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Abstract 
The objective of this thesis is to develop a range of polymeric nanotubes based on self-

assembling cyclic peptides suitable to be used as drug delivery systems, and to investigate 

their behaviour in vitro and in vivo.  

The interest for cylindrical structures in a drug delivery context arises from their reported 

longer circulation times, and enhanced tumour accumulation in vivo compared to spherical 

nanoparticles. Moreover, supramolecular systems have attracted a lot of attention thanks to 

their versatility and potential ability to facilitate clearance.  

The design of polymeric nanotubes constructed around a cyclic peptide scaffold is described, 

and various systems are developed. Firstly, the two main synthetic routes (grafting-to and 

grafting-from) yielding peptide-polymer conjugates are compared in a systematic study, 

which shows that the two approaches present distinct advantages, and are complementary in 

nature. This information is then used to design cyclic peptide conjugates specifically 

directed to drug delivery, using a polymer that combines biocompatible properties and 

functional handles. Analysis of their self-assembly in solution confirms the cylindrical shape 

of the obtained supramolecular structures, and a study of their behaviour in vitro and in vivo 

establishes their potential as delivery systems. Subsequently, the complexation of a highly 

potent organometallic anticancer agent is described. In vitro studies determined that the use 

of the nanotubes leads to higher potency and enhanced selectivity towards cancer cells. 

Finally, a core-shell system designed for drug encapsulation and subsequent pH-triggered 

release is presented. This approach relies on the use of an amphiphilic and pH responsive 

system, which in addition confers more stability to the obtained nanotubes.  

The work presented in this thesis provides a bottom-up approach in the design of novel self-

assembled cyclic peptide nanotubes highly tuned for drug delivery applications. 
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Chapter 1 
 

Therapeutic uses of nanotubes made of self-

assembling cyclic peptides 
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1.1 Introduction 

Despite several decades of research, the effective and directed transport of pharmaceutical 

active materials into desired compartments of the body or cells still remains a challenge 

faced by material scientists or researchers in life sciences. Nevertheless this continuous 

effort has revealed several critical factors for the design of transport vectors which 

considerably alter the effectiveness of the delivery of active drugs.1,2 Among all the various 

properties which can be modified, the variation of the shape certainly attracted considerable 

attention in research.3-5 Studies have for example demonstrated that cylindrical systems may 

offer increased circulation time in vivo
6-9 or higher tumour targeting capacity than spherical 

ones.10-12 Different types of cylindrical structures have been used as therapeutics, including 

inorganic (silica,7 gold,13 quantum dots14) and organic (polymeric,6,15,16 carbon nanotubes,17 

or virus-based nanoparticles8). In addition to the mentioned materials, hollow nanotubes 

have substantial potential as therapeutics: guest molecules can be loaded in the inside cavity, 

they can form channels (for example across membranes), and their aspect ratio can be 

interesting for drug delivery.18 Most commonly organic nanotubes are related to single and 

multi-walled carbon nanotubes,19 however when considering biomedical applications 

supramolecular chemistry represents an interesting tool for designing nanotubes as this 

chemistry constitutes one of the major driving forces for structure formation in nature.20 The 

self-assembly of molecules into larger nanotubular structures allows for a bottom-up 

approach that permits high levels of control over numerous structural properties, including 

the internal diameter. From a drug delivery perspective, the non-covalent aspect of such 

materials can be highly beneficial in various ways. First of all, due to the reversibility of the 

intermolecular bonds that hold the structure together, it can be hypothesised that they will 

ultimately break down into the starting building blocks that can be cleared out easily, 

thereby avoiding organ accumulation in vivo. Moreover, the supramolecular approach could 

potentially allow for a modular “mix and match” strategy to be applied whereby unimers 

bearing drugs, targeting moieties and fluorescent dyes can be synthesised separately and 

assembled to afford highly functional materials from simpler building blocks. With the 

above design parameters in mind, nanotubes made of self-assembling cyclic peptides appear 

to be relevant candidates for the fabrication of drug delivery vehicles. In this chapter, these 

materials will be described, and their existing applications as therapeutics will be briefly 

reviewed. Subsequently, the rationale behind their functionalisation with polymers will be 
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explained. The syntheses of polymeric nanotubes using a cyclic peptide scaffold will be 

detailed, and the efforts to use these materials in a therapeutic context will be highlighted.  

1.2 Self-assembling cyclic peptides 

1.2.1 Design and synthesis  

Cyclic peptides presenting an even number of α-amino acids of alternating D and L chirality 

(cyclic D,L-α-peptides) were first predicted to form nanotubes by De Santis et al. in 1974,21 

but it was not until 1993 that Ghadiri et al. were able to demonstrate this experimentally.22  

The alternating chirality provides these peptides with a flat conformation in which the 

hydrogen bonding-prone amide groups lie perpendicular to the plane, enabling them to stack 

on top of each other through antiparallel -sheet formation, thereby forming supramolecular 

tubes (Figure 1.1). 

 

Figure 1.1: Example of self-assembling cyclic D,L-α-peptides, here containing eight amino 
acids. 

Such peptides are generally accessed via a combination of solid phase peptide synthesis 

(SPPS) and cyclisation (either in dilute solution or on resin).23 This synthetic route allows 

for the precise tailoring of the materials through modification of various design elements 

(Figure 1.2).23,24 
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Figure 1.2: Various design elements of cyclic peptide nanotubes: (a) internal diameter, (b) 
external functionality, (c) internal functionality.  

The number of amino acids allows for the control of the internal diameter (see (a) in Figure 

1.2). Cyclic D,L-α-peptides comprising four,25 six,26-28 eight,22,26,29-33 ten,34 or twelve35 amino 

acids have been reported, with diameters ranging from 2 to 13 Å, as determined by X-ray 

crystallography, electron diffraction measurements or molecular modelling. 

Moreover, the amino acids side chains are projected pseudo-equatorially, which enables 

control of the external functionality (see (b) in Figure 1.2). The vast library of commercially 

available amino acids allows for the introduction of for example, hydrophilic, hydrophobic, 

basic or acidic residues.  

Designs can be further expanded by the introduction of other types of amino acids. For 

example, nanotube formation has been reported for cyclic peptides containing -amino 

acids,36,37 as well as α- 38 and α- 31,39,40 hybrids using cyclic -amino acids. Through these, 

alteration of the internal chemistry of the tubes is possible (see (c) in Figure 1.2). Reports 

showed that the introduction of cyclic alkanes39 or methyl groups31 increases the 

hydrophobicity of the inside cavity, while the sequencing of a hydroxytetrahydrofuran-

containing amino acid allows the introduction of a hydroxyl group into the core.41 

By taking all the above parameters into consideration, it is possible to design bespoke 

materials, highly tuneable for the desired application. 

1.2.2 Applications as therapeutics 

With the multiple options to modify the properties of these materials, it is not surprising that 

cyclic peptide nanotubes have been tested in a variety of applications, such as ion 

sensors,42,43 electronic devices44-46 and as photoresponsive materials.47,48 The most useful 

feature, however, is certainly their ability to interact with phospholipid bilayers.32,49 
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Typically, hydrophobic peptides form transmembrane channels made of single tubes, which 

result in applications as ion channels.32,34,50 On the other hand, nanotubes made of 

amphipathic peptides (that present both a hydrophilic and a hydrophobic domain) tend to 

form either barrel-stave pores with hydrophilic residues oriented towards the interior of the 

nanotube bundle, or to lie parallel to the membrane, with hydrophobic residues inserted 

within the lipid bilayer and hydrophilic residues exposed on the surface (Figure 1.3).51 This 

specificity is not limited to artificial membranes and has been also demonstrated in 

biological membranes, thereby suggesting they have potential as therapeutics, from 

antibacterial materials to drug delivery vehicles. 

 

Figure 1.3: Different modes of cyclic peptide self-assembly in membranes: a) 
intramolecular pore, b) barrel stave and c) carpet-like. Adapted from Fernandez-Lopez et 

al.26
 

1.2.2.1 Antimicrobials  

A library of amphipathic cyclic D,L-α-peptides comprising 6 or 8 residues was first tested for 

antibacterial activity by Fernandez-Lopez et al. in 2001.26 These peptides were found to be 

selective towards bacterial membranes and to exhibit remarkable activity against various 

bacterial strains such as Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). 

The authors found that the nature of the amino acids present in the peptide sequence has a 

tremendous impact on the activity and selectivity of the tested antibacterial compounds (2 

orders of magnitude in some cases). Their mode of action was investigated and it was 

determined to rely on the peptides assembling within the membrane in a carpet-like fashion, 

avoiding receptor interactions, which leads to rapid cell death and interestingly helps 

preventing resistance. Insights into the mechanism of interaction between one of these 

peptides and lipid bilayers were provided by coarse-grained molecular dynamics 

simulations, which confirmed the carpet-like arrangement of amphipathic peptides within 

the membrane and showed that high concentrations of peptide deeply disturbed the 

mechanical properties of the bilayer.52 Additional in vivo studies in mice infection models 

showed that intravenous injection of the peptide drastically reduced the bacterial load at the 
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infection site.53 Further to this, Motiei et al. explored the performance of cyclic D,L-α-

glycopeptides containing various glycosyl amino acids derivatives.54 Depending on the 

selected sugar and its position within the peptide sequence, higher selectivity towards 

bacteria could be achieved when compared with activity against human and murine red 

blood cells or mouse fibroblasts, with the toxicity against mammalian cells reduced 5-fold in 

some cases.  

The antimicrobial potential of cyclic peptides was also assessed against other biological 

organisms. Fletcher et al. used a combinatorial approach to identify 6-residue cyclic D,L-α-

peptides potentially active against two eukaryotic marine algae: Ulva linza and Navicula 

perminuta.27 Their study demonstrated that selectivity can be tuned through precise choice 

of the peptide sequence, with some candidates exhibiting broad-spectrum activity while 

others were highly selective (100-fold) towards U. linza.  

In addition, Horne et al. have established the potential of this class of materials as antiviral 

agents, using adenovirus and influenza virus models.29 They have shown that in the presence 

of an 8-residue cyclic D,L-α-peptide selected from a library of 400 compounds, the virus is 

unable to escape the endosome. They hypothesised that the peptides self-assemble into the 

endosome membranes, inducing membrane permeation, thereby preventing the acidification 

of the endosomes and ultimately stopping the virus from being released into the cytoplasm 

(Figure 1.4).  

 

Figure 1.4: A) Structure of peptide identified as adenovirus delivery inhibitor. B) Suggested 
mechanism for cyclic peptide-mediated prevention of virus endosomal release. Adapted 
from Horne et al.

29
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1.2.2.2 Drug and gene delivery 

The membrane-interacting potential of cyclic D,L-α-peptides was also exploited for drug and 

gene delivery. Liu et al. studied a highly hydrophobic 10-residue peptide which forms 

transmembrane nanotubes with an internal diameter of 1 nm, sufficient to serve as a channel 

for the small anticancer drug 5-fluorouracil (5-FU, 0.44 nm).55 They experimentally showed 

that the presence of the cyclic peptide considerably increases the release of 5-FU from 

liposomes (from 5% to 70%). Molecular dynamics simulations further confirmed the 

transport of 5-FU within channels formed by the cyclic peptide within lipid bilayers, and that 

it occurred by hopping the drug along the nanotube between different energy minima.  The 

same group later extended their study to other drugs and showed that the transport of 5-FU 

as well as other small anticancer agents across membranes increased with increasing 

concentrations of cyclic peptide. Moreover, they showed that the release of cytarabine, a 

drug that is bigger than the pore size (1.11 nm), was not enhanced by the presence of cyclic 

peptide, confirming that escape happens through channel formation (Figure 1.5).56 In vitro 

cell viability tests demonstrated that despite having only a very weak anticancer activity, 

cyclic peptides could enhance the efficacy of 5-FU and, in some cell lines, in a synergistic 

manner. The combination of 5-FU and cyclic peptides also inhibited tumour growth in 

mouse models, further indicating the therapeutic potential of these materials.  

 

Figure 1.5: Cyclic peptide-mediated transmembrane transport of A) 5-FU, B) cisplatin and 
C) cytarabine. Increasing concentrations of peptide lead to enhancement of the transport for 
5-FU and cisplatin but has no effect on the transport of cytarabine. Adapted from Chen et 

al.
56 

Recent research by Li et al. demonstrated the first example of gene delivery using self-

assembling cyclic D,L-α-peptides.57 They reported the design of a specific cationic 

octapeptide and its assembly into charged nanofibres able to complex green fluorescent 

protein (GFP) plasmid without altering their structure. The transfection efficacy of the 

complexes in HeLa cells was comparable to that of commonly used polyethyleneimine 

(PEI), and in contrast to PEI, the transfection was not inhibited in the presence of 
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bafilomycin, which suppresses endosomal escape. The authors admit that further studies are 

necessary to precisely elucidate the mechanism of transfection, but these results suggest a 

non-endocytic mechanism which could be explained by the formation of a peptide channel, 

either directly across the cellular membrane or through an effect of endosomal membrane 

permeation as previously observed by Horne et al.
29

 (see above). 

1.3 Cyclic peptide-polymer conjugates 

1.3.1 Incentive and synthesis 

The major drawback of cyclic peptide nanotubes is their propensity to uncontrollably 

aggregate into micrometre-long bundles, which greatly limits their solubility, hence their 

possible areas of application. The main strategy used to circumvent this limitation is to 

conjugate (macro)molecules to the side chains of the peptides. This approach helps to 

prevent lateral aggregation, and, depending on the bulkiness of the attached molecule, can 

also participate in the control of the length of the resulting nanotubes. As such, in particular, 

polymeric cyclic peptide nanotubes have attracted growing interest in recent years.58-60 The 

use of polymers allows for the introduction of a multitude of functionalities as well as 

functionalisation sites, which is especially attractive with therapeutic applications in mind. 

Reversible-deactivation radical polymerisation (RDRP) techniques such as reversible 

addition-fragmentation chain transfer polymerisation (RAFT),61,62 atom transfer radical 

polymerisation (ATRP)63-66 or nitroxide mediated polymerisation (NMP)67,68 are valuable 

tools when preparing well defined and highly functional polymeric cyclic peptide nanotubes 

and have been used in a variety of examples. The two main synthetic routes yielding 

peptide-polymer conjugates are “grafting-to”, in which a pre-formed polymer chain is 

attached to the peptide through a highly efficient ligation technique, and “grafting-from”, in 

which the polymer chain is grown from the peptide (see Chapter 2).69-71  

The first report of polymeric cyclic peptide nanotubes was given by Biesalski and co-

workers,
59 who used an octapeptide containing three residues functionalised with ATRP 

initiators to grow poly(N-isopropylacrylamide) (pNIPAM) chains (Figure 1.6). The 

formation of polymer-coated nanotubes was confirmed by atomic force microscopy (AFM) 

and the -sheet arrangement of the peptides was verified using Fourier Transform Infrared 

spectroscopy (FTIR). The same group later described the effect of different degrees of 
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polymerisation on the length of the nanotubes, corroborating the hypothesis that steric 

hindrance caused by the polymer chains helps to reduce the size of the aggregates.72  

 

Figure 1.6: A) Grafting-from synthesis of cyclic peptide-pNIPAM nanotubes. B) AFM 
phase image of the nanotubes adsorbed on a silicon wafer (scale 0.8 m). Adapted from 
Couet et al.

59
 

Börner and co-workers also described the conjugation of carboxylated poly(butyl acrylate) 

(pBA) chains (synthesised by ATRP prior to ligation) to the two lysine residues of another 

octapeptide, using a carbodiimide coupling agent.58 Infrared spectroscopy and electron 

diffraction measurements confirmed the arrangement of the peptides in a -sheet structure, 

and the tubular shape of the assemblies was demonstrated by AFM. In this example, the use 

of the condensation reaction necessitated an excess of polymer, which led to tedious 

purification steps. Chapman et al. pioneered the use of the highly efficient copper catalysed 

azide-alkyne cycloaddition (CuAAC) to synthesise cyclic peptide-polymer conjugates. 

Through the simple modification of the RAFT chain transfer agent (CTA) with an alkyne 

group and the sequencing of an azide-modified lysine residue in the cyclic peptide, 

conjugation of two polymer arms to a cyclic D,L-α-peptide was achieved in nearly 

stoichiometric conditions, enabling characterisation of the self-assemblies in solution 

without the need for purification.60,73,74 These first studies focused on investigating the limits 

of the reaction and optimising the conditions using conventional monomers such as BA, 

hydroxyethyl acrylate (HEA), styrene, acrylic acid (AA) and dimethylaminoethyl acrylate 

(DMAEA) (Figure 1.7). One of the main improvements was to switch from conventional 

heating to microwave irradiation, which allowed the reaction times to be reduced from 3 

days to 15 minutes.74 The self-assembly was initially confirmed by a combination of FTIR, 

transmission electron microscopy (TEM) and dynamic light scattering (DLS). Later, the 

assembly of pBA conjugates of varying degrees of polymerisation (DPs) was thoroughly 

studied by small angle neutron scattering (SANS), a technique which allows for much more 

precise understanding of the morphology in solution.75 
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Figure 1.7: Cyclic peptide-polymer conjugates via a grafting-to method using CuAAC. 
Adapted from Chapman et al.

74
 

After these initial fundamental studies, increasing attention was paid to the synthesis of more 

functional materials. In one of the first examples, a conjugate made with diblock copolymers 

of isoprene and acrylic acid was synthesised (Figure 1.8). After characterising its assembly 

into multishell nanotubes, hollow tubes with a tuneable pore size could be created by 

crosslinking of the acrylic acid shell and subsequent ozonolysis of the isoprene core.  

Additionally, this method of degradation leads to the presence of aldehydes moieties on the 

inside of the pore, which constitute a handle for potential further modification.76 

 

Figure 1.8: Synthesis of multishell cyclic peptide-polymer nanotubes. Adapted from 
Chapman et al.76 

Thermoresponsive nanotubes made with poly(2-ethyl-2-oxazoline) (pEtOx) arms were also 

synthesised and found to reversibly aggregate into micrometre-sized particles above their 

cloud point temperature.77 Finally, cyclic peptide-polymer conjugates were obtained using 

pHEA and pAA polymers. These materials were found to form nanotubes in polar solvents, 

including water, indicating that the polymer shell provides sufficient shielding of the cyclic 

peptide assembled core to avoid disruption of the hydrogen bonds.78 The pAA-containing 

nanotubes were also shown to be pH-responsive; whereby the assembly was shorter at 

higher pH, when the deprotonation of the acrylic acid units creates electrostatic repulsion 
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between the polymer chains. More recently, Catrouillet et al. showed how the use of pH-

responsive poly(2-(dimethylamino)ethyl methacrylate) (pDMAEMA) allowed for precise 

tuning of the length of the nanotubes in water at different pHs through modification of the 

degree of ionisation.79  

1.3.2 Towards therapeutic applications 

1.3.2.1 Membrane interactions 

Although non-modified cyclic peptides were shown to assemble inside lipid bilayers by 

Ghadiri and co-workers as early as 1994,32 it is only recently that the ability of polymer-

modified cyclic peptides to form transmembrane channels was investigated.80,81 Danial et al. 

described various systems able to form either barrel-stave or single channel pores within 

artificial lipid bilayers. Initially, Janus cyclic peptide-polymer nanotubes were introduced 

(Figure 1.9).  

 

Figure 1.9: A) Synthesis of the Janus conjugates. B) Representation of the polymer 
microphase separation leading to Janus nanotubes. C) Schematic representation of the Janus 
nanotubes insertion in lipid bilayers, forming a micropore. Adapted from Danial et al.80 

Two different polymers, known to undergo microphase separation, were attached to opposite 

sides of a cyclic D,L-α-octapeptide, using a synthetic route relying on orthogonal coupling 

reactions. Thorough characterisation of the assemblies based on 2D 1H-1H nuclear 

Overhauser effect spectroscopy (NOESY) nuclear magnetic resonance (NMR) and 

differential scanning calorimetry (DSC) measurements confirmed the demixing of the two 
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polymers, hence the formation of Janus-type tubes. A fluorescence-based assay using calcein 

encapsulated into large unilamellar vesicles (LUVs) determined that the presence of the 

Janus tubes led to calcein leakage from the LUVs. Given the fact that calcein is larger than 

the lumen of the cyclic peptide, the authors concluded that pores were formed in a barrel-

stave manner. This observation is coherent with the immiscibility of one of the polymer 

arms with the lipids forming the membrane, resulting in its segregation on the inside of the 

formed macropore. 

A subsequent study described the membrane interaction of a library of symmetrical 

conjugates exhibiting various degrees of hydrophobicity and hydrophilicity.81 When using 

these conjugates, pore formation occurred in a single channel manner, as supported by the 

results of a fluorescence assay. The partitioning activity of the different conjugates could be 

related to their lipophilicity, with the more hydrophobic conjugates enabling much more 

transmembrane ion transport than the less hydrophobic, and the hydrophilic conjugates. 

Interestingly, using a pNIPAM conjugate, pore formation could also be triggered by 

temperature: limited transport was observed at room temperature but heating up the sample 

above its cloud point led to a notable increase in ion transport across the membrane. These 

examples provide an excellent bench-mark in the future design of novel membrane-channel 

structures. 

1.3.2.2 Drug delivery  

Aside from their interesting ability to interact with biologically relevant membranes, self-

assembling cyclic peptides represent a versatile scaffold for the design of tubular drug 

carriers. Decoration with polymers can help to enhance their solubility and provide stealth to 

the carrier, and allows for its extensive functionalisation, facilitating the introduction of, for 

example, drugs, targeting moieties or fluorescent dyes.  

Despite these possible advantages, the use of polymer-coated cyclic peptide nanotubes as 

drug delivery systems is currently limited to a couple of examples. Wang et al. reported a 

system which consisted of PEGylated bundles of nanotubes for the delivery of the anticancer 

drug doxorubicin (DOX) (Figure 1.10).82 A cyclic D,L-α-octapeptide containing a glutamic 

acid and a cysteine residue was mixed with DOX, leading to the formation of ion-pair 

complexes which were subsequently assembled into bundles of nanotubes. In order to 

disperse these bundles, the cysteine residues present on the surface of the bundles were used 

as an anchorage point to attach polyethylene glycol (PEG) chains. The obtained PEG-

modified, DOX-loaded cyclic peptide nanotube (PEG-CPNT/DOX) bundles were tested in 
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vitro on both human breast cancer MCF-7 cells and their multidrug resistant counterpart 

MCF-7/ADR. Interestingly, the DOX-loaded bundles were found to be ca. 5 times more 

potent than free DOX against the resistant cell line, while the drug free bundles used as a 

control were non-toxic. In addition, flow cytometry analysis and confocal imaging 

experiments showed that the peptides increased DOX uptake. In contrast to the free drug, 

which diffuses passively into the cytoplasm, the bundles seemed to undergo an endocytic 

mechanism of cellular entry. 

 

Figure 1.10: Preparation of PEG-CPNT/DOX bundles. B) Structure of the cyclic peptide. C) 
Cytotoxicity of the PEG-CPNT/DOX bundles against MCF-7/ADR. D) Flow cytometry 
analysis for the cellular uptake of PEG-CPNT/DOX bundles in MCF-7/ADR. Adapted from 
Wang et al.82 

Additionally, Blunden et al. reported the use of cyclic peptide-polymer conjugates for the 

delivery of RAPTA-C, a ruthenium anticancer drug (Figure 1.11).83 Through CuAAC 

coupling, a cyclic D,L-α-octapeptide was decorated with a hydrophilic copolymer made of 

HEA and 2-chloroethyl methacrylate (CEMA). This functional monomer was introduced to 

provide a handle for the subsequent ligation of RAPTA-C. The resulting conjugates were 

self-assembled and their nanotubular structure was confirmed by static and dynamic light 

scattering (S(D)LS), and TEM. The efficacy of the drug loaded nanotubes against ovarian 

A2780 and cisplatin-resistant ovarian A2780cis cancer cells was then determined and 

compared to that of the free drug. The complexation of the drug to the nanotubes was found 

to increase its potency by more than an order or magnitude in both cases (18 times more in 

A2780 and 12 in A2780cis, respectively). 
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Figure 1.11: A) Cyclic peptide-polymer nanotube functionalised with RAPTA-C. B) TEM 
image of a crosslinked nanotube (scale bar 50 nm). C) Cytotoxicity of the drug-loaded 
nanotubes against A2780 cells. Adapted from Blunden et al.83 

1.4 Motivation for this work 

The variety of design features and the ease of synthesis of polymeric cyclic peptide 

nanotubes highlight the tremendous potential of these materials as drug delivery vehicles. 

However, so far only two very preliminary studies have explored their performance as drug 

carriers. Attention needs to be paid to the choice of the starting materials such as monomers 

that are widely recognised as suitable building blocks for drug delivery systems and highly 

potent drugs. Another critical aspect is the precise characterisation of the self-assembled 

structures in solution, which has so far been partially overlooked. A better understanding of 

the behaviour of such materials in vitro is also highly desirable. For instance, the mode of 

cellular entry of the carrier (with or without a drug) could be studied in more details. In 

addition, there is currently no report concerning the performance of cyclic peptide-polymer 

nanotubes in vivo. 

The present work proposes to address some of these limitations, focusing on several aspects. 

Initially, the two main synthetic routes leading cyclic peptide-polymer conjugates will be 
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explored in a systematic comparison between the grafting-to (convergent) and grafting-from 

(divergent) approaches. Subsequently, particular attention will be paid to the more robust 

design of cyclic peptide conjugates specifically directed to drug delivery, using a well-

studied biocompatible monomer and a functional handle able to complex anticancer drugs. 

Following on, the self-assembled system will be thoroughly characterised in solution, by 

combining appropriate scattering techniques such as SANS and SLS. A novel study looking 

at the in vitro and in vivo behaviour of a cyclic peptide-polymer nanotube will be undertaken 

with particular focus on the quantification and the mode of cellular entry of the carrier. For 

the first time, in vivo studies will provide insight on the hypothesis that these systems might 

avoid organ accumulation thanks to their supramolecular nature. The possibility of attaching 

a highly potent organometallic anticancer agent to these polymeric cyclic peptide nanotubes 

will then be explored, and the in vitro behaviour of the drug-loaded nanotubes will be 

studied, including investigations on their mode of action. Finally, a more advanced system 

designed for drug encapsulation and subsequent pH-triggered release will be presented.    

As a whole, this thesis will describe a thorough design strategy for the synthesis of cyclic 

peptide-polymer nanotubes suitable to be used as drug delivery systems, and provide 

insights regarding their behaviour both in vitro and in vivo.  
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Chapter 2 
 

Cyclic peptide-polymer conjugates: 

grafting-to vs grafting-from 

 

This chapter describes a systematic comparison between the grafting-to (convergent) and 

grafting-from (divergent) synthetic routes leading to cyclic peptide-polymer conjugates. The 

RAFT (reversible addition-fragmentation chain transfer) process was used to control the 

polymerisations and the couplings between cyclic peptide and polymer or RAFT agent were 

performed using N-hydroxysuccinimide (NHS) active ester ligation. The kinetics of 

polymerisation and polymer conjugation to cyclic peptides were studied using both grafting-

to and grafting-from strategies, using N-acryloyl morpholine as a model monomer. The 

cyclic peptide chain transfer agent was able to mediate polymerisation as efficiently as a 

traditional RAFT agent, reaching high conversion in the same time scale whilst maintaining 

excellent control over the molecular weight distribution. The conjugation of polymers to 

cyclic peptides proceeded to high conversion, and the nature of the carbon at the α-position 

to the NHS group was found to play a crucial role in the reaction kinetics. The study was 

extended to a wider range of monomers, including hydrophilic/temperature responsive 

acrylamides, hydrophilic/hydrophobic acrylates, and hydrophobic/pH responsive 

methacrylates. Both approaches lead to similar peptide-polymer conjugates in most cases, 

while some exceptions highlight the advantages of one or the other method, indicating their 

complementarity.  
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2.1 Introduction 

The study of hybrid materials composed of synthetic polymers and biomolecules has 

become an extremely prolific field of research since the concept was first introduced by 

Ringsdorf in 1975.1 Such materials achieve remarkable properties by combining the precise 

structure and function of biomolecules with the tuneable nature of polymers.2,3 Peptide-

polymer conjugates are of particular interest as they have applications in a wide range of 

fields, including therapeutics4 and separation technologies.5  

Typically, such conjugates are synthesised by a grafting-from (divergent) or grafting-to 

(convergent) approach.6,7 In the grafting-from approach,8,9 the polymer chains are grown 

from the peptide using a wide range of polymerisation techniques10-14 while in the grafting-to 

approach the polymers are synthesised separately and then grafted to the peptide.15-17 

Fortunately, progress in conjugation chemistry has resulted in a variety of efficient reactions 

that are particularly useful for the functionalisation of polymers,18,19 including the well-

established copper(I)-catalysed alkyne-azide cycloaddition (CuAAC),20-22 or more traditional 

activated ester-mediated ligations.23-25 However, despite the use of these highly efficient 

reactions, the grafting-to approach often requires an excess of polymer and subsequent 

purification steps to remove unreacted polymers.26,27 The grafting-from synthetic strategy 

enables the use of a wider range of monomers, as it is not limited by monomer side chain 

functionalities that are orthogonal with the chain end group used for the conjugation 

reaction, as in the grafting-to route. On the other hand, the grafting-to strategy allows for 

better characterisation as the peptide and polymer chains can be fully analysed prior to the 

ligation step. Additionally, possible competitive reactions arising from the amino acid 

functional groups which could occur during the polymerisation process28,29 can also be 

circumvented when preparing the polymer separately. Finally, the grafting-to approach 

allows the use of a more versatile peptide, which does not bear initiating groups required for 

polymerisation, and therefore allows for the coupling of polymers accessed by a variety of 

polymerisation methods.  

The functionalisation of -sheet forming self-assembling cyclic peptides (CP)30 by 

polymeric chains has opened the path to the design of polymeric nanotubes,31-33 which have 

diverse potential applications in drug delivery34 and materials science.35 Moreover, by 

changing the nature of the polymers, various properties can be introduced, such as solubility 

in water and pH responsiveness.36 Temperature responsive37 and multishell38 cyclic peptide-
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polymer conjugate nanotubes (CPNTs) were also synthesised, the latter presenting a 

hydrophobic internal shell and a hydrophilic external shell. 

The synthesis of CP-polymer conjugates has been reported using both the grafting-to and the 

grafting-from methods. Couet et al. were the first to grow polymer chains from self-

assembling cyclic peptides: CPs modified with ATRP initiators were used to access poly(N-

isopropyl acrylamide)31 and poly(butyl acrylate)39 conjugates. Ten Cate et al. reported the 

first grafting-to synthesis of poly(butyl acrylate) conjugates by carboxylic acid attachment to 

the lysine residues present on the CP.32 Later, copper mediated azide alkyne cycloaddition 

was used, with numerous examples reported in the literature.33,35-38,40 More recently, Danial 

et al. have reported alternative efficient coupling strategies that avoid the use of copper, 

whereby polymers were coupled to cyclic peptides using both thiol-ene reactions and active 

ester chemistry.41 

Despite the numerous individual approaches to create CP-polymer conjugates, no 

comprehensive comparison between the grafting-from and the grafting-to approaches has 

been reported. Therefore we designed this systematic study comparing the two synthetic 

routes to clearly determine the advantages and disadvantages of each strategy. A schematic 

overview of this study is displayed in Scheme 2.1.  

 

Scheme 2.1: Grafting-to and grafting-from synthetic routes to a cyclic peptide-polymer 
conjugate. 

In both the grafting-from and the grafting-to syntheses, the RAFT (reversible addition-

fragmentation chain transfer) process is used to control the polymerisation. The comparison 
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relies on the analysis of the reactions kinetics, the impact of the molecular weight and, 

finally, the investigation of conjugates built from different monomers using both routes. 

2.2 Results and discussion 

2.2.1 Synthesis of the cyclic peptide chain transfer agent 

The initial cyclic peptide (CP) 2 (sequence of amino acids: L-Lys(Boc)-D-Leu-L-Trp(Boc)-

D-Leu-L-Lys(Boc)-D-Leu-L-Trp(Boc)-D-Leu) and the chain transfer agent (CTA) N-

hydroxysuccinimide (propanoic acid)yl butyl trithiocarbonate (NHS-PABTC, 1) were 

synthesised according to previously reported procedures (see experimental section 2.4).41 

The desired cyclic peptide chain transfer agent CP(PABTC)2 3 was then obtained by 

coupling the chain transfer agent 1 to the lysine residues of CP 2 (Scheme 2.1). The 

fragmenting group of the CTA (so called R-group) was used for conjugation, allowing for 

the polymer to be grown directly from the peptide. In a Z-group approach, the polymer is 

capped by the peptide, which can be more sterically demanding and lead to termination 

events. The coupling reaction was monitored by mass spectrometry, which showed 

appearance of the mono-functionalised peptide after 1 h, and of the desired product after 4 h. 

The coupling reaction was quantitative, as no residual CP or mono-functionalised product 

was detected after 24 h, affording CP(PABTC)2 (3) in high yield. Although aminolysis of the 

trithiocarbonate by the lysine residues is a potential side reaction, no evidence of the 

corresponding dithiocarbamates was found (Figure 2.1).  

 

Figure 2.1: Mass spectrometry monitoring of the synthesis of cyclic peptide (propanoic 
acid)yl butyl trithiocarbonate (CP(PABTC)2). 



Chapter 2. Cyclic peptide-polymer conjugates: grafting-to vs grafting-from 

 

Sophie Larnaudie  23 

 

The 1H NMR of 3 confirmed its structure, as it includes all the signals corresponding to the 

added CTA (Figure 2.2). 

 

Figure 2.2: 
1H-NMR spectrum (TFA-d, 400 MHz) of CP(PABTC)2. 
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2.2.2 Study of polymerisation kinetics using N-acryloyl 

morpholine 

An initial study was undertaken to establish optimal polymerisation conditions for the 

reactions mediated by NHS-PABTC 1 (grafting-to approach) and CP(PABTC)2 3 (grafting-

from approach), using N-acryloyl morpholine (NAM) as a model monomer in both cases 

(Figure 2.3).  

 

Figure 2.3: Kinetic plots of the polymerisation of NAM mediated by NHS-PABTC (red 
squares) and CP(PABTC)2 (black diamonds). The dashed lines serves as guide to the eye to 
highlight the linear region in the plot of ln([M]0/[M]t) vs time. 

A degree of polymerisation (DP) of 50 per trithiocarbonate group was targeted 

(corresponding to a total DP of 100 for the bifunctional CP(PABTC)2 3, see Table 2.1, runs 

3 and 4). Both polymerisations were found to proceed to high conversion (> 95%) in 2 

hours, despite a short induction period (10 to 20 min), attributed to initialisation (Figure 2.3 

A).42 The linear behaviour of the ln([M]0/[M]t) vs time plot suggests a relatively constant 

concentration of radicals throughout the polymerisation in both cases (Figure 2.3 B). The 

apparent rate constant of propagation kp,app appeared slightly lower in the case of the 

CP(PABTC)2 mediated polymerisation. A linear evolution of molecular weight (Figure 2.3 
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C) as well as low dispersity values (Ð < 1.1, Figure 2.3 D) were observed for both reactions, 

suggesting good control over the polymerisation. As was expected, the materials obtained by 

CP(PABTC)2 3, which carries two propagating radicals per CTA, have a higher molecular 

weight than those obtained from PABTC. When using SEC, the differences in 

hydrodynamic volume between the samples and the calibration standards make it difficult to 

clearly correlate the difference in molecular weights. In addition, the presence of the cyclic 

peptide results in a different architecture,  which can at least partially explain the observed 

results.  

Table 2.1: Polymerisations of NAM mediated by NHS-PABTC 1 and CP(PABTC)2 3. 
Reactions were carried out in DMSO at 70°C for 2 hours, using ACVA as initiator, with 
[M]0 = 2 M. 

[M]:[CTA]
a 

[CTA]:[I]
a,b 

CTA 
Monomer 

conversion
c 

Mn,th
c 

Mn,SEC
d 

Ð 
(g.mol

-1
) (g.mol

-1
) 

50 20 CP(PABTC)2 86% 7600 11200 1.10 

25 40 NHS-PABTC 90% 3400 2900 1.12 

100 10 CP(PABTC)2 96% 15100 17800 1.08 

50 20 NHS-PABTC 98% 7200 6800 1.09 

200 10 CP(PABTC)2 96% 28600 28300 1.09 

100 10 NHS-PABTC 99% 14400 11700 1.09 
a
 The denomination “CTA” refers to the whole molecule, which is bifunctional in the case of CP(PABTC)2. 

b 
I: ACVA. 

c
 Determined by 

1
H NMR. 

d
 Determined by SEC using DMF (0.1% LiBr) as eluent, calibrated 

with pMMA standards. 

In order to demonstrate chain end fidelity, chain extension was performed on the conjugate 

made with 3 by further addition of monomer. A clear shift in the molecular weight 

distribution was observed (from Mn,GPC = 15700, Ð = 1.11 for CP-(pNAM48)2 to Mn,GPC = 

31900, Ð = 1.11 for CP-(pNAM48-b-pNAM90)2) illustrating good chain end group retention 

(Figure 2.4).  
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Figure 2.4: Size exclusion chromatograms of the block extension by grafting-from. 

2.2.3 Kinetics of polymer conjugation to cyclic peptide 

In addition to the polymerisation, or grafting-from, kinetics, the speed and yield of the 

grafting-to conjugation of pNAM50 to the CP 2 were investigated, using two different NHS-

functionalised end groups (Scheme 2.2), and the optimised conditions previously 

determined.26  

 

Scheme 2.2: Polymers used in the determination of kinetics of the conjugation to CP 1. 

The grafting efficiency at different time points was calculated in terms of percentage of 

polymer chains grafted relative to the theoretical maximum, which was measured by 

deconvoluting the molecular weight distribution (number distribution) of the polymers 

assuming Gaussian distributions.43,44  

Although Poisson distributions are accepted models of molecular weight distributions for 

polymers obtained by living polymerisation, they are typically limited to very narrow 

dispersities (Ð < 1.05). For controlled radical polymerisation techniques, Gaussian 

distributions are generally accepted as suitable models to take into account the broadening of 

the molecular weight distribution due to side reactions of irreversible transfer and 

termination. In order to quantify the efficiency of the coupling reactions, the number 

distribution obtained by SEC was deconvoluted using Gaussian curves (Figure 2.5). 
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Figure 2.5: Deconvolution of the SEC number distribution for coupling of NHS-pNAM50 

made with 1 to CP(PABTC)2. 

The percentage of conjugated chains was determined using equation 1: % 𝑎   ℎ𝑎 =  % 𝐴 𝑎 𝑎  ∗ % 𝐴 𝑎 𝑎  ∗ + % 𝐴 𝑎          (1) 

The polymer was used in slight excess, so the theoretical maximum conjugation is 2/2.2 

x100 = 91%. 

Conjugation efficiency was calculated as a percentage relative to this maximum value, using 

equation 2: 𝑎  =  % 𝑎   ℎ𝑎% ℎ 𝑎  𝑎  𝑎                  (2) 

 

The conjugation was found to proceed to its maximum conversion within 96 hours when 

using NHS-PABTC 1, while it was completed in under 24 hours with N-

hydroxysuccinimide-(4-cyano pentanoic acid)yl ethyl trithiocarbonate (NHS-CPAETC, 4) 

(Figure 2.6). This difference is most likely due to the nature of the carbon in the α-position 

of the activated ester functionality, at the α-chain end of the polymer. In the case of NHS-

CPAETC, this carbon is secondary, whilst the same carbon atom is tertiary in NHS-PABTC. 

The reduced steric hindrance facilitates the attack of the amine-bearing lysine residues.45,46 

The lower final conversion observed in the case of NHS-PABTC is likely related to the slow 

hydrolysis of the active ester group over the extended reaction time.  
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Figure 2.6: Conjugation kinetics of pNAM50 to CP 2 using NHS-PABTC 1 (red squares) 
and NHS-CPAETC 4 (black diamonds) (note: the first sample was taken after 10 minutes). 

In the further study NHS-PABTC 1 was used, since it is a more appropriate CTA for the 

polymerisation of acrylates and acrylamides.47 However, it should be noted that although the 

use of activated and α-unsubstituted carboxylic acid end-groups is desirable for efficient and 

fast conjugation, the influence of the degree of substitution on the stability of the activated 

ester is still under investigation. 

2.2.4 Variation of molecular weight 

In extension to the previous kinetic studies, we targeted various DPs in the polymerisation of 

NAM, to establish whether the length of the polymer chain has an influence on the monomer 

conversion (Table 2.1), and on the grafting efficiency (Figure 2.7).  All polymerisations 

reached high conversion (> 95% for DP 100, > 85% for DP 25), and the obtained polymers 

had low dispersities (Ð < 1.12). The slightly lower conversion in the case of a targeted DP of 

25 is likely due to the initialisation phenomenon mentioned previously, as lower DPs require 

larger amounts of CTAs.     

 

Figure 2.7: SEC chromatograms of NHS-functionalised pNAM (purple dashed lines), CP-
pNAM conjugates made by the grafting-from (GF) method (solid green lines) and 
conjugation of NHS-pNAM to the CP 2 by the grafting-to (GT) strategy (orange dashed 
lines)..  
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In order to compare the conjugates obtained by the grafting-from and grafting-to methods, 

the polymers made with NHS-PABTC 1 were grafted to CP 2 (Scheme 2.1). In all three 

cases, the conjugates obtained by the grafting-to method are similar to the one obtained by 

the grafting-from strategy (Figure 2.7).  

The small difference in molecular weight observed between the two types of conjugates can 

be attributed to errors arising from accurately weighing the very small amounts of cyclic 

peptide CTA required to mediate polymerisation in the case of the grafting-from strategy. 

The grafting efficiency was calculated as a percentage of polymer chains grafted relative to 

the theoretical maximum, obtained by deconvoluting the molecular weight distribution 

(number distribution) of the polymers assuming Gaussian distributions (Table 2.2).43,44  

Table 2.2: Conjugation efficiencies calculated by deconvolution. 

Polymer 
% Area 

polymer 

% Area 

conjugate 

% Conjugated 

polymer chains 

Conjugation 

efficiency 

pNAM25 41 59 74% 82% 

pNAM50 46 54 70% 77% 

pNAM100 35 65 79% 87% 

pBA50 50 50 67% 73% 

pNIPAM50 52 48 65% 71% 

pHEA50 28 72 84% 92% 

pPEGA50 46 54 70% 77% 

pMMA50 21 79 88% 97% 

 

There was no clear trend in the grafting efficiency related to the length of the polymer chains 

(82% for pNAM25, 77% for pNAM50, 87% for pNAM100), which suggests that steric 

hindrance related to the length of the polymer chain does not affect the grafting reaction 

within the tested range of DPs. 
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2.2.5 Influence of monomers  

In order to examine how the nature of the polymer influences the conjugation, a wider range 

of monomers, namely hydrophobic (butyl acrylate, BA), temperature responsive (N-

isopropylacrylamide, NIPAM) and hydrophilic (hydroxyethyl acrylate, HEA, (polyethylene 

glycol) acrylate methyl ether 480, PEGA) acrylic monomers, hydrophobic (methyl 

methacrylate, MMA) and pH responsive (dimethylaminoethyl methacrylate, DMAEMA) 

methacrylic monomers, was studied. 

In the polymerisation of acrylic monomers (Table 2.3), excellent control (Ð < 1.16) was 

obtained with NHS-PABTC 1 (Figure 2.8, dashed lines). However, when using the peptide 

based CP(PABTC)2 3 (Figure 2.8, solid lines), only the polymerisation of NIPAM was found 

to be similarly well controlled (Ð = 1.09). The dispersity was slightly higher for BA and 

HEA, but remains below 1.3, which still conforms to a high degree of control. However, the 

polymerisation of PEGA lead to a considerably broader distribution (Ð = 3.75). This is 

likely caused by the sterically demanding size of the monomer. Keeping in mind that the 

cyclic peptides assemble into nanotubes, the addition of a new monomer to the active chain-

end may be hindered, and the necessary equal probability of chain growth will be lost. 

Table 2.3: Polymerisation of acrylate and acrylamide monomers mediated by NHS-PABTC 
1 and CP(PABTC)2 3. Unless otherwise stated, reactions were carried out in DMSO at 70°C, 
using ACVA as initiator, with [M]0 = 2 M and targeting a DP 50. 

Monomer
 

Reaction time
 

CTA 
Monomer 

conversion
a 

Mn,th
a 

Mn,SEC
b 

Ð 
(h) (g.mol

-1
) (g.mol

-1
) 

BAc 2 CP(PABTC)2 70% 10500 12800 1.24 

BAc 2 NHS-PABTC 75% 5100 6000 1.13 

NIPAM 2 CP(PABTC)2 74% 9900 17600 1.09 

NIPAMd 2 NHS-PABTC 82% 4900 6800 1.09 

HEA 1.5 CP(PABTC)2 76% 10800 21700 1.29 

HEA 1.5 NHS-PABTC 83% 4900 9100 1.10 

PEGAe 3 CP(PABTC)2 92% 45700 34600 3.75 

PEGAe 3 NHS-PABTC 82% 20000 16600 1.16 
a
 Determined by 

1
H NMR. 

b
Determined by SEC using DMF (0.1% LiBr) as eluent, calibrated with pMMA 

standards.
 c
 Solvent: DMF. 

d 
Solvent: dioxane.  

e
[M]0 = 1 M.

 

 

Conjugations of the polymers made with NHS-PABTC 1 to the CP 2 were found to yield 

conjugates comparable to those made by the grafting-from approach (except in the case of 

PEGA). The conjugation of pHEA was the most efficient (92%), while conjugation of 
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pNIPAM and pBA proceeded to 70% efficiency (Table 2.2). Due to insolubility of pBA in 

DMSO, these reactions were conducted in DMF. It is noteworthy to mention that the 

grafting-to approach enables access to well-defined pPEGA conjugates (with efficiency > 

75%), suggesting a greater flexibility of the grafting-to method with regards to sterically 

demanding monomers. 

 

Figure 2.8: SEC chromatograms of NHS-functionalised polymers (purple dashed lines), CP-
polymer conjugates made by the grafting-from (GF) method (plain green lines) and 
conjugation of NHS polymers to the CP 2 by the grafting-to (GT) strategy (orange dashed 
lines). 

Taking this study a step further, methacrylate-based polymers were studied. Controlled 

polymerisation of methacrylates is not possible using a PABTC-based RAFT agent, due to 

the secondary nature of the R-group reinitiating radical.48 Hence, CP(CPAETC)2 5 (Scheme 

2.3) was synthesised from CP 2 and an active ester functionalised CPAETC-based CTA, 

following a similar protocol to that used in the synthesis of CP(PABTC)2 3.  
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Scheme 2.3: Chain transfer agents used to mediate the polymerisation of methacrylates. 

As with the previous examples, the polymerisations of the hydrophobic methyl methacrylate 

(MMA) and hydrophilic and pH responsive dimethylaminoethyl methacrylate (DMAEMA) 

were performed using both NHS-CPAETC 4 and the peptide attached analogue 

CP(CPAETC)2 5  for comparison (Table 2.4). The polymerisation times were increased to 

12h to compensate for the lower rate constant of propagation (kp) of methacrylate monomers. 

This longer reaction time allowed for conversion values > 80%, while the obtained polymers 

still had well controlled molecular weight distributions (Ð < 1.2). 

Table 2.4: Polymerisation of methacrylate monomers mediated by NHS-CPAETC 4 and 
CP(CPAETC)2 5. Reactions were carried out in DMSO at 70°C, using ACVA as initiator, 
with [M]0 = 2 M and targeting a DP 50. 

Monomer
 

Reaction 
 

CTA 
Monomer 

conversion
a 

Mn,th
a 

Mn,SEC
b 

Ð 

time (h) (g.mol
-1

) (g.mol
-1

)  

MMA 12 CP(CPAETC)2 91% 11800 15900 1.11 

MMA 12 NHS-CPAETC 80% 4400 4800 1.13 

DMAEMA 12 CP(CPAETC)2 89% 15600 22700 1.19 

DMAEMA 12 NHS-CPAETC 95% 7800 13000 1.11 
a
 Determined by 

1
H NMR. 

b
Determined by SEC using DMF (0.1% LiBr) as eluent, calibrated with pMMA 

standards.
  

 

The NHS-functionalised polymers were further conjugated to CP 2 (Figure 2.9,Table 2.2). In 

the case of pMMA, an excellent grafting efficiency was observed (97%). However, no 

product was obtained when attempting the conjugation of pDMAEMA to CP 2. It is likely 

that the chain end functionality of the pDMAEMA is lost during polymerisation, due to the 

basic nature of the monomer, which could catalyse the hydrolysis of the activated ester end-

group. This particular case highlights the advantages of the grafting-from method.  
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Figure 2.9: SEC chromatograms of NHS-functionalised polymers (purple dashed lines), CP-
polymer conjugates made by the grafting-from (GF) method (plain green lines) and 
conjugation of NHS polymers to the CP 2 by the grafting-to (GT) strategy (orange dashed 
lines). 

2.3 Conclusions 

Two synthetic pathways leading to cyclic peptide-polymer conjugates were explored and 

compared. A range of functional monomers was polymerised from, and grafted to, a cyclic 

peptide, using an active ester ligation strategy. Initial kinetic studies using a cyclic peptide 

modified with CTA groups clearly revealed an excellent control of the polymerisation 

without the appearance of any detectable termination reaction. With the exception of PEGA, 

where polymerisation from the peptide was not controlled due to steric hindrance, all tested 

monomers led to well defined grafting-from conjugates (Ð = 1.29 for HEA, Ð < 1.25 in all 

other cases) within two hours. The grafting-to counterparts of these conjugates were 

obtained after polymerisation using an NHS-functionalised CTA, followed by an active ester 

coupling to the cyclic peptide. Comparing two different CTAs, NHS-PABTC 1 and NHS-

CPAETC 4, which bear an α-methylated and an α-unsubstituted ester function, respectively, 

we observed a considerably enhanced speed of conjugation for the latter, less hindered 

RAFT agent. Varying the type of monomer, conjugation efficiency was found to be best for 

MMA and HEA (97% and 92% grafting, respectively), but lower for NIPAM and PEGA 

(71% and 77%, respectively). In the case of DMAEMA, grafting-to gave no product and, 

thus, the implementation of the grafting-from method allowed for the preparation of 

conjugates otherwise unreachable by an active ester grafting-to pathway.  

Generally comparing the two investigated synthetic routes, the grafting-from approach 

permits pure conjugate synthesis (no unreacted polymeric chains remain in the sample) to be 
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achieved in faster reaction times. This approach is, however, dependent on the availability of 

a solvent that can solubilise the peptide, the monomer and the resulting conjugate. It is also 

unfavourable when attempting to control the polymerisation of bulky monomers such as 

PEGA. On the other hand, the grafting-to strategy remains more flexible in terms of choice 

of solvent and scalability, and also enables a modular approach to design peptide conjugates, 

using different combinations of peptides and polymers. Nevertheless, purification to remove 

excess or unreacted polymer remains a challenge, and the reactivity of some monomers can 

be an obstacle for an efficient conjugation. In summary, this work demonstrates that both 

techniques carry advantages and disadvantages, but are complementary in nature, and their 

combination gives access to a large variety of well-defined cyclic peptide-polymer 

conjugates.  

2.4 Experimental 

2.4.1 Materials 

Bromo-propionic acid (>99%), 1-butanethiol (99%), carbon disulfide (>99%), ethanethiol 

(97%), 2-hydroxyethyl acrylate (96 %), N-acryloylmorpholine (NAM, 97 %), poly(ethylene 

glygol) methyl ether acrylate 480, N-isopropyl acrylamide (97 %), butyl acrylate, methyl 

methacrylate, 2-(dimethylamino)ethyl methacrylate, N-hydroxysuccinimide (98 %), 4-

dimethylaminopyridine (DMAP, 99 %), pentafluorophenol (PFP, >99%), triisopropylsilane 

(TIPS, 99 %), deuterated solvents for NMR and aluminum oxide were purchased from 

Sigma-Aldrich. 1,1,1,3,3,3-Hexafluoroisopropanol (HFIP, 99 %) and iodine were purchased 

from Acros Organics. N-methylmorpholine (NMM, 99 %) and piperidine were purchased 

from Alfa Aesar. Sodium hydroxide pellets, sodium thiosulfate pentahydrate and anhydrous 

magnesium sulfate (MgSO4) were purchased from Fisher Scientific. N,N-

diisopropylethylamine (DIPEA, 99 %), was purchased from Merck. 4,4′-Azobis(4-

cyanovaleric acid) (ACVA) was purchased from MP Biomedicals. Fmoc-D-Leu-OH, Fmoc-

L-Lys-OH, Fmoc-L-Trp(Boc)-OH, O-(benzotriazole-1-yl)-N,N,N’,N’-tetramethyluronium 

hexafluorophosphate (HBTU), 2-chlorotrityl chloride resin (100-200 mesh) and 1-ethyl-3-

(3-dimethylaminopropyl)carbodiimide (EDC) were purchased from Iris Biotech and used as 

received. All solvents were bought from commercial sources and used as received. The 

cyclisation coupling agent DMTMM·BF4 was synthesised according to an established 

literature method.49  
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2.4.2 Characterisation 

NMR spectra were recorded on Bruker DPX-300, DPX-400 and HD-500 instruments. Mass 

spectrometry measurements were performed on a Bruker MicroToF for ESI ToF and on an 

Agilent 6130B Single Quad for ESI. Molecular weight distributions and dispersities were 

assessed by size exclusion chromatography (SEC) on an Agilent PL50 instrument equipped 

with differential refractive index (DRI) and UV detectors. The system was equipped with 2 x 

PolarGel M columns (300 x 7.5 mm) and a PolarGel 5 µm guard column. The eluent is DMF 

with 0.1 % LiBr additive. Samples were run at 1 mL/min at 50’C. Poly(methyl methacrylate) 

standards (Agilent EasyVials) were used for calibration. Analyte samples were filtered 

through a nylon membrane with 0.22 µm pore size before injection. Respectively, 

experimental molar mass (Mn) and dispersity (Ð) values of synthesized polymers were 

determined by conventional calibration using Agilent GPC/SEC software. 

2.4.3 Synthesis 

Please refer to Appendix A for NMR spectra.  

2.4.3.1 Synthesis of (propanoic acid)yl butyl trithiocarbonate (PABTC) 

 
A 50% w/w aqueous sodium hydroxide solution (4.4 g, 2.2 g NaOH, 55 mmol) was added to 

a stirred mixture of butanethiol (5 g, 5.9 mL, 55 mmol) and water (8.5 mL). Acetone (2.8 

mL) was then added, and the resulting clear solution was stirred for 30 min at room 

temperature. Carbon disulfide (4.75 g, 1.125 eq., 62.4 mmol) was added and the resulting 

orange solution was stirred for 30 min, then cooled to < 10 °C. 2- Bromopropionic acid 

(8.69g, 1.025 eq., 56.8 mmol) was slowly added under temperature supervision, followed by 

the slow addition of a 50% w/w aqueous NaOH solution (4.5 g, 2.25 g NaOH, 57 mmol). 

When the exotherm stopped, water (8 mL) was added and the reaction was left to stir at RT 

for 20 hours. More water (15 mL) was then added to the reaction mixture, which was cooled 

below 10 °C. A 10 M solution of HCl was slowly added, keeping the temperature below 10 

°C and stopping when pH reached 3. The orange solid separated, crystallised and was 

recovered by filtration under reduced pressure. Yield: 55% (7.2 g, 30.3 mmol). 1H-NMR 

(CDCl3, 300 MHz, pm):  = 4.88 (q, 1H, J = 9 Hz, CH(CH3)), 3.39 (t, 2H, J = 9 Hz, S-CH2-

CH2), 1.70 (m, 2H, S-CH2-CH2-CH2), 1.64 (d, 3H, J = 9 Hz, CH(CH3)), 1.44 (m, 2H, CH2-

CH2-CH3), 0.94 (t, 3H, J = 9 Hz, CH2-CH3). 
13C-NMR (CDCl3, 125 MHz, ppm):  = 221.5, 
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177.5, 47.5, 37.0, 29.8, 22.0, 16.5, 13.5. MS (ESI): [M+H]+ calculated: 261.0, found: 260.9. 

MP: 53-55ºC. 

2.4.3.2 Synthesis of N-hydroxysuccinimide-(propanoic acid)yl butyl 

trithiocarbonate (NHS-PABTC) 

 

PABTC (1.016 g, 4.27 mmol), N-hydroxysuccinimide (1.2 eq., 0.59 g, 5.12 mmol) and 

DMAP (0.1 eq., 52 mg, 0.43 mmol) were dissolved in DCM (20 mL) and stirred. In a 

separate vessel EDC (1.2 eq., 0.982 g, 5.12 mmol) was dissolved in DCM (50 mL) and this 

solution was added dropwise over 15 minutes to the solution containing the chain transfer 

agent. The mixture was stirred for 16 hours at room temperature. Subsequently, the DCM 

was evaporated and the crude product redissolved in diethyl ether. The orange mixture was 

washed with a saturated solution of NaHCO3 (2 x 40 mL) and water (2 x 40 mL). The 

oraganic phases were collected and dried with MgSO4. The volume was reduced via rotary 

evaporation after which silica flash chromatography was performed in hexane:ethyl acetate, 

with the content of ethyl acetate varying from 20% to 80% over 30 min. The purified NHS-

PABTC chain transfer agent was isolated as a yellow oil. Yield: 49% g (0.7 g, 2.07 mmol). 
1H-NMR (CDCl3, 300 MHz, ppm):  = 5.15 (q, 1H, J = 9 Hz, CH(-CH3)), 3.39 (t, 2H, J = 9 

Hz, S-CH2-CH2), 2.83 (s, 4H, succinimidyl CH2-CH2), 1.75 (d, 3H, J = 9 Hz, CH(CH3)), 

1.70 (m, 2H, CH2-CH2-CH2), 1.44 (m, 2H, CH2-CH2-CH3), 0.94 (t, 3H, J = 9 Hz, CH2-CH3). 
13C-NMR (CDCl3, 125 MHz, ppm):  = 220.2, 168.6, 167.2, 45.0, 37.2, 29.8, 25.5, 22.0, 

16.6, 13.5. MS (ESI): [M+H]+ calculated: 335.03, found: 334.9.  

2.4.3.3 Synthesis of bis-(ethylsulfanylthiocarbonyl) disulfide 

 

To a solution of ethanethiol (5 mL, 67.5 mmol) in diethyl ether (145 mL) under strong 

stirring was added an aqueous solution of sodium hydroxide (8 mL containing 2.70 g, 67.5 

mmol of NaOH). The clear, colourless solution was stirred for 30 min, then treated with 

carbon disulfide (1.125 eq., 4.6 mL, 75.9 mmol) to yield an orange solution. After a further 

30 min of stirring, the mixture was further reacted by slow addition of iodine (0.5 eq., 8.57 

g, 33.75 mmol). After one hour, the ether phase was washed two times with an aqueous 
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sodium thiosulfate solution and once with water, dried on MgSO4 and concentrated under 

reduced pressure. The crude product was used in the next step without purification. 

2.4.3.4 Synthesis of (4-cyano pentanoic acid)yl ethyl trithiocarbonate 

(CPAETC) 

 

To a solution of bis-(ethylsulfanylthiocarbonyl) disulfide (8.01 g, 29.2 mmol) in dioxane 

(200 mL), 4,4’-azobis(4-cyanovaleric acid) (17.17 g, 2.1 eq., 61.26 mmol) was added and 

the mixture was stirred for 20 hours at 75 °C. After removal of the solvent under reduced 

pressure, a silica flash chromatography was performed in hexane:ethyl acetate with content 

of ethyl acetate varying from 0% to 80% over 30 min. After drying under vacuum, an orange 

powder was obtained. 1H-NMR (CDCl3, 300 MHz, ppm):  = 3.35 (q, 2H, J = 9 Hz, S-CH2-

CH3), 2.8-2.3 (m, 4H, C(O)-CH2-CH2-), 1.89 (s, 3H, C(CN)(CH3), 1.36 (t, 3H, J = 9 Hz, 

CH2-CH3). 
13C-NMR (CDCl3, 125 MHz, ppm):  = 216.9, 177.3, 118.9, 46.2, 33.4, 31.4, 

29.5, 24.8, 12.7. MS (ESI): [M+Na]+ calculated: 286.0, found: 285.9. MP: 62-64 ºC.  

2.4.3.5 Synthesis of N-hydroxysuccinimide-(4-cyano pentanoic acid)yl ethyl 

trithiocarbonate (NHS-CPAETC)  

 

 

CPAETC (1 g, 3.80  mmol) was dissolved in DCM (20 mL). N-hydroxysuccinimide (0.52 g, 

1.2 eq., 4.56 mmol) and DMAP (46 mg, 0.1 eq., 0.38 mmol) were added to the stirring 

mixture. In a separate vial, EDC (0.87 g, 1.2 eq., 4.56 mmol) was dissolved in DCM (10 

mL) and slowly added to the previous one. The resulting mixture was stirred at room 

temperature for 16 hours, and washed with water (2 x 75 mL) and brine (2 x 75 mL). The 

organic phases were combined, dried on MgSO4 and the solvent evaporated under reduced 

pressure. Silica flash chromatography was performed in hexane:ethyl acetate with content of 

ethyl acetate varying from 20% to 80% over 30 min. The purified NHS-CPAETC was 

isolated as a yellow powder. Yield: 81% (1.11g, 3.07 mmol). 1H-NMR (CDCl3, 300 MHz, 

ppm):  = 3.35 (q, 2H, J = 9 Hz, S-CH2-CH3), 2.94 (t, 2H, J = 9 Hz, C(O)-CH2-CH2), 2.86 

(s, 4H, J = 9 Hz, succinimidyl CH2-CH2), 2.76-2.46 (m, 2H, C(O)-CH2-CH2), 1.89 (s, 3H, 

C(CN)(CH3)), 1.37 (t, 3H, J = 9 Hz, CH2-CH3). 
13C-NMR (CDCl3, 125 MHz, ppm):  = 
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216.3, 168.8, 167.0, 118.6, 45.9, 33.1, 31.4, 26.8, 25.5, 24.7, 12.7. MS (ESI): [M+Na]+ 

calculated: 383.0, found: 382.9. MP: 122-126 ºC. 

2.4.3.6 Synthesis of pentafluorophenol-(4-cyano pentanoic acid)yl ethyl 

trithiocarbonate (PFP-CPAETC) 

 

CPAETC (2 g, 7.59 mmol) was dissolved in DCM (25 mL). Pentafluorophenol (1.68 g, 1.2 

eq., 9.11 mmol) and DMAP (93 mg, 0.1 eq., 0.76 mmol) were added to the stirring mixture, 

then a solution of EDC (1.75 g, 1.2 eq., 9.11 mmol) in DCM (15 mL) was slowly added. The 

resulting mixture was stirred at room temperature for 16 hours, washed with a saturated 

NaHCO3 solution (2 x 40 mL) and with water (2 x 40 mL). The aqueous phases were re-

extracted with 40 mL DCM. The organic phases were combined, dried on MgSO4 and the 

solvent was evaporated under reduced pressure. A silica flash chromatography was 

performed in hexane:ethyl acetate with content of ethyl acetate varying from 0% to 10% 

over 30 min. The purified PFP-CPAETC was isolated as an orange powder/oil (melting 

point around RT). Yield: 45% (1.45g, 3.4 mmol). 1H-NMR (CDCl3, 300 MHz, ppm):  = 

3.37 (q, 2H, J = 9 Hz, S-CH2-CH3), 3.02 (t, 2H, J = 9 Hz, C(O)-CH2-CH2), 2.77-2.46 (m, 

2H, C(O)-CH2-CH2), 1.94 (s, 3H, C(CN)(CH3)), 1.38 (t, 3H, J = 9 Hz, CH2-CH3). 
13C-NMR 

(CDCl3, 125 MHz, ppm):  = 216.3, 167.7, 142.1, 140.7, 139.9, 138.6, 136.9, 118.7, 46.0, 

33.4, 31.4, 29.0, 24.9, 12.7. 19F-NMR (CDCl3, 300 MHz, ppm):  = -153 (d, J = 18 Hz, 2F), 

-158 (t, J = 22 Hz, 1F), -162 (dd, J1 = 18 Hz, J2 = 22 Hz, 2F). MS (ESI ToF): [M+Na]+ 

calculated: 451.9848, found: 451.9870.  

2.4.3.7 Synthesis of linear peptide  

Solid phase synthesis of linear peptide H2N-L-Lys(Boc)-D-Leu-L-Trp(Boc)-D-Leu-L-

Lys(Boc)-D-Leu-L-Trp(Boc)-D-Leu-COOH  was performed on a 2-chlorotrityl resin (0.50 g, 

resin loading 1.1 mmol·g-1) in a 10 mL sinter-fitted syringe. The resin was allowed to swell 

for 30 minutes using anhydrous dichloromethane (DCM, 4 mL). After draining the DCM, a 

solution containing Fmoc-D-Leu-OH (2 eq., 0.39 g, 1.1 mmol) and DIPEA (4 eq./amino 

acid, 0.57 g, 4.4 mmol) in DCM (2 mL) was bubbled with N2 for 15 min then added to the 

resin and agitated for 2 hours at room temperature. Following draining of the solution, the 

resin was washed with a mixture of DCM / DIPEA / methanol (17:1:2, 3 x 4 mL) to cap any 

unreacted sites on the resin, then washed with DCM (3 x 4 mL), DMF (3 x 4 mL) and DCM 
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(3 x 4 mL) once more, after which the resin was dried under reduced pressure. Loading 

content was determined by deprotecting a sample of the dried resin (5.7 mg) by agitating in 

20 % piperidine in DMF (1 mL, 25 min). The resulting solution was diluted by a factor of 

100 with DMF and UV-Vis was used to correlate molarity with the absorption of the Fmoc 

group at λ = 301 nm (ε = 7800 M-1·cm-1). The loaded resin (0.30 g, 0.218 mmol) was 

transferred to a sintered syringe, and swollen in DCM for 30 min. Following the draining of 

the DCM, the resin was washed with DMF, and the Fmoc groups were removed by addition 

of 20% piperidine in DMF (2 x 10 mL; 5 min each). After removal of the deprotecting 

solution, the resin was washed with DMF (3 x 4 mL), DCM (3 x 4 mL) and further DMF (3 

x 4 mL). For subsequent coupling reactions, solutions containing the Fmoc-amino acid (3 

eq., 0.653 mmol), HBTU (3.1 eq., 0.675 mmol) and DIPEA (6 eq., 1.307 mmol) in DMF (2 

mL) were prepared, bubbled with N2 for 15 min and added to the resin. The coupling 

reaction was allowed to proceed at ambient temperature for 3 hours. Deprotection and 

addition steps were repeated to obtain the desired octapeptide. After completion of the 

amino acid coupling reactions and removal of the final Fmoc protecting group using 20 % 

piperidine in DMF, the peptide was cleaved from the resin using a solution of 20% HFIP in 

DCM (3 x 8 mL; 10 min each). The resin was washed with DCM (3 x 4 mL) and the filtrate 

was concentrated under reduced pressure to yield the linear peptide as an off-white solid. 

Yield 0.40 g (quantitative). 1H-NMR (400 MHz, TFA-d, ppm):  = 8.07 (m, 2H, Trp), 7.54-

7.22 (m, 8H, Trp), 5.11 (m, 2H, Hα Trp), 4.68-4.48 (m, 5H, Hα Leu and Hα Lys), 4.21 (m, 

1H, Hα Lys N-end), 3.32-3.03 (m, 8H, CH2 Trp and CH2-NH Lys), 2.07-0.86 (m, 60H, CH2-

CH2-CH2 Lys, CH2-CH Leu, C(CH3)3 Boc), 0.85-0.58 (m, 24H, CH3 Leu), NH signals not 

observed. MS (ESI): [M+H]+ calculated: 1498.9, found 1498.9. 

2.4.3.8 Cyclisation of linear peptide  

Linear peptide (200 mg, 0.127 mmol) was dissolved in DMF (20 mL) and N2 was bubbled 

through the solution for 20 min. DMTMM·BF4 (1.2 eq., 51 mg, 0.152 mmol) was dissolved 

in DMF (5 mL) with N2 bubbled through the solution for 20 min, and was then added 

dropwise to the linear peptide solution. The mixture was stirred under an atmosphere of N2 

for 5 days. The DMF solution was reduced to a volume of ~ 1 mL under reduced pressure, 

and methanol (20 mL) was added. Aliquots of the suspension were distributed into 2 mL 

Eppendorf tubes and centrifuged at 10000 rpm for 4 minutes using a benchtop centrifuge. 

After discarding the supernatant, the pellets were resuspended in methanol. The Eppendorf 

tubes were centrifuged once more and the supernatant discarded. The pellets were 

resuspended in methanol and the solvent was evaporated under reduced pressure to yield the 
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Boc-protected cyclic peptide in the form of a white powder. Yield 73 % (138 mg, 0.093 

mmol). 1H-NMR (400 MHz, TFA-d, ppm):  = 8.07 (m, 2H, Trp), 7.54-7.22 (m, 8H, Trp), 

5.15 (m, 2H, Hα Trp), 4.79-4.52 (m, 6H, Hα Leu and Hα Lys), 3.29-2.96 (m, 8H, CH2 Trp 

and CH2-NH Lys), 2.07-0.86 (m, 60H, CH2-CH2-CH2 Lys, CH2-CH Leu, C(CH3)3 Boc), 

0.85-0.58 (m, 24H, CH3 Leu), NH signals not observed. MS (ESI) [M+Na]+ calculated: 

1503.89, found: 1503.8. 

2.4.3.9 Deprotection of cyclic peptide 

Boc-protected cyclic peptide was treated with a cleavage cocktail consisting of 

TFA:triisopropylsilane:water (18:1:1 v/v/v, 5 mL) for 2 hours. The Boc-deprotected cyclic 

peptide was isolated from the cleavage cocktail by precipitation in ice-cold diethyl ether. 

The suspended precipitate was distributed into 2 mL Eppendorf tubes and isolated via 

centrifugation at 1000 rpm. The supernatant was discarded and the pellet was washed with 

diethyl ether and centrifuged 2-fold after which the solvent was evaporated under reduced 

pressure to yield a white powder. Yield: 124 mg (quantitative). 1H-NMR (400 MHz, TFA-d, 

ppm):  = 7.64-6.60 (m, 10H, Trp), 5.16 (m, 2H, Hα Trp), 4.73 (m, 6H, Hα Leu and Hα Lys), 

3.29-2.96 (m, 8H, CH2 Trp and CH2-NH Lys), 2.07-0.86 (m, 24H, CH2-CH2-CH2 Lys, CH2-

CH Leu,), 0.85-0.58 (m, 24H, CH3 Leu), NH signals not observed. MS (ESI) [M+Na]+ 

calculated: 1103.67, found: 1103.5. 

 

2.4.3.10 Cyclic peptide (propanoic acid)yl butyl trithiocarbonate 

(CP(PABTC)2) 

 

Succinimidyl ester conjugation of chain transfer agent to the cyclic peptide 2 (60 mg, 0.046 

mmol) was achieved in DMSO (6 mL) with NHS-PABTC 1 (30.7 mg, 2 eq., 0.092 mmol). 

NMM (28 mg, 6 eq., 0.28 mmol) was added to the reaction mixture and was left to stir at 

room temperature for 3 days. The reaction was monitored by mass spectrometry (ESI ToF). 

After the reaction, DMSO was removed using a stream of N2 and the modified cyclic peptide 
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was precipitated into ice cold ethyl acetate. The suspended precipitate was distributed into 2 

mL Eppendorf tubes and isolated via centrifugation at 1000 rpm. The supernatant was 

discarded and the pellets were washed with ethyl acetate and centrifuged 2-fold after which 

the solvent was evaporated under reduced pressure to yield CP(PABTC)2 3 as a yellow 

powder. 1H-NMR (400 MHz, TFA-d, ppm):  = 7.66-6.96 (m, 10H, Trp), 5.11 (m, 2H, Hα 

Trp), 4.73 (m, 6Hpeptide + 2HPABTC = 8H, Hα Leu, Hα Lys and CH PABTC), 3.43-3.08 (m, 

8Hpeptide + 4HPABTC = 12H, CH2 Trp, CH2-NH Lys and CH2 PABTC), 1.92-1.11 (m, 24Hpeptide 

+ 14HPABTC = 38H, CH2-CH2-CH2 Lys, CH2-CH Leu, CH2-CH2 and CH3-CH from PABTC), 

0.95-0.57 (m, 24Hpeptide + 6HPABTC = 30H, CH3 Leu and CH3-CH2 from PABTC), NH signals 

not observed. MS (ESI ToF): [M+Na]+ calculated: 1543.6846, found: 1543.6738.  

2.4.3.11 Cyclic peptide (cyano pentanoic acid)yl ethyl trithiocarbonate 

(CP(CPAETC)2) 

 

Pentafluorophenol ester conjugation of chain transfer agent to the cyclic peptide (67 mg, 

5.12.10-5 mol) was achieved in DMSO (6 mL) with PFP-CPAETC (46 mg, 2.1 eq., 1.07.10-4 

mol). NMM (31 mg, 6 eq., 3.07.10-4 mol) was added to the reaction mixture and it was left 

to stir at room temperature for 3 hours. After the reaction, DMSO was removed using a 

stream of N2 and the modified cyclic peptide was precipitated into ice cold ethyl acetate. The 

suspended precipitate was distributed into 2 mL Eppendorf tubes and isolated via 

centrifugation at 1000 rpm. The supernatant was discarded and the pellets were washed with 

ethyl acetate and centrifuged 2-fold after which the solvent was evaporated under reduced 

pressure to yield CP(CPAETC)2 as a yellow powder. Yield: 74% (60 mg, 3.82.10-5 mol). 1H-

NMR (400 MHz, TFA-d, ppm):  = 7.69-7.07 (m, 10H, Trp), 5.11 (m, 2H, Hα Trp), 4.67 (m, 

6Hpeptide, Hα Leu and Hα Lys), 3.66 (m, 4H, CH2-CH3 CPAETC),  3.43-3.08 (m, 8H, CH2 Trp 

and CH2-NH Lys), 2.70 (m, 8H, CH2-CH2 CPAETC), 1.99 (m, 6H, C(CN)(CH3) CPAETC), 

1.86-1.50 (m, 12H, CH2-CH2-CH2 Lys), 1.49-1.10 (m, 12H, CH2-CH Leu), 0.99-0.57 (m, 

30H, CH3 Leu and CH2-CH3 CPAETC), NH signals not observed. MS (ESI ToF): [M+Na]+ 

calculated: 1593.7, found: 1593.7. 
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2.4.3.12 Polymerisations 

Typical protocol: chain transfer agent (CTA), monomer, initiator (ACVA) and solvent were 

introduced in a flask equipped with a magnetic stirrer and sealed with a rubber septum. 

Nitrogen was bubbled through the solution for 15 min, and the flask was then put in a 

thermostated oil bath set at 70 °C. The polymerisations were stopped by cooling the flask 

and opening it to air. Conditions specific to each polymerisation are detailed in Table 2.5. 

Conversions were determined by 1H-NMR using one of the following two methods: 

- Comparison of the integration of the vinyl protons corresponding to the remaining 

monomer with the integration of polymer side chains signals; 

- Comparison of the integration of one of the CTA signals with the vinyl protons 

before and after polymerisation. 

Table 2.5: Summary of experimental conditions for the polymerisations. 

Monomer
 

Solvent
 

CTA 
[M]0 

[M]0:[CTA]0 [CTA]0:[ACVA]0 
Time 

(g.mol
-1

) (h) 

NAM DMSO NHS-PABTC 2 25 40 2 

NAM DMSO NHS-PABTC 2 50 20 2 

NAM DMSO NHS-PABTC 2 100 10 2 

NAM DMSO CP(PABTC)2 2 50 20 2 

NAM DMSO CP(PABTC)2 2 100 10 2 

NAM DMSO CP(PABTC)2 2 200 10 2 

BA DMF NHS-PABTC 2 50 20 2 

BA DMF CP(PABTC)2 2 100 10 2 

NIPAM Dioxane NHS-PABTC 2 50 20 2 

NIPAM DMSO CP(PABTC)2 2 100 10 2 

HEA DMSO NHS-PABTC 2 50 20 1.5 

HEA DMSO CP(PABTC)2 2 100 10 1.5 

PEGA DMSO NHS-PABTC 1 50 20 3 

PEGA DMSO CP(PABTC)2 1 100 10 3 

MMA DMSO NHS-CPAETC 2 50 20 12 

MMA DMSO CP(CPAETC)2 2 100 10 12 

DMAEMA DMSO NHS-CPAETC 2 50 20 12 

DMAEMA DMSO CP(CPAETC)2 2 100 10 12 
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Protocol for chain extension: CP-(pNAM48)2 made by grafting-from (Table 2.5, run 5) was 

extended by addition of further monomer ([M]0:[CTA]0 = 180, corresponding to a DP 90 on 

each arm of the conjugate) and ACVA (from a stock solution in DMSO). The vial was 

sealed once again with a rubber septum, nitrogen was bubbled through the mixture for 15 

min, and the flask was put in a thermostated oil bath set at 70 °C. The polymerisation was 

stopped after 2 hours. Conversion was determined by 1H NMR and found to be > 99 %. The 

composition of the diblock is therefore CP-(pNAM48-b-pNAM90)2. 

2.4.3.13 Conjugation of polymers to CP 

 

Succinimidyl ester conjugation of polymers to the cyclic peptide 2 was achieved in DMSO 

(DMF in the case of poly(butyl acrylate) conjugation) with polymer (2.2 eq.; 1.1 per 

conjugation site) and NMM (6 eq.). The mixture was stirred at room temperature for 5 days 

and samples for SEC analysis were taken at regular intervals.  
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Chapter 3 
 

 

Cyclic peptide-poly(HPMA) nanotubes as drug 

delivery vectors: in vitro assessment, 

pharmacokinetics and biodistribution. 

 

 

Size and shape have progressively appeared as some of the key factors influencing the 

properties of drug delivery systems, both in vitro and in vivo. In particular, elongated 

materials are thought to interact differently with cells and exhibit longer circulation times 

than spherical structures. A challenge, however, remains the creation of stable self-

assembled materials with anisotropic shape for delivery applications that still feature the 

ability to disassemble, avoiding organ accumulation and facilitating their clearance from 

the system. In this chapter, self-assembled cyclic peptide-polymer conjugates were 

synthesised, and their behaviour in solution was characterised, confirming the formation of 

supramolecular nanotubes. In vitro they were found to be non-toxic and cell uptake studies 

revealed that the pathway of entry was energy dependent. Moreover, the nanotubes entered 

the cells significantly more than a non self-assembled polymeric counterpart. 

Pharmacokinetic studies in rats, following intravenous injection of the peptide-polymer 

conjugates and the non-assembled control polymer, showed that the increased size of the 

nanotubes enabled increased exposure in comparison to the polymer. Nevertheless, the 

ability of the nanotubes to slowly disassemble into smaller units still allows for almost 

complete clearance and circumvents organ accumulation, making these materials an 

excellent candidate in the search for high performing drug carriers.  
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3.1 Introduction 

Nanomedicine and the use of nanoscale delivery vectors in particular, has completely 

reshaped the way small molecular drugs are administered and has shown to dramatically 

improve their in vivo therapeutic performance over the past two decades.1,2 Regardless of 

particle composition, the carrier’s large size permits longer circulation times by avoiding 

immediate renal filtration, and enables passive targeting to take place through the enhanced 

permeability and retention (EPR) effect.3,4 Delivery systems also provide protection of the 

drug,5 and allow for the introduction of targeting moieties,6-8 thus reducing side effects and 

generally enhancing drug delivery efficiency. A multitude of drug delivery vectors have 

been thoroughly studied in the past decades, including inorganic (gold9 and silica10 

nanoparticles, as well as quantum dots11) and organic (viral nanoparticles,12 carbon 

nanotubes13 or polymer-based structures14) carriers. Shape has progressively appeared as one 

of the features that have a major influence on the in vivo behaviour of carriers, with 

cylindrical structures attracting a lot of attention.15 It has been shown that because of their 

increased aspect ratio, elongated nanoparticles exhibit longer circulation times and can 

enhance cellular uptake and tumour accumulation in vivo.16 Filomicelles,17 polymer 

brushes18 and PEGylated tobacco mosaic viruses19,20 are among organic tubular structures 

that have already been studied in vivo and show promising results. Discher et al. have, for 

example, studied filomicelles and compared their behaviour to that of their spherical 

counterparts in vivo.21 They have shown that the cylindrical structures not only circulate in 

the blood for a considerable amount of time and manage to reach and enter tumour tissues, 

but also enable for a much higher loading of the anticancer agent Paclitaxel in comparison 

with spherical particles, whilst still maintaining similar survival rates in mice; clearly 

demonstrating an enhanced therapeutic efficiency. Additionally, Müllner et al. studied the 

pharmacokinetics of unimolecular cylindrical polymer brushes in rats, showing that they 

exhibit long term blood circulation, and that the aspect ratio of the brushes has a 

considerable impact on their pharmacokinetic parameters.22 They further studied this system 

in mouse xenografts, demonstrating that the brushes undergo EPR effect and tend to 

passively target tumour tissues.23 The main limitation of such large stable objects is their 

relatively poor clearance from the system, usually ascribed to their recognition by the 

mononuclear phagocytic system (MPS) leading to high accumulation in organs such as the 

spleen and the liver.24  
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One way to circumvent this issue is to explore the use of materials which undergo 

supramolecular self-assembly, for example by directed hydrogen bonds.25 Supramolecular 

polymers,26 especially those who self-assemble in aqueous media,27 have started to gain 

considerable attention in the field of nanomedicine. They allow for a bottom-up design 

strategy that enables extensive functionalisation of the building blocks, resulting in large 

libraries of materials. Examples of such systems include those based on host-guest 

interactions,28 or on the in situ assembly of peptide amphiphiles into long fibres.29-31 One of 

the major advantages over other nano-systems is their supramolecular nature which not only 

provides considerable stability, but also allows them to eventually break up into unimeric 

entities, small enough to be readily cleared from the body, avoiding undesired organ 

accumulation.  

An emerging class of elongated drug carriers, which feature such a supramolecular assembly 

process, are nanotubes formed of cyclic peptide-polymer conjugates.32 As detailed in 

Chapter 1, cyclic peptides formed of an even number of alternating D- and L- amino acids 

have been shown to adopt a flat conformation leading to self-assembly into nanotubes 

through antiparallel -sheet formation.33 Conjugation of water-soluble polymers to these 

peptides enables control over the size and the functionality of the nanotubes. To date, few 

reports look at these systems as drug carriers, and they have demonstrated promising results 

in experiments on cell systems,34,35 but their in vivo behaviour has yet to be explored.  

In this chapter, poly(2-hydroxypropyl methacrylamide) (pHPMA)-based cyclic peptide-

polymer conjugates were synthesised, and their ability to self-assemble into nanotubes was 

studied. After selection of the most promising candidate, a non-assembling polymer which 

does not contain the peptide core was also synthesised as a control. The in vitro behaviour of 

both conjugate and control polymer, as well as their pharmacokinetics and biodistribution in 

rats, were studied.  
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3.2 Results and discussion 

3.2.1 Design and synthesis 

3.2.1.1 Monomer choice and synthesis 

During the past decades, pHPMA has been extensively studied in the context of cancer 

therapy36 and several formulations containing this polymer are undergoing different stages 

of clinical trials.37,38 In addition, pHPMA can be readily synthesised by radical 

polymerisation methods, which facilitates the introduction of comonomers and the formation 

of well-defined end-groups. As such, pHPMA was chosen in this work, as the selection of a 

polymer which is pharmaceutically relevant is critical when designing a drug delivery 

vector. In order to provide a binding site for the future ligation of organometallic drugs (see 

Chapter 4), a pyridine comonomer was introduced. Although commercially available, the 

use of vinyl pyridine was avoided, since the sterically-demanding environment of the 

polymer backbone might limit complexation. Consequently, a more flexible monomer 

bearing a pyridine group was synthesised: 2-(3-(Pyridin-4-

ylmethyl)ureido)ethyl)methacrylate (PUEMA) (Scheme 3.1). 

 

 

Scheme 3.1: Synthesis of 2-(3-(pyridin-4-ylmethyl)ureido)ethyl)methacrylate (PUEMA). 

The chosen synthetic route to make this monomer takes advantage of the efficient reaction 

which occurs between an isocyanate and an amine group. The commercially available 2-

isocyanatoethyl methacrylate (IEMA) was coupled to 4-methylamino pyridine in 

stoichiometric amounts. The reaction was complete after 10 min, as monitored by Fourier 

Transformed Infra-Red spectroscopy (FTIR) (Figure 3.1 A), which showed complete 

disappearance of the isocyanate peak at 2264 cm-1, as well as the appearance of urea peaks at 

1585 cm-1 and 3313 cm-1 for the carbonyl and for the N-H bonds, respectively. After 

evaporation of the solvent, a pure product was obtained without the need for further 

purification steps. The structure of the product was confirmed by 1H NMR, 13C NMR 

(Figure 3.1 B-C) and mass spectrometry.  
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Figure 3.1: A) FTIR spectra indicating the formation of PUEMA. B) 1H NMR spectrum 
(CDCl3, 300 MHz) of PUEMA. C) 13C-APT NMR spectrum (CDCl3, 75 MHz) of PUEMA. 

3.2.1.2 Polymerisations and peptide conjugation 

When designing polymeric drug delivery systems, well-defined polymers are required to 

ensure reproducibility and to establish reliable structure-property relationships. Among 

others, reversible addition-fragmentation chain transfer (RAFT) polymerisation has 

demonstrated good potential to provide excellent control of the polymer lengths along with 

narrow size distributions.39 In the case of HPMA, a variety of suitable solvents have been 

reported, but only a few seem to promote high conversion of the monomer, highly desirable 

in terms of economic scale-up of materials and purification steps. Among the examples of 

reported strategies for the polymerisation of HPMA to high conversions, aqueous conditions 

seem to be the most effective in producing well-defined polymers.40,41 

Here, the RAFT polymerisation of HPMA, as well as the copolymerisation of HPMA and 

PUEMA (5% of the initial total monomer concentration), were performed in an aqueous 

acidic buffer/DMSO mixture (Scheme 3.2). The use of an acidic buffer (pH 4) circumvented 

any risk of hydrolysis of the chain transfer agent (CTA) and helped to achieve high 
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conversion of HPMA, while maintaining excellent control over the molecular weight 

distribution.40  

 

Scheme 3.2: RAFT (co)polymerisation of HPMA. 

Kinetic measurements of the homopolymerisation of HPMA, as well as the 

copolymerisation of HPMA and PUEMA, were performed (Figure 3.2). In both cases, the 

linear behaviour of the ln([M]0/[M]t) vs time plots suggests a constant concentration of 

radicals throughout the polymerisation (Figure 3.2 B and E). A linear evolution of molecular 

weight as well as low dispersity values (Ð < 1.2) were observed (Figure 3.2 C and F), 

suggesting good control over the polymerisation. Monitoring the conversion of each 

monomer during the copolymerisation showed that PUEMA was consumed significantly 

faster than HPMA, indicating a higher reactivity (Figure 3.2 D). As a consequence, the 

PUEMA units are on average located towards the α-chain end of the polymer. 
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Figure 3.2: Kinetic plots for the RAFT homopolymerisation of HPMA (left) and 
copolymerisation of HPMA and PUEMA (right) using CPAETC as the CTA: conversion of 
monomers vs time (top), ln([M]0/[M]t) vs time (middle) (the lines serve as guides to 
highlight the linear region.), Mn and Ð determined by DMF SEC vs conversion (bottom). 

Subsequently, three different polymers were synthesised (Scheme 3.3). Two different 

degrees of polymerisation (DP) were targeted for HPMA homopolymers (P1 DP = 25 and 

P2 DP = 50). A third polymer (P3 DP = 50) incorporating a small percentage of PUEMA 

was also prepared in order to test the influence of functional handles in the system. In 

addition, a bifunctional CTA (E(CPAECTC)2) was used to provide a non self-assembling 

polymeric control, P4, for subsequent biological testing (see sections 3.2.3 and 3.2.4). All 

obtained polymers, P1-4, were well-defined, with dispersities ≤ 1.12 (Table 3.1). The 
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observed differences between theoretical and SEC-derived molecular weight can be 

explained by the fact that pHPMA possesses a different hydrodynamic volume in DMF than 

the pMMA standards used in the SEC calibration.  

 

Scheme 3.3: Synthesis of polymers P1-4 and conjugates C1-3. (i) HPMA, VA 044, 
DMSO/H2O (optional: 5% PUEMA). (ii) cyclo(D-Leu-Lys-D-Leu-Trp)2, HBTU, NMM, 
DMSO. 

Table 3.1: Summary of polymers and conjugates used in this work. 

Entry Material 
Mn, th

a
 

(g.mol-1) 

Mn, GPC
b
 

(g.mol-1) 
Ð

b 

P1 pHPMA25 3900 7000 1.10 

C1 CP-(pHPMA25)2 8800 14200 1.13 

P2 pHPMA53 7800 11700 1.10 

C2 CP-(pHPMA53)2 16600 27900 1.12 

P3 p(HPMA55-co-PUEMA3.5) 9100 11900 1.10 

C3  CP-(p(HPMA55-co-PUEMA3.5))2 19200 24600 1.18 

P4 pHPMA93-co-PUEMA7 15700 21400 1.12 
a 
Determined by 

1
H NMR. 

b
 Determined by SEC using DMF (0.1% LiBr) as eluent, calibrated with pMMA 

standards.  
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The polymers P1-3 were subsequently attached to cyclo(D-Leu-Lys-D-Leu-Trp)2, via amide 

bond formation between the carboxylic acid chain end of the polymers and the two lysine 

residues present on the cyclic peptide, using O-(benzotriazol-1-yl)-N,N,N′,N′-

tetramethyluronium hexafluorophosphate (HBTU) as a coupling reagent in the presence of 

an organic base. This ligation technique follows typical coupling reactions used in solid 

phase peptide chemistry, and shares the advantages of the active ester conjugation shown in 

Chapter 2. In addition, it leads to the formation of a stable amide bond, and does not require 

tedious modification of the chain transfer agent (CTA) or the lysine residue of the cyclic 

peptide.42-44  

The reaction was monitored by size exclusion chromatography (SEC) for the attachment of 

P3 (Figure 3.3), which showed the rapid appearance of a peak corresponding to the 

conjugate C3, at ca. double the molecular weight of the polymer P3 (Mn = 11900 and 24600 

g.mol-1 for the polymer and the conjugate, respectively). The coupling was complete after 1 

h and the water-soluble nature of these conjugates enabled straightforward purification by 

dialysis. 

 

Figure 3.3: Synthesis and purification of C3 (CP-(p(HPMA-co-PUEMA))2): SEC traces of 
the polymer prior to reaction (green), the reaction mixture at different time points, and of the 
pure conjugate isolated by dialysis (blue).  

The obtained peptide-polymer conjugates C1-3 were purified by dialysis and isolated. SEC 

analysis revealed that low dispersities (≤ 1.20) were maintained (Figure 3.4 and Table 3.1).  
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Figure 3.4: SEC chromatograms of A) pHPMA25 (P1) and CP-(pHPMA25)2 (C1) B) 
pHPMA53 (P2) and CP-(pHPMA53)2 (C2) C) pHPMA55-co-PUEMA3.5 (P3) and CP-
(pHPMA55-co-PUEMA3.5)2 (C3) D) pHPMA93-co-PUEMA7 (P4). 

3.2.2 Characterisation of supramolecular nanotubes in 

solution using scattering techniques 

In contrast to electron microscopy, which requires contrast and often drying on a grid 

(except if using cryo-TEM), therefore complicates the analysis and presents a risk of 

disruption of the self-assembly, scattering techniques constitute a powerful tool for the 

characterisation of supramolecular materials in solution. These techniques, such as small 

angle neutron scattering (SANS) and static light scattering (SLS), rely on the measurement 

of the scattered intensity at an angle  by a particle irradiated with an incident beam at a 

wavelength  0 (Figure 3.5). 
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Figure 3.5: Principle of scattering. 

The wave vector q can be defined by equation 1, with n the refractive index of the solvent: 

= 𝜋𝜆0 sin 𝜃
   (SANS)  or   = 𝜋𝜆0 sin 𝜃

   (SLS)   (1) 

The inverse of the wave vector, q-1, is proportional to the size of the window of observation. 

As such, the bigger the wave vector, the smaller the window of observation. By varying the 

position of the detector (therefore the value of ) and the wavelength of the incident beam 

(by using light or neutrons), information can be gained on an extended range of sizes. SANS 

and SLS are complementary techniques, as shown on Figure 3.6. By using Ultra Small 

Angle Neutron Scattering (USANS), the q-range obtained with neutrons can be extended 

towards lower q-range, however resolution is decreased and high q values cannot be 

obtained. 

 

Figure 3.6: Relationship between q-range and size of the window of observation; 
complementarity of SLS and SANS. 

SANS measurements were conducted on conjugates C1-3 in solution in deuterated PBS in 

order to assess their self-assembly and elucidate key structural parameters including shape 
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(using the q-dependency of the scattered intensity) and dimensions (using the intensity at 

low q values).45 

Interestingly, all three conjugates exhibit very different scattering profiles (Figure 3.7). Data 

for both homopolymer-based conjugates C1 and C2 show a plateau at low q values 

(q<0.02), indicative of a finite length, while a q-1 dependency is observed for C3 in that q 

range, characteristic of a longer cylindrical structure. 

 

Figure 3.7: Small angle neutron scattering profiles of C1 at 10 mg/mL (orange squares), C2 
at 5 mg/mL (green diamonds), C3 at 5 mg/mL (purple circles) in PBS and their fits using 
cylindrical micelle (orange line), Gaussian chain (green line) and flexible cylindrical micelle 
(purple line) models, respectively. 

In SANS of polymers, the scattered intensity I(q) can be described by the following equation:  

= 𝜂 − 𝜂 ∗ Φ ∗ ∗ 𝑎 ∗ 𝑃 ∗   where   Φ =     (2) 

Na is Avogadro’s constant, MW is the molecular weight of the polymer, d its density, C the 

concentration. solv and  are the scattering length densities corresponding to the solvent and 

the compound, respectively, and can be calculated from the chemical formulas. S(q) is the 

structure factor, describing interaction between species at high concentration. All following 

work was carried out in dilute conditions, in which S(q) → 1. P(q) is the form factor, which 

describes the morphology of the compound in solution.  

In the case of C2, the data is best fitted with a Gaussian chain model, which represents non-

assembled polymer chains in solution (Table 3.2).46 The form factor for this model is 

described by equation (3): 
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𝑃  𝑎 𝑎  ℎ𝑎 = [exp − − + ]2   where =      (3) 

The fit was performed with the molecular weight (MW) and radius of gyration (Rg) as 

adjustable parameters, minimising the sum of the squared errors between the data and fit, 

and afforded MW = 12900 g/mol and Rg = 52 Å. The MW obtained from SANS is 

reasonable when compared to the theoretical value for the unimer (Mn = 16600 g/mol) which 

demonstrates that this conjugate does not assemble.  

Table 3.2: Fitting parameters obtained for C2 using a Gaussian chain form factor. 

Parameter Definition Value  

MW (g.mol-1) Molecular weight 12900 
Fitting  

Rg (Å) Radius of gyration 52 𝜂  (Å-2) Scattering length density of the solvent 6.39E-6 
Calculated 𝜂 (Å-2) Scattering length density of the compound 8.2742E-7 

 

In contrast, models corresponding to assembled structures were necessary to fit the data 

corresponding to the other two conjugates. More precisely, cylindrical micelle models 

(worm-like) were used to fit the data for C1 and C3, as they take into account both the 

cylindrical shape provided by the cyclic peptide core when self-assembled into nanotubes 

(characteristic q-1 dependency at low q values: cylinder form factor), as well as the polymer 

arms (Gaussian chain form factor at high q values).47 For these models, a radius of 5 Å was 

used for the peptide core, in accordance with previously reported results.32 Using these 

parameters, values confirming the elongated shape of the structures were obtained. A 

cylindrical micelle model was best to fit the data corresponding to the conjugate C1, and the 

CYL+Chains(RW) model predefined on the scattering software SASfit was used (Table 

3.3).47 
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Table 3.3: Fitting parameters obtained for C1 using a cylindrical micelle form factor. 

Parameter Definition Value  

N Scale factor 0.578576 

Fitting 
n_agg Grafting density 0.017755 

Rg (Å) Radius of gyration of the polymer arms 11.31 

H (Å) Length of the cylinder 51.72 

V_brush (Å3) Volume of the polymer armsa 6355 

Calculated 
eta_core (Å-2) Scattering length density of the core 8.5801E-7 

eta_brush (Å-2) Scattering length density of the polymer arms 8.5801E-7 

eta_solv (Å-2) Scattering length density of the solvent 6.39E-6 

R_core (Å) Radius of the core 5 

Fixed 
xsolv_core Fraction of solvent in the core, set to 0 0 

d 
d = 1 mimics the non-penetration of the 

polymer chains in the core 
1 

a 
Calculated using Vbrush = MW/(dxNa).10

24
, where MW is the molecular weight of the 

polymer, d its density and Na Avogadro’s number. 

In the case of C1 a nanotube length of about 5.2 nm was obtained, which corresponds to a 

number of aggregation (Nagg) of 11, as calculated using the previously reported distance 

between adjacent peptides (Lc = 4.7 Å).33,40   

𝑁𝑎 = = .7.7 =  

To fit the data corresponding to the conjugate C3, we used the flexible cylindrical micelle 

model predefined on SASfit (WORM+Chains(RW)), which uses the the same form factor as 

the previously described model, with the Kuhn’s length l as an additional parameter (Table 

3.4). 
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Table 3.4: Fitting parameters obtained for C3 using a flexible cylindrical micelle form 
factor.  

Parameter Definition Value  

N Scale factor 0.0258881 

Fitting 
n_agg Grafting density 0.0064568 

Rg (Å) Radius of gyration of the polymer arms 17.104 

l (Å) Kuhn’s length 1006.14 

V_brush (Å3) Volume of the polymer armsa 14100 

Calculated 
eta_core (Å-2) Scattering length density of the core 9.0369E-7 

eta_brush (Å-2) Scattering length density of the polymer arms 9.0369E-7 

eta_solv (Å-2) Scattering length density of the solvent 6.39E-6 

R_core (Å) Radius of the core 5 

Fixed xsolv_core Fraction of solvent in the core, set to 0 0 

L (Å) Length of the cylinderb 1000 
a 

Calculated using Vbrush = MW/(dxNa).10
24

, where MW is the molecular weight of the 

polymer, d its density and Na Avogadro’s number. 
b 

The length of the cylinder cannot be 

determined because of the absence of a roll-over at low q values, an arbitrary value of 100 

nm was therefore used for the fit.  

For this conjugate, SLS measurements were carried out in parallel to SANS in order to 

widen the window of observation and obtain scattering intensity values at low q (Figure 3.8 

A). 

 

Figure 3.8: A) Evolution of R/KC of C3 (CP-(p(HPMA-co-PUEMA))2) in solution in PBS 
as a function of the scattering wave vector q and for different concentrations. B) 
Determination of the molecular weight of C3 by SLS. 
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Multiple concentrations were measured at various angles and the Rayleigh ratio, Rθ, was 

determined using equation 4:48 

𝜃 =  𝑙 𝑖 𝜃 − 𝑙 𝑒  𝜃𝑙 𝑒 𝑒 𝜃 ∙ 𝑙 𝑒𝑙 𝑒 𝑒 ∙                    (4) 

Where Isolution, Isolvent and Itoluene are the scattering intensities of the solution, solvent and 

reference (toluene), respectively. n is the refractive index (nwater = 1.333, ntoluene = 1.496) and 

Rtoluene the Rayleigh ratio of toluene (Rtoluene = 1.35 x 10-5 cm-1 for  = 632.8 nm). 

The optical constant K is defined by equation 4, where Na is the Avogadro number and 

dn/dC is the incremental refractive index. 

=  𝜋2 𝑙 𝑒2𝜆4 𝑎             (5) 

At a given concentration, the Rayleigh ratio Rθ is related to the apparent molecular weight of 

the sample (equation 6). It is only at infinite dilutions, when the interactions between 

scattering particles are negligible, that the apparent molecular weight is equal to the true 

molecular weight. Linear regression analysis was used to determine the apparent molecular 

weight when conc. = 0 (Figure 3.8 B).  

𝐾𝜃 =  𝑎  ∙  +  2. 𝑔2             (6) 

Results showed that the molecular weight of the assemblies was independent of the 

concentration of the solution (within the tested range) with a value of 6.15.105 ± 0.86.105 

g.mol-1. Using these data, together with the molecular weight of the unimer and the distance 

between adjacent peptides, a number of aggregation of 34 ± 5, and an average length of 16.0 

± 2.3 nm was determined (Table 3.5).  
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Table 3.5: Determination of aggregates size by SLS for conjugate C3. 

 Slope Intercept MW (g/mol) Nagg
a 

L
b
 (nm) Rg (nm) 

5 mg/mL 1.94E-21 1.64E-6 6.09E5 33.81 15.89 59.58 

1 mg/mL 1.94E-21 1.88E-6 5.32E5 29.57 13.90 55.66 

0.5 mg/mL 2.01 E-21 1.42E-6 7.04E5 39.13 18.39 65.16 
a Nagg = MW/M_unimer. b L = Nagg x Lc, with Lc = 4.7 10-1 nm the distance between two 

adjacent cyclic peptides.  

Such a noticeable difference in the assembly of the three conjugates is likely due to the 

nature of the polymers attached to the cyclic peptide, with a combination of steric hindrance 

and hydrogen bonding capacity influencing the stacking of the conjugates. While comparing 

C1 and C2, both based on homopolymers of HPMA (DP 25 and 53, respectively), it seems 

reasonable to conclude that longer polymer chains tend to hinder the self-assembly process 

more, with the conjugate C1 forming short cylinders (Nagg = 11) while C2 remains as 

unimers in solution. This result is in line with previously reported work, which showed 

decreasing tube length with increasing polymer molecular weight.49,50 The difference 

between C2 and C3 is the most striking, since they have comparable molecular weights but 

contrasting morphologies in solution: the homopolymer-based C2 does not assemble while 

C3, which contains 5% of the comonomer PUEMA, stacks into elongated tubes (Nagg = 34 ± 

5). We attribute the differences of morphology to the presence of the urea and pyridine 

motifs in PUEMA, which provide additional hydrogen bonding and π-π stacking sites, 

respectively, thereby counterbalancing steric hindrance caused by the long polymer chains 

and strengthening the overall assembly. In addition, this effect might be enhanced by the 

blockiness of the copolymer (see section 3.2.1.2): the PUEMA units are on average located 

towards the α-chain end of the polymer, thus towards the core of the nanotube, and their 

proximity to each other is likely to result in secondary interactions despite the limited 

proportion of PUEMA within the copolymer.  
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3.2.3 In vitro studies 

In view of these data, PUEMA-containing conjugate C3 was selected as a suitable candidate 

for in vitro studies. Polymer P4 was used as a non-self-assembling polymeric control (see 

section 3.2.1.2). In addition, rhodamine monomer (rhodamine methacrylate, RhMA) was 

copolymerised with HPMA and PUEMA, following similar synthetic procedures as 

described above (3.2.1.2), to afford rhodamine-labelled conjugate C5 and polymer P6 (Table 

3.6 and Figure 3.9). The amount of RhMA was kept below 0.1% of the total monomer 

content, to prevent disruption of the self-assembly. 

Table 3.6: Characterisation of rhodamine-labelled materials. 

Entry Material 
Mn, th

a
 

(g.mol-1) 

Mn, GPC
b
 

(g.mol-1) 
Ð

b 

P5 RhB-pHPMA58-co-PUEMA4 9700 14900 1.10 

C5 CP-(RhB-pHPMA58-co-PUEMA4)2 20400 28300 1.13 

P6 RhB-pHPMA98-co-PUEMA8 15700 20500 1.20 

a 
Determined by 

1
H NMR. 

b
 Determined by SEC using DMF (0.1% LiBr) as eluent, calibrated with pMMA 

standards.  

 

 

Figure 3.9: SEC chromatograms of A) RhB-pHPMA58-co-PUEMA4 (P5) and CP-(RhB-
pHPMA58-co-PUEMA4)2 (C5) B) RhB-pHPMA98-co-PUEMA8 (P6). 
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Since the polymer P6 and the conjugate C5 are not necessarily labelled to the same extent, 

correction factors were used to enable quantitative comparison between the two compounds: 

fluorescence was determined for solutions of both C5 and P6 at different concentrations. 

The slope of the obtained linear fit was used to calculate the correction factor (Figure 3.10 

and Table 3.7). 

 
Figure 3.10: Fluorescence calibration curves for C5 and P6. 

 
Table 3.7: Calculation of fluorescence correction factors for C5 and P6. 

 C5 P6 Average 

Slope 34.454 24.652 29.553 

Correction factor 1.166 0.834 1 

 

The biocompatibility of the compounds was tested in vitro on three cell lines (A2780 human 

ovarian carcinoma, PC3 human prostate carcinoma and MDA-MB-231 breast cancer) by 

performing cell growth inhibition assays for 72 h. Although it should be acknowledged that 

these cell lines are all cancerous and they therefore generally exhibit a higher tolerance to 

challenge than healthy cells, they provide a good indication of potential toxicity in healthy 

cells. In all three cell lines, incubation with up to 500 g.mL-1 of the non-labelled 

compounds, C3 and P4, did not result in any noticeable reduction of the cell viability 

(Figure 3.11  A-C). 
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Figure 3.11: Antiproliferative activity of the compounds (continuous: conjugate, dashed: 
polymer) in A) A2780 B) PC3 and C) MDA cells, and cellular fluorescence intensity 
associated with rhodamine as  determined by flow cytometry after incubation of the 
compounds for 3 h at 4 °C, 3 h at 37 °C and 24 h at 37 °C in D) A2780 E) PC3 and F) MDA 
cells. Data represents geometric mean of fluorescence ± SD for two independent 
experiments done in triplicates: *p < 0.05, ***p < 0.001, ****p < 0.0001. 

The amount of compound associated with the cells was then quantified using flow cytometry 

(Figure 3.11 D-F). Cells were incubated in presence of the labelled compounds C5 and P6 

for 3 h and 24 h at 37 °C. For both incubation times, and in all three cell lines, the polymer 

control associated significantly less than the conjugate (p < 0.0001). For example in A2780, 

the amount of conjugate C5 measured in the cells was nearly double that of polymer P6 after 
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3 h; the discrepancy increased to 3.5 times more conjugate after 24 h incubation. This result 

is attributed to the difference in size and aspect ratio between the two compounds. In these 

conditions, the conjugates self-assemble to form a cylindrical assembly with an average 

number of aggregation of 34 (see SLS results, section 3.2.2), whereas polymer P6 remains 

as a single unit. Particle shape51 and size52-54 are thought to play a non-negligible role in 

cellular uptake, with larger particles exhibiting increased uptake up to a certain size, above 

which the uptake generally decreases. Depending on the study, percentage of uptake tends to 

peak with particles between 20 and 100 nm, and particles with a diameter of either less than 

10 nm or more than 100 nm entering the cells to a lesser degree. This effect is found across 

particles of different compositions, including coated iron oxide,52 silica53 and polymeric54 

nanoparticles. The present results are in line with these findings, with 16 nm-long nanotubes 

entering the cells to a higher extent than the single polymer chains.  

It is also interesting to note that cellular association increases with time, indicating uptake 

occurs to a higher extent than excretion. In the case of the conjugates, a 3-fold increase of 

fluorescence in MDA cells was observed when varying the incubation time from 3 h to 24 h. 

Similar increases were found in other cell lines, with 3.8x in PC3 and 3.9x in A2780. This 

effect was also observed for the polymer, although to a lesser extent: increases in 

fluorescence between 3 h and 24 h incubation of 2.4x in A2780, 1.6x in PC3 and 2.0x in 

MDA were recorded. In summary, these results indicate that the compounds accumulate in 

the cells over time (uptake > exocytosis), which is commonly observed for nanosized 

objects.55,56 

In order to probe whether the mechanism of internalisation was energy-dependent, the 

experiment was performed at 4 °C, whereby these pathways are not activated. In all three 

cell lines, both compounds showed no accumulation after 3 h in these conditions, indicating 

that the mechanism of cellular entry relies on endocytosis or other energy-dependent 

pathways. 

Intracellular localisation of the conjugate was confirmed by confocal imaging, using the 

rhodamine-labelled compound C5 (Figure 3.12). Following PC3 cells incubation with the 

conjugate at 20 M (400 g.mL-1) for 24 h, rhodamine staining inside the cells confirmed 

that the compound was readily taken up by the cells and not simply associated with the 

membrane. Lysotracker ® green was added together with the conjugate to assess organelle 

localisation. The merged images of the red and green channels clearly demonstrate a 
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noticeable amount of colour coincidence of the conjugates with the lysosomal 

compartments, which is in agreement with the flow cytometry data, indicating energy-

dependent entry pathways.  

 

Figure 3.12: Confocal images of PC3 human prostate carcinoma cells treated with 
rhodamine-labelled conjugates C5 for 24 h at 37 °C at a concentration of 20 M. Lysosomes 
were stained using Lysotracker ® Green DND-26. Scale bar 20 m. 

3.2.4 Plasma pharmacokinetics and organ biodistribution 

In order to characterise the in vivo behaviour of these compounds, both the conjugate and 

control polymer were radiolabelled, taking advantage of the hydroxyl groups present on 

pHPMA to attach 14C-ethanolamine (Scheme 3.4). Carbonyldiimidazole (CDI) was used as 

the coupling reagent. This compound reacts with alcohols and amines, and when reacted 

with alcohols the stability of the formed imidazole carboxylic ester depends on the nature of 

the starting alcohol. If the parent alcohol is secondary (such as in HPMA), further reaction is 

limited to primary alcohols or amines, leading to the formation of carbonates or carbamates, 

respectively.57,58 When translated to post-polymerisation modification of polymers, the 

reaction of CDI onto pendant chains containing primary alcohols would lead to crosslinking, 

but in the present case it allows for the attachment of functional primary amines such as 

radiolabelled ethanolamine.  
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Scheme 3.4: Radiolabelling of C3 and P4 using carbonyldiimidazole coupling agent. 

The obtained compounds C3* and P4* were purified by size exclusion chromatography 

(SEC) and extensively dialysed to remove any radiolabel excess. Effective labelling was 

confirmed by scintillation counting of SEC fractions and HPLC analysis (Figure 3.13).  

 

Figure 3.13: A) Scintillation counting of size exclusion chromatography fractions of 
conjugate C3* and polymer P4* before and after purification. B) Radiometric detector traces 
of HPLC of the 14C labelled conjugate C3* and polymer P4*. In both cases, free radiolabel 
represents less than 10% of the total counts. 
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The radiolabelled polymer P4* and conjugate C3* were injected intravenously to male 

Sprague-Dawley rats at 12 mg/kg and blood samples were taken at regular intervals for 24 h 

to determine the plasma concentration vs time profiles (Figure 3.14).  

 

Figure 3.14: Plasma concentration vs time profiles of 14C-labelled polymer P4* (orange 
squares) and conjugate C3* (purple circles) following intravenous administration to rats at 
12 mg/kg (mean ± SD, n = 4-5 rats). 

The obtained profiles present the two phases characteristic of IV injections: the distribution 

phase (rapid dispersion or dissemination of substances throughout the fluids and tissues of 

the body until equilibrium is reached) and the elimination phase (metabolism and excretion 

of the injected substance). Non-compartmental analysis was performed and the 

pharmacokinetic parameters are summarised in Table 3.8. The initial volume of the central 

compartment (Vc) was close to blood volume, which is typical of IV injections. The non-

assembling polymer, P4*, showed rapid elimination from systemic circulation, in 

accordance with previously reported results on HPMA copolymers.59-61 The elimination half-

life (t1/2, obtained from the slope of the elimination phase in the plasma concentration vs time 

profile) of the nanotubes was only slightly longer than that of the polymer control, indicating 

a similar rate of elimination from the system after the distribution phase. However, total 

exposure, in the case of the nanotubes, was significantly higher than for the polymer (p < 

0.0001), as shown by the difference in the AUC (area under the curve), which was found to 

be more than three times higher for the conjugates. We attribute this discrepancy to the 

larger size of the nanotubes, which allows them to partially avoid immediate renal clearance. 

The increased exposure is in agreement with the reduced clearance (Cl, 3 ± 0.2 mL/h for the 
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nanotubes vs 12 ± 0.4 mL/h for the polymer) and reduced terminal volume of distribution 

(Vd, , 70 ± 2 mL for the nanotubes vs 225 ± 35 mL for the polymer). The clearance of a 

chemical is the volume of plasma from which the chemical is apparently completely 

removed, per unit time. As such, it gives a measure of the speed of elimination. The volume 

of distribution (Vd) represents the volume in which the compound seems to be distributed 

with a concentration equal to the plasma concentration: a low Vd that remains close to blood 

volume means that the compound mostly stays in the plasma, whilst a high Vd indicates that 

the compound is distributed outside of the central compartment (either excreted or 

distributed to other tissues). The observed volume of distribution of the nanotubes is lower 

than for small molecular weight linear polymers, but higher than reported values for 

PEGylated dendrimers (as low as 25 mL after 30 h),62 stars (approximately 60 mL after 7 

days)63 or small brushes (60 mL after 24 h),22 suggesting an intermediate performance in 

terms of circulation. 

Table 3.8: Calculated pharmacokinetic parameters and urine recovery after intravenous 
administration of conjugate C3* and polymer P4* to rats at 12 mg/kg (mean ± SD, n = 4-5 
rats). **p < 0.01, ****p < 0.0001. 

 Conjugate (C3*) Polymer (P4*) 

t1/2 (h) 16.1 ± 1.3 13.4 ± 2.0 

AUC (μg/mL.h) 1120 ± 62 331 ± 10**** 

Vc (mL) 15.0 ± 1.0 16.6 ± 1.0 

Vd,β (mL) 70 ± 2 225 ± 35** 

Cl (mL/h) 3 ± 0.2 12 ± 0.4**** 

Urine (% dose) 62 ± 7 72 ± 8 

 

The percentage of dose recovery in urine was high for both the polymer (72 ± 8 %) and the 

conjugates (62 ± 7 %), indicating that the majority of both compounds is ultimately excreted 

from the body. The molecular weight cut-off for renal filtration is generally estimated to be 

around 50 kDa,24 which is well below the molecular weight of the nanotubes (estimated to 

be 615 kDa by SLS) but above the mass of the polymer and the unimers. Hence, this result 

suggests that the labelled compounds found in the urine are fragments of the initial 

nanotubes, either degraded chemically (free radiolabel), or physically (unimeric conjugates 

or very short tubes).  
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To understand the fate of both compounds after administration, specifically to verify that 

they are both largely excreted from the body within 24 h, their accumulation in major organs 

(liver, spleen, pancreas, kidneys, heart, lungs, and brain) was quantified by measuring the 

residual 14C present in the tissues harvested 24 h after IV injection. Figure 3.15 shows the 

percentage of injected 14C recovered in each organ. Levels of accumulation were very low in 

all examined organs, with the highest amount found in the liver (3.1 ± 0.4 % for the 

conjugate, 1.3 ± 0.3 % for the polymer). Such low levels of organ accumulation are typical 

of small molecular weight HPMA copolymers.61 

 

Figure 3.15: Distribution of 14C in organs, 24 h after intravenous administration of 
conjugate (purple) and polymer (orange) at 12 mg/kg (mean ± SD, n = 4-5 rats).  

The very low organ uptake, together with the high urine excretion, and the intermediate 

value of Vd,  (lower than for a small molecular weight polymer but higher than for 

dendrimers or stars or small brushes) may indicate that the nanotubes are in fact constituted 

of a mixture of slowly disassembling structures. A more advanced study is required to fully 

elucidate the mechanism of clearance, but one hypothesis is that the initially assembled 

structures exhibit prolonged circulation (as evidenced by the higher exposure of the 

nanotubes compared to the non-assembling polymer) and the resulting unimeric conjugates 

are ultimately cleared out of the body without organ accumulation.  
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3.3 Conclusions 

Peptide-polymer conjugates consisting of self-assembling cyclic peptides functionalised 

with HPMA (co)polymers were synthesised, and a study of their assembly in solution 

showed the formation of nanotubes. Interestingly, a small fraction of a comonomer prone to 

non-covalent interactions greatly helped the self-assembly process. The comonomer-

containing conjugate was tested against a non-assembling control and clear differences in 

their cell uptake behaviour in vitro and their pharmacokinetics in vivo were observed. 

Cellular accumulation studies demonstrated a time and temperature dependent 

internalisation of the compounds, with larger sized nanotubes increasing the uptake by a 

factor 3 to 4 compared to that of the polymer. Colour coincidence studies confirmed 

accumulation of the conjugates in the lysosomal compartments of the cells, further 

indicating an endosomotropic uptake pathway. After intravenous injection to rats, conjugates 

were found to circulate for a reasonable amount of time, and exhibit a higher exposure than 

the control polymer. Such characteristics are beneficial when attempting passive tumour 

targeting though the EPR effect. Most importantly, conjugates were ultimately cleared out, 

which might be related to a slow disintegration of the self-assembled nanotubes into smaller 

structures or unimers. This feature certainly helps to avoid undesired long-term 

accumulation in organs such as the liver and spleen which is essential for future applications 

in drug delivery. Considering all the observed results, these cyclic peptide-polymer 

nanotubes represent a novel and promising class of materials for application as carrier 

material for the transport of pharmaceutically active compounds.  

3.4 Experimental 

3.4.1 Materials 

N-methylmorpholine (NMM, 99 %) was purchased from Alfa Aesar. 2,2'-Azobis[2-(2-

imidazolin-2-yl)propane]dihydrochloride (VA-044) was purchased from Wako Chemicals. 

O-(Benzotriazole-1-yl)-N,N,N’,N’-tetramethyluronium hexafluorophosphate (HBTU) was 

purchased from Iris Biotech. Methacryloxyethyl thiocarbamoyl rhodamine B (Rhodamine 

methacrylate, RhMA) was purchased from Polysciences. Ethanolamine [1-14C] (55 

mCi/mmol, 0.1 mCi/mL) was obtained from ARC (American Radio Chemicals). Deuterated 

solvents for NMR were purchased from Sigma-Aldrich. All solvents were bought from 
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commercial sources and used as received. The cyclic peptide and chain transfer agent 

CPAETC were synthesised as described in Chapter 2. E(CPAETC)2 was synthesised 

according to previously reported protocols.64  

3.4.2 Characterisation methods 

NMR spectra were recorded on a Bruker DPX-300 instrument. Molecular weights and 

dispersities of polymers were assessed by size exclusion chromatography (SEC) on a 

Polymer Laboratories PL-GPC 50 Plus system in DMF with 0.1% LiBr, using a poly(methyl 

methacrylate) calibration as described in Chapter 2. 

SANS was carried out either on the Sans2d small angle diffractometer at the ISIS Pulsed 

Neutron Source (STFC Rutherford Appleton Laboratory, Didcot, UK)65,66 or on SANS 

Instrument D11 at Institut Laue-Langevin in Grenoble, France. 

On the Sans2d instrument, a collimation length of 4 m and incident wavelength range of 

1.75 – 16.5 Å was employed.  Data were measured simultaneously on two 1 m2 detectors to 

give a q-range of 0.0045 – 1.00 Å-1.  The small-angle detector was positioned 4 m from the 

sample and offset vertically 60 mm and sideways 100 mm.  The wide-angle detector was 

positioned 2.4 m from the sample, offset sideways by 980 mm and rotated to face the 

sample. The wave vector, q, is defined as: 

=  𝜋sin 𝜃2𝜆       

where θ is the scattered angle and λ is the incident neutron wavelength. The beam diameter 

was 8 mm. Samples were prepared at a concentration of 5 mg/mL in deuterated phosphate 

buffer saline (PBS, pH 7.4), and were contained in 2 mm path length quartz cells. Each raw 

scattering dataset was corrected for the detectors efficiencies, sample transmission and 

background scattering and converted to scattering cross-section data (𝜕Σ/𝜕Ω vs. q) using the 

instrument software.67 These data were placed on an absolute scale (cm-1) using the 

scattering from a standard sample (a solid blend of hydrogenous and perdeuterated 

polystyrene) in accordance with established procedures.68  

On the D11 instrument, scattering intensities were recorded by a two-dimensional position-

sensitive 3He detector. Three different instrument settings were used corresponding to a q 

range of 0.01 < q < 0.5. H2O was used for instrumental calibration. The data were placed on 
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an absolute scale (cm-1) using the scattering from a standard sample in accordance with 

established procedures.69 The obtained reduced data was analysed with the open access 

software SASfit.70  

Light scattering measurements were obtained using an ALV-CGS3 system operating with a 

vertically polarised laser with a wavelength of 632 nm. The measurements were taken at 20 

°C, at different degree intervals, corresponding to a wider range of scattering vectors. The 

incremental refractive index, dn/dC, was determined by measuring the refractive index of the 

polymer in water at various concentrations ranging from 0.25 to 2 mg/mL, using a Shodex 

RI detector operating at a wavelength of 632 nm.  

3.4.3 Synthetic procedures 

3.4.3.1 Synthesis of 2-hydroxypropyl methacrylamide (HPMA) 

 

Potassium carbonate (29 g, 1.1 eq., 0.21 mol) was dispersed in 120 mL of dry DCM. The 

mixture was cooled to -10 °C with an ice-ethanol bath and 1-amino-2-propanol (14.5 mL, 1 

eq., 0.19 mol) was added. Methacryloyl chloride (18.5 mL, 1 eq., 0.91 mol) was diluted with 

20 mL of dry DCM, and added dropwise to the previous mixture, while maintaining the 

temperature at -10 °C. Once the addition was complete, the reaction was left to warm up to 

room temperature and stirred overnight. After filtration and drying over MgSO4, the DCM 

was evaporated and a white solid was obtained. The product was dissolved in methanol and 

washed with hexane, and the methanol phase was evaporated. The obtained solid was 

recrystallised from acetone. Yield: 45% (10.2 g).  1H-NMR (d6-DMSO, 300 MHz, ppm):  = 

7.82 (broad s, 1H, NH) , 5.65 (s, 1H, CH vinyl), 5.31 (s, 1H, CH vinyl), 4.71 (s, 1H, OH), 

3.69 (m, 1H, CH), 3.05 (m, 2H, CH2), 1.85 (s, 3H, CH2=C(CH3)), 1.00 (d, J = 6 Hz, 3H, CH-

CH3). 
13C-DEPT-NMR (d6-DMSO, 75 MHz, ppm):  = 167.7, 139.9, 118.9, 85.1, 46.7, 21.1, 

18.6. MP: 69-72 ºC. 
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Figure 3.16: 
1H NMR spectrum (d6-DMSO, 300 MHz) of 2-hydroxypropyl methacrylamide 

(HPMA). 

 

Figure 3.17: 
13C-APT NMR spectrum (d6-DMSO, 75 MHz) of 2-hydroxypropyl 

methacrylamide (HPMA).  

3.4.3.2 Synthesis of 2-(3-(pyridin-4-ylmethyl)ureido)ethyl)methacrylate 

(PUEMA) 

 

2-Isocyanatoethyl methacrylate (2.2 g, 14.15 mmol) and 4-aminomethyl pyridine (1.53 g, 1 

eq., 14.15 mmol) were mixed in dry DCM (10 mL) and left to stir at room temperature for 

10 min. The solvent was evaporated under reduced pressure and PUEMA was collected as a 

white powder. Yield: 95% (3.53 g). 1H-NMR (CDCl3, 300 MHz, ppm):  = 8.52 (d, 2H, CH-

N-CH pyridine), 7.19 (d, 2H, CH-C-CH pyridine), 6.09 (s, 1H, CH vinyl), 5.59 (s, 1H, CH 
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vinyl), 5.13 (broad t, 1H, NH urea), 4.97 (broad t, 1H, NH urea), 4.38 (d, 2H, NH-CH2-

pyridine), 4.25 (t, 2H, O-CH2), 3.53 (q, 2H, O-CH2-CH2), 1.93 (s, 3H, CH3). 
13C-DEPT-

NMR (CDCl3, 75 MHz, ppm): 166.9, 157.5, 149.2, 148.3, 135.3, 125.5, 121.4, 63.4, 42.4, 

39.0, 17.6. FTIR: ( , cm-1): 3313 (N-H stretch, urea), 1720 (C=O stretch, methacrylate), 

1623 (C=C stretch, alkene), 1585 (C=O stretch, urea). MS (ESI): [M+Na]+ calculated: 286.1, 

found: 285.9. MP: 109-112 ºC. 

3.4.3.3 RAFT polymer synthesis  

Chain transfer agent (CTA, here CPAETC or E(CPAETC)2), monomers (HPMA, PUEMA, 

RhMA), initiator (VA 044) and solvent (70/30 DMSO/H2O) were introduced into a flask 

equipped with a magnetic stirrer and sealed with a rubber septum (see Table 3.9 for detailed 

conditions). The solution was degassed by bubbling through with nitrogen for 15 min, and 

then put in an oil bath at 44 °C. Kinetic experiments were conducted over 24 hours and 

reactions times for subsequent polymerisations are indicated in Table 3.9. Conversions were 

determined by 1H NMR. For polymers P5 and P6, conversion of RhMA could not be 

determined because the extremely low amounts did not allow visualisation of the 

corresponding signals. The polymers were precipitated in ice-cold acetone and dried under 

vacuum. The rhodamine-labelled polymers P5 and P6 were further dialysed to remove any 

excess dye.  

Table 3.9: Summary of polymerisation conditions. All reactions were performed with 
[HPMA]0 = 2 mol.L-1. 

 CTA 
Time [HPMA][CTA]  

[PUEMA][CTA]  
[RhMA][CTA]  

[CTA][I]  
Conversion (%) 

(hours) HPMA PUEMA 

P1 CPAETC 8 50 - - 20 50 - 

P2 CPAETC 18 70 - - 20 75 - 

P3 CPAETC 18 66.5 3.5 - 20 82 >99 

P4 E(CPAETC)2 18 137 7 - 10 68 >99 

P5 CPAETC 20 66 3.5 0.07 20 75 >99 

P6 E(CPAETC)2 20 133 7 0.13 10 68 >99 
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3.4.3.4 Conjugation of polymers to the cyclic peptide 

The cyclic peptide, polymer (2.5 eq.) and HBTU (3.75 eq.) were solubilised in DMSO (1.5 

mL). NMM (6 eq.) was added to the reaction mixture and was left to stir at room 

temperature for 2 hours. After the reaction, DMSO was removed using a stream of N2 and 

the conjugates were dissolved in water and purified from the excess polymer using 

centrifugal ultrafiltration, with a molecular weight cut off of 30 kDa (Amicon® Ultra 

centrifugal filter). The isolated conjugates were freeze-dried.    

3.4.3.5 Radiolabelling of compounds 

Conjugate (or polymer) was introduced in a vial, together with CDI (10 eq.) and anhydrous 

DMF (1 mL) and the mixture was stirred for 4 hours. An aliquot of 14C-labelled 

ethanolamine in ethanol was withdrawn from the bottle (1 eq.) and the ethanol evaporated 

using a steam of nitrogen. The radiolabel was redissolved in DMF and added to the mixture, 

which was then stirred for 4 days. The solvent was removed using a stream of nitrogen and 

the dried-up mixture was solubilised in water, and passed over a size exclusion column 

(PD10, GE Healthcare Life Sciences) to remove most of the remaining free radiolabel prior 

to dialysis. The purity of the compound was assessed by HPLC and size exclusion 

chromatography using PD10 columns (pre-packed cartridges). Briefly, 0.7 mL fractions 

were collected and the activity of each fraction was determined by scintillation counting. 

3.4.4 In vitro testing 

3.4.4.1 Cells 

A2780 (human ovarian carcinoma), PC3 (human prostate carcinoma) and MDA-MB-231 

(human breast cancer) cells were obtained either from the European Collection of Cell 

Cultures (ECACC) or Sigma-Aldrich. A2780 were grown in Roswell Park Memorial 

Institute medium (RPMI-1640), and PC3 and MDA-MB-231 in Dulbecco’s Modified Eagle 

Medium (DMEM). Both media were supplemented with 10% v/v of foetal calf serum, 1% 

v/v of 2 mM glutamine and 1% v/v penicillin/streptomycin. Cells were grown as adherent 

monolayers at 37 °C in a 5% CO2 humidified atmosphere and passaged at approximately 70-

80% confluence. 
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3.4.4.2 Growth inhibition assay  

Briefly, 5000 cells were seeded per well in 96-well plates and allowed to grow for 24 h 

before adding different concentrations of the compounds to be tested. Compounds were 

dissolved directly in cell culture medium at concentrations ranging from 0.1 to 500 g/mL. 

Culture medium was replaced by dilutions of the compounds and cells further incubated for 

72 h. After this, supernatant was removed and replaced by fresh medium. The XTT assay 

was used to determine cell metabolic activity as a measure of viability. Absorbance 

measurements of the plate at 475 nm were carried out using a Synergy HTX (Biotek) plate 

reader. Degree of viable treated cells was determined by comparison to untreated controls. 

Two independent sets of experiments in triplicates were carried out and standard deviations 

were used for error bars. 

3.4.4.3 Microscopy  

Cells were seeded in an 8-chamber imaging plate (Eppendorf) at 15 000 cells per well and 

incubated overnight at 37 °C with 5% CO2. Rhodamine-labelled conjugate dissolved in PBS 

was added to the wells to a final concentration of 20 M and incubated for 24 h. 

Colocalisation studies were carried out after lysosome staining using Lysotracker ® Green 

DND-26. Labelling was achieved by incubating cells in the presence of Lysotracker (100 

nM) for 2 hours. The cells were washed 2 times with fresh media and images were recorded 

using a confocal microscope (SP5, Leica, Gmbh). 

3.4.4.4 Flow cytometry 

Cells were seeded in 24-well plates at 100 000 cells per well and incubated in 500 L of 

compound-free media overnight at 37 °C with 5% CO2. Rhodamine-labelled compounds 

were then added to cells in triplicate, achieving a final concentration of 20 M. Three sets of 

conditions were tested: incubation at 37 °C for 24 h, incubation at 37 °C for 3 h, and 

incubation at 4 °C for 3 h. For incubation at 4 °C, the cells were placed on ice for 10 min 

prior to addition of the compound, and subsequently in the fridge. After incubation, the 

culture medium was removed and the cells were washed with PBS, harvested with trypsin, 

transferred to Eppendorf tubes and spun at 1500 g for 5 min. The supernatant was discarded 

and cell pellets were resuspended in PBS, transferred into flow cytometry tubes and stocked 

on ice until measurement. Samples were analysed on a BD FACScan flow cytometer using 

the FL2 channel (585/42 nm). Cells were analysed using forward and side scatter gates to 

exclude debris and cell aggregates. Fluorescence intensity corresponding to untreated cells 
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was subtracted, the data were processed using Flowing software 2® and reported values 

correspond to the average of the means of fluorescence for a population of 10000 cells.  

3.4.5 Pharmacokinetics and Biodistribution studies  

3.4.5.1 Activity Determination and Scintillation Counting  

The specific activity of the compounds was determined by dilution of known amounts of 

material into PBS. Aliquots were mixed with 4 mL of Ultima Gold and scintillation counted 

on a Packard Tri-Carb 2000CA liquid scintillation analyzer (Meriden, CT).  

3.4.5.2 Animals 

All animal experimental protocols were approved by the Monash Institute of Pharmaceutical 

Sciences Animal Ethics Committee, Monash University, Parkville, VIC, Australia. Male 

Sprague-Dawley rats (250-350 g) were used in these experiments. Animals were maintained 

on a 12 h light/dark cycle at all times. 

3.4.5.3 Intravenous Pharmacokinetic Studies 

A day prior to compound administration, each rat was anaesthetised under isoflurane (2-5% 

v/v) and cannulas (polyethylene tubing 0.96 x 0.58 mm, Paton Scientific, Victor Harbour, 

Australia) were surgically inserted into the right jugular vein and carotid artery (to facilitate 

IV administration and blood collection respectively) as previously described.71 The rats were 

transferred to individual metabolic cages (to permit separate collection of urine and faeces) 

and allowed to recover overnight prior to dosing. Each animal was fasted up to 14 h prior to 

and up to 8 h after administration of the IV dose with water provided ad libitum. Prior to 

injection, blood samples (0.2 mL) were obtained from the carotid artery. The compounds 

were dissolved in phosphate buffered saline (PBS) and 0.5 mL was administered at a dose of 

12 mg/kg as a slow bolus intravenous injection (1 mL/min) via the jugular cannula. The 

cannula was then flushed with 0.5 mL of heparinised saline to ensure complete infusion of 

the dose. Subsequent blood samples (0.2 mL) were taken at 1, 5, 10, 20, 30, 60, 120, 180, 

240, 360, 480, and 1440 min after dose administration. Blood samples were placed 

immediately into tubes containing 10 IU of heparin and centrifuged for 5 min at 3500 g. 

Plasma (0.1 mL) was collected, transferred to a separate vial and mixed with 4 mL of Ultima 

Gold scintillation cocktail prior to scintillation counting.  

  



Chapter 3. Cyclic peptide-poly(HPMA) nanotubes as drug delivery vectors: in vitro 

assessment, pharmacokinetics and biodistribution 

 

 

 

Sophie Larnaudie  81 

 

3.4.5.4 Biodistribution Studies 

At the end of the pharmacokinetic studies (24 h), animals were humanely killed by injection 

of a lethal dose of sodium pentobarbital (via the jugular vein cannula) and the following 

tissues removed: liver, spleen, pancreas, kidneys, heart, lungs and brain. The tissues were 

frozen (-20 C) and stored in pre-weighed polypropylene tubes until processing and analysis. 

The samples were homogenised using a gentleMACS Dissociator (Miltenyi Biotech) with 5 

mL of MilliQ water. Triplicate samples from each tissue homogenate (typically 50-100 mg 

of tissue) were mixed with 2 mL of tissue solubiliser (Solvable, Perkin Elmer) and the 

samples stored at 60 °C overnight to facilitate tissue digestion. The samples were cooled to 

room temperature and 200 L hydrogen peroxide (30% w/v) was added to each vial. 

Samples were left open at room temperature until bubbling had ceased. Ultima Gold (10 

mL) was then added and the mixture vortexed before the samples were stored at 4 °C in the 

dark, without agitation, for at least 3 days prior to scintillation counting. Blank organs also 

were treated as above to provide for background correction. In order to correct for any 

reduction in radioactivity counting efficacy due to the processing of the tissues, an identical 

second set of samples was processed in the same way but the tissue homogenate aliquots 

were spiked with a known quantity of radiolabel prior to addition of Solvable. The samples 

were then scintillation counted at 12 C.  

 

A processing efficiency was calculated, using the following equation: =   − ,  

Where spiked tissuedpm is the mass-corrected radioactivity measured in the spiked samples, 

tissuedpm,uncorr is the mass-corrected radioactivity in the non-spiked tissue samples, and spiked 

solndpm is the known amount of radioactivity added to the spiked sample. Effectively, the 

calculation provides an indication of the efficiency of counting, using the known (spiked) 

amount of radioactivity in each tissue as a reference. This value for efficiency was used to 

correct the 14C content in the processed sample using the following equation: 

, = ,
 

The activity in the whole organ was then calculated knowing the mass fraction of the entire 

organ present in the processed sample. The results are expressed as percentage of injected 

dose in the organ at sacrifice.  
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3.4.5.5 Urine  

Urine, pooled from immediately after dose administration till 24 h, was collected at the end 

of the study. A blank urine sample was also collected to provide for background correction. 

After accounting for the volume of urine collected a 100 L aliquot was taken and mixed 

with 4 mL of Ultima Gold and scintillation counted. After background subtraction, the 

radiolabel content of the sample was corrected for the total volume of urine collected and 

converted to a percentage of the total administered dose.  

3.4.5.6 Calculation of Pharmacokinetic Parameters 

The concentrations of radiolabel in plasma/whole blood samples were converted to 

microgram equivalent concentrations using the specific activity of the radiolabeled 

compounds. Non-compartmental pharmacokinetic parameters were calculated with Excel 

using the PK solver add-in.72  The NCA IV Bolus model was used, in which the AUC0-∞ was 

calculated using the linear trapezoidal method. The elimination half-life (t1/2), volume of 

distribution (Vd) and clearance (Cl) were also determined from the model. An estimate of 

initial distribution volume, or volume of central compartment (Vc) was calculated from the 

dose/Cp0, where Cp0 was the extrapolated concentration in plasma at the moment of 

completion of the injection. Two-tailed t-tests were performed assuming unequal variance.  
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Chapter 4 
 

 

Cyclic peptide-polymer nanotubes as efficient 

and highly potent drug delivery systems for 

organometallic anticancer complexes 

 

 

 

Functional drug carrier systems have potential for increasing solubility and potency of 

drugs while reducing side effects. Complex polymeric materials, particularly anisotropic 

structures, are especially attractive due to their long circulation times. In this chapter, cyclic 

peptides were conjugated to the biocompatible polymer poly(2-hydroxypropyl 

methacrylamide) (pHPMA). The resulting conjugates were further functionalised with 

organoiridium anticancer complexes. Small angle neutron scattering and static light 

scattering confirmed their self-assembly and elongated cylindrical shape. Drug-loaded 

nanotubes exhibited more potent antiproliferative activity towards human cancer cells than 

either the free drug or the drug-loaded polymers, whilst the nanotubes themselves were non-

toxic. Cellular accumulation studies revealed that the increased potency of the conjugate 

appears to be related to a more efficient mode of action rather than a higher cellular 

accumulation of iridium.  
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4.1 Introduction 

Small molecules designed as highly potent anticancer drugs often face limitations related to 

their poor solubility, rapid elimination, and limited stability in the body.1,2 The use of drug 

carriers may address these challenges by providing a protective shell that enhances solubility 

and retards clearance from the blood stream. Moreover, drug delivery vectors possess 

additional means of introducing functionality and increasing the selective accumulation at 

the specific target.3 Tuneable in size, the devices can be optimized for passive targeting to 

tumours via the enhanced permeability and retention (EPR) effect.4 In addition, most carriers 

can be functionalized by a variety of ligands (carbohydrates, peptides, proteins, antibodies, 

aptamers etc.) to allow for active targeting towards specific cells.5 Overall, drug carrier 

systems offer potential for improving the therapeutic efficiency of drugs and reducing their 

side effects.  

It is therefore not surprising that a plethora of potential drug delivery systems has been 

reported, including spherical polymer micelles or vesicles.6 So far neglected, but particularly 

interesting, are organic nanotubes (NTs) formed by cyclic peptide-polymer conjugates. 

Cylindrical objects exhibit a longer residence time in the body than spheres of comparable 

size,7 and also can show higher activity than spherical particles8 when loaded, for example, 

with active peptides,9 antibodies,10 or proteins.11 The high aspect ratio and functionality of 

these organic nanotubes are potentially valuable design features for drug delivery. 

Despite all the above mentioned advantages of these cyclic peptide nanotubes and the 

advances in the synthesis of functional materials, so far only a few examples of their use as 

drug delivery vehicles has been reported.12-14 Blunden et al. have described the synthesis of 

such nanotubes bearing RAPTA-C, a moderately active ruthenium anticancer drug. They 

demonstrated that the attachment of the drug helped to increase its activity against cancer 

cells.12 

Here, we present a specifically designed system comprising a self-assembling cyclic peptide 

core, a functional polymer shell, and a highly potent organoiridium drug candidate. 

Particular attention was paid to the use of biocompatible components in the synthesis and the 

effective attachment of the metallodrug through efficient drug conjugation suitable for 

cancer therapy. In this context, poly(2-hydroxypropyl methacrylamide) (pHPMA) was 

chosen, since it has attracted particular interest for drug delivery applications over the past 
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few decades.15,16 Several systems derived from pHPMA have been studied in detail and are 

currently undergoing clinical trial.17,18  

In addition to comprehensive optimisation of the delivery vector, the choice of a compatible 

and potent drug is critical for designing effective therapeutics. Recently, organoiridium 

complexes have been shown to exhibit high potency towards a wide range of cancer cells19 

and, through careful choice of ligands, the efficiency of these complexes can be improved by 

three orders of magnitude, reaching sub-micromolar values.20 Depending on the cell line and 

the complex, activity was shown to be ca. 5 to 10 times higher than that of the clinical drug 

cisplatin, and more than 200 times higher than RAPTA-C. The attachment of this type of 

complex to a polymeric carrier can be achieved through incorporation of a suitable metal-

binding ligand on the polymer chains, as mentioned in Chapter 3.  

Based on these considerations, a cyclic peptide-pHPMA conjugate was synthesised and 

loaded with an organoiridium anticancer complex. The organoiridium fragment was attached 

through ligation to a pyridine-containing comonomer in the polymer shell. The ability of the 

drug-loaded conjugates to self-assemble into nanotubes in solution was thoroughly 

established by scattering techniques, and their cytotoxicity in vitro was assessed and 

compared to that of the free drug. For the first time, this supramolecular system was also 

tested alongside a drug-loaded polymer control that does not contain the cyclic peptide core, 

in order to clearly assess the impact of the self-assembly on the cytotoxicity. Finally, cellular 

accumulation of the three compounds was studied both qualitatively and quantitatively and 

the mechanism of action was explored. 

4.2 Results and discussion 

4.2.1 Synthesis of the polymer and conjugate carriers 

The well-studied monomer building block 2-hydroxypropyl methacrylamide (HPMA) was 

chosen as the main monomer for designing the polymeric drug used in this work. In order to 

provide a binding site for the ligation of anticancer iridium complexes, PUEMA was 

introduced as a comonomer (see Chapter 3). Pyridine was chosen as the binding ligand, as it 

can readily replace the chloride ligand present on the selected organoiridium precursor. 

Moreover, organoiridium pyridine complexes themselves exhibit good anticancer activity.21  
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The cyclic peptide-polymer conjugate 2 containing pHPMA-co-PUEMA was synthesised 

using Reversible Addition Fragmentation Chain Transfer (RAFT) polymerisation followed 

by coupling of the polymer to the chosen cyclic peptide, cyclo(D-Leu-Lys-D-Leu-Trp)2 

(Scheme 4.1 and Table 4.1).  

 

Scheme 4.1: Synthesis of conjugate 2: CP-(pHPMA-co-PUEMA)2 and polymer 3: pHPMA-
co-PUEMA. (i) HPMA, PUEMA, VA 044, DMSO/H2O. (ii) cyclo(D-Leu-Lys-D-Leu-Trp)2, 
HBTU, NMM, DMSO. 

The bifunctional CTA E(CPAETC)2 was used to provide a non self-assembling polymeric 

control (3, Scheme 4.1). The obtained polymers 1 and 3 were well defined, with narrow 

dispersities of 1.16 and 1.12, respectively (Figure 4.1 A and Table 4.1), and the final content 

of PUEMA in polymer 1 was estimated to be 6.5 %, due to the slightly lower conversion of 

HPMA compared to PUEMA. This value was confirmed by 1H NMR of the precipitated 

polymer (Figure 4.1 B). As detailed in the previous chapter, kinetic measurements of the 

copolymerisation showed that PUEMA was consumed significantly faster than HPMA. The 

direct consequence of this observation is that the functional monomer tends to be 

incorporated first, meaning that most of the pyridine ligands for metallodrug attachment will 

ultimately be located towards the α-chain end of polymer 1.  
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Figure 4.1: A) Molecular weight distribution of polymers 1 and 3. B) Determination of 
PUEMA content in polymer 1.  

Copolymer 1 was attached to the cyclic peptide by reacting the amine groups present on the 

cyclic peptide with the carboxylic acid end-group of 1, using O-(benzotriazol-1-yl)-

N,N,N′,N′-tetramethyluronium hexafluorophosphate (HBTU) as a coupling reagent. The 

coupling was complete after 1 h and the water-soluble nature of these conjugates enabled for 

straightforward purification by dialysis. The purified conjugate 2 was well-defined, with a 

dispersity of 1.19. Interestingly, since attachment occurs at the α-chain end of the polymer, 

the pyridine units used for organoiridium attachment are located on average close to the 

cyclic peptide core, allowing the HPMA-richer shell to provide shielding of the drug from 

the environment.  

Table 4.1: Summary of polymers used in this work. 

Entry Material 
Mn, th

a
 

(g.mol-1) 

Mn, GPC
b
 

(g.mol-1) 
Ð

b 

1 p(HPMA51-co-PUEMA3.5) 8400 14 800 1.16 

2 CP-(p(HPMA51-co-PUEMA3.5))2 17800 29200 1.19 

3 pHPMA93-co-PUEMA7 15700 21400 1.12 
a 
Determined by 

1
H NMR. 

b
 Determined by SEC using DMF (0.1% LiBr) as eluent, calibrated with pMMA 

standards.  
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4.2.2 Complexation of organoiridium anticancer drugs  

Attachment of the selected iridium complexes to polymer 3 and cyclic peptide-polymer 

conjugate 2 was achieved following a ligand exchange procedure, previously used to 

synthesise pyridine analogues of the chloride-containing drugs.21 The complexes used in this 

work were the [(Cp*)Ir(phpy)Cl] (abbreviated as Ir-Cp*, 4a), which contains 

pentamethylcyclopentadienyl (Cp*) and C,N-chelated phenylpyridine (phpy) as ligands,22 as 

well as the more hydrophobic [(Cpxph)Ir(phpy)Cl] (Ir-Cpxph, 4b), in which the Cp* is 

replaced by an extended phenyltetramethylcyclopentadienyl (Cpxph) ligand.23 Organoiridium 

drug complexes were synthesised by Dr. Abraha Abtemariam. The chloride ligand of the 

iridium complexes 4a and 4b was first removed using silver nitrate, followed by 

complexation to pyridine units in the polymer chains (Scheme 4.2). 

 

Scheme 4.2: Complexation of organoiridium complexes 4a and 4b to conjugate 2 and 
polymer 3. 

An excess of the iridium complex 4a or 4b (3 mol equiv per pyridine site) was used to 

maximise the drug loading onto the polymer and peptide-polymer conjugate. After 

purification by size exclusion chromatography, the drug-bearing compounds (conjugates 2a 

and 2b, and polymers 3a and 3b) were characterised by 1H NMR spectroscopy (Figure 4.2). 

When substituting the Cl ligand by pyridine in [(Cpxph)Ir(phpy)Cl], the signal corresponding 

to proton a in Figure 4.2 is shifted downfield from 8.60 to 8.88 ppm in MeOD.21-22 In the 

present case, this characteristic shift was also observed, as well as the broadening of the 
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signals associated with the complex, demonstrating full complexation of the drug to the 

polymer.  

 

Figure 4.2: 
1H NMR characterisation of the attachment of complex 4a onto conjugate 2, 

affording conjugate 2a. The spectra corresponding to the other three reactions can be found 
in Appendix B.  

4.2.3 Characterisation of supramolecular nanotubes 

In order to confirm the self-assembly of the conjugates into tubular structures, small angle 

neutron scattering (SANS) measurements were performed on the drug-bearing conjugate 2a 

(Figure 4.3) in solution in deuterated PBS.  

 

Figure 4.3: Small angle neutron scattering profile of conjugate 2a (orange dots) and its fit 
using a cylindrical micelle model (black line). 
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The SANS data were fitted with a cylindrical micelle model (Figure 4.3), which accounts for 

both the overall elongated shape provided by the self-assembled cyclic peptide core (a 

characteristic q-1 dependency at low q values: cylinder form factor) and the polymer arms 

(Gaussian chain form factor at high q values), as was used in Chapter 3.24 The fit was 

performed using the CYL+Chains(RW) model on SASfit, and reasonable values were 

obtained starting from a radius of 5 Å for the peptide core, in accordance with previously 

reported results (Table 4.2).25,26  

Table 4.2: Fitting parameters obtained for the fit of the SANS data corresponding to 
conjugate 2a using a hairy rod form factor. 

Parameter Definition Value  

R_core (Å) Radius of the core 3.9486 

Fitting 
N Scale factor 0.0050795 

n_agg Grafting density 0.0206747 

Rg (Å) Radius of gyration of the polymer arms 16.664 

V_brush (Å3) Volume of the polymer armsa 17000 

Calculated 
eta_core (Å-2) Scattering length density of the core 9.06E-07 

eta_brush (Å-2) Scattering length density of the polymer arms 9.06E-07 

eta_solv (Å-2) Scattering length density of the solvent 6.39E-06 

d 
d = 1 mimics the non-penetration of the 

polymer chains in the core  
1 

Fixed 
xsolv_core Fraction of solvent in the core, set to 0 0 

L (Å) Length of the cylinderb 1000 
a 

Calculated using Vbrush = MW/(dxNa).10
24

, where MW is the molecular weight of the 

polymer, d its density and Na Avogadro’s number. 
b 

The length of the cylinder cannot be 

determined because of the absence of a roll-over at low q values, an arbitrary value of 100 

nm was therefore used for the fit.  

However, the maximum length of these tubes cannot be fully determined by these SANS 

measurements, as the scattering intensity is still increasing at the lowest measured q values, 

and does not show the formation of a plateau which is indicative of a finite length.  

As such, static light scattering (SLS) measurements were then recorded, as this technique 

allows access to a larger window of observation (Figure 4.4 A). Following the method 
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described in Chapter 3, a plot of linear regression was used to determine the apparent 

molecular weight at conc. = 0 (Figure 4.4 B).  

 

Figure 4.4: A) Static light scattering profile of conjugate 2a (CP-(p(HPMA-co-PUEMA))2) 
in solution in PBS at different concentrations. B) Determination of the molecular weight of 
2a by SLS. 

SLS experiments showed that the molecular weight of the assemblies was not affected by 

the concentration of the solution (within the tested range), and the molecular weight was 

determined to be 9.74.105 ± 0.37.105 g.mol-1 for the drug-bearing conjugate (Table 4.3). 

Using the molecular weight of the unimer and the previously reported distance between 

adjacent peptides,26,27 the average length of the objects can be determined as 21.8 ± 0.9 nm, 

corresponding to 46 assembled conjugates. 

Table 4.3: Determination of aggregates size by SLS for conjugate 2a. 

 Slope Intercept 
MW 

(g/mol) 
Nagg

a 
L

b
 (nm) Rg (nm) 

5 mg/mL 8.16E-22 9.96E-7 1.00E6 47.80 22.47 49.6 

0.5 mg/mL 8.97E-22 1.05E-6 9.48E5 45.14 21.22 50.5 

a Nagg = MW/M_unimer. b L = Nagg x Lc, with Lc = 4.7 10-1 nm the distance between 

two adjacent cyclic peptides.  

4.2.4 Anticancer activity and cellular accumulation 

The antiproliferative activity of the polymers and conjugates was initially determined using 

A2780 human ovarian cancer cells, and presented as IC50 values, the concentration at which 

50% of cell growth is inhibited. The drug-free control samples (polymer alone and cyclic 
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peptide-polymer conjugates) were non-toxic in the tested range of concentrations (Figure 4.5 

A). However, the organoiridium-containing samples showed high activity (Figure 4.5 B). 

 

Figure 4.5: Antiproliferative activity in A2780 cells. A) Non-toxicity of drug-free 
compounds. B) IC50 values for free organoiridium complexes, drug-bearing polymers, and 
drug-bearing conjugates using Ir-Cp* (dark) and Ir-Cpxph (light) as the drug. *p < 0.05, **p 
< 0.01, ***p < 0.001. 
 

For both drugs, the IC50 values of the loaded polymers were slightly higher (however still in 

the same order of magnitude) compared to that of the free drug: 1.90 ± 0.22 M for the 

polymer 3a compared to 1.15 ± 0.04 M for Ir-Cp*, and 1.80 ± 0.09 M for the polymer 3b 

compared to 0.95 ± 0.03 M for Ir-Cpxph. For Ir-Cp*, no major difference was observed 

between the polymer and the conjugate (1.90 ± 0.22 M for the polymer 3a compared to 

1.70 ± 0.03 M for the conjugate 2a). However the IC50 of the conjugate 2b (0.61 ± 0.02 

M) in A2780 was 3x lower than that of the drug-loaded polymer 3b (1.8 ± 0.09 M). This 

substantial increase in activity between the polymer and the nanotubes suggests that the self-

assembly has a noticeable impact on the behaviour of the carrier. Furthermore, the conjugate 

2b was twice as potent as the free drug Ir-Cpxph. For all the studied compounds, the IC50 

values were lower for Ir-Cpxph, which is a more hydrophobic complex than for Ir-Cp*. This 

result shows the same trend as previously reported data for the complexes themselves.22,23 

These organoiridium complexes have not been previously conjugated to delivery systems, 

but it is clear from previous studies that increasing the hydrophobicity of the 

cyclopentadienyl ligand enhances their antiproliferative activity.20,23,28 The present report 

suggests that this is also the case when the complexes are conjugated to polymers and cyclic 

peptide-polymer conjugates. For this reason, further studies focused on the more potent 

compounds bearing Ir-Cpxph.  
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The antiproliferative activity of the three compounds (Ir-Cpxph as free drug, loaded onto the 

polymer (3b), and the conjugate (2b)) was then determined against human ovarian 

fibroblasts (HOF), a model for healthy, non-cancerous cells (Figure 4.6), and compared to 

that against A2780 ovarian cancer cells. 

 

Figure 4.6: Comparison of antiproliferative activity between healthy and cancerous cells. A) 
Antiproliferative activity of free drug Ir-Cpxph, drug-bearing polymer 3b and drug-bearing 
conjugate 2b in A2780 (cancer, dark) and HOF (healthy, light) ovarian cells. B) Selectivity 
index of the Ir-Cpxph compounds, determined between A2780 and HOF. **p < 0.01, ***p < 
0.001. 
 

All compounds are less toxic in normal HOF cells than in A2780 (Figure 4.6 A). The 

observed selectivity is likely attributable to the nature of the drug. This class of iridium 

anticancer complexes has previously been shown to exhibit selectivity towards cancer cells, 

which is believed to derive from interference of the complexes with cellular redox 

homeostasis (the ability of the cells to regulate their levels of reactive oxygen species) in 

cancer cells specifically.19 In addition, the selectivity index (SI, the ratio between the IC50 in 

HOF and the IC50 in A2780) is 2.5 and 3.8 for the free drug and the polymer, respectively 

(Figure 4.6 B). Interestingly, it is significantly higher for the conjugate (10.7), suggesting 

that an additional degree of selectivity towards cancer cells is provided by the carrier, 

highlighting an advantage of using these new materials as delivery vectors.  

The increased activity of the conjugate 2b compared to the polymer 3b and the free drug in 

A2780 cells may be related either to enhanced cellular accumulation or to a more efficient 

mode of action, for example through a different partitioning of the drug amongst the cell 

organelles. The possibility of enhanced accumulation (the balance of the uptake and efflux 

equilibrium), was investigated by exposing A2780 cells to the Ir-Cpxph compounds (free 
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drug, polymer and conjugate) at their respective IC50 values: 0.95 µM for the free drug, 1.8 

µM for polymer 3b and 0.6 µM for conjugate 2b. At regular intervals over 24 h, cells were 

collected and digested in nitric acid to determine the amount of iridium accumulated using 

inductively coupled plasma mass spectrometry (ICP-MS) (Figure 4.7). 

 

Figure 4.7: Iridium accumulated in A2780 cells after 24 h of exposure to the free drug Ir-
Cpxph (orange squares), the drug bearing polymer 3b (green diamonds) and the drug bearing 
conjugate 2b (purple circles) at equipotent IC50 conditions. 

Figure 4.7 shows that the kinetics of uptake are different for the three compounds: the 

maximum amount of accumulated iridium is reached after 2 h in the case of the conjugate 

2b, after which it remains the constant; while for the polymer 3b, the amount is still 

increasing after 24 h. In the case of the free drug, the amount of iridium reaches maximum at 

4 h, before decreasing slightly. Such cellular efflux is common for organometallic 

complexes.29,30 These differences in the rate and profile of uptake suggest that the conjugate 

interacts differently with the cells. After 24 h of exposure to the free drug, the drug-bearing 

polymer and the drug-bearing conjugate under equipotent conditions, each at their IC50 

concentrations (0.95 M, 1.80 M and 0.6 M, respectively), 21.6 ± 0.7 ng, 28.7 ± 1.6 ng 

and 9.3 ± 0.2 ng of iridium per million cells were accumulated, respectively. Taking the 

differences in IC50 values into account, similar percentages of the total amount of iridium 

administered are retained: 7.7 ± 0.2 % of the initial amount was accumulated for the drug, 

6.5 ± 0.4 % for the polymer, and 6.5 ± 0.1 % in the case of the conjugate. These values are 

similar to those observed previously for organometallic drugs.21,30  

The results of the equipotent iridium accumulation study suggest that the increased 

cytotoxicity of the conjugate 2b compared to the other compounds is not due to enhanced 
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uptake of iridium by the cells. These results are further supported by the amount of iridium 

accumulated after exposure under equimolar conditions, when incubating the cells in the 

presence of the three compounds at the lowest concentration (corresponding to the IC50 of 

conjugate 2b, 0.6 M). Under these conditions, similar amounts of iridium were 

accumulated for the three compounds (10.1 ± 0.1 ng per million cells for the free drug, 10.5 

± 0.2 ng for the polymer, and 9.3 ± 0.8 ng for the conjugate). It can be concluded that 

attachment of the drug to the polymer or the conjugate does not affect the extent of the 

accumulation of iridium in the cells. This result suggests that the nanotubes exhibit a more 

effective mode of action, for example through a different partitioning of the drug amongst 

the cell organelles.  

In order to evaluate this partitioning, equipotent uptake experiments were repeated and the 

cell pellets collected after 24 h. The iridium content of the membrane, cytosol, cytoskeleton 

and nucleus fractions was determined by fractionation of the cell compartments, and the 

results are shown in Figure 4.8 A. The total amount of iridium in each fraction follows the 

trend previously observed for whole cells: the amount of iridium increases in the order 

conjugate < drug < polymer. The percentage of total recovered iridium in the membrane 

fraction increases slightly in the order drug (56 %) < polymer (65 %) ≈ conjugate (69 %), 

which may indicate that the polymer-conjugated drugs favour an endocytosis-mediated 

pathway, since endosomes and lysosomes are collected in the membrane fraction. To 

confirm that the polymer and conjugate follow an energy-dependent mechanism, 

accumulation experiments were undertaken at 4 °C, conditions known to block endocytosis 

processes (as used in Chapter 3).31 At 4 °C the free drug accumulated to an extent of 3.8 ± 

0.2 ng Ir per 106 cells, which corresponds to about 15% of the amount accumulated at 37 °C, 

suggesting that energy-independent pathways (such as passive diffusion) play at least a 

partial role in the cellular accumulation of the free drug, in accordance with previous reports 

(Figure 4.8 B).30 The polymer 3b accumulated to a lesser extent, with 1.9 ± 0.3 ng Ir per 106 

cells. In contrast the conjugate 2b did not accumulate significantly in these conditions, 

supporting the hypothesis that cell entry involves energy-dependent mechanisms.  
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Figure 4.8: Investigation of mechanism of cellular entry. A) Iridium content of the 
membrane, cytosol, cytoskeleton and nucleus fractions of A2780 cells after 24 hours of 
exposure to the Ir-Cpxph compounds at equipotent IC50 concentrations. B) Cellular 
accumulation of Ir after 4 h of exposure to the Ir-Cpxph compounds at equipotent IC50 
concentrations at 4°C and 37°C. 

4.3 Conclusions 

This chapter discusses the synthesis of novel cyclic peptide-polymer conjugates able to carry 

organoiridium anticancer complexes. 2-Hydroxypropyl methacrylamide (HPMA) was 

copolymerised with a pyridine-containing monomer which provides a specific binding site 

for the complexation of highly potent anticancer complexes [(Cp*)Ir(phpy)Cl] and 

[(Cpxph)Ir(phpy)Cl]. The copolymer was then conjugated to self-assembling cyclic peptides 

using HBTU coupling. The self-assembly of these conjugates was studied by static light 

scattering and small angle neutron scattering, which revealed that the building blocks form 

short cylinders about 20 nm in length on average. These drug-bearing nanotubes exhibited 

comparable or increased toxicity towards human ovarian cancer cells compared to the free 

drug. Remarkably, their toxicity towards a healthy cell model was lower than the free drug, 

suggesting a degree of selectivity towards cancer cells. Interestingly, the nanotubes also 

showed higher toxicity as well as higher selectivity towards cancer cells when compared to 

the drug-bearing polymers used as a non-assembling control and more conventional example 

of a drug carrier. The analysis of the amount of iridium accumulated in the cells after 

equipotent and equimolar uptakes revealed that a similar percentage of iridium enters the 

cells in each case, indicating that the drug-bearing conjugates do not enhance the iridium 

uptake, but rather exhibit a more efficient mode of action. Investigations into the 

mechanisms of entry and partitioning profile of the drug into different organelles revealed 
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that energy-dependent mechanisms of cell uptake account for a higher fraction of the 

accumulated iridium in the case of the polymer and conjugate than for the free drug. 

4.4 Experimental 

4.4.1 Materials 

N-methylmorpholine (NMM, 99 %) was purchased from Alfa Aesar. 2,2'-Azobis[2-(2-

imidazolin-2-yl)propane]dihydrochloride (VA-044) was purchased from Wako Chemicals. 

O-(Benzotriazole-1-yl)-N,N,N’,N’-tetramethyluronium hexafluorophosphate (HBTU) was 

purchased from Iris Biotech. All solvents were bought from commercial sources and used as 

received. The cyclic peptide and chain transfer agent CPAETC were synthesised as 

described in Chapter 2. Monomers (HPMA and PUEMA) were synthesised as described in 

Chapter 3. E(CPAETC)2 was synthesised according to previously reported protocols.32 

[(Cp*)-Ir-(phpy)(Cl)] and [(Cpxph)-Ir(phpy)(Cl)] were synthesised and characterised by 

Abraha Abtemariam as previously described.22,23  

4.4.2 Characterisation methods 

NMR spectra were recorded on a Bruker DPX-300 instrument. Mass spectra were obtained 

on an Agilent 6130B Single Quad. Molecular weights and dispersities of the polymers were 

assessed by size exclusion chromatography (SEC) on a Polymer Laboratories PL-GPC 50 

Plus system in DMF with 0.1% LiBr, using a poly(methyl methacrylate) calibration, as 

described in Chapter 2. Infrared absorption experiments were performed on a Bruker 

VECTOR-22 FTIR spectrometer. The incremental refractive index, dn/dC, was determined 

by measuring the refractive index of the polymer in water at various concentrations ranging 

from 0.25 to 2 mg/mL, using a Shodex RI detector operating at a wavelength of 632 nm.  

SANS and SLS experiments were carried out as discussed in Chapter 3.   
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4.4.3 Synthetic procedures 

4.4.3.1 Copolymerisation of HPMA and PUEMA 

 

 

Chain transfer agent (CTA), monomers, initiator (VA 044) and solvent (30 % water in 

DMSO) were introduced into a flask equipped with a magnetic stirrer and sealed with a 

rubber septum. (See Table 4.4 for detailed conditions). The solution was degassed by 

bubbling nitrogen through it for 15 min, and then put in an oil bath at 44 °C. The 

polymerisation was stopped after 18 hours, when the conversion of PUEMA and HPMA 

reached > 99% and 75%, respectively. The polymers were precipitated in ice-cold acetone 

and dried under vacuum.  

Table 4.4: Summary of polymerisation conditions. 

Polymer 
[HPMA]0 [PUEMA]0 

[HPMA]0/[CTA]0 [PUEMA]0/[CTA]0 [CTA]0/[I]0 
(mol.L-1) (mol.L-1) 

1 2 0.1 66.5 3.5 20 

3 2 0.1 137 7 10 

4.4.3.2 Conjugation of polymers to CP 

See section 3.4.3.2. 

4.4.3.3 Complexation of the iridium complexes to the conjugates 

[(Cp*)-Ir-(phpy)(Cl)] (15.6 mg, 3.02.10-5 mol) was dissolved in water/methanol 1/1 (12 mL) 

in a vial wrapped in aluminium foil, and silver nitrate (5.12 mg, 1 eq., 3.02.10-5 mol) was 
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added. The mixture was stirred at room temperature overnight, and centrifuged to remove 

the silver chloride salts. The supernatant was decanted in a round bottomed flask and CP-

(p(HPMA51-co-PUEMA3.5))2 (25.7 mg, 3 mol eq. of Ir per pyridine unit, 1.44.10-6 mol) was 

added. The reaction was left to stir for 2 days, after which most of the solvent was 

evaporated, keeping ~ 1 mL. The drug-loaded conjugates were purified from the excess 

complex on a disposable size exclusion column (PD10, Sephadex G25, GE Healthcare) and 

freeze dried. The drug loading was determined by 1H-NMR in MeOD. The same protocol 

was used for the complexation of [(Cp*)-Ir-(phpy)(Cl)] to pHPMA93-co-PUEMA7 and of 

[(Cpxph)-Ir-(phpy)(Cl)] to CP-(p(HPMA51-co-PUEMA3.5))2 and pHPMA93-co-PUEMA7. 

4.4.4 Inductively coupled plasma (ICP) 

Measurements of trace Ir in biological samples were determined using ICP techniques. 

These measurements were carried out by James Coverdale. Ir standard solution (iridium 

chloride, 995 ± 4 µg/mL in 10% v/v hydrochloric acid) was purchased from Inorganic 

Ventures. Ultra-pure nitric acid (72%) was freshly distilled and diluted using milliQ water to 

achieve 3.6% v/v working concentration. 

For iridium-containing solutions in culture medium, iridium concentration was determined 

using a Perkin Elmer Optima 5300 DV Optical Emission Spectrophotometer (ICP-OES) 

with standard addition of sodium chloride (TraceSELECT) to freshly prepared calibration 

standards (50-700 ppb) to match the sample matrix. Data were processed using WinLab32 

V3.4.1 for Windows (Perkin Elmer). 

For cell digest samples, iridium concentrations (ng × 106 cells) were determined using a 

Agilent Technologies 7500 series ICP-MS in no-gas and He-gas mode. Calibration standards 

for 193Ir were freshly prepared (0.1-1000 ppb) and an internal standard (167Er, 50 ppb) was 

used. Data were processed using ChemStation version B.03.05 (Agilent Technologies, Inc.). 

4.4.5 In vitro testing 

Experiments in this section were performed with the help of Dr Isolda Romero-Canelon, Dr 

Carlos Sanchez-Cano and James Coverdale.  

4.4.5.1 Cell Culture 
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Human A2780 ovarian carcinoma cells were obtained from the European Collection of Cell 

Cultures (ECACC) used between passages 5 and 18 and were grown in Roswell Park 

Memorial Institute medium (RPMI-1640) or Dulbecco’s Modified Eagle’s Medium 

(DMEM) supplemented with 10% v/v of foetal calf serum, 1% v/v of 2 mM glutamine and 

1% v/v penicillin/streptomycin. HOF human ovarian fibroblasts were obtained from 

ScienCell Research Laboratories, and maintained in fibroblast medium supplemented with 

2% v/v of foetal calf serum, 1% v/v of penicillin/streptomycin and 1% v/v of growth factor 

serum. They were grown as adherent monolayers at 37 °C in a 5% CO2 humidified 

atmosphere and passaged at approximately 70-80% confluence. 

4.4.5.2 Growth Inhibition Assay 

5000 cells were seeded per well in 96-well plates. The cells were pre-incubated in the 

corresponding drug-free media at 37 °C for 48 h before adding different concentrations of 

the compounds to be tested. Stock solutions of the Ir(III) complexes themselves were firstly 

prepared in 5% v/v DMSO, and either 95% v/v PBS or cell culture medium. For the 

‘conjugated complexes’ or polymer/conjugate controls the use of DMSO was omitted. The 

concentration of Ir solutions was determined by ICP-OES before drug administration. In all 

cases, stock solutions were further diluted in cell culture medium until working 

concentrations were achieved, maintaining the total amount of DMSO below 1%. The drug 

exposure period was 24 h. After this, supernatants were removed by suction and each well 

was washed with PBS. A further 72 h was allowed for the cells to recover in drug-free 

medium at 37 °C. The SRB assay was used to determine cell viability. Absorbance 

measurements of the solubilised dye (on a BioRad iMark microplate reader using a 470 nm 

filter) allowed the determination of viable treated cells compared to untreated controls. IC50 

values (concentrations which caused 50% of cell growth inhibition), were determined as 

duplicates of triplicates in two independent sets of experiments and their standard deviations 

were calculated. Two-tailed t-tests were performed assuming equal variance.  

4.4.5.3 Equipotent metal accumulation in cancer cells   

Cell accumulation studies of Iridium complexes were conducted on A2780 ovarian cells. 

Briefly, 3 x 106 cells were seeded on a Petri dish. After 24 h of pre-incubation time in drug-

free medium at 37 °C, the compounds were added to give final concentrations equal to the 

IC50 (the concentration of Ir solutions was determined by ICP-OES before drug 

administration), and 24 h of drug exposure was allowed. After this time, cells were washed, 
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treated with trypsin, counted, and cell pellets were collected. Each sample was digested in 

Wheaton v-vials using 200 L of 72% v/v nitric acid at 80 °C overnight (72%) and then 

diluted with milliQ water to achieve final concentration of 3.6% v/v acid. 193Ir concentration 

was determined by ICP-MS in both no-gas and He-gas mode. These experiments were all 

carried out in triplicate and the standard deviations were calculated. 

4.4.5.4 Equimolar metal accumulation in cancer cells  

Experiments were carried out as described above with the following modifications: drug 

concentrations were equimolar and equal to 0.60 M. Drug exposure times were kept 

unchanged (24 h).  

4.4.5.5 Time-dependent metal accumulation in cancer cells  

Experiments were carried out as described above with the following modifications: drug 

exposure times were: 1 h, 2 h, 4 h, 6 h, 14 h and 24 h at equipotent concentrations equal to 

IC50 values.  

4.4.5.6 Metal accumulation in cancer cells at 4 °C 

Experiments were carried out as described above with the following modifications: plates 

were placed at 4 °C 20 min prior to dosing at IC50 values, and drug exposure was limited to 4 

h. 

4.4.5.7 Cellular metal distribution  

Cell pellets were obtained as described above, and were fractionated using the FractionPREP 

kit from BioVision according to the supplier’s instructions. Each sample was digested in 

Wheaton v-vials using 200 L of 72% v/v nitric acid at 80°C overnight (72%) and then 

diluted with milliQ water to achieve final concentration of 3.6% v/v acid. 193Ir concentration 

was determined by ICP-MS in both no-gas and He-gas mode. These experiments were all 

carried out in triplicate and the standard deviations were calculated. 
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Chapter 5 
 

pH-Responsive, amphiphilic core-shell 

supramolecular polymer brushes from cyclic 

peptide-polymer conjugates 

 

 

This chapter explores an alternative drug loading method, through encapsulation in a 

switchable hydrophobic domain. As such, the synthesis of pH-responsive, amphiphilic cyclic 

peptide-polymer conjugates is described. The design relies on the introduction of a poly(2-

(diisopropylamino)ethyl methacrylate) (pDPA) block between the cyclic peptide and a 

pHPMA block. These conjugates are disassembled and protonated at low pH but assemble 

at physiological pH, when the DPA units are deprotonated, as determined by combining 

titration experiments with scattering techniques. The fitting of SANS profiles establishes that 

their self-assembly is controlled by the strong hydrogen bonding of cyclic peptides, leading 

to core-shell nanotubes. Investigations into their mode of self-assembly using UV-Vis 

indicate that the presence of the hydrophobic core renders the assembly more cooperative 

than in the case of purely hydrophilic conjugates, thereby providing additional stability to 

the system.  
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5.1 Introduction 

Organic nanotubes have recently attracted considerable attention, with applications ranging 

from (bio)sensing to nanomedicine and electronics.1 They can be accessed through a variety 

of synthetic methods but supramolecular approaches are particularly interesting thanks to 

their versatility and the ease in synthesis of the small building blocks.2 More recent 

developments within self-assembled organic nanotubes look at the use of supramolecular 

polymer brushes, which are composed of a rigid supramolecular core, dictating the 

cylindrical shape, and flexible polymer arms.3,4 For the core molecules to interact and self-

assemble, the interactions need to be strong enough to overcome the steric repulsion of the 

polymer arms, and to date only a few systems have been reported to be suitable for that kind 

of assembly. One of the first examples relied on π-π stacking of highly unsaturated shape 

persistent macrocycles.5 However in most cases, strong hydrogen bonding, sometimes used 

together with  π-π stacking,6 is utilised to create such elongated structures, as reported for the 

self-assembly of bis-4 or tris-ureas7 or the -sheet stacking of peptides, and specifically 

cyclic D,L-α-peptides. The combination of cyclic peptides with reversible-deactivation 

radical polymerisation (RDRP) techniques,8 in particular, has enabled the synthesis of a 

variety of well-defined polymer-peptide conjugates which assemble into the desired 

supramolecular polymer brushes.9 Very recently, such systems have demonstrated beneficial 

properties for the transport of drugs such as cytotoxic metal complexes10 in comparison to 

the pure, linear polymers. In particular when combined with stealth polymers such as 2-

hydroxypropyl methacrylamide (HPMA), circulation time could be enhanced, which is 

certainly related to the size and shape of the nanostructures, and also indicates the excellent 

stability of the assembly in vivo (see Chapters 3 and 4).   

In addition, the use of specific monomers permits the introduction of a stimuli-

responsiveness,11,12 which is triggered upon a change of  temperature,13 light,14 or pH,15 

allowing the materials to change shape or size as a result. The variation of pH values in 

different biological environments has widely been recognised as a useful trigger for directed 

and selective drug delivery.15 Polymers such as poly(acrylic acid),16 poly(ethylene imine)17 

or poly(2-(dimethylamino)ethyl methacrylate) (pDMAEMA)18 have attracted particular 

attention due to their ability to become reversibly charged within physiologically relevant 

pH ranges.19 The increase in electrostatic repulsions, due to the protonation of some 
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polymers in more acidic environments such as tumour tissues, has been shown to trigger 

disassembly of self-assembled structures made with pH responsive materials.20,21 

To demonstrate the ability of supramolecular polymer brushes to reversibly assemble upon a 

change in pH, cyclic peptide-polymer nanotubes were recently made with pDMAEMA. 

These conjugates can be protonated and disassembled upon a decrease of pH.22 Despite the 

ability to control the size of the assembly, the relatively high pKa of pDMAEMA makes this 

system disassemble below pH 8, which drastically limits its possible applications in 

biological systems. The challenge, therefore, remains to create a system comprising a 

suitable responsive material which leads to a rapid disintegration, hence release of 

encapsulated drugs, in physiologically relevant conditions.  

Therefore, a cyclic peptide-polymer conjugate based on poly(2-(diisopropylamino)ethyl 

methacrylate) (pDPA), whose pKa is better suited to drug delivery applications, is discussed 

in this chapter. DPA exhibits a pKa of 6.8, and the pKa of pDPA polymers tends to be lower, 

ranging between 6 and 7, due to the increased difficulty of protonating adjacents units. 

Particles made with pDPA have been exploited for pH-triggered endosomal drug release, as 

pDPA is deprotonated and hydrophobic at physiological pH (7.4), and can therefore 

encapsulate drugs, but becomes protonated and hydrophilic at endosomal and lysosomal pH 

(4.0 - 6.0), which cause particles to disassemble and the drug to be released.23-25 To ensure 

the solubility of the nanotubes and provide stealth properties to the conjugates, pHPMA was 

introduced as a second block.26-29 The system described here is composed of a cyclic peptide 

core from which two pDPA-b-HPMA diblock copolymers arms are grown by reversible 

addition fragmentation chain transfer (RAFT) polymerisation.30,31 The self-assembly of the 

obtained amphiphilic peptide-polymer conjugates in solution at different pH values was 

studied using a variety of scattering techniques to determine whether the presence of the 

cyclic peptide core is sufficient to enable the assembly to be governed by the -sheet 

formation, leading to core-shell cylindrical structures. In addition, an appropriate triblock 

copolymer pHPMA-b-pDPA-b-HPMA was synthesised and analysed for comparison. The 

biocompatibility of both compounds as well as their ability to encapsulate hydrophobic 

molecules was investigated.  
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5.2 Results and discussion 

5.2.1 Design and synthesis 

 

Scheme 5.1: Synthetic route yielding the amphiphilic compounds: polymer P2 and 
conjugate C2. 

The two main synthetic routes yielding peptide-polymer conjugates are grafting-to and 

grafting-from (see Chapter 2).32 Various factors typically influence the choice of method, 

including the solubility of the different components. The cyclic peptide selected for this 

study is only soluble in solvents that are strong hydrogen-bond competitors, such as DMSO 

and DMF, in which the solubility of pDPA is limited, making the grafting-to method very 

challenging. For this reason, the grafting-from approach was chosen, and the CP-(pDPA)2 

conjugate C1 was obtained by polymerising DPA from the CTA-modified cyclic peptide 

CP(CPAETC)2 by RAFT polymerisation in a chloroform/DMSO mixture (Scheme 5.1). The 

use of these conditions enabled the initial solubilisation of CP(CPAETC)2 while avoiding 

polymerisation-induced precipitation of pDPA, affording C1 with reasonable control over 

the polymerisation (Table 5.1).  
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Table 5.1: Summary of polymers used in this work. 

Entry Material 
Mn, th

a
 

(g.mol-1) 

Mn, GPC
b
 

(g.mol-1) 
Ð

b 

C1 CP-(pDPA24)2 11800 13900 1.27 

P1 (pDPA21)2 9600 7800 1.09 

C2 CP-(pDPA24-b-HPMA55)2 27600 26800 1.26 

P2 p(DPA21-b-HPMA56)2 25600 28500 1.12 
a 
Determined by 

1
H NMR. 

b
 Determined by SEC using DMF (0.1% LiBr) as eluent, calibrated with pMMA 

standards.  

 

The control polymer P1, that does not contain the cyclic peptide, was obtained using the 

bifunctional CTA E(CPAETC)2 in dioxane. It has been previously demonstrated that the 

physical characteristics of the polymer (degree of polymerisation (DP), and size of the 

monomer units) have a tremendous influence on the ability of the conjugates to self-

assemble into nanotubes. Therefore, a DP of 25 was targeted for the DPA blocks, to provide 

enough protonation sites while limiting the possible steric hindrance from the bulky 

monomer. C1 and P1 were purified and used as macro-CTAs for the subsequent 

polymerisation of the hydrophilic block. The polymerisation of HPMA is best achieved in 

aqueous conditions in order to reach high conversions while maintaining good control over 

the polymerisation.33 Aqueous 1 M HCl was used as the solvent in the second step, 

conditions in which the protonation of the DPA units of C1 and P1 enables the solubilisation 

of the macro-CTAs. A DP of 55 was targeted for the HPMA block, in order to provide 

sufficient hydrophilic shielding of the pDPA core. The size exclusion chromatograms of all 

compounds are shown in Figure 5.1.  

 

Figure 5.1: Size exclusion chromatograms of synthesised materials. 
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5.2.2 Cell viability assay 

The biocompatibility of the amphiphilic systems C2 and P2 was tested by performing cell 

growth inhibition assays in three different cell lines (MDA, A2780 and PC3). After 

incubation with up to 500 g/mL of the compounds, no noticeable loss of cell viability was 

observed, indicating the non-toxicity of both the conjugate and the polymer (Figure 5.2).  

 

Figure 5.2: Cell viability in the presence of C2 and P2 in MDA, A2780 and PC3 cells. 

5.2.3 Potentiometric titration  

The pKa of the conjugate C2 and the polymer P2 was then determined by potentiometric 

titrations of acidified solutions of the compounds using sodium hydroxide (Figure 5.3). Both 

C2 and P2 exhibit a distinct buffer range as can be seen on the figure, which is likely due to 

the fact that the charge loss resulting from the deprotonation of the DPA units triggers self-

assembly of the compounds, thereby shielding the remaining charged pDPA units and 

making further charge loss more difficult. This observation is indicative of a very sharp 

transition from free chains to assembly. The pH value at which the compounds exhibit a 

buffer capacity is similar for the polymer and the conjugate, however the plateau is broader 

for C2, which may indicate an additional effect of the cyclic peptide on the assembly. The 

degree of ionisation  (which is the ratio between the amount of protonated DPA units to the 

total amount of DPA units in a given compound) was determined for each value of pH using 
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equation 1, where [DPA+] is the concentration of charged DPA units and [DPA]tot is the total 

concentration of DPA units:   

𝛽 = [ 𝑃𝐴+][ 𝑃𝐴]            (1) 

These concentrations can be calculated from the pH value and the amount of titrant added. 

The apparent pKa of the compounds was obtained as the pH at which  = 0.5.34 Both pKa 

values are around 7 (7.05 for C2 and 7.10 for P2, respectively), which is within the expected 

range for pDPA polymers. 

 

Figure 5.3: Potentiometric titration of P2 (blue circles) and C2 (purple squares). 

5.2.4 Study of the pH-dependent aggregation 

The behaviour of the compounds in solution at pH 5.0 and 7.4 was then studied by a 

combination of scattering techniques. To prepare the solutions, the protonated polymers 

were dissolved in a given amount of water, and the same amount of 2-fold acetate or 

phosphate buffer was added dropwise to adjust the pH to 5.0 or 7.4, respectively. Dynamic 

light scattering (DLS) measurements first showed an increase in size of the compounds for 

both conjugate C2 (the diameter varies from 6.5 to 14 nm) and polymer P2 (the diameter 

varies from  7.7 to 11.8 nm) when increasing the pH, indicating self-assembly is taking place 

(Figure 5.4 C). Interestingly, the size difference upon pH increase is higher for conjugate 

C2, which may indicate formation of bigger assemblies. However, due to the nature of the 

technique, which assumes spherical shapes, this result alone was not sufficient to define the 

assembled structures. 
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Figure 5.4: Characterisation of self-assembly using scattering techniques. A) Static light 
scattering profile of polymer P2 in solution at different concentrations and different pH 
values. B) Static light scattering profile of conjugate C2 in solution at different 
concentrations and different pH values. C) Number size distribution of P2 (blue) and C2 

(purple) at pH 5 (dotted lines) and pH 7.4 (solid lines). D) Small angle neutron scattering 
profiles of P2 (blue circles) and C2 (purple squares) in at pH 5 (empty symbols) and pH 7.4 
(full symbols). 

In addition, static light scattering (SLS) experiments were performed, which allow for the 

determination of molecular weight. A study looking at different concentrations was carried 

out for both compounds at pH 5.0 and 7.4 (Figure 5.4 A-B). A clear increase in size was 

observed for both C2 and P2 upon increase of pH, confirming self-assembly triggered by 

deprotonation of the pDPA units. At pH 5.0, where the DPA units are protonated, all 

concentrations result in similar scattering profiles for each compound. Moreover, a plateau is 

observed in both cases, allowing for direct molecular weight determination of the 

assemblies. 

As detailed in chapter 3, at a given concentration the Rayleigh ratio Rθ is related to the 

apparent molecular weight of the sample, given by equation (2).  

𝐾𝜃 =  𝑎  ∙  +  2. 𝑔2             (2) 
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It is only at infinite dilutions, when the interactions between scattering particles are 

negligible, that the apparent molecular weight is equal to the true molecular weight of the 

molecule. As such, different concentrations of sample were measured; 0.5, 1, 2 and 5 

mg/mL. At pH 5.0, all the measured concentrations result in similar profiles, allowing for 

the assumption that interactions are negligible. Equation (2) can therefore be simplified to 

equation (3):  

𝐾𝜃 =  𝑎          (3) 

Using this equation, molecular weights of 79.9 ± 7.2 kg/mol and 38.7 ± 2.3 kg/mol were 

obtained for C2 and P2 at pH 5.0, corresponding to a number of aggregation (Nagg) of about 

3 and 1.5, respectively (Table 5.2). These values confirm the fact that the electrostatic 

interactions are strongly hindering the self-assembly. At pH 7.4, the data sets also form an 

overlapping plateau for the three lowest tested concentrations (2, 1 and 0.5 mg/mL) for both 

the conjugate and the polymer, indicating that interactions are negligible in this range of 

concentrations. Molecular weights of 590 ± 42 kg/mol and 273 ± 50 kg/mol were obtained 

for C2 and P2, corresponding to Nagg = 22.0 ± 1.6 and 10.0 ± 1.0, respectively. These results 

confirm the aggregation of conjugates C2 into bigger structures than those formed upon 

assembly of P2. Assuming the formation of hydrogen bonding between peptides, and using 

the previously reported distance between two adjacent cyclic peptides,35,36 the length of the 

cylinders formed by cyclic peptide-directed assembly of C2 would be 10.4 ± 0.7 nm (L = 

Nagg x Lc, with Lc = 4.7 10-1 nm the distance between two adjacent cyclic peptides9,35).  

Table 5.2: Determination of aggregates size by SLS. 

Compound pH MW (kg/mol) Nagg
a 

C2 
7.4 590 ± 42 22.0 ± 1.6 

5.0 79.9 ± 7.2 2.9 ± 0.3 

P2 
7.4 273 ± 50 10.0 ± 1.0 

5.0 38.7 ± 2.3 1.5 ± 0.1 

a Nagg = MW/M_unimer. 

Complementary small angle neutron scattering (SANS) experiments were conducted (Figure 

5.4 D). Both compounds were measured at each pH, and the SANS profiles at low q values 

clearly confirmed the size increase upon pH change, as well as the formation of bigger 
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structures for C2 than for P2 at pH 7.4. In addition, the fitting of SANS profiles at pH 7.4 

provides information on the shape of the assemblies (see below, section 5.2.5). 

Fluorescence measurements were also conducted on conjugate C2 at pH 5.0 and 7.4, and the 

shift of the emission peak corresponding to the tryptophan present on the cyclic peptide core 

clearly indicates a change in local environment polarity,37 coherent with the self-assembly of 

C2 and the formation of a hydrophobic pDPA domain at the centre of the nanotubes (Figure 

5.5). The significant decrease of the fluorescence intensity can be attributed to self-

quenching of the tryptophan groups in the assembled state.  

 

Figure 5.5: Fluorescence emission spectra for C2 at pH 5.0 (dotted lines) and pH 7.4 (plain 
lines). 

To assess the ability of the compounds to encapsulate hydrophobic molecules, Nile red was 

used as a model compound. The dye was mixed with varying amounts of P2 and C2 in 

methanol, before dropwise addition of PBS. Being non-water soluble, Nile red was forced 

into the hydrophobic core of the self-assembled structures. Subsequently, the methanol was 

slowly evaporated; the solutions were filtered to remove any excess fluorophore and freeze-

dried. The solids were redissolved in methanol and fluorescence emission spectra were 

recorded for each sample (Figure 5.6 A-B).  
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Figure 5.6: Quantification of Nile Red encapsulation. A) Fluorescence emission spectra of 
Nile red solubilised by varying amounts of conjugate C2. B) Fluorescence emission spectra 
of Nile red solubilised by varying amounts of polymer P2. C) Fluorescence calibration curve 
of Nile red in methanol. D) Determination of Nile red loading by weight concentration using 
the fluorescence intensity at 635 nm. 

In order to quantify the encapsulation, the maximum intensity in each case was compared to 

a calibration of Nile red alone in methanol (Figure 5.6 C). Loading efficiencies are generally 

determined using absorbance, which is linear in a broader range of concentrations. However, 

low intensities were recorded (still in the linear range of fluorescence), and this technique 

provided better resolution than absorbance in this specific case. By plotting the weight 

concentration of Nile red vs the weight concentration of the compounds a loading capacity 

can be determined using the slope of the linear fit (Figure 5.6 D). Loading capacities of 

0.031 % and 0.027 % were obtained for C2 and P2, respectively. These values are very low 

(loading capacities are usually 0.1-2 % in literature) but these results constitute a proof of 

concept that encapsulation of hydrophobic molecules in constructs formed by amphiphilic 

cyclic peptide-polymer conjugates is possible. 
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5.2.5 Determination of the shape of the assemblies 

To gain information on the shape of the assemblies in solution, the SANS profiles at pH 7.4 

were fitted using different models. For the data corresponding to polymer P2, the best suited 

model is the one of a spherical micelle, which takes into account both the spherical shape of 

the core and the Gaussian chains forming the corona (Figure 5.7 A).38 The model 

SPHERE+Chains(RW) on SASfit was used for this form factor, and the results are shown in 

Table 5.3. The scattering length densities were calculated using the tool provided by SASfit, 

assuming the core is constituted of the pDPA block and the brush of the pHPMA block.  

 

Figure 5.7: SANS profile of P2 and its fit using models corresponding to A) a spherical 
micelle, B) a Gaussian chain C) a solid sphere; SANS profile of C2 and its fit using models 
corresponding to D) a cylindrical micelle and E) a spherical micelle in solution at pH 7.4. 
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Table 5.3: Fitting parameters obtained for P2 using a spherical micelle form factor. 

Parameter Definition Value  

N Scale factor 4.3896 

Fitting 

n_agg Grafting density 0.0276 

R_core (Å) Radius of the core 5.889 

Rg (Å) Radius of gyration of the polymer arms 49.41 

xsolv_core Fraction of solvent in the core 2.55 

d 
d = 1 mimics the non-penetration of the 

polymer chains in the core 
0.80 

V_brush (Å3) Volume of the polymer armsa 13500 

Calculated 
eta_core (Å-2) Scattering length density of the core 4.40E-7 

eta_brush (Å-2) Scattering length density of the polymer arms 7.83E-7 

eta_solv (Å-2) Scattering length density of the solvent 6.39E-6 
a 

Calculated using Vbrush = MW/(dxNa).10
24

, where MW is the molecular weight of the 

pHPMA block, d its density and Na Avogadro’s number. 

To further confirm the solution morphology of P2, other models were also attempted, and 

showed to be inadequate. First, a Gaussian chain model was used (Table 5.4 and Figure 5.7 

B).39 The fit was performed with Rg and MW as adjustable parameters and afforded Rg = 132 

Å and MW = 166300 g/mol. The obtained molecular weight is very different from the 

molecular weight of the unimer (Mn = 25600 g/mol), demonstrating individual chains are not 

representative of the morphology of P2 at pH 7.4. 

Table 5.4: Fitting parameters obtained for P2 using a Gaussian chain form factor. 

Parameter Definition Value  

MW (g/mol) Molecular weight 166300 
Fitting  

Rg (Å) Radius of gyration 132 𝜂  (Å-2) Scattering length density of the solvent 6.39E-6 
Calculated 𝜂 (Å-2) Scattering length density of the compound 6.647E-7 

 

A rigid sphere model was also attempted (Table 5.5 and Figure 5.7 C), for which the form 

factor is defined by:40  
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= 𝜂 − 𝜂 ∗ Φ ∗ ∗ 𝑎 ∗ 𝑃          (3) 

where   Φ =  𝑃  ℎ = 96 𝑋 − 𝑋 𝑋   with      𝑋 =      (4) 

Na is Avogadro’s constant, d is the density of the polymer and was set to 1, C is the 

concentration. 𝜂  and 𝜂 are the scattering length densities corresponding to the solvent 

and the compound, respectively. The fit was performed with MW and R as adjustable 

parameters. As can be seen on Figure 5.7 C, this form factor was not adapted to the data, as 

it does not account for the hydrophilic blocks present on the outside of the micelle.  

Table 5.5: Fitting parameters obtained for P2 using a solid sphere form factor. 

Parameter Definition Value  

MW (g/mol) Molecular weight 126900 
Fitting  

R (Å) Radius  106 𝜂  (Å-2) Scattering length density of the solvent 6.39E-6 
Calculated 𝜂 (Å-2) Scattering length density of the compound 6.647E-7 

 

For conjugate C2, both cylindrical micelle (Table 5.6 and Figure 5.7 D) and spherical 

micelle (Table 5.7 and Figure 5.7 E) fits were attempted.  
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Table 5.6: Fitting parameters obtained for C2 using a cylindrical micelle form factor. 

Parameter Definition Value  

N Scale factor 0.0714026 

Fitting 

R_core (Å) Radius of the core 75.36 

n_agg Grafting density 9.46E-4 

Rg (Å) Radius of gyration of the polymer arms 24.44 

H (Å) Length of the cylinder 113.9 

V_brush (Å3) Volume of the polymer armsa 13300 

Calculated 
eta_core (Å-2) Scattering length density of the core 5.091E-7 

eta_brush (Å-2) Scattering length density of the polymer arms 7.829E-7 

eta_solv (Å-2) Scattering length density of the solvent 6.39E-6 

xsolv_core Fraction of solvent in the core, set to 0 0 

Fixed 
d 

d = 1 mimics the non-penetration of the 

polymer chains in the core 
1 

a 
Calculated using Vbrush = MW/(dxNa).10

24
, where MW is the molecular weight of the 

pHPMA block, d its density and Na Avogadro’s number. 

Table 5.7: Fitting parameters obtained for C2 using a spherical micelle form factor. 

Parameter Definition Value  

N Scale factor 0.08411 

Fitting 
R_core (Å) Radius of the core 67.83 

n_agg Grafting density 2.13E-3 

Rg (Å) Radius of gyration of the polymer arms 26.079 

V_brush (Å3) Volume of the polymer armsa 13300 

Calculated 
eta_core (Å-2) Scattering length density of the core 5.091E-7 

eta_brush (Å-2) Scattering length density of the polymer arms 7.829E-7 

eta_solv (Å-2) Scattering length density of the solvent 6.39E-6 

xsolv_core Fraction of solvent in the core, set to 0 0 

Fixed 
d 

d = 1 mimics the non-penetration of the 

polymer chains in the core 
1 

a 
Calculated using Vbrush = MW/(dxNa).10

24
, where MW is the molecular weight of the 

pHPMA block, d its density and Na Avogadro’s number. 
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The data is best fitted with the cylindrical micelle model, demonstrating the formation of the 

expected core-shell like cylindrical structures. Moreover the value obtained for the height of 

the cylinder is in excellent agreement with the value obtained with SLS (11.4 nm by SANS 

vs 10.4 nm by SLS, Nagg 24 vs 22, respectively). Finally, Nagg can also be determined from 

the number of aggregation per surface area n_agg provided by the fit. By multiplying this 

value by the surface of the core S (Ssphere = 4πR_core2 and Scylinder = 2πHR_core), Nagg values 

of 123 and 51 are obtained for the spherical and cylindrical micelle fits, respectively. This 

value corresponds to the total number of chains and needs to be divided by two since each 

peptide contains two polymer chains. The Nagg values calculated by this method are therefore 

63 and 26 for the spherical and cylindrical micelle fits, respectively. The Nagg value afforded 

by the cylindrical fit is in much better agreement with the values obtained by SLS and by 

using the height of the cylinder in SANS, providing further evidence that this fit is best 

suited, and hence confirming that the presence of the cyclic peptide core dictates the 

assembly of C2 into nanotubes instead of simple micelles.  

5.2.6 Evaluation of the assembly mechanism 

The stability in water of supramolecular polymers relying on hydrogen bonding interactions 

has previously been shown to be improved by the introduction of hydrophobic interactions 

close to the hydrogen bonding sites.41 Following this principle, it can be hypothesised that 

the amphiphilic system described here would lead to more stable assemblies than a cyclic 

peptide conjugated to purely hydrophilic polymers. 

In an attempt to assess the hypothesis that the presence of a hydrophobic pDPA block at the 

core of the nanotubes formed by C2 would help to stabilise the structures, a study on the 

mode of assembly was carried out. To this end, UV-Vis measurements were recorded in 

PBS, using solutions of C2 at different temperatures (Figure 5.8) and concentrations (Figure 

5.9). The variation of these parameters enables the transition from unimeric (disassembled) 

state to assembled structures. From these measurements, calculations can give information 

on the isodesmic or cooperative nature of the assembly. During an isodesmic supramolecular 

polymerisation, the reactivity of the end group does not change as the polymerisation 

progresses, and the assembly process is characterised by a single binding constant for the 

addition of each monomer unit. In contrast, a cooperative supramolecular polymerisation 

begins by a nucleation phase, followed by an elongation phase. It is therefore characterised 

by two distinct association constants, each corresponding to a phase of the assembly.42 A 
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hydrophilic conjugate made with a copolymer of HPMA and PUEMA (CP-(pHPMA55-co-

PUEMA3.5)2, see Chapter 3) was used for comparison.  

Initially, a study in temperature was carried out: UV-Vis spectra were recorded for both C2 

and the hydrophilic control conjugate CP-(pHPMA55-co-PUEMA3.5)2 at temperatures 

varying from 20 to 80 °C (Figure 5.8 A-B). The temperature-dependent degree of 

aggregation α can be calculated from the normalisation of the extinction coefficient  at a 

specific wavelength, calculated using the Beer-Lambert law.43 Values of  at 330 nm and 

269 nm were used in the determination of α for C2 and the control conjugate, respectively. 

The data was plotted against the temperature T and fitted using non-linear least square 

analyses (Figure 5.8 C-D). The obtained curve displays a sigmoidal shape in the case of the 

control conjugate (Figure 5.8 D), indicating a more isodesmic self-assembly mechanism. 

The much sharper curve in the case of conjugate C2 suggests a higher degree of 

cooperativity in the case of the core-shell structure (Figure 5.8 C). From the values of α, the 

equilibrium constant Keq can be determined for each temperature, according to the following 

equation: 

= 𝑃2 − 𝑃
         (5) 

where C is the concentration of the sample and DPn the number averaged degree of 

polymerisation, defined by: 

𝑃 = √ −𝛼          (6) 

The Van’t Hoff plot, representing ln(Keq) vs T-1 can then be obtained (Figure 5.8 E-F), and 

thermodynamic parameters can be extracted using the linear fit of the data by the Van’t Hoff 

equation:  

ln( ) = − ∆ + ∆
         (7) 

where ∆  is the molar enthalpy release related to the formation of intermolecular 

supramolecular interactions, ∆  the change in entropy and R the gas constant. The variation 

of Gibbs free energy at a given temperature can be deduced using equation 8: 

∆ = ∆ − ∆          (8) 
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The obtained thermodynamic parameters are summarised in Table 5.8. 

 

Figure 5.8: Study in temperature of C2 (left) and the hydrophilic control conjugate CP-
(pHPMA55-co-PUEMA3.5)2 (right). A-B) UV-Vis spectra recorded at 20-80 °C at 5 °C 
intervals. C-D) Temperature-dependent degree of aggregation α. E-F) Van’t Hoff plots. 
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Table 5.8: Thermodynamic parameters describing the self-assembly of C2 and the 
hydrophilic control conjugate CP-(pHPMA55-co-PUEMA3.5)2.  

Compound ∆  (kJ.mol
-1

) ∆𝑺 (J.mol
-1

.K
-1

) ∆  
a
 (kJ.mol

-1
)

 𝑲𝒆𝒒 
a 
(10

5
 M

-1
) 

C2 -136 -333 -35 6.7 

Control -89 -190 -32 2.7 

a 
Determined at 303K. 

The large and negative values of ∆  (-136 and -89 kJ.mol-1) indicate that the process is 

exothermically driven. This study in temperature suggests that the self-assembly of C2 is 

more cooperative than that of the control conjugate. Next, a study in concentration was 

carried out, since it allows for the determination of the degree of cooperativity σ.  

To this end, UV-Vis spectra were recorded for both compounds at concentrations varying 

from 0.24 to 125 M at 25 °C (Figure 5.9 A-B). In a similar manner as for the temperature 

study, the degree of aggregation α was calculated at a given wavelength (245 nm, and 250 

nm for C2 and the control, respectively). Each data set can be fitted with two Hill plots,44 

each corresponding to a phase of the self-assembly (nucleation at low concentrations, 

elongation at higher concentrations) (Figure 5.9 C-D). These fits provide the dissociation 

constants for each phase, from which the association constants corresponding to the 

nucleation (Kn) and elongation phase (Ke) can be calculated. The ratio Kn/Ke gives the degree 

of cooperativity σ. This parameter equals 1 for an isodesmic system, and tends to 0 for a 

fully cooperative system.45 σ-values of 0.0098 and 0.21 were obtained for C2 and the control 

conjugate, respectively. These results show that the assembly is more cooperative in the case 

of the diblock conjugate C2, indicating that the core-shell structures formed by this 

amphiphilic conjugate are less dynamic and more stable than the ones formed by the 

hydrophilic conjugate used in previous chapters. This finding provides a very good insight 

into ways the self-assembly process could eventually be controlled. 
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Figure 5.9: Study in concentration of C2 (left) and the hydrophilic control conjugate CP-
(pHPMA55-co-PUEMA3.5)2 (right). A-B) UV-Vis spectra of varying concentrations recorded 
at 25 °C. C-D) Concentration-dependent degree of aggregation α and their fits using Hill 
plots. 

5.3 Conclusions 

Amphiphilic, pH-responsive cyclic peptide-polymer conjugates were synthesised and their 

supramolecular assembly in aqueous solution was thoroughly characterised. The combined 

use of DPA and HPMA afforded stabilised water soluble core-shell nanotubes at 

physiological pH, able to disassemble due to the protonation of the pDPA core in more 

acidic environments. A triblock copolymer which does not contain the cyclic peptide core 

was also synthesised for comparison purposes. Both compounds were found to be non-toxic, 

and their pKa was determined to be around 7.0, which is within the desired range to trigger 

disassembly in endosomes following cellular uptake, revealing potential to facilitate 

endosomal release. Proof of concept studies highlighted the potential of these systems to 

encapsulate a hydrophobic dye, which was used as a model drug compound. The structures 

formed by their assembly were characterised by scattering techniques at pH 7.4 and 5.0. SLS 
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showed a distinct change in size between the different pH values in both cases, with the 

cyclic peptide-conjugates forming larger assemblies. Moreover, SANS demonstrated the 

cylindrical shape of the peptide-containing structures in contrast to the spherical micelles 

formed by the control polymer. This finding confirms that the supramolecular stacking of 

the cyclic peptide core, and not the block copolymer self-assembly, governs the formation of 

the obtained core-shell structures. In addition, the system described here constitutes the first 

report on the self-assembly of amphiphilic cyclic peptide-polymer conjugates in water. 

Investigations on its mechanism of self-assembly revealed that the presence of a 

hydrophobic block around the supramolecular core of the cylinder helps to enhance its 

stability compared to hydrophilic polymers alone. This chapter presents promising 

preliminary data for the development of alternative drug carriers.  

5.4 Experimental 

5.4.1 Materials 

2-(Diisopropylamino)ethyl methacrylate (DPA), 1,1′-Azobis(cyclohexanecarbonitrile) (vazo 

88), Nile red and deuterated solvents for NMR were purchased from Sigma-Aldrich. 2,2'-

Azobis[2-(2-imidazolin-2-yl)propane]dihydrochloride (VA-044) was purchased from Wako 

Chemicals. Sodium hydroxide pellets were obtained from Fisher scientific. All solvents were 

bought from commercial sources and used as received. Cyclic peptide, chain transfer agents 

(CP(CPAETC)2 and E(CPAETC)2), the monomer HPMA, and the control conjugate (CP-

(pHPMA55-co-PUEMA3.5)2 used in section 5.2.3.2 were synthesised as described in previous 

chapters.  

5.4.2 Characterisation methods 

NMR spectra were recorded on a Bruker DPX-300 instrument. Molecular weights and 

dispersities of the polymers were assessed by size exclusion chromatography (SEC) on a 

Polymer Laboratories PL-GPC 50 Plus system in DMF with 0.1% LiBr, using a poly(methyl 

methacrylate) calibration, as described in Chapter 2.  

DLS measurements were taken using a Malvern instruments Zetasizer Nano at 25 °C with a 

4 mW He-Ne 633 nm laser at a scattering angle of 173 (back scattering).  
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Static light scattering measurements were obtained using an ALV-CGS3 system operating 

with a vertically polarised laser with a wavelength of 632 nm. The measurements were taken 

at 20 °C over a range of scattering wave vectors. 

SANS was carried out on SANS Instrument D11 at Institut Laue-Langevin in Grenoble, 

France as described in previous chapters. UV measurements were recorded on an Agilent 

Cary 60 UV-Vis and fluorescence on an Agilent Cary eclipse Fluorescence 

spectrophotometer.  

5.4.3 Polymer synthesis 

For the first block, the chain transfer agent (CTA), monomer (DPA), initiator (vazo 88) and 

solvent were introduced into a flask equipped with a magnetic stirrer and sealed with a 

rubber septum (see Table 5.9 for detailed conditions). The solution was degassed by 

bubbling nitrogen through it for 15 min, and then put in an oil bath at 90 °C for 8h. 

Conversions were determined by 1H NMR. The polymers were precipitated in ice-cold 

H2O/MeOH 1/2 and dried under vacuum.  

For the second block, the previously synthesised polymer P1 and conjugate C1 were used as 

macro CTAs. They were mixed in a flask with HPMA, initiator (VA 044) and HCl 1M. The 

flask was sealed and the mixture degassed for 15 min before placing it in an oil bath at 44 °C 

for the indicated time. Conversions were determined by 1H NMR, the polymers were 

precipitated in ice-cold acetone and dried under vacuum.  

Table 5.9: Summary of polymerisation conditions.  

 (macro)CTA Solvent 
Time 

[M]0 
[𝐌]𝟎[𝐂𝐓𝐀]𝟎  

[𝐂𝐓𝐀]𝟎[𝐈]𝟎  
Conversion 

(hours) (%) 

P1 E(CPAETC)2 Dioxane 8 2 58 20 73 

C1 CP(CPAETC)2 

DMSO/CHCl3 

6/4 
8 1 56 20 85 

P2 P1 (pDPA21)2 HCl 1M 13 2 152 10 73 

C2 C1 CP-(pDPA24)2 HCl 1M 19 2 200 10 55 
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5.4.4 In vitro testing 

5.4.4.1 Cells 

A2780 (human ovarian carcinoma), PC3 (human prostate carcinoma) and MDA-MB-231 

(human breast cancer) cells were obtained either from the European Collection of Cell 

Cultures (ECACC) or Sigma-Aldrich. A2780 were grown in Roswell Park Memorial 

Institute medium (RPMI-1640), and PC3 and MDA-MB-231 in Dulbecco’s Modified Eagle 

Medium (DMEM). Both media were supplemented with 10% v/v of foetal calf serum, 1% 

v/v of 2 mM glutamine and 1% v/v penicillin/streptomycin. Cells were grown as adherent 

monolayers at 37 °C in a 5% CO2 humidified atmosphere and passaged at approximately 70-

80% confluence. 

5.4.4.2 Growth inhibition assay  

Briefly, 5000 cells were seeded per well in 96-well plates and allowed to grow for 24 h 

before adding different concentrations of the compounds to be tested. Stock solutions (5 

mg.mL-1) were prepared by dissolution in water followed by dropwise addition of PBS (20% 

water), and diluted in cell culture medium at concentrations ranging from 0.1 to 500 g.mL-

1. Culture medium was replaced by dilutions of the compounds and cells further incubated 

for 72 h. After this, supernatant was removed and replaced by fresh medium. XTT assay was 

used to determine cell metabolic activity as a measure of viability. Absorbance 

measurements of the plate at 475 nm were carried out using a Synergy HTX (Biotek) plate 

reader. Determination of viable treated cells was done in comparison to untreated controls. 

Two independent sets of experiments in triplicates were carried out and standard deviations 

were used for error bars. 

5.4.5 Methods 

5.4.5.1 Potentiometric titration 

40 mL of solution at 0.5 mg.mL-1 was used for each potentiometric titration experiment. 

Potentiometric titrations were performed manually at room temperature with a syringe pump 

to control the added volume and a pH meter (HI2211 Hanna Intruments) was used to 

determine the pH. The addition of titrant (NaOH at 0.05, 0.1 or 0.2 mol.L-1) was done with 

various added volumes (from 0.01 mL to 0.2 mL) in order to obtain a steady increase of pH 

between each addition. Raw titration data yielded the evolution of the pH of the solution as a 
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function of the amount of titrant. The degree of ionisation  was calculated and plotted as a 

function of pH. From these data, the apparent pKa of the polymers was determined as the 

value of pH for which  = 0.5. The data were treated according to published procedures with 

some minor modifications to fit for polybases instead of polyacids.34 

5.4.5.2 Nile red encapsulation 

To probe the encapsulation ability of both compounds, Nile red was dissolved in methanol at 

a concentration of 0.796 mg/mL. 40 L of this solution (100 nmol) were added to vials 

containing compounds in methanol (500 L) at varying concentrations. 2 mL of PBS was 

added dropwise to each vial, using a syringe pump over one hour. Methanol was left to 

evaporate overnight. The solutions were filtered using 0.2 m syringe filters, and 1.5 mL of 

each solution was freeze dried. The resulting solid was dissolved in methanol and the 

fluorescence was recorded (the samples were excited at a wavelength of 543 nm and 

emission was recorded between 550 and 800 nm). Nile red calibration was performed using 

solutions of the dye in methanol at various concentrations. 

5.4.5.3 UV-Vis study 

To investigate the mechanism of self-assembly, UV-Vis experiments were carried out. A 

stock solution of C2 in PBS was prepared by dissolving 27.6 mg of compound in H2O (0.5 

mL). PBS (1.5 mL) was added dropwise, until a concentration of 1 mmol.L-1 was reached. 

Serial dilutions in PBS were performed to achieve working concentrations ranging from 0.24 

to 125 mol.L-1. The stock solution for the control conjugate CP-(pHPMA55-co-PUEMA3.5)2 

was prepared in a similar manner, without the dropwise addition. Spectra were recorded at 

25 °C  in a 10 mm  path length quartz cuvette. The temperature dependent experiments were 

carried out using the solutions of C2 and control conjugate at 15.6 mol.L-1. Spectra were 

recorded at every 5 °C at temperatures varying from 20 to 80 °C (with 30 min equilibration 

time). Measurements were obtained by Dr. Edward Mansfield.  
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Conclusions and perspectives 
 

The aims of this thesis were to design polymeric nanotubes based on self-assembling cyclic 

peptides that can be used as drug delivery vectors, to thoroughly characterise their assembly 

in solution and to investigate their behaviour in vitro and in vivo.   

Chapter 2 describes the two synthetic pathways leading to cyclic peptide-polymer 

conjugates, which were critically compared. A range of functional monomers was 

polymerised from and grafted to, a cyclic peptide, using an active ester ligation strategy. 

Initial kinetic studies using a cyclic peptide modified with CTA groups clearly revealed 

excellent control over the polymerisation without the appearance of any detectable 

termination reaction. With the exception of PEGA, where polymerisation from the peptide 

was not controlled due to steric hindrance, all the tested monomers led to well defined 

conjugates in under twelve hours (and under two hours for acrylic monomers). Their 

grafting-to counterparts were obtained after polymerisation using an NHS-functionalised 

CTA, followed by an active ester coupling to the cyclic peptide. Conjugation was found to 

proceed efficiently across a wide range of monomers. Generally comparing the two 

investigated synthetic routes, the grafting-from approach achieves pure conjugate synthesis 

(no unreacted polymeric chains remain in the sample) in faster reaction times. This approach 

is, however, dependant on the availability of a solvent that can solubilise the peptide, the 

monomer and resulting conjugate. It is also unfavourable when attempting to control the 

polymerisation of bulky monomers such as PEGA. On the other hand, the grafting-to 

strategy remains more flexible in terms of choice of solvent and scalability, and also enables 

a modular approach to design peptide conjugates, using different combinations of peptides 

and polymers. Nevertheless, purification to remove excess or unreacted polymer remains a 

challenge, and the reactivity of some monomers can be an obstacle for efficient conjugation. 

In summary, both techniques carry advantages and disadvantages, but are complementary in 

nature. Their combination gives access to a large variety of well-defined cyclic peptide-

polymer conjugates.  

Chapter 3 introduced cyclic peptide-based nanotubes specifically designed for drug delivery 

applications. Self-assembling cyclic peptides functionalised with HPMA (co)polymers were 

synthesised, and a study of their assembly in solution showed the formation of nanotubes. 
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Interestingly, a small fraction of a comonomer prone to non-covalent interactions greatly 

helped the self-assembly process. The comonomer-containing conjugate was tested against a 

non-assembling control, and clear differences in their cell uptake behaviour in vitro as well 

as their pharmacokinetics in vivo were observed. Cellular accumulation studies demonstrated 

a time and temperature dependent internalisation of the compounds, with larger sized 

nanotubes increasing the uptake by a factor 3 to 4 compared to that of the polymer. Colour 

coincidence studies confirmed accumulation of the conjugates in the lysosomal 

compartments of the cells, further indicating endosomal uptake as the main pathway. After 

intravenous injection to rats, conjugates were found to circulate for a reasonable amount of 

time (t1/2 = 16 h) , and exhibit a higher exposure than the control polymer. Such 

characteristics are beneficial when attempting passive tumour targeting though the EPR 

effect. Most importantly, conjugates were ultimately cleared out, which might be related to a 

slow disintegration of the self-assembled nanotubes into smaller structures or even unimers. 

This feature makes it possible to potentially avoid undesired long-term accumulation and 

side-effect toxicity in organs such as the liver and spleen. Considering all the observed 

results, these cyclic peptide-polymer nanotubes certainly represent a novel and promising 

class of materials, especially for applications as delivery systems for the transport of 

pharmaceutically active compounds.  

Based on these findings, chapter 4 discussed the attachment of organoiridium anticancer 

complexes to the pHPMA-based polymeric cyclic peptide nanotubes presented in chapter 3. 

The pyridine-containing comonomer provides a specific binding site for the complexation of 

highly potent anticancer complexes. [(Cp*)Ir(phpy)Cl] and [(Cpxph)Ir(phpy)Cl] were used in 

this study. The self-assembly of these conjugates was confirmed by static light scattering 

and small angle neutron scattering, which revealed that the building blocks form short 

cylinders about 20 nm in length. These drug-bearing nanotubes exhibited comparable or 

increased toxicity towards human ovarian cancer cells compared to the free drug. 

Remarkably, their toxicity towards a healthy cell model was lower than the free drug, 

suggesting a degree of selectivity towards cancer cells. Interestingly, the nanotubes also 

showed higher toxicity, as well as higher selectivity, towards cancer cells when compared to 

the drug-bearing polymers used as a non-assembling control. Analysis of the amount of 

iridium accumulated in the cells after equipotent and equimolar uptake studies revealed that 

a similar percentage of drug enters the cells in each case, indicating that the drug-bearing 

conjugates do not enhance the iridium uptake, but rather exhibit a more efficient mode of 

action. Investigations into the mechanisms of entry and partitioning profile into different 
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organelles revealed that energy-dependent mechanisms of cell uptake account for a higher 

fraction of the accumulated drug, in the case of the polymer and conjugate when compared 

to the free drug. 

Finally, chapter 5 explored the early stages of the development of an alternative delivery 

system designed for drug encapsulation and subsequent pH-triggered release. Amphiphilic, 

pH-responsive cyclic peptide-polymer conjugates were synthesised and their supramolecular 

assembly in aqueous solution was thoroughly characterised. The combined use of DPA and 

HPMA afforded stabilised water soluble core-shell nanotubes at physiological pH, able to 

disassemble due to the protonation of the pDPA core in more acidic environments. A 

triblock copolymer which does not contain the cyclic peptide core was also synthesised for 

comparison purposes. Both compounds were found to be non-toxic, and their pKa was 

determined to be around 7.0, which is within the desired range to trigger disassembly in 

endosomes following cellular uptake, revealing potential to facilitate endosomal release. 

Proof of concept studies highlighted the potential of these systems to encapsulate a 

hydrophobic dye, which was used as a model drug compound. The structures formed by 

their assembly were characterised by scattering techniques at pH 7.4 and 5.0. SLS showed a 

distinct change in size between the different pH values in both cases, with the cyclic peptide-

conjugates forming larger assemblies. Moreover, SANS demonstrated the cylindrical shape 

of the peptide-containing structures in contrast to the spherical micelles formed by the 

control polymer. This finding confirms that the supramolecular stacking of the cyclic peptide 

core, and not the block copolymer self-assembly, governs the formation of the obtained 

core-shell structures. In addition, the system described here constitutes the first report on the 

self-assembly of amphiphilic cyclic peptide-polymer conjugates in water. Investigations on 

its mechanism of self-assembly revealed that the presence of a hydrophobic block around the 

supramolecular core of the cylinder helps to enhance its stability compared to hydrophilic 

polymers alone.  

In summary, this thesis demonstrates that supramolecular nanotubes based on self-

assembling cyclic peptides present sufficient advantages compared to other nanoscale 

systems, and should be considered suitable candidates in the search for new drug delivery 

systems. The influence of the self-assembly on cellular uptake and pharmacokinetic 

parameters was demonstrated by comparing nanotubes with a non-assembling control 

polymer. However, different aspects of this work could be pursued further.  
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Chapter 2 demonstrated that both the grafting-to and grafting-from methods lead to identical 

conjugates in most cases, but a comparison of their self-assembly would be ideal to confirm 

the formation of similar materials. In addition, it would be worthwhile to explore other 

ligations techniques such as CuAAC coupling, or the HBTU coupling used in the following 

chapters.  

The in vivo studies on the drug-free conjugate presented in chapter 3 could be expanded, 

particularly in order to verify the hypothesis that the enhanced performance of the nanotubes 

compared to the polymers is related to their ability to slowly disassemble into smaller 

structures that can be cleared out. For example, looking at covalently cross-linked nanotubes 

would provide pharmacokinetic parameters for a system of similar dimensions which is 

unable to disintegrate. Moreover, to confirm that the observed difference between conjugate 

and polymer is not due to the sole presence of the cyclic peptide, a non-assembling 

conjugate could be used as an additional control. Additionally, histology analyses could 

reveal organ localisation. 

Further in vitro evaluation of the iridium loaded nanotubes, presented in chapter 4, could 

also be pursued. A precise understanding of the separate fate of the conjugates and the 

iridium drug is currently lacking. In order to investigate this aspect, fluorophores need to be 

attached to both the polymers and the drug. While fluorescent labelling of polymers is 

widely established, attachment of fluorophores to the iridium complexes is problematic. The 

properties of such organometallic complexes are highly dependent on the ligands and 

modifying or replacing a ligand with a dye molecule would certainly have an impact on their 

potency. This limitation could be circumvented by using a different drug, such as the 

fluorescent anticancer agent doxorubicin (DOX). However DOX is not an organometallic 

complex; as such this approach would require modification of the synthetic strategy. An in 

vivo study focusing on drug-loaded systems would also be highly desirable. Ideally tumour 

animal models should be used, and the accumulation of drug in the tumours should be 

assessed. Preliminary studies looking at the penetration of an iridium drug, and drug-loaded 

polymer and nanotube into spheroids are currently being carried out. The attachment of 

tumour-targeting ligands such an RGD peptide (arginine-glycine-aspartic acid) to the 

nanotubes could be investigated, and their influence on tumour accumulation determined. 

Eventually, attachment of different drugs could be explored. 

The amphiphilic system introduced in chapter 5 is currently in the early stages of 

development and could be highly improved. The first issue to address would be 
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encapsulation efficiency of the material, which should be greatly enhanced to provide a more 

realistic therapeutic dose. In order to do this, the core of the assembly needs to be made 

more hydrophobic. One way of achieving this goal would be to vary the DPs of the 

respective blocks, and/or of the overall polymer. A longer DPA block might help creating a 

more hydrophobic environment towards the core of the assemblies. Another possibility 

would be to work with fully deprotonated polymers and a solvent switch method instead of 

progressive deprotonation using the slow addition of PBS. The method used in chapter 5 

does not guarantee the complete absence of charges, and the presence of even a small 

amount of charges would limit the degree of hydrophobicity and therefore hinder the 

encapsulation of hydrophobic molecules. After improvement of the loading capacity, 

encapsulation of more relevant molecules, such as active drugs, could be explored. 

Following on, the materials should be tested for their expected ability to facilitate endosomal 

release. 
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Appendix A 

NMR spectra from Chapter 2 

 

 

Figure A.1: 
1H NMR spectrum (CDCl3, 300 MHz) of (propanoic acid)yl butyl 

trithiocarbonate (PABTC). 

 

Figure A.2: 13C-APT NMR spectrum (CDCl3, 125 MHz) of (propanoic acid)yl butyl 
trithiocarbonate (PABTC). 
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Figure A.3: 1H NMR spectrum (CDCl3, 300 MHz) of N-hydroxysuccinimide-(propanoic 
acid)yl butyl trithiocarbonate (NHS-PABTC). 

 

 

Figure A.4: 
13C-APT NMR spectrum (CDCl3, 125 MHz) of N-hydroxysuccinimide-

(propanoic acid)yl butyl trithiocarbonate (NHS-PABTC). 
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Figure A.5:
 1H NMR spectrum (CDCl3, 300 MHz) of (4-cyano pentanoic acid)yl ethyl 

trithiocarbonate (CPAETC). 

 

 

Figure A.6: 
13C-APT NMR spectrum (CDCl3, 125 MHz) of (4-cyano pentanoic acid)yl 

ethyl trithiocarbonate (CPAETC). 
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Figure A.7: 1H NMR spectrum (CDCl3, 300 MHz) of N-hydroxysuccinimide-(4-cyano 
pentanoic acid)yl ethyl trithiocarbonate (NHS-CPAETC). 

 

 

Figure A.8: 13C-APT NMR spectrum (CDCl3, 125 MHz) of N-hydroxysuccinimide-(4-
cyano pentanoic acid)yl ethyl trithiocarbonate (NHS-CPAETC). 
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Figure A.9: 1H NMR spectrum (CDCl3, 300 MHz) of pentafluorophenol-(4-cyano pentanoic 
acid)yl ethyl trithiocarbonate (PFP-CPAETC). 

 

 

Figure A.10: 
13C-APT NMR spectrum (CDCl3, 125 MHz) of pentafluorophenol-(4-cyano 

pentanoic acid)yl ethyl trithiocarbonate (PFP-CPAETC). 
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Figure A.11: 19F NMR spectrum (CDCl3, 300 MHz) of pentafluorophenol-(4-cyano 
pentanoic acid)yl ethyl trithiocarbonate (PFP-CPAETC). 

 

 

Figure A.12: 1H NMR spectrum (TFA-d, 400 MHz) of linear peptide H2N-L-Lys(Boc)-D-
Leu-L-Trp(Boc)-D-Leu-L-Lys(Boc)-D-Leu-L-Trp(Boc)-D-Leu-COOH. 
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Figure A.13: 
1H NMR spectrum (TFA-d, 400 MHz) of cyclic peptide (L-Lys(Boc)-D-Leu-L-

Trp(Boc)-D-Leu)2. 

 

Figure A.14: 1H NMR spectrum (TFA-d, 400 MHz) of cyclic peptide (L-Lys-D-Leu-L-Trp-
D-Leu)2. 
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Figure A.15: 1
H NMR spectrum (TFA-d, 400 MHz) of cyclic peptide (cyano pentanoic 

acid)yl ethyl trithiocarbonate (CP(CPAETC)2). 
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Appendix B 

 

NMR spectra corresponding to attachment of 

Iridium complexes 

 

 

Figure B.1: 
1H NMR characterisation of the attachment of complex 4b onto conjugate 2, 

affording conjugate 2b. 
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Figure B.2: 
1H NMR characterisation of the attachment of complex 4a onto polymer 3, 

affording polymer 3a. 

 

Figure B.3: 
1H NMR characterisation of the attachment of complex 4b onto polymer 3, 

affording polymer 3b.
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