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Abstract: Rare b→ s`+`− flavour-changing-neutral-current processes provide important

tests of the Standard Model of particle physics. Angular observables in exclusive b→ s`+`−

processes can be particularly powerful as they allow hadronic uncertainties to be controlled.

Amongst the exclusive processes that have been studied by experiments, the decay Λb →
Λ`+`− is unique in that the Λb baryon can be produced polarised. In this paper, we derive

an expression for the angular distribution of the Λb → Λ`+`− decay for the case where the

Λb baryon is produced polarised. This extends the number of angular observables in this

decay from 10 to 34. Standard Model expectations for the new observables are provided

and the sensitivity of the observables is explored under a variety of new physics models.

At low-hadronic recoil, four of the new observables have a new short distance dependence

that is absent in the unpolarised case. The remaining observables depend on the same

short distance contributions as the unpolarised observables, but with different dependence

on hadronic form-factors. These relations provide possibilities for novel tests of the SM

that could be carried out with the data that will become available at the LHC or a future

e+e− collider.
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1 Introduction

Rare b→ s`+`− have been studied extensively by experiments at the B-factories as well as

experiments at the Tevatron and Large Hadron Collider (LHC). Amongst the b → s`+`−

processes that have been studied, the decay Λb→ Λµ+µ− is unique for two reasons: it is the

only baryonic decay that has been studied; and the Λ baryon decays weakly leading to new

hadron-side observables. The angular distribution of Λb→ Λµ+µ− decays has been studied

in refs. [1, 2] for the case of unpolarised Λb baryons. The resulting angular distribution is

described by 10 angular observables. The decay rate and lepton side angular distribution

has also been studied in the SM and in several extensions of the SM (NP models) in refs. [3–

12]. If the Λb is produced polarised, a much larger number of observables are measurable.
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These observables are explored in this paper. The exploitation of production polarisation

in radiative Λb→ Λ(∗)γ decays has previously been studied in refs. [13–16].

In e+e− collisions, Λb baryons can be produced with large longitudinal polarisations.

The longitudinal polarisation of Λb baryons and b-quarks produced via e+e− → Z0(→
bb) decays has been studied by the LEP experiments in refs. [17–19]. The production

of Λb baryons with longitudinal polarisation is forbidden in strong interactions, due to

parity conservation. The Λb can, however, be produced with transverse polarisation in pp

collisions. In this paper, we focus on the transverse polarisation of the Λb baryon. The

transverse polarisation of Λb baryons produced in pp collisions at
√
s = 7 and 8 TeV has

been studied by the LHCb and CMS experiments in refs. [20] and [21], respectively. The

LHCb experiment measures PΛb
= 0.06±0.07±0.02 at

√
s = 7 TeV. The CMS experiment

measures PΛb
= 0.00 ± 0.06 ± 0.02 combining data from

√
s = 7 and 8 TeV. In both

cases, the production polarisation is determined from the observed angular distribution

of Λb→ J/ψΛ decays. Whilst the measured transverse production polarisation is small,

polarisations of O(10%) cannot be excluded. Polarised Λb baryons can also be obtained

from decays of heavier b-baryons, for example in decays of the Σ
(∗)
b [22].

The only existing measurements of the angular distribution of the Λb→ Λ`+`− decay

come from the LHCb experiment [23]. Due to the limited size of their dataset, LHCb

only studied a subset of the angular distribution that could be accessed from single angle

projections on the lepton- and hadron-side. With the much larger data sets that will be

available at the LHC experiments after run 2 of the LHC, the experiments will be able to

probe the full angular distribution. However, the sheer number of observables involved will

most likely require an analysis of the moments of the angular distribution (see for example

ref. [24]) rather than the conventional approach of fitting for the angular observables. This

approach is discussed in section 6, where we provide the weighting functions needed to

extract the observables.

2 Angular distribution

The angular distribution of the Λb→ Λ`+`− decay has been previously studied in refs. [1, 2].

In this paper we extend those studies to include the case where the Λb baryon is produced

with a transverse polarisation. We start by expanding the differential decay rate for the

Λb→ Λ`+`− decay in terms of generalised helicity amplitudes

d6Γ

dq2 d~Ω
∝

∑
λ1,λ2,λp,λ``,λ

′
``,

J,J ′,m,m′,λΛ,λ
′
Λ,

(
(−1)J+J ′

× ρλΛ−λ``,λ′Λ−λ
′
``

(θ)

×Hm,J
λΛ,λ``

(q2)H†m
′,J ′

λ′Λ,λ
′
``

(q2)

× hm,Jλ1,λ2
(q2)h†m

′,J ′

λ1,λ2
(q2)

×DJ ∗
λ``,λ1−λ2

(φl, θl,−φl)DJ ′

λ′``,λ1−λ2
(φl, θl,−φl)

× hΛ
λp,0h

†Λ
λp0

×D1/2 ∗
λΛ,λp

(φb, θb,−φb)D1/2
λ′Λ,λp

(φb, θb,−φb)
)
,

(2.1)
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which depends on five angles, ~Ω = (θl, φl, θb, φb, θ), and the dilepton invariant mass squared,

q2. The angular basis is illustrated in figure 1. The helicity basis is defined starting from

the normal vector between the direction of the Λb baryon in the lab-frame and the beam-

axis of the experiment (n̂ = p̂Λb
× p̂beam). This is an appropriate choice when considering

transverse production polarisation of the Λb baryon.

Equation 2.1 involves three sets of helicity amplitudes: Hm,J
λΛ,λ``

(q2) describing the decay

of the Λb baryon into a Λ baryon with helicity λΛ and a dilepton pair with helicity λ``;

hm,Jλ1,λ2
describing the decay of the dilepton system to leptons with helicities λ1 and λ2; and

hΛ
λp,0

describing the decay Λ→ pπ to a proton with helicity λp. The index J refers to

the spin of the dilepton system, which can either be zero or one. When J = 0, λ`` = 0,

and when J = 1, λ`` can take the values −1, 0,+1. The helicity labels λp, λΛ, λ1 and

λ2 can take the values ±1/2. Angular momentum conservation in the Λb decay requires

|λΛ−λ``| = 1/2. The factor (−1)J+J ′
originates from the structure of the Minkowski metric

tensor, see ref. [25] for details. The remaining index, m = V, A, denotes the decay of the

dilepton system by either a vector or an axial-vector current. The term ρλΛ−λ``,λ′Λ−λ
′
``

is

the polarisation density matrix for the transverse polarisation of the Λb. The matrix is a

two-by-two matrix (with Tr(ρ) = 1) given by

ρ+1/2,+1/2(θ) =
1

2
(1 + PΛb

) cos θ ,

ρ+1/2,−1/2(θ) =
1

2
PΛb

sin θ ,

ρ−1/2,−1/2(θ) =
1

2
(1− PΛb

) cos θ ,

ρ−1/2,+1/2(θ) =
1

2
PΛb

sin θ .

(2.2)

Finally, the Dj
m,m′(φ, θ,−φ) are Wigner-D functions. An explicit form of the Wigner-D

functions is given in appendix A.

2.1 Lepton system amplitudes

There are two sets of amplitudes for the dilepon system, with either a vector or an axial-

vector current,

hV,Jλ1,λ2
= ¯̀(λ2)γµ`(λ1)ε∗µ(λ1 − λ2)

hA,Jλ1,λ2
= ¯̀(λ2)γµγ5`(λ1)ε∗µ(λ1 − λ2) ,

(2.3)

where γµ is a Dirac γ-matrix and εµ is a polarisation vector. These amplitudes evaluate

to [1]

hV,0+1/2,+1/2 = 0 , hA,0+1/2,+1/2 = 2ml =
√
q2(1− β2

l ) ,

hV,0+1/2,−1/2 = 0 , hA,0+1/2,−1/2 = 0 , (2.4)

hV,1+1/2,+1/2 = 2ml =
√
q2(1− β2

l ) , hA,1+1/2,+1/2 = 0 ,

hV,1+1/2,−1/2 = −
√

2q2 , hA,1+1/2,−1/2 =
√

2q2βl ,

– 3 –
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Figure 1. The Λb→ Λ`+`− decay is described by five angles: the angle, θ, between the direction

of the Λ baryon and the normal vector n̂ in the Λb rest-frame; and two sets of helicity angles,

describing the decays of the Λ baryon (θb, φb) and the dilepton system (θl, φl). For transverse

production polarisation n̂ is chosen to be p̂Λb
× p̂beam. The helicity angles are then defined with

respect to this normal vector through the coordinate systems (x̂Λ, ŷΛ, ẑΛ) and (x̂`¯̀, ŷ`¯̀, ẑ`¯̀). The

ẑ axis points in the direction of the Λ/dilepton system in the Λb rest-frame. The angle between

the two decay planes in the Λb rest frame is χ = φl + φb. The angles θl, θb and χ are sufficient to

parameterise the angular distribution of the decay in the case of zero production polarisation

where ml is the lepton mass and βl is the lepton velocity in the dilepton rest frame

(|~pl|/El), i.e.

βl =

√
1− 4m2

l

q2
. (2.5)

The amplitudes with J = 0 vanish in the case that the lepton mass is zero (when βl = 1).

Under the Parity transformation

hV,J−λ1,−λ2
= hV,Jλ1,λ2

hA,J−λ1,−λ2
= −hA,Jλ1,λ2

.
(2.6)

2.2 Hadron system amplitudes

On the hadron side, the Λ decay amplitudes can be expressed in terms of the well known

Λ asymmetry parameter [26]

αΛ =
|hb1

2
,0
|2 − |hb− 1

2
,0
|2

|hb1
2
,0
|2 + |hb− 1

2
,0
|2 = 0.642± 0.013 . (2.7)
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The hadron side amplitudes are normalised such that

|hb1
2
,0
|2 + |hb− 1

2
,0
|2 = 1 . (2.8)

2.3 Helicity and transversity amplitudes

After replacing the lepton and hadron-side amplitudes with the expressions given

in sections 2.2 and 2.1, the angular distribution can be expanded in terms of 10

helicity amplitudes,

Hm,1
+1/2,+1, H

m,1
−1/2,−1, H

m,1
+1/2,0, H

m,1
−1/2,0, H

A,0
+1/2,0 and HA,0

−1/2,0 ,

PΛb
, αΛ and a set of kinematic factors that come from the lepton-side amplitudes. For

the remainder of this paper it is convenient to absorb a common factor of
√
q2 from the

lepton-side amplitudes into these helicity amplitudes, i.e.√
q2Hm,J

λΛ,λ``
= H ′ m,JλΛ,λ``

. (2.9)

By absorbing this factor, the only kinematic dependence outside of H ′ m,JλΛ,λ``
(q2) comes

from factors of βl.

The helicity amplitudes can be replaced by a corresponding set of transversity ampli-

tudes for the decay that separate the vector and axial-vector contributions on the hadron-

side: the amplitudes AR,L
‖1 and AR,L

‖0 depend only on the vector contribution to H ′λΛ,λ``

(i.e. on 〈Λ|s̄γµb|Λb〉); and the amplitudes AR,L
⊥1 and AR,L

⊥0 depend only on the axial-vector

contribution to H ′λΛ,λ``
(i.e. on 〈Λ|s̄γµγ5b|Λb〉). To do this, we start by re-writing the

original helicity amplitudes as

H ′
{R,L},J
λΛ,λ``

=
1√
2

(
H ′ V,JλΛ,λ``

±H ′ A,JλΛ,λ``

)
, (2.10)

where the indices L and R refer to left- and right-handed chiralities of the dilepton system,

respectively. This is followed by the replacements

A
{R,L}
⊥1 =

1√
2

(
H ′
{R,L},1
+1/2,+1 −H

′ {R,L},1
−1/2,−1

)
,

A
{R,L}
‖1 =

1√
2

(
H ′
{R,L},1
+1/2,+1 +H ′

{R,L},1
−1/2,−1

)
,

A
{R,L}
⊥0 =

1√
2

(
H ′
{R,L},1
+1/2,0 −H

′ {R,L},1
−1/2,0

)
,

A
{R,L}
‖0 =

1√
2

(
H ′
{R,L},1
+1/2,0 +H ′

{R,L},1
−1/2,0

)
,

A⊥t =
1√
2

(
H ′ A,0+1/2,0 −H

′ A,0
−1/2,0

)
,

A‖t =
1√
2

(
H ′ A,0+1/2,0 +H ′ A,0−1/2,0

)
.

(2.11)

Here, the subscript t refers to the time-like polarisation vector of the dilepton system.

– 5 –
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3 Observables

Expanding out the sum in eq. (2.1), gives 34 different angular terms

d6Γ

dq2 d~Ω
=

3

32π2

( 34∑
i=0

Ki(q
2)fi(~Ω)

)
d6Γ

dq2 d~Ω
=

3

32π2

( (
K1 sin2 θl +K2 cos2 θl +K3 cos θl

)
+
(
K4 sin2 θl +K5 cos2 θl +K6 cos θl

)
cos θb

+ (K7 sin θl cos θl +K8 sin θl) sin θb cos (φb + φl)

+ (K9 sin θl cos θl +K10 sin θl) sin θb sin (φb + φl)

+
(
K11 sin2 θl +K12 cos2 θl +K13 cos θl

)
cos θ

+
(
K14 sin2 θl +K15 cos2 θl +K16 cos θl

)
cos θb cos θ

+ (K17 sin θl cos θl +K18 sin θl) sin θb cos (φb + φl) cos θ

+ (K19 sin θl cos θl +K20 sin θl) sin θb sin (φb + φl) cos θ

+ (K21 cos θl sin θl +K22 sin θl) sinφl sin θ+

+ (K23 cos θl sin θl +K24 sin θl) cosφl sin θ+

+ (K25 cos θl sin θl +K26 sin θl) sinφl cos θb sin θ

+ (K27 cos θl sin θl +K28 sin θl) cosφl cos θb sin θ

+
(
K29 cos2 θl +K30 sin2 θl

)
sin θb sinφb sin θ

+
(
K31 cos2 θl +K32 sin2 θl

)
sin θb cosφb sin θ

+
(
K33 sin2 θl

)
sin θb cos (2φl + φb) sin θ

+
(
K34 sin2 θl

)
sin θb sin (2φl + φb) sin θ

)
.

(3.1)

Integrating this expression over ~Ω yields the differential decay rate as a function of q2,

dΓ

dq2
= 2K1 +K2 . (3.2)

This can be used to define a set of normalised angular observables

Mi =
Ki

2K1 +K2
. (3.3)

4 Angular terms

The first ten angular terms are

K1 =
1

4

(
|AL
‖1|2 + |AL

⊥1|2 + |AR
‖1|2 + |AR

⊥1|2
)

+
1

4
(1 + β2

l )
(
|AL
‖0|2 + |AL

⊥0|2 + |AR
‖0|2 + |AR

⊥0|2
)

+
1

2
(1− β2

l )Re
(
AR
‖1A

∗L
‖1 +AR

⊥1A
∗L
⊥1 +AR

‖0A
∗L
‖0 +AR

⊥0A
∗L
⊥0

)

– 6 –
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+
1

2
(1− β2

l )
(
|A‖t|2 + |A⊥t|2

)
,

K2 =
1

4
(1 + β2

l )
(
|AR
‖1|2 + |AR

⊥1|2 + |AR
‖1|2 + |AL

⊥1|2
)

+
1

4
(1− β2

l )
(
|AR
‖0|2 + |AR

⊥0|2 + |AL
‖0|2 + |AL

⊥0|2
)

+
1

2
(1− β2

l )Re
(
AR
‖1A

∗L
‖1 +AR

⊥1A
∗L
⊥1 +AR

‖0A
∗L
‖0 +AR

⊥0A
∗L
⊥0

)
+

1

2
(1− β2

l )
(
|A‖t|2 + |A⊥t|2

)
,

K3 = − βlRe
(
AR
⊥1A

∗R
‖1 −AL

⊥1A
∗L
‖1

)
(4.1)

K4 =
1

2
αΛRe

(
AR
⊥1A

∗R
‖1 +AL

⊥1A
∗L
‖1

)
+

1

2
αΛ(1 + β2

l )Re
(
AR
⊥0A

∗R
‖0 +AL

⊥0A
∗L
‖0

)
+

1

2
αΛ(1− β2

l )Re
(
AR
⊥1A

∗L
‖1 +AR

‖1A
∗L
⊥1 +AR

⊥0A
∗L
‖0 +AR

‖0A
∗L
⊥0

)
+ αΛ(1− β2

l )Re
(
A⊥tA

∗
‖t

)
,

K5 =
1

2
αΛ(1 + β2

l )Re
(
AR
⊥1A

∗R
‖1 +AL

⊥1A
∗L
‖1

)
+

1

2
αΛ(1− β2

l )Re
(
AR
‖0A

∗R
⊥0 +AL

‖0A
∗L
⊥0

)
+

1

2
αΛ(1− β2

l )Re
(
AR
⊥1A

∗L
‖1 +AR

‖1A
∗L
⊥1 +AR

⊥0A
∗L
‖0 +AR

‖0A
∗L
⊥0

)
+ αΛ(1− β2

l )Re
(
A⊥tA

∗
‖t

)
,

K6 = − 1

2
αΛβl

(
|AR
‖1|2 + |AR

⊥1|2 − |AL
‖1|2 − |AL

⊥1|2
)
,

K7 =
1√
2
αΛβ

2
l Re

(
AR
⊥1A

∗R
‖0 −AR

‖1A
∗R
⊥0 +AL

⊥1A
∗L
‖0 −AL

‖1A
∗L
⊥0

)
,

K8 =
1√
2
αΛβlRe

(
AR
⊥1A

∗R
⊥0 −AR

‖1A
∗R
‖0 −AL

⊥1A
∗L
⊥0 +AL

‖1A
∗L
‖0

)
,

K9 =
1√
2
αΛβ

2
l Im

(
AR⊥1A

∗R
⊥0 −AR

‖1A
∗R
‖0 +AL

⊥1A
∗L
⊥0 −AL

‖1A
∗L
‖0

)
,

K10 =
1√
2
αΛβlIm

(
AR
⊥1A

∗R
‖0 −AR

‖1A
∗R
⊥0 −AL

⊥1A
∗L
‖0 +AL

‖1A
∗L
⊥0

)
.

These terms are accessible even if the Λb baryon is unpolarised and have been previously

studied in refs. [2, 27]. There is a straightforward relationship between our observables and

those of ref. [2], with K1ss = K1, K1cc = K2, K1c = K3, K2ss = K4, K2cc = K5, K2c = K6,

K4sc = K7, K4s = K8, K3sc = K9 and K3s = K10.

The remaining 24 terms are only non-vanishing if PΛb
is non-zero. Terms K11 through

K16 have a similar dependence to K1 through K6. These are

K11 = − 1

2
PΛb

Re
(
AR
‖1A

∗R
⊥1 +AL

‖1A
∗L
⊥1

)
+

1

2
PΛb

(1 + β2
l )Re

(
AR
‖0A

∗R
⊥0 +AL

‖0A
∗L
⊥0

)
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− 1

2
PΛb

(1− β2
l )Re

(
AR
‖1A

∗L
⊥1 +AR

⊥1A
∗L
‖1 −AR

‖0A
∗L
⊥0 −AR

⊥0A
∗L
‖0

)
+ PΛb

(1− β2
l )Re

(
A‖tA

∗
⊥t

)
,

K12 = − 1

2
PΛb

(1 + β2
l )Re

(
AR
‖1A

∗R
⊥1 +AL

‖1A
∗L
⊥1

)
+

1

2
PΛb

(1− β2
l )Re

(
AR
‖0A

∗R
⊥0 +AL

‖0A
∗L
⊥0

)
− 1

2
PΛb

(1− β2
l )Re

(
AR
‖1A

∗L
⊥1 +AR

⊥1A
∗L
‖1 −AR

‖0A
∗L
⊥0 −AR

⊥0A
∗L
‖0

)
+ PΛb

(1− β2
l )Re

(
A‖tA

∗
⊥t

)
,

K13 =
1

2
PΛb

βl

(
|AR
‖1|2 + |AR

⊥1|2 − |AL
‖1|2 − |AL

⊥1|2
)
,

K14 = − 1

4
αΛPΛb

(
|AR
‖1|2 + |AR

⊥1|2 + |AL
‖1|2 + |AL

⊥1|2
)

(4.2)

+
1

4
αΛPΛb

(1 + β2
l )
(
|AR
‖0|2 + |AR

⊥0|2 + |AL
‖0|2 + |AL

⊥0|2
)

+
1

2
αΛPΛb

(1− β2
l )
(
|A‖t|2 + |A⊥t|2

)
− 1

2
αΛPΛb

(1− β2
l )Re

(
AR
‖1A

∗L
‖1 +AR

⊥1A
∗L
⊥1 −AR

‖0A
∗L
‖0 −AR

⊥0A
∗L
⊥0

)
,

K15 = − 1

4
αΛPΛb

(1 + β2
l )
(
|AR
‖1|2 + |AR

⊥1|2 + |AL
‖1|2 + |AL

⊥1|2
)

+
1

4
αΛPΛb

(1− β2
l )
(
|AR
‖0|2 + |AR

⊥0|2 + |AL
‖0|2 + |AL

⊥0|2
)

− 1

2
αΛPΛb

(1− β2
l )Re

(
AR
‖1A

∗L
‖1 +AR

⊥1A
∗L
⊥1 −AR

‖0A
∗L
‖0 −AR

⊥0A
∗L
⊥0

)
+

1

2
αΛPΛb

(1− β2
l )
(
|A‖t|2 + |A⊥t|2

)
,

K16 = αΛPΛb
βlRe

(
AR
⊥1A

∗R
‖1 −AL

⊥1A
∗L
‖1

)
.

The observables K13 and K16 are trivially related to K6 and K3 through K13 = −PΛb
K6

and K16 = −PΛb
K3 and can therefore be used as an experimental consistency check or to

determine PΛb
. The observables K11, K12, K14 and K15 have a similar structure to K1,

K2, K4 and K5 but, unlike in those observables, the amplitudes with λ`` = 0 enter with a

different relative sign to those with λ`` = ±1.

The observables K17 through K34 also involve new combinations of amplitudes that

are not accessible if the Λb baryon is unpolarised. They are

K17 = − 1√
2
αΛPΛb

β2
l Re

(
AR
‖1A

∗R
‖0 −AR

⊥1A
∗R
⊥0 +AL

‖1A
∗L
‖0 −AL

⊥1A
∗L
⊥0

)
,

K18 = − 1√
2
αΛPΛb

βlRe
(
AR
‖1A

∗R
⊥0 −AR

⊥1A
∗R
‖0 −AL

‖1A
∗L
⊥0 +AL

⊥1A
∗L
‖0

)
,

K19 = − 1√
2
αΛPΛb

β2
l Im

(
AR
‖1A

∗R
⊥0 −AR

⊥1A
∗R
‖0 +AL

‖1A
∗L
⊥0 −AL

⊥1A
∗L
‖0

)
,

K20 = − 1√
2
αΛPΛb

βlIm
(
AR
‖1A

∗R
‖0 −AR

⊥1A
∗R
⊥0 −AL

‖1A
∗L
‖0 +AL

⊥1A
∗L
⊥0

)
,
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K21 =
1√
2
PΛb

β2
l Im

(
AR
‖1A

∗R
‖0 +AR

⊥1A
∗R
⊥0 +AL

‖1A
∗L
‖0 +AL

⊥1A
∗L
⊥0

)
,

K22 = − 1√
2
PΛb

βlIm
(
AR
‖1A

∗R
⊥0 +AR

⊥1A
∗R
‖0 −AL

‖1A
∗L
⊥0 −AL

⊥1A
∗L
‖0

)
,

K23 = − 1√
2
PΛb

β2
l Re

(
AR
‖1A

∗R
⊥0 +AR

⊥1A
∗R
‖0 +AL

‖1A
∗L
⊥0 +AL

⊥1A
∗L
‖0

)
, (4.3)

K24 =
1√
2
PΛb

βlRe
(
AR
‖1A

∗R
‖0 +AR

⊥1A
∗R
⊥0 −AL

‖1A
∗L
‖0 −AL

⊥1A
∗L
⊥0

)
,

K25 =
1√
2
αΛPΛb

β2
l Im

(
AR
‖1A

∗R
⊥0 +AR

⊥1A
∗R
‖0 +AL

‖1A
∗L
⊥0 +AL

⊥1A
∗L
‖0

)
,

K26 = − 1√
2
αΛPΛb

βlIm
(
AR
‖1A

∗R
‖0 +AR

⊥1A
∗R
⊥0 −AL

‖1A
∗L
‖0 −AL

⊥1A
∗L
⊥0

)
,

K27 = − 1√
2
αΛPΛb

β2
l Re

(
AR
‖1A

∗R
‖0 +AR

⊥1A
∗R
⊥0 +AL

‖1A
∗L
‖0 +AL

⊥1A
∗L
⊥0

)
,

K28 =
1√
2
αΛPΛb

βlRe
(
AR
‖1A

∗R
⊥0 +AR

⊥1A
∗R
‖0 −AL

‖1A
∗L
⊥0 −AL

⊥1A
∗L
‖0

)
,

K29 =
1

2
αΛPΛb

(1− β2
l )Im

(
AR
⊥0A

∗R
‖0 +AL

⊥0A
∗L
‖0 +AR

⊥0A
∗L
‖0 −AR

‖0A
∗L
⊥0

)
+ αΛPΛb

(1− β2
l )Im

(
A⊥tA

∗
‖t

)
,

K30 =
1

2
αΛPΛb

(1 + β2
l )Im

(
AR
⊥0A

∗R
‖0 +AL

⊥0A
∗L
‖0

)
+

1

2
αΛPΛb

(1− β2
l )Im

(
AR
⊥0A

∗L
‖0 −AR

‖0A
∗L
⊥0

)
+ αΛPΛb

(1− β2
l )Im

(
A⊥tA

∗
‖t

)
,

K31 =
1

4
αΛPΛb

(1− β2
l )
(
|AR
⊥0|2 − |AR

‖0|2 + |AL
⊥0|2 − |AL

‖0|2
)

+
1

2
αΛPΛb

(1− β2
l )Re

(
AR
⊥0A

∗L
⊥0 −AR

‖0A
∗L
‖0

)
+

1

2
αΛPΛb

(1− β2
l )
(
|A⊥t|2 − |A‖t|2

)
,

K32 =
1

4
αΛPΛb

(1 + β2
l )
(
|AR
⊥0|2 + |AL

⊥0|2 − |AR
‖0|2 − |AL

‖0|2
)

+
1

2
αΛPΛb

(1− β2
l )Re

(
AR
⊥0A

∗L
⊥0 −AR

‖0A
∗L
‖0

)
+

1

2
αΛPΛb

(1− β2
l )
(
|A⊥t|2 − |A‖t|2

)
,

K33 =
1

4
αΛPΛb

β2
l

(
|AR
⊥1|2 − |AR

‖1|2 + |AL
⊥1|2 − |AL

‖1|2
)
,

K34 =
1

2
αΛPΛb

β2
l Im

(
AR
⊥1A

∗R
‖1 +AL

⊥1A
∗L
‖1

)
.

The angular terms K29 and K31 are zero in the massless lepton limit.

5 Angular distribution of Λb→ J/ψΛ

The angular distribution of the Λb→ J/ψΛ decay is a limiting case of eq. (2.1), with a pure

vector current in the dilepton system. In this limit, the expression collapses to the one
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given in refs. [28, 29] with βl ∼ 1. The amplitudes a± and b± in refs. [28, 29] are related

to the ones in this paper by

a− = H ′ V,1−1/2, 0 , a+ = H ′ V,1+1/2, 0 ,

b− = H ′ V,1+1/2,+1 , b+ = H ′ V,1−1/2,−1 .
(5.1)

6 Weighting functions

The values of the normalised angular observables can be determined experimentally from

an analysis of the moments of the angular distribution,

Mi =
3

32π2

∫  34∑
j=0

Mjfj(~Ω)

 gi(~Ω)d~Ω (6.1)

if the weighting functions gi(~Ω) are chosen such that they satisfy∫
fj(~Ω)gi(~Ω)d~Ω =

(
32π2

3

)
δij . (6.2)

In this case, the moments can be extracted from data using Monte Carlo integration. The

statistical uncertainty and correlation between the moments can be determined from the

single sample covariance or by bootstrapping the measurement (see for example ref. [30]).

The weighting functions for M1–M10 are

g1(~Ω) =
1

4
(3− 5 cos2 θl) , g6(~Ω) = 3 cos θl cos θb , (6.3)

g2(~Ω) =
1

2
(5 cos2 θl − 1) , g7(~Ω) =

15

2
cos θl sin θl sin θb cos(φl + φb) ,

g3(~Ω) = cos θl , g8(~Ω) =
3

2
sin θl sin θb cos(φl + φb),

g4(~Ω) =
3

4
(3− 5 cos2 θl) cos θb , g9(~Ω) =

15

2
cos θl sin θl sin θb sin(φl + φb) ,

g5(~Ω) =
3

2
(5 cos2 θl − 1) cos θb , g10(~Ω) =

3

2
sin θl sin θb sin(φl + φb) .

These weighting functions have been previously derived in ref. [24]. The weighting functions

for the polarisation-dependent terms can be derived in a similar manner, they are

g11(~Ω) =
3

4
(3− 5 cos2 θl) cos θ , g16(~Ω) = 9 cos θ cos θl cos θb ,

g12(~Ω) =
3

2
(5 cos2 θl − 1) cos θ , g17(~Ω) =

45

2
cos θl sin θl sin θb cos θ cos(φl+φb) ,

g13(~Ω) = 3 cos θl cos θ , g18(~Ω) =
9

2
sin θl sin θb cos θ cos(φl+φb) ,

g14(~Ω) =
9

4
(3− 5 cos2 θl) cos θb cos θ , g19(~Ω) =

45

2
cos θl sin θl sin θb cos θ sin(φl + φb) ,

g15(~Ω) =
9

2
(5 cos2 θl − 1) cos θb cos θ , g20(~Ω) =

9

2
sin θl sin θb cos θ sin(φl+φb) ,
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g21(~Ω) =
15

2
cos θl sin θl sin θ sinφl , g28(~Ω) =

9

2
sin θ sin θl cos θb cosφl ,

g22(~Ω) =
3

2
sin θ sin θl sinφl , g29(~Ω) =

9

4
(5 cos2 θl−1) sin θb sin θ sinφb ,

g23(~Ω) =
15

2
cos θl sin θl sin θ cosφl , g30(~Ω) =

9

8
(3−5 cos2 θl) sin θb sin θ sinφb ,

g24(~Ω) =
3

2
sin θ sin θl cosφl , g31(~Ω) =

9

4
(5 cos2 θl−1) sin θb sin θ cosφb ,

g25(~Ω) =
45

2
cos θl sin θl cos θb sin θ sinφl , g32(~Ω) =

9

8
(3−5 cos2 θl) sin θb sin θ cosφb ,

g26(~Ω) =
9

2
sin θ sin θl cos θb sinφl , g33(~Ω) =

9

4
sin θb sin θ cos(2φl + φb),

g27(~Ω) =
45

2
cos θl sin θl cos θb sin θ cosφl , g34(~Ω) =

9

4
sin θb sin θ sin(2φl + φb) . (6.4)

The weighting functions are not unique and a more compact set can be formed by exploiting

the fact that the integral of sin θb over dcos θb is π/2 e.g. the weighting functions for M33

and M34 can be written in a shorter form as

g33(~Ω) =
6

π
sin θ cos (φb + 2φl) ,

g34(~Ω) =
6

π
sin θ sin (φb + 2φl) .

(6.5)

More compact expressions can also be found for many of the other observables. Note, the

different sets of weighting functions can lead to different experimental precision on the

normalised moments. In general, the longer form of the weighting functions provides the

best precision.

7 Standard model predictions

In order to describe the SM contribution to the decay amplitudes, an effective field theory

approach is used. The Hamiltonian for the decay is factorised into local four-fermion op-

erators and Wilson coefficients (see for example ref. [31]). The Wilson coefficients describe

the short-distance contributions from the heavy SM particles.

Numerical values for the SM predictions, in the case that PΛb
= 1, are provided in

appendix B in two q2 ranges: at large hadronic recoil, in the range 1 < q2 < 6 GeV2/c4, and

at low hadronic recoil, in the range 15 < q2 < 20 GeV2/c4. To evaluate SM predictions for

the different angular observables we use the EOS flavour tool [32]. At low hadronic recoil,

the SM calculations employ an operator product expansion of the four-quark contributions

to the matrix element in powers of ΛQCD/
√
q2 [33]. At large recoil, EOS uses some of the

known αs corrections to charm loop processes. However, potentially large contributions

from hard spectator scattering [34] and soft gluon emission [35] are neglected. The form-

factors for the Λb → Λ transition are taken from a recent Lattice QCD calculation in

ref. [27]. These form-factors enable the observables to be computed with high-precision.

The form-factors at large hadronic recoil have also been calculated in the framework of

light-cone-sum-rules, see for example Refs. [37] and [38]. The SM Wilson coefficients are
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computed in EOS to NNLO in QCD. The Λb lifetime and CKM matrix elements are taken

from the latest experimental values [26]. The quark masses are taken in the MS scheme.

Tables 2 and 3 in appendix B also provide 68% confidence level intervals for the SM

predictions. To evaluate these intervals: the form-factors from ref. [27] have been varied

within their full covariance matrix; the Λb lifetime, the Λ asymmetry parameter and CKM

matrix elements are varied within their experimental precision [26, 36]; the scale dependence

of Wilson coefficients Ci(µ) is explored by varying the scale, µ, in the range mb/2 < µ <

2mb; and in keeping with ref. [39] a 3% correction to the amplitudes from hadronic matrix

elements is considered (see also ref. [40]).

7.1 Low-hadronic recoil

At low hadronic recoil the observables are precisely predicted in the SM. The uncertainties

on the predictions are worse at large recoil, where a large extrapolation in q2 of the form-

factors is needed. Figures 2–9 in appendix C demonstrate how the observables depend on

NP contributions to the Wilson coefficients. In the large-recoil region there is sensitivity

to CNP
9 from both the polarised and unpolarised observables. Interestingly, the observables

M23 and M27 can also distinguish between two of the possibilities that are favoured by

global fits to b → s`+`− processes: where CNP
9 ' −1 with CNP

10 = 0 and where CNP
9 =

−CNP
10 ' −1 [41–43]. In the low-recoil range the sensitivity to CNP

9 is reduced.

In ref. [2], the authors point out that the observables at low hadronic recoil place

constraints on six combinations of Wilson coefficients

ρ±1 = |CV ± C ′V|2 + |C10 ± C10|2

ρ2 = Re
(
CVC

∗
10 − C ′VC ′∗10

)
− iIm

(
CVC

′∗
V + C10C

′∗
10

)
ρ±3 = 2Re

(
(CV ± C ′V)(C10 ± C ′10)∗

)
ρ4 = |CV|2 − |C ′V|2 + |C10|2 − |C ′10|2 − iIm

(
CVC

∗
10 − C ′VC ′∗10

)
,

(7.1)

where CV contains contributions from C7 and C9. The primed coefficients correspond

to right-handed currents whose contribution is vanishingly small in the SM. The short-

distance dependence of K1–K34 on ρ±1 , ρ±3 , ρ2 and ρ4 is provided for completeness in

appendix D.

If the Λb is unpolarised, the decay rate is insensitive to the short-distance contribution

Im(ρ2) but provides sensitivity to ρ±1 , Re(ρ2), ρ±3 , Re(ρ4) and Im(ρ4). The polarised

observables also depend on these short-distance contributions but have different form-

factor dependencies. This permits a new set of checks of the OPE and the form-factors.

The short-distance combination Im(ρ2) can also be determined from M19, M25, M30 and

M34. Furthermore, in K1–K10 the short-distance contributions ρ+
1 and ρ−1 always appear

together as a sum. Using the polarised observables , ρ+
1 and ρ−1 can be separated, e.g.

by using

K2 +
2

αΛPΛb

K33 = 16s−|fV⊥ |2ρ+
1 ,

K2 −
2

αΛPΛb

K33 = 16s+|fA⊥ |2ρ−1 ,
(7.2)
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where fV⊥ and fA⊥ are helicity form-factors (see for example ref. [44]). A similar trick can be

used to separate ρ+
3 and ρ−3 using K24 and K8. It is also possible to form new short-distance

relationships, in which the form-factors cancel by taking ratios of the Ki,

K16

K34
= 2

Re(ρ2)

Im(ρ2)
,

K25

K22
= − Im(ρ2)

Im(ρ4)
,

K23

K10
= −Re(ρ4)

Im(ρ4)
PΛb

. (7.3)

The short-distance combinations ρ2 and ρ4 can then be determined up-to their overall nor-

malisation, independent of the hadronic form-factors, using eq. (7.3) and the relationship

K3

K5
= − 1

αΛ

Re(ρ2)

Re(ρ4)
(7.4)

from ref. [2]. Similarly, one can form short-distance relationships that depend only on ρ±1
and ρ±3

PΛb
K8 + αΛK24

K27 −K17
= −ρ

−
3

ρ−1
,

PΛb
K8 − αΛK24

K27 +K17
=
ρ+

3

ρ+
1

. (7.5)

Alternatively, it is possible to form ratios that depend only on the form-factors and not on

the short-distance physics. For example,

K7

K5
=

1

2

(
(mΛb

+mΛ)√
q2

fV0
fV⊥
− (mΛb

−mΛ)√
q2

fA0
fA⊥

)
,

K23

K5
=

1

2

(
(mΛb

+mΛ)√
q2

fV0
fV⊥

+
(mΛb

−mΛ)√
q2

fA0
fA⊥

)
PΛb

(7.6)

allow the ratios fV0 /f
V
⊥ and fA0 /f

A
⊥ to be determined independent of the ρi.

7.2 Photon-polarisation at large hadronic-recoil

At very large hadronic recoil (q2 � 1 GeV2/c4), the angular distribution of the Λb →
Λµ+µ− decay is sensitive primarily to the Wilson coefficients C7 and C ′7 due to a pole-like

enhancement of the amplitudes. The observable K33 is proportional to Re(C7C
′
7) and can

therefore provide a null test of the size of C ′7 (in the same way as the S3 observable in

the B0 → K∗0µ+µ− decay). In this case, however, the observable is suppressed by the

size of PΛb
.

8 Expected experimental precision

Table 1 indicates the typical precision on the angular moments that could be achieved

at the LHCb experiment. The experimental precision has been estimated using pseudo-

experiments corresponding approximately to the expected signal yield in the current and

in a future LHCb dataset. Experimental backgrounds and non-uniform angular acceptance

have been neglected in this estimate. However, these are expected to have only a small

impact on the experiments sensitivity. The sensitivity that can be achieved with the large

datasets that will be available at an upgraded LHCb experiment is interesting event for

modest values of PΛb
.
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Obs. Run 1 Run 2 Upgrade Phase II Obs. Run 1 Run 2 Upgrade Phase II

M1 0.021 0.011 0.004 0.002 M18 0.071 0.038 0.014 0.006

M2 0.042 0.023 0.008 0.003 M19 0.156 0.084 0.030 0.012

M3 0.030 0.016 0.006 0.002 M20 0.071 0.038 0.014 0.006

M4 0.050 0.026 0.010 0.004 M21 0.090 0.048 0.017 0.007

M5 0.078 0.042 0.015 0.006 M22 0.041 0.022 0.008 0.003

M6 0.055 0.030 0.011 0.004 M23 0.089 0.047 0.017 0.007

M7 0.090 0.048 0.017 0.007 M24 0.036 0.019 0.007 0.003

M8 0.041 0.022 0.008 0.003 M25 0.156 0.083 0.030 0.012

M9 0.090 0.048 0.017 0.007 M26 0.071 0.038 0.014 0.006

M10 0.041 0.022 0.008 0.003 M27 0.156 0.083 0.030 0.012

M11 0.051 0.027 0.010 0.004 M28 0.071 0.038 0.014 0.005

M12 0.078 0.041 0.015 0.006 M29 0.097 0.052 0.019 0.008

M13 0.054 0.029 0.010 0.004 M30 0.062 0.033 0.012 0.005

M14 0.088 0.047 0.017 0.007 M31 0.097 0.052 0.019 0.008

M15 0.136 0.073 0.026 0.011 M32 0.062 0.033 0.012 0.005

M16 0.097 0.052 0.019 0.008 M33 0.061 0.033 0.012 0.005

M17 0.156 0.084 0.030 0.012 M34 0.061 0.033 0.012 0.005

Table 1. Expected experimental precision on the angular moments of the Λb→ Λµ+µ− decay at

the LHCb experiment. The four columns correspond to: the observed yield of 300 Λb→ Λµ+µ−

candidates with 15 < q2 < 20 GeV2/c4 in the LHC run 1 dataset [23]; an expected yield of ∼1000

candidates at the end of run 2 of the LHC; an expected yield of ∼8 000 candidates in 50 fb−1

of integrated luminosity with an upgraded LHCb experiment; and an expected yield of ∼50 000

candidates in 300 fb−1 with the proposed LHCb phase II upgrade.

9 Conclusion

In this paper we have derived an expression for the angular distribution of the Λb→ Λµ+µ−

in the case of non-zero production polarisation. This extends the number of observables in

the decay from 10 to 34. These observables can be determined from moments of the Λb→
Λµ+µ− angular distribution. Explicit expressions have been provided for the observables

in terms of the angular moments to enable an experiment to determine the new observables

from their dataset. A phenomenological analysis has also been performed to illustrate how

these observables might vary in extensions of the Standard Model. The analysis shows that

there is interesting new sensitivity that can be gained if the Λb baryon is produced polarised.
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A Wigner D-functions

The Wigner D-functions are

DJ
m′,m(α, β, γ) = e−im

′αdJm′,m(β)e−imγ (A.1)

where the α, β and γ correspond to the Euler rotation angles needed to rotate between the

reference frame of the mother particle and the helicity frame of its daughters. The relevant

small d-functions are

d
1/2
1/2,1/2(β) = cos(β/2) ,

d
1/2
1/2,−1/2(β) = − sin(β/2) ,

d1
1,1(β) = cos2(β/2) ,

d1
1,−1(β) = sin2(β/2) , (A.2)

d1
1,0(β) = cos(β/2) sin(β/2) ,

d1
0,0(β) = cos(β) ,

with

dJm′,m(β) = dJ−m,−m′(β) = (−1)m−m
′
dJm,m′(β) . (A.3)

B Numerical results

Standard Model predictions for the angular observables with PΛb
= 1 are provided in

tables 2 and 3. Predictions are provided in two q2 ranges: at large hadronic recoil, in the

range 1 < q2 < 6 GeV2/c4, and at low hadronic recoil, in the range 15 < q2 < 20 GeV2/c4.

The SM predictions are evaluated using the EOS flavour-tool. For any other choice of PΛb
,

predictions for M11–M34 can be achieved by multiplying the values in tables 2 and 3 by

the new value of PΛb
.

C Variation of observables with NP contributions

Figures 2–9 show the variation of M1–M34 under two possible modifications of the SM

Wilson coefficients: a scenario where there is a NP contribution to Re(C9) or Re(C10); and

a scenario where there is a NP contribution to Re(C9) or Re(C ′9).
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Obs. Value 68% interval Obs. Value 68% interval

M1 0.459 [0.453, 0.465] M6 0.000 [−0.005, 0.006]

M2 0.081 [0.071, 0.094] M7 −0.025 [−0.034,−0.014]

M3 −0.005 [−0.014,−0.001] M8 −0.003 [−0.016, 0.012]

M4 −0.280 [−0.290,−0.262] M9 0.002 [0.001, 0.002]

M5 −0.045 [−0.053,−0.037] M10 0.002 [0.001, 0.002]

M11 −0.366 [−0.383,−0.338] M23 −0.147 [−0.162,−0.133]

M12 0.071 [0.058, 0.081] M24 0.132 [0.120, 0.150]

M13 0.001 [−0.010, 0.007] M25 −0.001 [−0.001,−0.000]

M14 0.243 [0.230, 0.254] M26 0.004 [0.003, 0.005]

M15 −0.052 [−0.060,−0.045] M27 0.089 [0.081, 0.099]

M16 0.003 [0.001, 0.009] M28 −0.089 [−0.100,−0.080]

M17 0.004 [−0.012, 0.018] M29 0.000 [0.000, 0.000]

M18 0.029 [0.018, 0.037] M30 0.000 [0.000, 0.000]

M19 −0.001 [−0.002,−0.001] M31 0.000 [0.000, 0.000]

M20 −0.003 [−0.003, 0.002] M32 0.075 [0.035, 0.118]

M21 0.002 [0.001, 0.003] M33 0.007 [0.001, 0.012]

M22 −0.005 [−0.006,−0.003] M34 0.000 [−0.000, 0.000]

Table 2. Predictions from EOS for the angular observables of the Λb→ Λµ+µ− decay with PΛb
= 1

in the range 1 < q2 < 6 GeV2/c4. The SM calculation is described in the text. The observables M31

and M34 vanish due to the small size of the muon mass. Observables that depend on the imaginary

part of the product of two transversity amplitudes also tend to be vanishingly small, due to the

small strong phase difference between pairs of amplitudes in the SM.

Obs. Value 68% interval Obs. Value 68% interval

M1 0.351 [0.349, 0.353] M6 0.187 [0.183, 0.192]

M2 0.298 [0.294, 0.301] M7 −0.022 [−0.025,−0.019]

M3 −0.236 [−0.240,−0.230] M8 −0.100 [−0.105,−0.095]

M4 −0.195 [−0.200,−0.190] M9 0.000 [0.000, 0.001]

M5 −0.154 [−0.159,−0.149] M10 −0.001 [−0.001,−0.000]

M11 −0.064 [−0.069,−0.058] M23 −0.299 [−0.303,−0.295]

M12 0.240 [0.235, 0.245] M24 0.337 [0.335, 0.338]

M13 −0.292 [−0.295,−0.288] M25 −0.001 [−0.001,−0.000]

M14 0.034 [0.031, 0.038] M26 0.001 [0.000, 0.001]

M15 −0.191 [−0.196,−0.186] M27 0.221 [0.216, 0.226]

M16 0.151 [0.146, 0.156] M28 −0.187 [−0.191,−0.183]

M17 0.102 [0.096, 0.107] M29 0.000 [0.000, 0.000]

M18 0.021 [0.018, 0.024] M30 −0.001 [−0.001,−0.000]

M19 0.000 [0.000, 0.000] M31 0.000 [0.000, 0.000]

M20 −0.001 [−0.001,−0.001] M32 −0.046 [−0.050,−0.043]

M21 0.000 [0.000, 0.001] M33 −0.053 [−0.056,−0.050]

M22 −0.002 [−0.002,−0.001] M34 0.000 [0.000, 0.000]

Table 3. Predictions from EOS for the angular observables of the Λb→ Λµ+µ− decay with PΛb
= 1

in the range 15 < q2 < 20 GeV2/c4. The SM calculation is described in the text. The observables

M31 and M34 vanish due to the small size of the muon mass. Observables that depend on the

imaginary part of the product of two transversity amplitudes also tend to be vanishingly small, due

to the small strong phase difference between pairs of amplitudes in the SM.
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Figure 2. Variation of the observables M1–M10 of the Λb→ Λµ+µ− decay from their SM central

values in the large-recoil region (1 < q2 < 6 GeV2/c4) with a NP contribution to Re(C9) or Re(C10).

The SM point is at (0, 0).
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Figure 3. Variation of the polarisation dependent angular observables of the Λb→ Λµ+µ− decay

from their SM central values in the large-recoil region (1 < q2 < 6 GeV2/c4) with a NP contribution

to Re(C9) or Re(C10). The SM point is at (0, 0). To illustrate the size of the effects, PΛb
= 1

is used.
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Figure 4. Variation of the observables M1–M10 of the Λb→ Λµ+µ− decay from their SM central

values in the low-recoil region (15 < q2 < 20 GeV2/c4) with a NP contribution to Re(C9) or Re(C10).

The SM point is at (0, 0).
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Figure 5. Variation of the polarisation dependent angular observables of the Λb→ Λµ+µ− decay

from their SM central values in the low-recoil region (15 < q2 < 20 GeV2/c4) with a NP contribution

to Re(C9) or Re(C10). The SM point is at (0, 0). To illustrate the size of the effects, PΛb
= 1 is used.
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Figure 6. Variation of the observables M1–M10 of the Λb→ Λµ+µ− decay from their SM central

values in the large-recoil region (1 < q2 < 6 GeV2/c4) with a NP contribution to Re(C9) or Re(C ′9).

The SM point is at (0, 0).
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Figure 7. Variation of the polarisation dependent angular observables of the Λb→ Λµ+µ− decay

from their SM central values in the large-recoil region (1 < q2 < 6 GeV2/c4) with a NP contribution

to Re(C9) or Re(C ′9). The SM point is at (0, 0). To illustrate the size of the effects, PΛb
= 1 is used.
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Figure 8. Variation of the observables M1–M10 of the Λb→ Λµ+µ− decay from their SM central

values in the low-recoil region (15 < q2 < 20 GeV2/c4) with a NP contribution to Re(C9) or Re(C ′9).

The SM point is at (0, 0).
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Figure 9. Variation of the polarisation dependent angular observables of the Λb→ Λµ+µ− decay

from their SM central values in the low-recoil region (15 < q2 < 20 GeV2/c4) with a NP contribution

to Re(C9) or Re(C ′9). The SM point is at (0, 0). To illustrate the size of the effects, PΛb
= 1 is used.

– 24 –



J
H
E
P
1
1
(
2
0
1
7
)
1
3
8

D Short-distance dependence at low hadronic recoil

In the limit of low hadronic recoil, and neglecting lepton mass dependent effects, the Ki

functions can be written in terms of the short-distance dependent ρ-functions of ref. [2] as

K1 = 4s+

(
|fA⊥ |2 +

(mΛb
−mΛ)2

q2
|fA0 |2

)
ρ−1

+ 4s−

(
|fV⊥ |2 +

(mΛb
+mΛ)2

q2
|fV0 |2

)
ρ+

1 ,

K2 = 8s+|fA⊥ |2ρ−1 + 8s−|fV⊥ |2ρ+
1 ,

K3 = 32
√
s+s−f

A
⊥f

V
⊥Re(ρ2) ,

K4 = −16αΛ
√
s+s−

(
fA⊥f

V
⊥ +

(m2
Λb
−m2

Λ)

q2
fV0 f

A
0

)
Re(ρ4) ,

K5 = −32αΛ
√
s+s−f

A
⊥f

V
⊥Re(ρ4) ,

K6 = −8αΛs+|fA⊥ |2ρ−3 − 8αΛs−|fV⊥ |2ρ+
3 ,

K7 = −16αΛ
√
s+s−

(
(mΛb

+mΛ)√
q2

fV0 f
A
⊥ −

(mΛb
−mΛ)√
q2

fA0 f
V
⊥

)
Re(ρ4)

K8 = 8s+αΛ
(mΛb

−mΛ)√
q2

fA0 f
A
⊥ρ
−
3 − 8s−αΛ

(mΛb
+mΛ)√
q2

fV0 f
V
⊥ ρ

+
3 ,

K10 = 16αΛ
√
s+s−

(
(mΛb

+mΛ)√
q2

fV0 f
A
⊥ +

(mΛb
−mΛ)√
q2

fA0 f
V
⊥

)
Im(ρ4) ,

(D.1)

and

K11 = −16PΛb

√
s+s−

(
fA0 f

V
0

(m2
Λb
−m2

Λ)

q2
− fA⊥fV⊥

)
Re(ρ4) ,

K12 = 32PΛb

√
s+s−f

A
⊥f

V
⊥Re(ρ4) ,

K13 = 8PΛb
s+|fV⊥ |2ρ−3 + 8PΛb

s−|fA⊥ |2ρ+
3 ,

K14 = −4αΛPΛb
s−

(
|fV⊥ |2 − |fV0 |2

(mΛb
+mΛ)2

q2

)
ρ+

1

− 4αΛPΛb
s+

(
|fA⊥ |2 − |fA0 |2

(mΛb
−mΛ)2

q2

)
ρ−1 ,

K15 = −8αΛPΛb
s−|fV⊥ |2ρ+

1 − 8αΛPΛb
s+|fA⊥ |2ρ−1 ,

K16 = −32αΛPΛb

√
s+s−f

A
⊥f

V
⊥Re(ρ2) ,

K17 = −8αΛPΛb
s−

(mΛb
+mΛ)√
q2

fV0 f
V
⊥ ρ

+
1 + 8αΛPΛb

s+
(mΛb

−mΛ)√
q2

fA0 f
A
⊥ρ
−
1 ,
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K18 = −16αΛPΛb

√
s+s−

(
(mΛb

+mΛ)√
q2

fV0 f
A
⊥ −

(mΛb
−mΛ)√
q2

fA0 f
V
⊥

)
Re(ρ2) ,

K19 = 16αΛPΛb

√
s+s−

(
(mΛb

+mΛ)√
q2

fV0 f
A
⊥ +

(mΛb
−mΛ)√
q2

fA0 f
V
⊥

)
Im(ρ2) ,

K22 = 16PΛb

√
s+s−

(
(mΛb

+mΛ)√
q2

fV0 f
A
⊥ −

(mΛb
−mΛ)√
q2

fA0 f
V
⊥

)
Im(ρ4) ,

K23 = −16PΛb

√
s+s−

(
(mΛb

+mΛ)√
q2

fV0 f
A
⊥ +

(mΛb
−mΛ)√
q2

fA0 f
V
⊥

)
Re(ρ4) , (D.2)

K24 = −8PΛb
s−

(mΛb
+mΛ)√
q2

fV0 f
V
⊥ ρ

+
3 − 8PΛb

s+
(mΛb

−mΛ)√
q2

fA0 f
A
⊥ρ
−
3 ,

K25 = −16αΛPΛb

√
s+s−

(
(mΛb

+mΛ)√
q2

fV0 f
A
⊥ −

(mΛb
−mΛ)√
q2

fA0 f
V
⊥

)
Im(ρ2) ,

K27 = 8αΛPΛb
s−

(mΛb
+mΛ)√
q2

fV0 f
V
⊥ ρ

+
1 + 8αΛPΛb

s+
(mΛb

−mΛ)√
q2

fA0 f
A
⊥ρ
−
1 ,

K28 = 16αΛPΛb

√
s+s−

(
(mΛb

+mΛ)√
q2

fV0 f
A
⊥ +

(mΛb
−mΛ)√
q2

fA0 f
V
⊥

)
Re(ρ2) ,

K30 = −16αΛPΛb

√
s+s−

(m2
Λb
−m2

Λ)

q2
fA0 f

V
0 Im(ρ2) ,

K32 = 4αΛPΛb
s−

(mΛb
+mΛ)2

q2
|fV0 |2ρ+

1 − 4αΛPΛb
s+

(mΛb
−mΛ)2

q2
|fA0 |2ρ−1 ,

K33 = 4αΛPΛb
s−|fV⊥ |2ρ+

1 − 4αΛPΛb
s+|fA⊥ |2ρ−1 ,

K34 = −16αΛPΛb

√
s+s−f

A
⊥f

V
⊥ Im(ρ2) .

The remaining Ki’s vanish in the low-recoil and zero lepton mass limits. In eqs. (D.1)

and (D.2): fV0 , fA0 , fV⊥ and fA⊥ are the vector and axial-vector helicity form-factors for the

Λb → Λ transition; mΛb
and mΛ are the masses of the Λb and Λ baryon, respectively; and

s± = (mΛb
±mΛ)2 − q2. The four contributing tensor form-factors have been removed by

exploiting Isgur-Wise relationships [44] to relate the tensor form-factors to the vector and

axial-vector form-factors.
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