA breakage are corrected with 

exogenous nucleotide precursors. A and B. Cdh1(lox/lox) MEFs mock-infected or 

infected with Adeno-Cre were grown in normal culture medium or in medium 

supplemented with nucleosides and processed for DNA fiber analysis. The 

distribution of fork speed values (A) or IOD values (B) is shown. Median fork speed 

and IOD (black lines) were 1.11 and 1.06 Kb/min and 114,44 and 106,38 Kb 

respectively for mock-infected cells without or with nucleosides and 0,79 and 1,15 

Kb/min and 81,56 and 125,22 Kb for the corresponding Adeno-Cre infected MEFs. C 

and D. Control and Cdh1-deficient MEFs were grown in normal culture medium or in 

medium supplemented with nucleosides and processed for DNA fiber analysis. 

Scatter plots for fork speed (C) and IOD (D) values are shown. Median values for fork 

speed and IOD (black lines) are 1,03 and 0,99 Kb/min and 121.39 and 121.92 Kb 

respectively for control MEFs grown in regular or nucleoside-supplemented medium 

and 0.88 and 1.06 Kb/min and 103.21 and 130.72 Kb for equivalent mutant MEFs. E. 

Top, alkaline comet assays were performed with control and Cdh1-deficient MEFs 

treated as in C and D and tail moment values were plotted. Black line marks the 
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median value. Bottom, representative images of individual cells from each sample, 

stained with ethidium bromide after agarose gel electrophoresis.  

* P < 0,05 , **P < 0,01 , ***P < 0,001 , ****P < 0,0001, n.s. not significant. Scale bar : 

10 µm 

 

FIGURE 7: Shortage of dNTPs underlies replication defects in the absence of 

Cdh1. A. Intracellular dNTP concentrations were measured in asynchronously 

growing control and Cdh1-deficient MEFs by liquid chromatography coupled to 

tandem mass spectrometry. Since dNTP pools are maximal during S phase and 

minimal in G1, and asynchronous cultures of MEFs devoid of Cdh1 show increased 

percentage of cells in S phase, final values were normalized by the number o cells in 

S phase in each culture (n = 4). B. Immunoblot analysis of RRM2 levels in control 

and Cdh1-deficient MEFs infected with empty retrovirus or retrovirus encoding RRM2. 

GAPDH was used as loading control. C. Replication fork speed values obtained on 

stretched DNA fibers from the same MEF cultures as in B. Black line indicates 

median values (1.01 and 1.06 Kb/min for control MEFs mock infected or infected with 

RRM2 retroviruses and 0.77 and 0.94 kb/min for equally treated mutant MEFs). D. 

Comet assays were performed with the same MEFs as in B and C, and tail moment 

was calculated. Median value is shown by black line. 

****P < 0,0001, n.s. not significant. Error bars indicate s.e.m 

 

FIGURE 8 : Partial inhibition of Cdk activity in Cdh1-deficient MEFs delays S 

phase entry and improves replication fork progression and genomic DNA 

integrity : A. Cdh1-null MEFs were synchronized in G0 by serum starvation (0,5% 

FBS for 72 hours) and re-fed with 20% FBS for the indicated times in the absence or 
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presence of 3µM Roscovitine. Control cells were cultured in parallel but were left 

untreated. Edu-positive cells were quantified by flow cytometry in each sample and 

the combined results of three independent experiments are shown (mean ± s.d). B. 

Cells treated as in A were labeled with CldU and IdU 15 hours after cell cycle re-entry 

and processed for DNA fiber analysis. The distribution of fork speed values is shown. 

Median values (black lines) are 1,88 Kb/min for control cells, and 0,93 and 1,02 

Kb/min for Cdh1-deficient cells untreated or treated with Roscovitine. C. Scatter plots 

showing fork rate values for control and mutant MEFs growing asynchronously and 

either untreated or treated with Roscovitine for 13 hours. Median values (black lines) 

are 1,11 Kb/min for control cells and 0,94 and 1,01 Kb/min for untreated or treated 

mutant cells. D. The indicated cells were grown for 36 hours after cell cycle re-entry 

to allow accumulation of DNA damage after completion of S phase and progression 

through G2/M. Roscovitine was added at the time of re-feeding and washed out 15 

hours later. The distribution of tail moment values obtained with alkaline comet 

assays is shown (n=2). Black line indicates median values E. Control and Cdh1-

deficient MEFs growing asynchronously were treated as in C and processed for 

alkaline comet assays. Tail moment values were calculated and plotted (n=2) and 

median values are shown with black line.  

 

SUPPLEMENTARY FIGURE LEGENDS : 

 

FIGURE S1: Analysis of γH2AX expression in Cdh1-depleted MEFs by 

immunofluorescence microscopy. Left, representative images of γH2AX (green), 

EdU (red) and DAPI (blue) immunofluorescence staining of Cdh1(lox/lox) MEFs 

mock-infected or infected with Adeno-Cre. Right, quantification of γH2AX positive 
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cells or γH2AX positive, EdU negative cells .in primary cultures of Cdh1(lox/lox) 

MEFs (top histogram) or wild type MEFs (bottom histogram) infected with the 

indicated adenoviruses. * P < 0,05 , **P < 0,01. Error bars indicate s.d. Scale bar : 10 

µm 

 

FIGURE S2: Genomic instability in primary MEFs lacking Cdh1 expression. A. 

Immunoblot analysis of Cdh1 levels in primary control or Cdh1-deficient MEFs. B. 

Flow cytometry analysis of γH2AX levels in the same MEFs. Left, representative 

density plots showing γH2AX and EdU fluorescence intensities. Right, quantification 

of γH2AX positive cells, or γH2AX positive, EdU negative cells .in primary cultures of 

control and Cdh1-null MEFs. C. Left, representative images of 53BP1 and DAPI 

immunofluorescence staining of the indicated MEFs. Right, quantification of the 

percentage of cells with 53BP1 foci in each culture. D. Left, Tail moment values 

obtained in alkaline comet assays with control or Cdh1-deficient MEFs. Black line 

indicates median value. Right, representative images of individual cells from each 

culture, stained with Ethidium Bromide, showing comet head and tail.  * P < 0,05 , 

****P < 0,0001. Error bars indicate s.d. Scale bar : 10 µm 

 

FIGURE S3: Increased presence of cells with γH2AX foci or RPA foci in primary 

cultures of Cdh1-deficient MEFs. A. Left, representative images of γH2AX (green), 

EdU (red) and DAPI (blue) immunofluorescence staining of control and Cdh1-null 

MEFs. Right, quantification of γH2AX positive cells or γH2AX positive, EdU negative 

cells in the same cultures. B. Left, representative images of RPA 

immunofluorescence staining in control and Cdh1-null MEFs. Right, quantification of 
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the percentage of cells with RPA foci in each culture. * P < 0,05 . Error bars indicate 

s.d. Scale bar : 10 µm 

 

FIGURE S4: Slow fork progression is not caused by increased origin activity in 

MEFs lacking Cdh1 expression. Control or Cdh1-deficient MEFs were either mock-

treated, or treated with the Cdc7 kinase inhibitor PHA-767491. A. Left, immunoblot 

analysis of MCM2 phosphorylation (pSer53-MCM2). Right, quantification of the 

phospho-MCM2 band intensity normalized against loading control (GAPDH) and total 

MCM2 protein for each sample. B. Scatter plot showing IOD values obtained with 

stretched DNA fibers from the indicated, PHA-treated or untreated cell cultures. Black 

lines indicate the corresponding median values (152.1 and 116.7 Kb for control MEFs 

and 153.4 and 103.6 Kb for Cdh1-deficient cells). C. Replication fork speed 

distribution for the same samples as in B. Median values are shown with a black line 

(1.1 and 1 Kb/min for treated or untreated control MEFs and 0.89 and 0.9 Kb/min for 

equivalent mutant MEFs).  ***P < 0,001 , ****P < 0,0001, n.s. not significant. 

 

FIGURE S5: Improved replication dynamics and reduced DNA breakage in 

Cdh1-depleted or -deficient MEFs supplemented with exogenous dNTPs. A and 

B. Cdh1(lox/lox) MEFs mock-infected or infected with Adeno-Cre were grown in 

normal culture medium or in medium supplemented with dNTPs and processed for 

DNA fiber analysis. The distribution of fork speed values (A) or IOD values (B) is 

shown. Median fork speed and IOD (black lines) were 1.03 and 1.07 Kb/min and 

122.56 and 109.32 Kb respectively for mock-infected cells without or with dNTPs 

supplement and 0.78 and 1.23 Kb/min and 92.32 and 132.22 Kb for the 

corresponding Adeno-Cre infected MEFs. C and D. Control and Cdh1-null MEFs 
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were treated as in A and B and processed for DNA fiber analysis. The distribution of 

fork speed values (A) or IOD values (B) is shown. Median fork speed (1.06 and 1.12 

Kb/min for untreated or treated control cells respectively, and 0.88 and 1.22 Kb/min 

for mutant cells) and median IOD (122.66 and 126.12 Kb for control MEFs and 96.32 

and 132.97 Kb for Cdh1-deficient cells) are indicated by black lines. E. Alkaline 

comet assays were performed with control and Cdh1-deficient MEFs treated as in C 

and D and tail moment values were plotted. Median values are indicated by black 

lines.  * P < 0,05 , ****P < 0,0001, n.s. not significant.  

 

Figure S6 : RRM2, TK1 and TMPK are not significantly upregulated in primary 

MEFs depleted or devoid of Cdh1 A. Immunoblot analysis of RRM2 levels in whole 

cell lysates of control (+/+) and Cdh1-deficient (-/-) MEFs growing in asynchronous 

culture (As), or in cultures synchronized in G0 by serum deprivation (0,5 % FBS for 

72 hours) and re-fed with 20% FBS for 10 hours or 20 hours to enrich in G1 or S 

phase cells. Top left, a representative immunoblot is shown. For better comparison of 

RRM2 band intensities in all lanes, a short and long exposure are included. GAPDH 

was used as loading control. Bottom left, quantification of RRM2 band intensity in 

mutant MEFs relative to control cells in similar synchronization experiments. Right, 

cell cycle profiles of the different asynchronous or synchronized MEF cultures. B. 

Immunoblot analysis of the indicated proteins in whole cell lysates from Cdh1(lox/lox) 

MEFs mock infected (Ø) or infected with Adeno-Cre (Cre) (left panels) or from control 

(+/+) and Cdh1-null MEFs (-/-)(right panels). GAPDH was used as loading control.  
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