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Abstract
We study the Glauber dynamics of a two dimensional Blume-Capel model (or dilute Ising
model) with Kac potential parametrized by (β, θ) - the “inverse temperature” and the “chem-
ical potential”. We prove that the locally averaged spin field rescales to the solution of the
dynamical Φ4 equation near a curve in the (β, θ) plane and to the solution of the dynamical
Φ6 equation near one point on this curve. Our proof relies on a discrete implementation of
Da Prato-Debussche method [DPD03] as in [MW16] but an additional coupling argument
is needed to show convergence of the linearized dynamics.
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1 Introduction

The theory of singular stochastic partial differential equations (SPDEs) has witnessed enor-
mous progress in the last years. Most prominently, Hairer’s work on regularity structures
[Hai14] allowed to develop a stable notion of solution for a large class of SPDEs which
satisfy a scaling condition called subcriticality. Roughly speaking, a semi-linear SPDE
equation is subcritical (or super-renormalizable), if the behaviour of solutions on small scales
is dominated by the evolution of the linearized Gaussian dynamics. The class of subcritical
equations includes, for example, the KPZ equation in one spatial dimension, as well as
reaction diffusion equations with polynomial nonlinearities

dX = (∆X +
n∑
k=1

a2k−1X
2k−1) dt+ dW a2n−1 < 0 (1.1)
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driven by a space time white noise dW , if the space dimension d satisfies d < 2n
n−1

(of
course strictly speaking the dimension d has to be an integer but one could emulate fractional
dimensions by adjusting the linear operator or the covariances of the noise). In particular,
for d = 3, equation (1.1) is only subcritical for the exponent 2n − 1 = 3 while for d = 2,
equation (1.1) is subcritical for all n. We will refer to these equations as dynamical Φ4

3 and
Φ2n

2 equations. Note that even in the subcritical case the expression (1.1) has to be interpreted
with caution: for d ≥ 2 a renormalization procedure which amounts to subtracting one or
several infinite terms has to be performed. The fact that these solutions behave like the
linearized dynamics on small scales but very nontrivially on large scales is related with
the role they play in the description of crossover regimes between universality classes in
statistical physics. For example, the KPZ equation describes the crossover regime between the
Edwards-Wilkinson (Gaussian) fixed point and the “KPZ fixed point”, while the dynamical
Φ4 equation describes such a crossover mechanism between the Gaussian and the “Wilson-
Fisher fixed point”. In two space dimensions the existence of infinitely many fixed points
was predicted by conformal field theory, and the Φ2n

2 equations should describe the crossover
regimes between the Gaussian and this family of fixed points ([FFS92, Fig. 4.3]).

One key interest when studying these SPDEs is to understand how they arise as scaling
limits of various microscopic stochastic systems. Here it is important to note that the
equations are not scale invariant themselves (this is immediate from subcriticality). However,
they arise as scaling limits of systems with tunable model parameters that are modified as
the system is rescaled. Starting with Bertini and Giacomin’s famous result [BG97] on the
convergence of the weakly asymmetric simple exclusion process to the KPZ equation, by
now many results in this direction have been obtained for the KPZ equation (for example
[ACQ11, DT16, CT15, CST16, Lab17] based on the Cole-Hopf transform, [GJ14, GJ16,
DGP17] based on the notion of energy solution, and [HQ15, HS15] based on regularity
structures). Connections between the stationary Φ4

2 theory and Ising-like models were already
observed in the seventies; early references include [SG73] where the equilibrium Φ4

2 theory
was obtained from an Ising-like model by a two-step limiting procedure. The dynamical
equation (1.1) in one dimension was obtained as a scaling limit for a dynamic Ising model
with Kac interation in the nineties [BPRS93, FR95]. More precisely, the Kac Ising model is a
spin model taking values in the {±1} valued configurations over a graph (Z or a subinterval
of Z in the case of [BPRS93, FR95]). The static equilibrium model is given as the Gibbs
measures associated to the Hamiltonian

Hγ(σ) = −1

2

∑
k,j

κγ(k − j)σ(j)σ(k), (1.2)

where κγ is a non-negative interaction kernel parametrised by γ > 0 which determines the
interaction range between spins. In [BPRS93, FR95] the Glauber dynamics for this model
were considered and it was shown that the locally averaged field hγ = σ ∗κγ converges in law
to a solution to the Φ4

1 equation when suitably rescaled. Similar results in higher dimensions
d = 2, 3 were conjectured in [GLP99] but a complete proof in the two dimensional case
was given only recently [MW16]. A similar convergence result is expected to hold in three
dimensions, though a complete proof has not been established yet; however in [HX16, SX16]
it was shown that a class of continuous phase coexistence models rescale to Φ4

3. 1

1In [HX16] also different limits such as a dynamical Φ3
3 theory, which may blow up in finite time where

obtained, but in order to achieve this the σ 7→ −σ symmetry in the model had to be broken.
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The tunable parameter in all of the results on convergence of variants of the asymmetric
simple exclusion process to KPZ, is the asymmetry of the exclusion process: making it
smaller and smaller corresponds to making the model locally more “Gaussian” which in turn
corresponds to the fact that the dynamics on small scales are dominated by solutions of the
linear equation. In the Kac-Ising case this tunable parameter is the range of the interaction
kernel κγ . As the system is observed on larger and larger scales locally more and more
particles interact i.e. locally the system is closer to mean field.

In order to obtain the scaling limit to Φ4
2 in [MW16] five parameters had to be chosen

in a certain way: three “scaling parameters” namely the space scaling, the time scaling, the
rescaling of the field as well as two “model parameters”, the range of the Kac interaction
and the temperature. It turns out that in order to obtain a non-linear scaling SPDE as scaling
limit, one has to choose the temperature close to the mean field critical value, although in
two dimensions there is a small shift which corresponds to the renormalization procedure for
the limiting equation, and a similar effect is expected in three dimensions. The remaining
parameters have to be tuned in exactly the right way to balance all terms in the equation. It
is natural to expect that in two space dimensions introducing additional parameters should
allow to balance even more terms leading to higher order terms in the equation. In this work
we show that this is indeed the case. We allow for microscopic spin to take values in {±1, 0}
i.e. we add the possibility of a spin value 0. The Hamiltonian thus becomes:

Hγ(σ) = −1

2

∑
k,j

κγ(k − j)σ(j)σ(k)− θ̃
∑
j

σ(j)2, (1.3)

where the extra parameter θ̃ plays a role of chemical potential which describes a ratio of the
number of “magnetized” spins (σ(j) 6= 0) over the number of “neutral” spins (σ(j) = 0). In
the limit θ̃ →∞ we recover the original Kac-Ising model.

This model is the (Kac version) of the Blume-Capel model (initially proposed by [Blu66,
Cap66]). This Blume-Capel model as well as the closely related (but slightly more complex)
“Blume-Emery-Griffiths” (BEG) model [BEG71] have been widely used to describe “multi-
critical” phenomena in equilibrium physics. Physicists also studied phase transitions for
the Glauber type dynamics of mean field BEG model [CDK06]. Mathematically, the mean
field model in equilibrium was studied by in series of papers [EOT05, CEO07, EMO10] (see
more references therein), analyzed the phase diagrams and proved that the suitably rescaled
total spin converges to a random variable which is distributed with density Ce−cx2 , Ce−cx4 or
Ce−cx

6 in different regimes. Also, the work [EM14] obtained the rates of these convergences.
Regarding the dynamics, mixing theorems are also proved, see [KOT11, EKLV14]. The
Blume-Capel model is also often referred as the (site) dilute Ising model (c.f. for instance
the physics book [FMS12, Section 7.4.3] or on the mathematical side [HSS00, CKS95] and
references therein): one considers the site percolation of the square lattice with percolation
probability p and the usual Ising model on the percolation clusters. The joint measure of
the percolation and Ising model is then the Gibbs measure with Hamiltonian (1.3) if one
identifies eβθ̃ = (1− p)−1 − 1. The Glauber dynamics are then defined on both percolation
and Ising configurations. The results of this article can then be stated as convergence to the
SPDEs by suitable tuning the Ising temperature and percolation probability.

Our main result, Theorem 2.5, shows that for a one parameter family of parameters we
obtain the Φ4

2 equation in the scaling limit. This family ends at a “tricritical point” where
(after different rescaling) we get the Φ6

2 equation (see Figure 1). Our equation for this
curve of parameters and the value of the tricritical point coincide with the mean field results
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a
def
= eβθ̃

β

critical curve Cc : 2a
2a+1β − 1 = 0

(a∗c , β
∗
c ) = ( 14 , 3)

Figure 1: The Glauber dynamic of Blume-Capel model rescales to the Φ4
2 equation for a

curve of parameters in the (θ̃, β) plane, parametrized here in terms of (a = eβθ̃, β). The
leading coefficient of the non-linearity in the limiting equation changes along the curve and
vanishes at the tricritical point (a∗c , β

∗
c ). Close to this point a different rescaling leads to the

Φ6
2 equation. Following the curve beyond this point would lead to a change of sign in the

leading order term resulting in finite time blowup of the corresponding SPDE.

in [BEG71], but as in the [MW16] logarithmic corrections to these mean field values are
necessary to obtain the convergence results. These logarithmic corrections correspond exactly
to the “logarithmic infinities” that appear in the renormalization procedures for the limiting
equation.

Meta-theorem 1.1 Let hγ = κγ ∗σ be the locally averaged spin field of the Glauber dynamic
of Kac-Blume-Capel model. There exist a one parameter family of “critical values” and
one “tri-critical value”, such that when (β, θ) approaches a critical value at a suitable
rate (which reflects the renormalization procedure for the limiting equation), Xγ(t, x) =
γ−1hγ(t/γ2, x/γ2) converges to the solution of the dynamical Φ4 equation, and when (β, θ)
approaches the tri-critical value at a suitable rate, Xγ(t, x) = γ−1hγ(t/γ4, x/γ3) converges
to the solution of the dynamical Φ6 equation.

It seems natural to conjecture that if one makes the model more complex (e.g. by allowing
even more general spins and extra interaction terms in the Hamiltonian) any Φ2n

2 model could
be obtained.

On a technical level just as [MW16] our method relies on a discretization of Da Prato-
Debussche’s solution theory for (1.1) in two dimensions [DPD03]. A main step is to prove
convergence in law (with respect to the right topology) for the linearized dynamics as well
as suitably defined “Wick powers” of these linearizations. In a second step this is then put
into discretization of the “remainder equation” and tools from harmonic analysis are used
to control the error. The most striking difference in the present work with respect to the
technique in [MW16] is a difficulty to describe the fluctuation characteristics. In [MW16]
the quadratic variation of the martingale Mγ (see (2.11) below for its definition) is equal
to a deterministic constant up to a small error which can be controlled with a soft method.
In the framework of the present paper this is not true anymore, and the quadratic variation
has to be averaged over large temporal and spatial scales to characterize the noise in the
limiting equation as white noise. We implement this averaging by coupling the spin field
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σ(t, k) to a much simpler field σ̃(t, k) which can be analyzed directly. This auxiliary process
lacks the subtle large scale effects of σ captured in our main result, but it has similar local
jump dynamics and it turns out that σ(t, k) coincides with σ̃(t, k) for many t and k which is
enough.

The structure of the paper is as follows. In Section 2 we discuss the two scaling regimes of
our model and formally derive the limiting equation in each regime. Section 3 is mainly aimed
to show the convergence of the linearized equation. It is here that we present the coupling
argument used to show the averaging of the martingale fluctuation. Section 4 contains the rest
of the argument (the discrete Da Prato-Debussche method etc.). This part of the argument is
close to [MW16], but one difference with respect to [MW16] is the replacement of the L∞

norm used there by an Lp norm which becomes necessary because of an error term which
arises in the coupling argument and which is only controlled in Lp.

Acknowledgements
We would like to thank Weijun Xu for many helpful discussions on phase coexistence
models and the dynamical Φ4 equations. H.S. was partially supported by the NSF through
DMS-1712684.

2 Model, formal derivations and main result

The (Kac-)Blume-Capel model in equilibrium is defined as a Gibbs measure λγ on the
configuration space ΣN = {−1, 0,+1}ΛN with ΛN = Z2/(2N + 1)Z2 being the two-
dimensional discrete torus of size 2N + 1. More precisely

λγ(σ) def
=

1

Zγ

exp
(
− βHγ(σ)

)
,

where β > 0 is the inverse temperature, and Zγ denotes the normalization constant that is
equal to the sum of the exponential weights over all configurations σ ∈ ΣN . The Hamiltonian
Hγ of the model is defined via

Hγ(σ) def
= −1

2

∑
k,j∈ΛN

κγ(k − j)σ(j)σ(k)− θ̃
∑
j∈ΛN

σ(j)2 (2.1)

where θ̃ is a real parameter, σ ∈ ΣN , and κγ is the interaction kernel which has support
size O(γ−1), which is constructed as follows: Let K : R2 → [0, 1] be a rotation invariant C2

function with support contained in the ball of radius 3 around the origin, such that∫
R2

K(x) dx = 1,

∫
R2

K(x) |x|2 dx = 4 . (2.2)

Then, for 0 < γ < 1
3
, κγ : ΛN → [0,∞) is defined as κγ(0) = 0 and

κγ(k) =
γ2 K(γk)∑

k∈ΛN\{0} γ
2 K(γk)

k 6= 0 . (2.3)

We are interested in the following Glauber dynamics, a natural Markov process on
(ΣN , λγ) which is reversible for λγ . This process is defined in terms of the jump rates
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cγ(σ;σ(j) → σ̄(j)) for a configuration σ, to change its spin σ(j) at position j ∈ ΛN to
σ̄(j) ∈ {±1, 0}. This rate only depends on the final value σ̄(j) and is given by

cγ(σ, j,−1) def
= cγ(σ;σ(j)→ −1) = e−βhγ (σ,j)+θ/Nβ,θ(hγ(σ, j)) ,

cγ(σ, j, 0) def
= cγ(σ;σ(j)→ 0) = 1/Nβ,θ(hγ(σ, j)) ,

cγ(σ, j, 1) def
= cγ(σ;σ(j)→ +1) = eβhγ (σ,j)+θ/Nβ,θ(hγ(σ, j))

where θ def
= θ̃β and hγ is the locally averaged field

hγ(σ, k) def
=
∑
j∈ΛN

κγ(k − j)σ(j) =: κγ ? σ(k) , (2.4)

and Nβ,θ(hγ(σ, j)) is a normalization factor

Nβ,θ(hγ(σ, j)) def
= e−βhγ (σ,j)+θ + 1 + eβhγ (σ,j)+θ .

This can be written in a streamlined way

cγ(σ, j, σ̄(j)) = eσ̄(j)βhγ (σ,j)+σ̄(j)2θ/Nβ,θ(hγ(σ, j)) . (2.5)

The generator of the Markov process is then given by

Lγf (σ) =
∑
j∈ΛN

∑
σ̄(j)∈{0,±1}

cγ(σ, j, σ̄(j)) (f (σ̄)− f (σ)) (2.6)

where f : ΣN → R and σ̄ is the new spin configuration obtained by flipping the spin σ(j) in
the configuration σ to σ̄(j). Let

hγ(t, k) def
= hγ(σ(t), k)

then one has

hγ(t, k) = hγ(0, k) +

∫ t

0

Lγ hγ(s, k) ds+mγ(t, k) , (2.7)

where the process mγ(·, k) is a martingale, whose explicit form (quadratic variation etc.) will
be discussed in Section 3. For the moment we focus on the drift term Lγ hγ(s, k). Since σ
and σ̄ can only differ in their spin values at site j, one has

hγ(σ̄, k)− hγ(σ, k) = κγ(k − j) (σ̄(j)− σ(j)) ,

and pluggin this into (2.6) yields

Lγhγ(σ, k) =
∑
j∈ΛN

∑
σ̄(j)∈{±1,0}

κγ(j − k) (σ̄(j)− σ(j)) cγ(σ, j, σ̄(j)) .

Using the fact that
∑

σ̄(j)∈{±1,0} cγ(σ, j, σ̄(j)) = 1, one can alternatively write

Lγhγ(σ, k) =
∑
j∈ΛN

κγ(j − k)
(
− σ(j) +

∑
σ̄(j)∈{±1,0}

σ̄(j) cγ(σ, j, σ̄(j))
)
.
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The Taylor expansion of cγ(σ, j, σ̄(j)) in βhγ(σ, j) gives

cγ(σ, j, σ̄(j)) =
∞∑
n=0

cn β
nhγ(σ, j)n (2.8)

where the coefficients cn are given by (we only list the ones we will use):

c1 =
σ̄(j)eσ̄(j)2θ

1 + 2eθ
, c3 =

σ̄(j)eσ̄(j)2θ
(
σ̄(j)2 + 2 (σ̄(j)2 − 3) eθ

)
6(1 + 2eθ)2

,

c5 =
σ̄(j)eσ̄(j)2θ

(
4 (σ̄(j)2 − 5)

2
e2θ − 2 (8σ̄(j)2 + 5) eθ + σ̄(j)2

)
120(1 + 2eθ)3

.

Therefore one has

Lγhγ(σ, k) =
(
κγ ? hγ(σ, k)− hγ(σ, k)

)
+ Aβ,θ κγ ? hγ(σ, k)

+Bβ,θ κγ ? h
3
γ(σ, k) + Cβ,θ κγ ? h

5
γ(σ, k) + . . .

where the remaining terms denoted by “· · · ” are terms of the form κγ ? h
n
γ with n odd and

n > 5, and

Aβ,θ
def
=

2a

2a+ 1
β − 1 , Bβ,θ

def
= − a(4a− 1)

3(2a+ 1)2
β3 ,

Cβ,θ
def
=
a(64a2 − 26a+ 1)

60(1 + 2a)3
β5 (a def

= eθ = eβθ̃) .
(2.9)

Note that all the terms κγ ? hnγ with even powers n vanish, because cγ(σ, j, σ̄(j)) remains
unchanged under (hγ(σ, j), σ̄(j)) 7→ (−hγ(σ, j),−σ̄(j)), thus the coefficients cn in (2.8) for
n even must be even functions in σ̄(j). Multiplying this coefficient by σ̄(j) and summing
over σ̄(j) ∈ {±1, 0} necessarily yields zero.

Remark 2.1 As mentioned in Section 1, letting θ →∞ in the Hamiltonian (2.1) one recovers
the Kac-Ising model. Here in the above expansion for Lγhγ , if we send θ →∞, we obtain
the same coefficients in the corresponding expansion [MW16, Eq. (2.10)] for the Ising case.

We set ε = 2
2N+1

. Now every microscopic point k ∈ ΛN can be identified with x =
εk ∈ Λε = {x = (x1, x2) ∈ εZ2 : x1, x2 ∈ (−1, 1)}. We view Λε as a discretization of the
continuous torus T2 identified with [−1, 1]2. We define the scaled field

Xγ(t, x) = δ−1hγ(t/α, x/ε) , (2.10)

so that

dXγ(t, x) =
( ε2

γ2

1

α
∆̃γXγ(t, x) +

Aβ,θ
α

Kγ ?ε Xγ(t, x) +
Bβ,θδ

2

α
Kγ ?ε X

3
γ (t, x)

+
Cβ,θδ

4

α
Kγ ?ε X

5
γ (t, x) +Kγ ?ε Eγ(t, x)

)
dt+ dMγ(t, x) , (2.11)

where the martingale Mγ is defined by Mγ(t, x) = δ−1mγ(t/α, x/ε) and has an explicit
quadratic variation of order ε2/(δ2α) (see (3.8) below); the function Kγ(x) def

= ε−2κγ(ε−1x)
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is scaled to approximate the Dirac distribution; the convolution ?ε on Λε is defined through
X ?ε Y (x) =

∑
z∈Λε

ε2X(x− z)Y (z); and ∆̃γX = γ2

ε2
(Kγ ?εX −X), so that ∆̃γ scales like

the continuous Laplacian. The error term Eγ is given by

Eγ =
1

δα

(∑
σ̄∈{±1,0} σ̄ e

σ̄βδXγ+σ̄2θ∑
σ̄∈{±1,0} e

σ̄βδXγ+σ̄2θ
− 2a

2a+ 1
βδXγ −Bβ,θδ

3X3
γ − Cβ,θδ5X5

γ

)
. (2.12)

Now formally:

• By choosing Aβ,θ/α = O(1) (which means that one tunes β, θ close to a curve in
the β − θ plane given by Aβ,θ = 0) and the scaling of ε, α, δ such that the Laplacian,
martingale and cubic terms are all of O(1), namely

ε ≈ γ2, α = γ2, δ = γ , (2.13)

one formally obtains the Φ4 equation, as long as Bβ,θδ
2/α is strictly negative.

• However, if (β, θ) is tuned to be close to a special point (β∗c , θ
∗
c ) = (3,− ln 4) (which

is a mean field value of a “tricritical” point given by Aβ,θ = Bβ,θ = 0) on the
aforementioned curve, then under the scaling (2.13), the coefficient Bβ,θδ

2/α vanishes,
which would formally result in an Ornstein-Uhlenbeck process. To observe a nontrivial
limit we have to consider a different scale. In fact by imposing that bothAβ,θ/α = O(1)
and Bβ,θδ

2/α = O(1) and that the Laplacian, martingale and quintic terms are all of
O(1), namely

ε ≈ γ3, α = γ4, δ = γ , (2.14)

one formally obtains the Φ6 equation.

We will refer to the above two cases as “the first (scaling) regime” and “the second (scaling)
regime”. The curve in the β − θ plane was shown in Fig. 1 Note that at (βc, θc) the coefficient
in front of X5 is negative (Cβc,θc = −9/20) as desired for long time existence of solution.

Here, since the domain ΛN has integer size, we can only choose our space rescaling as
ε = 2

2N+1
, and N = bγ−2c in the first regime or N = bγ−3c in the second regime. This is

why we wrote ≈ above. Write

∆γ = c2
γ,2∆̃γ =

ε2

γ2α
∆̃γ (2.15)

where the coefficient cγ,2 = ε
γ2

in the first regime (2.13) or cγ,2 = ε
γ3

in the second regime
(2.14) and is close to 1 up to an error O(γ2).

Remark 2.2 In d space dimensions, the only difference in the above scaling arguments is
that the rescaled martingale Mγ(t, x) has an explicit quadratic variation of order εd/(δ2α), so
the condition of retaining Laplacian, martingale and quintic terms becomes

ε ≈ γ
6

6−2d , α = γ
2d
3−d , δ = γ

d
6−2d ,

It is manifest now that if d = 3 the above relation cannot be satisfied, which corresponds
exactly to the fact that the subcriticality condition for the Φ6

d model is d < 3. This may be
compared with the scaling for the Φ4

d model in [MW16, Remark 2.2] as following.

ε ≈ γ
4

4−d , α = γ
2d
4−d , δ = γ

d
4−d .
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As discussed in [MW16], the above formal derivation is not correct. Instead, in the first
regime, fixing a point (ac, βc) on the curve Cc, one should write the linear and cubic terms as

Kγ ?ε

(Bβ,θδ
2

α
(X3

γ − 3cγXγ) +
Aβ,θ + 3cγBβ,θδ

2

α
Xγ

)
(2.16)

where cγ is a logarithmically divergent renormalization constant, and tune (a, β) such that
(Aβ,θ + 3cγBβ,θδ

2)/α = a1 + c1(γ) where a1 ∈ R is a fixed constant, and c1(γ) is a quantity
vanishing as γ → 0 which will give us certain freedom, namely,

2a

2a+ 1
β − 1 = γ2

(
cγ
a(4a− 1)
(2a+ 1)2

β3 + a1 + c1(γ)
)
.

The precise value of cγ will be given below (Eq. (2.36)); the difference between βccγ and∑
ω∈Z2

0<|ω|<γ−1

1

4π2|ω|2

remains bounded as γ goes to 0. One could well take c1(γ) = 0; but the above tuning is not
very transparent because there are two parameters (a, β) and the right hand side also involves
a, β. To make the tuning more explicit, we can for instance first choose a = a(γ) to be any
sequence such that |a− ac| = O(γ2), and then replace the quantity a(4a−1)

(2a+1)2β
3 by ac(4ac−1)

(2ac+1)2 β
3
c

with an error of o(γ). We then choose c1(γ) to exactly cancel this error, and tune β according
to

2a

2a+ 1
β − 1 = γ2

(ac(4ac − 1)
(2ac + 1)2

β3
c cγ + a1

)
, (2.17)

where a stands for the sequence a(γ) chosen above that converges to ac. Note that if a→∞
we recover from (2.17) the choice of β in [MW16, Eq (2.18)].

In the second regime, recall that the fifth Hermite polynomial is x5 − 10x3 + 15x. One
should write the linear, cubic and quintic terms as

Kγ ?ε

(Aβ,θ
α

Xγ +
Bβ,θδ

2

α
X3
γ +

Cβ,θδ
4

α
X5
γ

)
= Kγ ?ε

(Cβ,θδ4

α
(X5

γ − 10cγX
3
γ + 15c2

γXγ) +
Bβ,θδ

2 + 10Cβ,θδ
4cγ

α
(X3

γ − 3cγXγ)

+ (
Aβ,θ
α

+ 3cγ
Bβ,θδ

2 + 5Cβ,θδ
4cγ

α
)Xγ

)
(2.18)

So one should tune (a, β) such that the coefficient in front of (X3
γ − 3cγXγ) is equal to

a3 +c3(γ) where a3 ∈ R is a fixed constant; noting that Cβ,θ = Cβc,θc+o(γ) = −9/20+o(γ),
one can replace Cβ,θ by −9/20 and suitably choose c3(γ) to cancel this error, and thus obtain

− a(4a− 1)
3(2a+ 1)2

β3 = γ2
(9

2
cγ + a3

)
. (2.19)

One should furthermore impose that the coefficient in front of Xγ in (2.18) is equal to
a1 + c1(γ) where a1 ∈ R is a fixed constant, and suitably choose c1(γ) to get

2a

2a+ 1
β − 1 = γ4

(
− 3cγa3 −

27

4
c2
γ + a1

)
. (2.20)
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Combining the above two conditions, we can then obtain the correct tuning of the parameters
(β, a = eθ); we give their values in terms of power series in γ:

a =
1

4
− γ2

(9

8
cγ +

a3

4

)
+

5

48
γ4
(

81c2
γ + 36cγa3 + 4a2

3

)
+O(γ5) ,

β = 3 + γ2
(

9cγ + 2a3

)
+ γ4

(
− 189

4
c2
γ + 3a1 − 21cγa3 −

4

3
a2

3

)
+O(γ5) .

(2.21)

In fact, these precise values of (a, β) do not matter in the sequel, and it will be sufficient to
know that there exists a family of (a, β) depending on γ (approaching (1

4
, 3) as γ → 0) such

that (2.19) and (2.20) do hold simultaneously.

The limiting SPDEs
We briefly review the well-posedness theory for the Φ2n equation

dX = (∆X +
n∑
k=1

a2k−1X
2k−1) dt+

√
2/βcdW X(0) = X0 (2.22)

in two space dimensions with a2n−1 < 0, and the parameter βc > 0 will correspond to a
critical value of β described above. In order to interpret the solution to the above equation, let
Wε(t, x) = 1

4

∑
|ω|<ε−1 eiπω·x Ŵ (t, ω) be a spatially regularized cylindrical Wiener process,

and consider the renormalized equation

dXε =
(

∆Xε +
n∑
k=1

a2k−1H2k−1(Xε, cε)
)
dt+

√
2/βc dWε, (2.23)

where Hm = Hm(x, c) are Hermite polynomials defined recursively by setting H0 = 1 and
Hm = xHm−1 − c ∂xHm−1 so that H1 = x, H2 = x2 − c, H3 = x3 − 3cx, etc. The constant
cε is given by

cε = βc
−1

∑
0<|ω|<ε−1

1

4π2|ω|2
. (2.24)

In particular, the constants cε diverge logarithmically as ε→ 0. Then, [DPD03] shows that
Xε converges to nontrivial limit.

More precisely, let
Xε(t) = Zε(t) + PtX

0 + vε(t)

where Pt = et∆ is the solution operator of the heat equation on the torus T2, and

Zε(t, ·) =
√

2/βc

∫ t

0

Pt−s dWε(s, ·)

is the solution to the linear equation with zero initial data. Letting

Z :m:
ε (t, x) def

= Hm(Zε(t, x), cε(t)) (2.25)

for

cε(t) = E[Zε(t, 0)2] =
1

2βc

∑
|ω|<ε−1

∫ t

0

exp
(
−2rπ2|ω|2

)
dr

=
t

2βc
+

1

βc

∑
0<|ω|<ε−1

1

4π2|ω|2
(

1− exp (− 2tπ2 |ω|2)
)
, (2.26)
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then Z :m:
ε converge almost surely and in every stochastic Lp space with respect to the metric

of C([0, T ], C−ν) - this is essentially [DPD03, Lemma 3.2]. We denote the limiting processes
by Z :m:. Note that cε = limt→∞(cε(t)− t

2βc
), where the term t

2βc
comes from the summand

for ω = 0 in (2.26) which does not converge as t→∞. Furthermore, for every fixed t > 0
the difference |cε − cε(t)| is uniformly bounded in ε. This replacement of cε by cε(t) amounts
to rewriting (2.23) as (2.30) below. Define a(ε)

2k−1(t) as time dependent coefficients such that

n∑
k=1

a2k−1H2k−1(x, cε) =
n∑
k=1

a(ε)
2k−1(t)H2k−1(x, cε(t)) . (2.27)

This is well-defined since the left hand side is an odd polynomial of degree 2n− 1 which can
be uniquely expressed as a linear combination of odd Hermite polynomials H2k−1(x, cε(t)).
Note that the leading coefficients always satisfy a2n−1 = a(ε)

2n−1(t). For the other coefficients,
for instance, when n = 2 one has a(ε)

1 (t) = 3a3(cε(t)− cε) + a1; when n = 3 one has

a(ε)
3 (t) = 10a5(cε(t)− cε) + a3 , (2.28)

a(ε)
1 (t) = −15a5(cε(t)2 − c2

ε) + 3(cε(t)a
(ε)
3 (t)− cεa3) + a1 .

In fact, plugging the first relation into the second, one has

a(ε)
1 (t) = 3a3(cε(t)− cε) + 15a5(cε(t)− cε)2 + a1 . (2.29)

Then (2.23) can be rewritten as

dXε =
(

∆Xε +
n∑
k=1

a(ε)
2k−1(t)H2k−1(Xε, cε(t))

)
dt+

√
2/βc dWε . (2.30)

To proceed one needs the following simple fact, which generalizes (2.29).

Lemma 2.3 For every k = 1, . . . , n, the difference a2k−1 − a(ε)
2k−1(t) is a polynomial of

cε − cε(t) without zero order term, with coefficients only depending on a1, · · · , a2n−1. This
difference is uniformly bounded in ε for every t > 0 and diverges logarithmically in t as
t→ 0.

Proof. By the differential operator representation of Hermite polymonials Hm(x, c) =
e−c∆/2xm, where ∆ is Laplacian in x and the exponential is understood as power series
without convergence problem when acting on polynomials. So we have

H2k−1(x, cε) = e−cε∆/2x2k−1 = e−cε(t)∆/2e−(cε−cε(t))∆/2x2k−1

= e−cε(t)∆/2H2k−1(x, cε − cε(t)) .

The operator e−cε(t)∆/2 replaces every monomial term xm in the polymonial H2k−1(x, cε −
cε(t)) byHm(x, cε(t)), which means that when re-expandingH2k−1(x, cε) on the left hand side
of (2.27) w.r.t. the basis Hm(x, cε(t)) the coefficients only depend on cε, cε(t) via cε − cε(t).
After this re-expansion we then compare the coefficients on the two sides of (2.27), noting
that if cε − cε(t) = 0 then a(ε)

2k−1 = a2k−1, and we obtain the first statement of the lemma.
Note that

lim
ε→0

(cε − cε(t)) = − t

2βc
+

∑
ω∈Z2\{0}

e−2tπ2|ω|2

4βπ2|ω|2
. (2.31)

It is then obvious that the second statement of the lemma also holds.
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By this lemma the limiting coefficient limε→0 a
(ε)
2k−1(t) is integrable in t at t = 0.

As a convenient way to deal with the initial dataX0, we further define Z̃(t) = Z(t)+PtX0

and

Z̃ :m:(t) =
m∑
k=0

(
m

k

)
(PtX0)m−kZ :k:(t) (2.32)

The following theorem, essentially [MW15, Theorem 6.1] (together with Remark 1.5 therein),
states that the equation

∂tv = ∆v +
n∑
k=1

a2k−1(t)
2k−1∑
`=1

(
2k − 1

`

)
Z̃ :2k−1−`:v` (2.33)

which is derived from (2.30), or equivalently

∂tv = ∆v +
2n−1∑
`=1

( ∑
k∈Z∩[ `+1

2
,n]

a2k−1(t)
(

2k − 1

`

)
Z̃ :2k−1−`:

)
v` (2.34)

with zero initial condition v(0) = 0 is globally well-posed. The solution v is the limit of vε.

Theorem 2.4 For ν > 0 small enough, fix an initial datum X0 ∈ C−ν . For

(Z,Z :2:, . . . , Z :2n−1:) ∈ (L∞([0, T ], C−ν))2n−1
,

let (Z̃, Z̃ :2:, · · · , Z̃ :2n−1:) be defined as in (2.32). Let ST (Z,Z :2:, . . . , Z :2n−1:) denote the
solution v on [0, T ] of the PDE (2.34). Then for any κ > 0, the mapping

ST : (L∞([0, T ], C−ν))2n−1 → C([0, T ], C2−ν−κ(T2))

is Lipschitz continuous on bounded sets .

With the solution v given by this theorem we call X(t) = Z(t) +PtX
0 + v(t) the solution

to the dynamical Φ2n equation (2.22) with initial data X0 ∈ C−ν . (Due to the above theorem,
Eq. (2.22) is sometimes written with each term X2k−1 replaced by :X2k−1: but we refrain
from using this notation.)

Main result
As in [MW16], for any function Y : Λε → R, we define its smooth extension to a function
T2 → R which is denoted by ExtY (but sometimes still written as Y ) in the following way:

ExtY (x) =
1

4

∑
ω∈{−N,...,N}2

∑
y∈Λε

ε2 eiπω·(x−y) Y (y) (x ∈ T2) (2.35)

which is the unique trigonometric polynomial of degree ≤ N that coincides with Y on Λε.
For any metric space S, we denote by D(R+,S) the space of S valued cadlag function

endowed with the Skorokhod topology. For any ν > 0 we denote by C−ν the Besov space
B−ν∞,∞ (see [MW16, Appendix A] for such spaces).

Assume that for γ > 0, the spin configuration at time 0 is given by σγ(0, k), k ∈ ΛN , and
define for x ∈ Λε

X0
γ (x) = δ−1

∑
y∈Λε

ε2Kγ(x− y)σγ(0, ε−1y) .
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We smoothly extend X0
γ (in the way described above) to T2 which is still denoted by X0

γ . Let
Xγ(t, x), t ≥ 0, x ∈ Λ2

ε be defined by (2.10) and extend Xγ(t, ·) to T2, still denoted by Xγ .
Define

cγ
def
=

1

4βc

∑
ω∈{−N,...,N}2

ω 6=0

|K̂γ(ω)|2

γ−b(1− K̂γ(ω))
, (2.36)

where K̂γ(ω) =
∑

x∈Λε
ε2Kγ(x)e−iπω·x is the Fourier transform of Kγ , b = 2 in the first

regime and b = 4 in the second regime.
The main result of this article is the following.

Theorem 2.5 Suppose that the precise value of cγ is given by (2.36), and that X0
γ converges

to X0 in C−ν for ν > 0 small enough and that X0, X0
γ are uniformly bounded in C−ν+κ for

an arbitrarily small κ > 0.
(1) Assume that the scaling exponents ε, α, δ satisfy (2.13) and the parameters a = eθ, β

satisfy (2.17) for some (ac, βc) and a1 ∈ R such that

2ac
2ac + 1

βc − 1 = 0 . (2.37)

If ac > 1
4
, then Xγ converges in law to the solution of the following dynamical Φ4 equation:

dX = (∆X + a1X −
ac(4ac − 1)β3

c

3(2ac + 1)2
X3) dt+

√
2/βc dW X(0) = X0 .

(2) Under the same assumption in (1), if ac = 1
4
, then Xγ converges in law to the linear

equation:
dX = (∆X + a1X) dt+

√
2/3 dW X(0) = X0 .

(3) Assume that the scaling exponents ε, α, δ satisfy (2.14) and the parameters a = eθ, β
satisfy (2.21) for some a1, a3 ∈ R and in particular

(a, β)→ (1/4, 3) as γ → 0 . (2.38)

Then as γ → 0, Xγ converges in law to the solution of a dynamical Φ6 equation:

dX = (∆X + a1X + a3X
3 − 9

20
X5) dt+

√
2/3 dW X(0) = X0 .

All the above convergences are with respect to the topology of D(R+, C−ν).

Remark 2.6 Note that the coefficient
√

2/βc in front of the white noise in the limiting
equations makes the interpretation of β as “inverse temperature” more meaningful. This
means that the quadratic variation of our martingale should behaves like 2/βc times the
Dirac distribution. The quadratic variation will depend on the spin configuration σ and in
the following proofs we will approximate σ by an i.i.d. spin system σ̃ so that at each site
P(σ̃ = ±1) = eθc/Nc and P(σ̃ = 0) = 1/Nc where Nc = 1 + 2eθc . (Recall that θ has the
interpretation of “chemical potential” i.e. the “ratio” between ±1 and 0 spins.) On average
(over σ̃ ∈ {−1, 0,+1}) the quadratic variation will then be shown as equal to (see (3.13))

4eθc

1 + 2eθc
=

2

βc

where the last equality is by (2.37) or (2.38).
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Remark 2.7 The limiting equations in the theorem are globally well-posed, see the paper
[MW15], especially Remark 1.5 there. Actually, in case (1), if ac < 1

4
, one can still prove

that Xγ converges to a Φ4 equation, but with a plus sign in front of X3, which may blow up
in finite time.

3 Convergence of the linearized equation

To prove the convergence result Theorem 2.5 we rewrite our discrete evolution in the
Duhamel’s form:

Xγ(t, ·) =P γ
t X

0
γ +

∫ t

0

P γ
t−sKγ ?

(Cβ,θδ4

α
X5
γ (s, ·) +

Bβ,θδ
2

α
X3
γ (s, ·)

+
Aβ,θ
α

Xγ(s, ·) + Eγ(s, ·)
)
ds+

∫ t

s=0

P γ
t−s dMγ(s, ·) on Λε

(3.1)

where the coefficients are defined in (2.9), and P γ
t is the heat operator associated with

∆γ . Recall that the martingale mγ was defined above in (2.7) and the rescaled martingales
Mγ(t, z) = 1

δ
mγ( t

α
, z
ε
) are defined on a rescaled grid Λε ⊆ [−1, 1]2. An important step of

proving convergence of (3.1) is to show convergence of the linearized system. For x ∈ Λε,
we denote by

Zγ(t, x) def
=

∫ t

r=0

P γ
t−r dMγ(r, x) (3.2)

the stochastic convolution appearing as the last term of (3.1). The process Zγ is the solution
to the linear stochastic equation

dZγ(t, x) = ∆γZγ(t, x)dt+ dMγ(t, x)
Zγ(0, x) = 0 , (3.3)

for x ∈ Λε, t ≥ 0. As discussed in (2.35), we extend Zγ to the entire torus T2 and still
denote it by Zγ . The tightness of the family Zγ with respect to the topology of D(R+, C−ν) is
established below in Prop. 4.4. In this section we assume this result and prove the convergence
in law of Zγ to the solution of the stochastic heat equation.

The predictable quadratic covariations of the martingales mγ(·, k) are given by

〈mγ(·, k),mγ(·, j)〉t

=

∫ t

0

∑
`∈ΛN

κγ(k − `)κγ(j − `)
∑

σ̄∈{±1,0}

(σ̄ − σ(s, `))2cγ(σ(s), `, σ̄)ds. (3.4)

Following the reasoning from [MW16] we first construct a modified version of the martingales
Mγ and the approximate stochastic convolution Zγ for which we have a better control on this
quadratic variation. To this end, we first define the stopping time τγ,m for a fixed ν ∈ (0, 1

2
),

any m > 1 and 0 < γ < 1,

τγ,m
def
= inf {t ≥ 0 : ‖Xγ(t, ·)‖C−ν ≥ m} . (3.5)

For k ∈ ΛN and for t ≥ 0, define

σγ,m(t, k) def
=

{
σ(t, k) if t < τγ,m

α
,

σ′γ,m(t, k) otherwise .
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Here σ′γ,m is a spin system with σ′γ,m(τγ,m/α, k) = σ(τ−γ,m/α, k), and for every t > τγ,m/α

and every k ∈ ΛN the jumps to spin values +1, 0,−1 at rates eθc

Nc ,
1
Nc ,

eθc

Nc respectively,
independently from σ, with Nc = 1 + 2eθc . (Recall that θc is a critical value of θ as in
Section 2.) In other words, the rate function cγ is replaced by

csγ,m(σ(s), k, σ̄) =

{
cγ(σ(s), k, σ̄) if s < τγ,m

α
,

( e
θc

Nc ,
1
Nc ,

eθc

Nc ) otherwise
(3.6)

where in the second case, csγ,m(σ(s), k, σ̄) is independent of the configuration σ(s) and the site
k and thus only depends on σ̄; so we only defined its values on the three points σ̄ = 1, 0,−1.
We now construct processes Mγ,m and Zγ,m following exactly the construction of Mγ and Zγ
with σγ replaced by σγ,m.

Define the rescaled rate function

Cγ,m(s, z, σ̄) def
= cs/αγ,m(σγ,m(s/α), z/ε, σ̄) (3.7)

for every s ≥ 0, z ∈ Λε and σ̄ ∈ {+1, 0,−1}. Of course Cγ,m(s, z, σ̄) still depends on the
configuration σγ,m but we suppress this dependence in the notation now. For the martingales
Mγ,m(t, z), Eq. (3.4) turns into

〈Mγ,m(·, x),Mγ,m(·, y)〉t

=
ε2

δ2α

∫ t

0

∑
z∈Λε

ε2Kγ(x− z)Kγ(y − z)
∑

σ̄∈{±1,0}

(σ̄ − σ(α−1s, ε−1z))2Cγ,m(s, z, σ̄) ds.

(3.8)

Recall that the kernel Kγ(x) = ε−2κγ(ε−1x) is a rescaled version of κγ that behaves like an
approximation of Dirac distribution δ; thus we obtain ε4 when rescaling the two factors κγ
but have moved an ε2 into the sum to anticipate that the sum over z approximates δ(x− y),
possibly times a constant. Since δ = γ in both “scaling regimes”, we can also write the
coefficient in front of the integral as c2

γ,2 = ε2

γ2α
which was defined in (2.15). The constant

cγ,2 is close to 1.

Lemma 3.1 The rates Cγ,m defined in (3.7) satisfy

Cγ,m(s, z,±1) =
eθc

Nc
+ Eγ

Cγ,m(s, z, 0) =
1

Nc
+ E ′γ

for every s ≥ 0, z ∈ Λε, where Nc = 1 + 2eθc and the random terms Eγ, E ′γ which depend
on s, z are deterministically bounded by Cγ1−3ν with constant C depending linearly on m.
The un-rescaled rates csγ,m(σ(s), k, σ̄) satisfy the same estimates for every s ≥ 0, k ∈ ΛN and
σ̄ ∈ {±1, 0}.

Proof. By (3.7) it suffices to prove the stated estimates for Cγ,m and that for cγ,m immediately
follow. For t > τγ,m, we have Eγ = E ′γ = 0 by definition. For t ≤ τγ,m, first of all, we
note that ( e

θ

N ,
1
N ,

eθ

N ) with N = 1 + 2eθ are nothing but the values of cγ defined in (2.5) for
βhγ = 0 at the three points σ̄ = 1, 0,−1. Since the derivatives of the functions x

1+2x
and 1

1+2x
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are both bounded by 2, the error caused by replacing ( e
θ

N ,
1
N ,

eθ

N ) by ( e
θc

Nc ,
1
Nc ,

eθc

Nc ) is bounded
by 2|eθ − eθc|; by the discussion above (2.17) (for the first scaling regime) or (2.21) (for the
second scaling regime), this error is bounded by Cγ1−2ν .

Furthermore, it is easy to check by (2.5) that for any σ̄(j) ∈ {±1, 0} and any θ ∈ R, the
rate cγ viewed as a function of βhγ has the derivative:

eσ̄(j)βhγ+σ̄(j)2θ
(
σ̄(j)(e−βhγ+θ + 1 + eβhγ+θ) + e−βhγ+θ − eβhγ+θ

)
(e−βhγ+θ + 1 + eβhγ+θ)2

,

which is bounded by 2. Therefore for t < τγ,m,

|Eγ| ∨ |E ′γ| ≤ 2β|hγ(σ(t/α), z/ε)|+ Cγ1−2κ = 2βδ|Xγ(t, z)|+ Cγ1−2κ

≤ C(ν)γ1−3ν(‖Xγ(t)‖C−ν + 1) .
(3.9)

In the last step of (3.9) we used the fact that δ = γ in both scaling regimes; β ≤ 4 for γ
sufficiently small since in all three cases of Theorem 2.5 βc ≤ 3; and the fact that since the
Fourier coefficients of Xγ with frequency larger than γ−2 (resp. γ−3) vanish, by [MW16,
Lemma A.3], ‖Xγ(t)‖L∞ ≤ Cγ−bν‖Xγ(t)‖C−ν with b = 2 in the first regime (resp. b = 3 in
the second regime).

This lemma allows to rewrite the last terms appearing in (3.8) as∑
σ̄∈{±1,0}

(σ̄ − σ(α−1s, ε−1z))2Cγ,m(s, z, σ̄) = A(σ(α−1s, ε−1z)) + E ′′γ , (3.10)

where the error E ′′γ is again deterministically bounded by Cγ1−3ν (for a constant C which
depends on m) and A is a function defined on three points {+1, 0,−1} as following

A(σ) =

{
2eθc/Nc for σ = 0

4eθc/Nc + 1/Nc for σ = ±1
(3.11)

where Nc = 1 + 2eθc as before. The main ingredient in the proof of Theorem 3.3 below
is to show that the dependence on the microscopic configuration σ(t, x) in this expression
becomes irrelevant when averaging over long time intervals, and that A may be replaced by
its average.

Before stating Theorem 3.3, we define a coupling between the microscopic spin process
σ(s, k) with an extremely simple auxiliary spin process σ̃(s, k). For every given site k ∈ ΛN

the spin σ̃(·, k) gets updated at the same random times as the original process σ(·, k) but the
update is determined according to a fixed probability distribution P̃ on {±1, 0} independently
of the values of both σ and σ̃ and independently of other sites, which motivated by Lemma 3.1
is given by

P̃ =

 eθc/Nc
1/Nc
eθc/Nc

 . (3.12)

This process σ̃ does not capture any of the subtle large scale non-linear effects of the
field σ described in our main result, but for any given site it coincides with σ for many times
which allows to replace σ with σ̃ below (see e.g. (3.17)). The advantage of this replacement
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is that one can then average over σ̃ ∈ {−1, 0,+1}: indeed, note that by (2.37) and (2.38) and
the definition (3.11) for A

ẼA(σ̃(r, k)) =
eθc

Nc
A(−1) +

eθc

Nc
A(1) +

1

Nc
A(0) =

4eθc

1 + 2eθc
=

2

βc
, (3.13)

where Ẽ denotes the expectation with respect to P̃ . This is essentially the reason why the
pre-factor

√
2/βc in front of the noise of the limiting equation shows up (see Remark 2.6).

In the proof of Theorem 3.3 we only make use of the averaging in time over σ̃. The proof
of Proposition 3.4 below then relies on the same construction and we will make use of the
spatial averaging as well.

We now proceed to the construction of this coupling. By definition, for any fixed site
k ∈ ΛN the process σ(s, k) is a pure jump processes on {±1, 0}. The joint law of all of these
processes can be constructed as follows:

• For each site there is an independent Poisson clock, running at rate 1.

• At each jump of the Poisson clock the spin changes according to the transition proba-
bilities given in the vector

P (s, k) =

 csγ,m(σγ,m(s), k, 1)
csγ,m(σγ,m(s), k, 0)
csγ,m(σγ,m(s), k,−1)

 .

Of course this vector depends on the configuration of the neighboring particles at time
s.

The transition probabilities of the auxiliary processes σ̃(s, k), k ∈ ΛN are fixed and given by
(3.12). In order to construct the coupling, we note that according to Lemma 3.1 there exists a
number q satisfying

1 ≥ q ≥ 1− Cγ1−3ν ,

such that qP̃ ≤ P where the inequality of the two vectors is to be understood entry by entry.
Therefore, we can write

P (s, k) = qP̃ + (1− q)R(s, k),

where R is normalized to be a probability measure. The coupling is now the following:

• At the initial time each of the σ̃(0, k) is distributed according to P̃ and the realizations
for different sites k 6= k′ are independent.

• At each jump of the Poisson clock at site k, σ̃(s, k) is updated according to P̃ . This
update is independent from the updates at other sites as well as the jump times.

• To determine the updated spin for σ(s, k) after the same jump of the Poisson clock, the
vector R(s, k) are evaluated. It depends on the environment at the given time s.

• Toss a coin which yields 1 with probability q and 0 with probability 1 − q. If the
outcome of this toss is 1 the spin σ(s, k) is updated to the same value as σ̃(s, k). If the
outcome is 0 then σ(s, k) is updated according to R(s, k) independently of the update
for σ̃.



18 CONVERGENCE OF THE LINEARIZED EQUATION

It is clear that the process σ̃ constructed in this way is a jump Markov chain jumping according
to P̃ and that the processes for different sites are independent. This construction is consistent
with the jumping rule of σ (in particular σ jumps according to P ). Furthermore, for every
k ∈ ΛN , after each jump the probability that σ̃(s, k) 6= σ(s, k) is bounded by Cγ1−3ν , where
the constant C obtained from (3.9) does not depend on the location k and the jump-time.

To lighten the notation in the following calculation we introduce the centered random
field Ā(σ̃(r, k)) = A(σ̃(r, k))− 2

βc
where A was defined in (3.11).

Lemma 3.2 For every r, r′ ≥ 0 and k, k′ ∈ ΛN we have

EĀ(σ̃(r, k))Ā(σ̃(r′, k′)) ≤ C1k=k′e
−|r−r′|.

Proof. Recall from the construction that for k 6= k′ the random variables σ̃(r, k) and σ̃(r′, k′)
are independent and that therefore for these k 6= k′ we have

EĀ(σ̃(r, k))Ā(σ̃(r′, k′)) = 0.

To get bounds in the temporal correlations for σ̃(·, k) for a fixed site k we fix times r′ < r
and denote by τ the first jump time of the Poisson clock for site z after r′. Recall from the
construction of σ̃ that if r < τ the spin values of σ̃(r, k) and σ̃(r′, k) are identical. The value
after τ becomes independent of the value before τ . With this discussion in mind we write

EĀ(σ̃(r, k)) Ā(σ̃(r′, k))
= EĀ(σ̃(r, k))21τ>r + EĀ(σ̃(r, k))Ā(σ̃(r′, k))1τ≤r .

The first term on the right hand side is bounded by

EĀ(σ̃(r, k))21τ>r ≤ sup
σ̄∈{±1,0}

|A(σ̄)|2 P(τ > r) ≤ Ce−|r−r
′|.

For the second term we write

EĀ(σ̃(r, k))Ā(σ̃(r′, k))1τ≤r
= EĀ(σ̃(r′, k))1τ≤rE(Ā(σ̃(r, k))|Fτ ) = 0,

where Fτ is the sigma algebra generated by σ̃(·, k) up to the stopping time τ .

Theorem 3.3 (Convergence of Zγ) Let ν ∈ (0, 1/2) and m > 1. As γ tends to 0, the
processes Zγ,m converge in law to Z with respect to the Skorokhod topology on D(R+, C−ν),
where Z is defined as

Z(t, ·) def
=
√

2/βc

∫ t

0

Pt−s dW (s, ·) .

Proof. Proposition 4.4 below for the case n = 1 shows that the family {Zγ,m, γ ∈ (0, 1
3
)} is

tight on D(R+, C−ν) and any weak limit is supported on C(R+, C−ν). Given this tightness
result, we aim to show that any weak accumulation point Z̄ solves the martingale problem
discussed in Theorem 6.1 and Appendix C of [MW16]. The argument for the “drift” part of
the martingale problem, namely establishing that

MZ̄,φ(t) def
= (Z̄(t), φ)−

∫ t

0

(Z̄(s),∆φ) ds
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is a local martingale for any test function φ ∈ C∞ is identical to [MW16]. Indeed, the claim
we need to establish is that there exists a sequence of stopping times Tn with Tn ↑ ∞ a.s. as
n→∞ such that for all s < t and all random variables F which are bounded and measurable
with respect to the σ-algebra over D([0, s], C−ν) we have

E
(

(MZ̄,φ(t ∧ Tn)−MZ̄,φ(s ∧ Tn))F
)

= 0. (3.14)

For any C∞ function φ

Mγ,φ(t) = (Zγ,m(t), φ)−
∫ t

0

(Zγ,m(s),∆γφ) ds , (3.15)

is a martingale by assumption and therefore the formula (3.14) with MZ̄,φ replaced byMγ,φ

holds irrespective of the choice of stopping time Tn. Just as in [MW16, Eq. (6.6)] it follows
that the approximate Laplacian ∆γ appearing in expression (3.15) can be replaced by the
full Laplacian ∆ up to an error which is controlled by C(φ)γ2−2κ in both the “first regime”
and the “second regime”. By assumption the processes Zγ,m converge in law to Z̄ and as the
law of Z̄ only charges the space C(R+, Cν), in particular it assigns measure one to the set of
continuity points (with respect to D(R+, Cν) topology) of the map that sends Z̄ to MZ̄,φ(t)
(recall that φ is smooth). Thus we can pass to the limit as soon as we have some control over
the uniform integrability of these random variables. This is precisely the role of the stopping
times - if we set TL,γ = inf{t ≥ 0 : ‖Zγ,m(t)‖C−ν > L} then it follows just as in [MW16,
Proof of Theorem 6.1] that (outside of a hypothetical countable set of values L) the processes
Zγ,m(s ∧ TL,γ) also converge in law and furthermore for fixed L, s, t the random variables

(Zγ,m(t ∧ TL,γ), φ)−
∫ t∧TL,γ

0

(Zγ,m(s ∧ TL,γ),∆γφ) ds , (3.16)

are uniformly bounded as γ → 0 which permits to pass to the limit and establishes (3.14).
The more interesting part concerns the quadratic variation. More precisely, we need to

show that (
MZ̄,φ(t)

)2 − 2t

βc
‖φ‖2

L2

is a local martingale; recall that the factor 2/βc naturally appears from (3.13).
This follows if we can establish that for any fixed trigonometric polynomial φ. If we fix

such a φ, then as soon as γ is small enough to guarantee the degree of φ is ≤ γ−2 (or γ−3

depending on the regime), the quantity

(Mγ,m(t), φ) =
∑
x∈Λε

ε2Mγ,m(t, x)φ(x)

can be written using Parseval’s identity (see [MW16, Appendix A])

〈(Mγ,m(t), φ)〉 = c2
γ,2

∑
x,y∈Λε

ε4φ(x)φ(y)
∑
z∈Λε

ε2Kγ(x− z)Kγ(y − z)

×
∫ t

0

∑
σ̄∈{±1,0}

(σ̄ − σ(α−1s, ε−1z))2Cγ,m(s, z, σ̄) ds

=
2t

βc
‖φ‖2

L2 + E ′′′γ (t),
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for an error E ′′′γ (t) for which E|E ′′′γ (t)| → 0 as γ → 0. For this statement in turn (3.10) and
(3.11) show that it is sufficient to prove that for every z ∈ Λε we have∫ t

0

A(σ(α−1s, ε−1z))ds =
2t

βc
+ E

′′′′

γ , (3.17)

with a good control on E ′′′′γ . Indeed, one has |c2
γ,2 − 1| ≤ O(γ2) and by (2.2), (2.3) and

Kγ(x) = ε−2κγ(ε−1x),∑
x,y∈Λε

ε4φ(x)φ(y)
∑
z∈Λε

ε2Kγ(x− z)Kγ(y − z)→ ‖φ‖2
L2 ,

independently of the scaling relation between ε and γ (thus it holds for both scaling regimes).
Although we have assumed that φ is a trigonometric polynomial, by [MW16, Remark C.4],
this is sufficient to characterize the law of Z.

While the error terms Eγ, E ′γ, E
′′
γ were all deterministically bounded, we will only get

a probabilistic bound for E ′′′γ . To obtain this bound we will need the coupling between the
microscopic spin processes σ and σ̃.

Recall that for every z, after each jump the probability that σ̃(α−1s, ε−1z) 6= σ(α−1s, ε−1z)
is bounded by Cγ1−3ν , where the constant C does not depend on z and the jump-time. We
then get∫ t

0

A(σ(α−1s, ε−1z))ds− 2t

βc
=

∫ t

0

A(σ̃(α−1s, ε−1z))ds− 2t

βc

+

∫ t

0

A(σ(α−1s, ε−1z))ds− A(σ̃(α−1s, ε−1z)) ds.

For the term in the second line we get

E
∣∣∣ ∫ t

0

A(σ(α−1s, ε−1z))− A(σ̃(α−1s, ε−1z)) ds
∣∣∣

≤ sup
σ̄∈{±1,0}

|A(σ̄)|
∫ t

0

P
(
σ(α−1s, ε−1z) 6= σ̃(α−1s, ε−1z)

)
ds

≤ sup
σ̄∈{±1,0}

|A(σ̄)|
∫ t

0

(
P(To > s) + Cγ1−3ν

)
ds

≤ sup
σ̄∈{±1,0}

|A(σ̄)|
∫ t

0

(
e−

s
α + Cγ1−3ν

)
ds

≤ sup
σ̄∈{±1,0}

|A(σ̄)|(α + Ctγ1−3ν) .

(3.18)

Here To is the holding time before the first jump.
For the other term, by Lemma 3.2, its second moment can be bounded as

E
(∫ t

0

A(σ̃(α−1s, ε−1z))ds− 2t

βc

)2

≤
∫ t

0

∫ t

0

EĀ(σ̃(α−1s, ε−1z))Ā(σ̃(α−1s′, ε−1z)) ds ds′



CONVERGENCE OF THE LINEARIZED EQUATION 21

≤ C

∫ t

0

∫ t

0

e−
|s−s′|
α ds ds′ ≤ Cα .

So this term goes to zero as well. Therefore we have shown that the error term in (3.17) goes
to zero and thus the theorem is proved.

The following result will also be applied several times in the sequel.

Proposition 3.4 For every 0 ≤ s ≤ t ≤ T and x ∈ Λε, one has∫ s

0

∑
z∈Λε

ε2 (P γ
t−r ?ε Kγ)

2(z − x)
∑

σ̄∈{±1,0}

(σ̄ − σ(α−1r, ε−1z))2Cγ,m(r, z, σ̄) dr

=
2

βc

∫ s

0

∑
z∈Λε

ε2 (P γ
t−r ?ε Kγ)

2(z − x) dr + Ẽt(s, x)
(3.19)

where the process Ẽ satisfies the bound

E|Ẽt(s, x)|p ≤ Cγ1−3ν log(γ−1)p+1 (3.20)

for every p ≥ 2 and some constant C = C(T, ν,m) depending linearly on m. Its extension
ExtẼt(s, ·), which will still be denoted by Ẽt(s, ·), satisfies

E‖ExtẼt(s, ·)‖pLp(T2) ≤ Cγ1−4ν log(γ−1)2p (3.21)

for every p ≥ 2 and some constant C = C(T, ν,m) depending linearly on m.

Proof. We first show that the sum over σ̄ can be replaced by A(σ(r, ε−1z)) (recall the
definition of A in (3.11)) up to an error which is controlled deterministically. Turning to
Fourier space, using (5.2) and Parseval’s identity and the elementary bound

∫ s
0
e−(s−r)adr ≤

C(1
s

+ a)−1 for any a > 0, we obtain∫ s

0

∑
z∈Λε

ε2 (P γ
t−r ?ε Kγ)

2(z) dr ≤ C
∑

ω∈{−N,...,N}2

|K̂γ(ω)|2

t−1 + 2γ−b(1− K̂γ(ω))
(3.22)

where b = 2 in the first regime and b = 4 in the second regime. We then use the estimates
(5.3) and the first estimate in (5.6) to bound the sum over |ω| ≤ Cγ−1 (resp. Cγ−2) and the
estimate (5.7) to bound the sum over |ω| ≥ Cγ−1 (resp. Cγ−2) in the first (resp. second)
regime, which permits to conclude that the right hand side of (3.22) is bounded by C log(γ−1).
Therefore, invoking (3.10), the left hand side of (3.19) is equal to∫ s

0

∑
z∈Λε

ε2 (P γ
t−r ?ε Kγ)

2(z − x)A(σ(α−1r, ε−1z)) dr

plus an error which is deterministically bounded by Cγ1−3ν log γ−1.
We proceed as in the proof of Theorem 3.3, again making use of the process σ̃ constructed

at the beginning of this section. Arguing as in (3.18) we can replace A(σ(α−1r, ε−1z)) in the
above integral by A(σ̃(α−1r, ε−1z)) with an error satisfying the following first moment bound

E
∫ s

0

∑
z∈Λε

ε2 (P γ
t−r ?ε Kγ)

2(z − x)
∣∣∣A(σ(α−1r, ε−1z))− A(σ̃(α−1r, ε−1z))

∣∣∣ dr
≤ sup

σ̄∈{±1,0}
|A(σ̄)|

∫ s

0

∑
z∈Λε

ε2 (P γ
t−r ?ε Kγ)

2(z − x) (e−
r
α + Cγ1−3ν) dr .

(3.23)
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We claim that by a similar argument to the one leading to (3.22), the right hand side of
(3.23) can be bounded by Cγ1−3ν log γ−1. Indeed, for the term involving Cγ1−3ν this is
immediately clear from the above log(γ−1) bound on (3.22). For the term with e−

r
α we divide

the r-integral into an integral over r ∈ [γ, s] and an integral over r ∈ [0, γ]. For the integral
over r ∈ [γ, s], we simply bound e−

r
α ≤ Cγ (recall that α ≈ γ2 in the first and α ≈ γ4 in

the second scaling regime), and the integration of the other factors is bounded by C log(γ−1)
as above. For the integral over r ∈ [0, γ], we bound e−

r
α ≤ 1, and then since after applying

Parseval’s identity the only r-dependent factor inside the r-integral is e−2(t−r)γ−b(1−K̂γ (ω)) and
as this function is monotonically increasing in r, we have

∫ γ

0

e−(t−r)γ−b(1−K̂γ (ω))dr ≤ γ

s

∫ s

0

e−(t−r)γ−b(1−K̂γ (ω))dr ;

applying the above log(γ−1) bound again we conclude that as claimed the right hand side of
(3.23) is bounded by Cγ1−3ν log γ−1.

Finally using the deterministic bound

∫ s

0

∑
z∈Λε

ε2 (P γ
t−r ?ε Kγ)

2(z − x) |A(σ(α−1r, ε−1z))− A(σ̃(α−1r, ε−1z))| dr

≤ C log γ−1,

the above bound on the first moment can be upgraded to a bound on all stochastic moments.
We get for any p ≥ 1 that

E
(∫ s

0

∑
z∈Λε

ε2 (P γ
t−r ?ε Kγ)

2(z − x)
∣∣∣A(σ(α−1r, ε−1z))− A(σ̃(α−1r, ε−1z))

∣∣∣ dr)p
≤ Cγ1−3ν(log γ−1)p. (3.24)

To prove (3.19) it remains to control moments of the error term

∫ s

0

∑
z∈Λε

ε2 (P γ
t−r ?ε Kγ)

2(z − x)
(
A(σ̃(α−1r, ε−1z))− 2

βc

)
dr .

As before we use the centered random field Ā(σ̃(α−1r, ε−1z)) = A(σ̃(α−1r, ε−1z))− 2
βc

and
write

E
(∫ s

0

∑
z∈Λε

ε2 (P γ
t−r ?ε Kγ)

2(z − x)Ā(σ̃(α−1r, ε−1z)) dr
)2

=

∫ s

0

∫ s

0

∑
z∈Λε

∑
z′∈Λε

ε4 (P γ
t−r ?ε Kγ)

2(z − x)(P γ
t−r′ ?ε Kγ)

2(z′ − x)

× EĀ(σ̃(α−1r, ε−1z)) Ā(σ̃(α−1r′, ε−1z′)) drdr′.
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Applying Lemma 3.2, this turns into

E
(∫ s

0

∑
z∈Λε

ε2 (P γ
t−r ?ε Kγ)

2(z − x)Ā(σ̃(α−1r, ε−1z)) dr
)2

≤ Cε2

∫ s

0

∫ s

0

∑
z∈Λε

ε2 (P γ
t−r ?ε Kγ)

2(z − x)(P γ
t−r′ ?ε Kγ)

2(z − x) e−
|r−r′|
α drdr′

≤ Cε2 sup
r′∈[0,s]

‖P γ
t−r′ ?ε Kγ‖2

L∞(Λε)

×
∫ s

0

∑
z∈Λε

ε2 (P γ
t−r ?ε Kγ)

2(z − x)
(∫ s

0

e−
|r−r′|
α dr′

)
dr

≤ Cε2
(
γ−b log(γ−1)

)2
α

∫ s

0

∑
z∈Λε

ε2 (P γ
t−r ?ε Kγ)

2(z − x)dr

≤ Cε2γ−2b(log(γ−1))3α,

where in the third inequality we have used (5.9) and b = 2 in the first regime and b = 4 in the
second regime. In both the first regime (2.13) and the second regime (2.14) this expression is
bounded by ≤ Cγ2(log(γ−1))3. As before we can upgrade this stochastic L2 to a stochastic
Lp bound by using a deterministic bound∫ s

0

∑
z∈Λε

ε2 (P γ
t−r ?ε Kγ)

2(z − x)Ā(σ̃(α−1r, ε−1z)) dr ≤ C log γ−1.

Therefore in both scaling regimes (3.20) follows.
To obtain the second bound (Eq. (3.21)) we sum (3.20) over x ∈ Λε to obtain

E‖Ẽt(s, ·)‖pLp(Λε) =
∑
x∈Λε

ε2E|Ẽt(s, x)|p ≤ Cγ1−3ν log(γ−1)p.

To replace the Lp norm over Λε by the Lp norm over the continuous torus and Ẽ by its
extension write using Jensen’s inequality∫

T2

|ExtẼt(s, z)|pdz

=

∫
T2

∣∣∣ ∑
x∈Λε

ε2Ẽt(s, x)Ker(x− z)
∣∣∣pdz

≤
∫
T2

(∑
x∈Λε

ε2|Ẽt(s, x)|p|Ker(x− z)|
)(∑

x∈Λε

ε2|Ker(x− z)|
)p−1

dz

(3.25)

where (as discussed in [MW16, Lemma A.6]) the extension kernel is given by

Ker(x− z) =
2∏
j=1

sin (π
2
(2N + 1)(xj − zj))

sin (π
2
(xj − zj))

so that we have that
∑

x∈Λε
ε2|Ker(x−z)| ≤ C log γ−1 uniformly in z. Plugging this estimate
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into (3.25) yields∫
T2

|ExtẼt(s, z)|pdz

≤ C(log γ−1)p−1
(∑
x∈Λε

ε2|Ẽt(s, x)|p
∫
T2

|Ker(x− z)| dz
)

≤ C(log γ−1)p‖Ẽt(s, ·)‖pLp(Λε)

so (3.21) follows as well.

4 Wick powers and proof of the main theorem

The aim of this section is to prove Theorem 2.5. Since we will apply a discrete version of
Da Prato-Debussche argument ([DPD03]) as in [MW16], an important step is to prove the
convergence of the approximate Wick powers Z :n:

γ to the Wick powers. Fortunately, the work
[MW16] treated the Wick powers with general n, though only n ≤ 3 was needed therein;
here we only need some minor modifications to their construction of Wick powers.

We start by recalling the definitions of the approximate Wick powers Z :n:
γ . Recall that Zγ

is defined in (3.2). It will be convenient to work with the following family of approximations
to Zγ(t, x). For s ≤ t, we introduce

Rγ,t(s, x) def
=

∫ s

r=0

P γ
t−r dMγ(r, x) ,

and extend Rγ,t(s, ·) and Zγ(t, ·) to functions on all of T2 by trigonometric polynomials
of degree ≤ N as (2.35). Note that for any t and any x ∈ T2, the process Rγ,t(·, x) is a
martingale and Rγ,t(t, ·) = Zγ(t, ·).

The iterated integrals are then defined recursively as follows. For a fixed t ≥ 0 and
x ∈ T2, we set R:1:

γ,t(s, x) = Rγ,t(s, x). For n ≥ 2, t ≥ 0 and x ∈ Λε, we set

R:n:
γ,t(s, x) = n

∫ s

r=0

R:n−1:
γ,t (r−, x) dRγ,t(r, x) . (4.1)

We use the notation R:n−1:
γ,t (r−, x) to denote the left limit of R:n−1:

γ,t (·, x) at r. This definition
ensures that (R:n:

γ,t(s, x))0≤s≤t is a martingale. The extension of R:n:
γ,t(s, ·) to the entire T2 is

also defined recursively, through its Fourier series

R̂:n:
γ,t(s, ω) def

= n

∫ s

r=0

1

4

∑
ω̃∈Z2

R̂:n−1:
γ,t (r−, ω − ω̃) dR̂γ,t(r, ω̃) , (4.2)

and set R:n:
γ,t(s, x) def

= 1
4

∑
ω∈Z2 R̂:n:

γ,t(s, ω)eiπω·x. This definition coincides with (4.1) on Λε, and
for every n ≥ 2 the function R:n:

γ,t(s, ·) : T2 → R is a trigonometric polynomial of degree
≤ nN . For any n ≥ 2 and for t ≥ 0, x ∈ T2 we define

Z :n:
γ (t, x) def

= R:n:
γ,t(t, x) . (4.3)

Finally let R:n:
γ,t,m and Z :n:

γ,m be iterated stochastic integrals defined just as R:n:
γ,t and Z :n:

γ but
with Mγ replaced by Mγ,m. Recall that m is the parameter fixed in (3.5).
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By the definition of Rγ,t(s, x) and the quadratic variation of Mγ , one has

〈Rγ,t(·, x)〉s = c2
γ,2

∫ s

0

∑
z∈Λε

ε2(P γ
t−r ?ε Kγ)

2(x− z)

×
∑

σ̄∈{±1,0}

(σ̄ − σ(r, ε−1z))2Cγ,m(r, z, σ̄) dr .
(4.4)

There exists a constant γ0 > 0 (arising when we apply the kernel bounds in Section 5)
such that the following results hold.

Proposition 4.1 For every n ∈ N, p ≥ 1, ν > 0, T > 0, 0 ≤ λ ≤ 1
2

and 0 < κ ≤ 1, there
exists a constant C = C(n, p, ν, T, λ, κ) such that for every 0 ≤ s ≤ t ≤ T and 0 < γ < γ0,
one has

E sup
0≤r≤t

‖R:n:
γ,t(r, ·)‖

p
C−ν−2λ ≤ C tλ p + Cγp(1−κ) , (4.5)

E sup
0≤r≤t

‖R:n:
γ,t(r, ·)−R:n:

γ,s(r ∧ s, ·)‖
p
C−ν−2λ ≤ C |t− s|λ p + Cγp(1−κ) , (4.6)

E sup
0≤r≤t

‖R:n:
γ,t(r, ·)−R:n:

γ,t(r ∧ s, ·)‖
p
C−ν−2λ ≤ C |t− s|λ p + Cγp(1−κ) . (4.7)

The same bounds hold for R:n:
γ,t,m.

Proposition 4.2 For x ∈ Λε, let

Qγ,t(s, x) = [Rγ,t(·, x)]s − 〈Rγ,t(·, x)〉s . (4.8)

For any t ≥ 0, κ > 0 and 1 ≤ p < +∞, there exists C = C(t, κ, p) such that for 0 < γ < γ0,

E sup
x∈Λε

sup
0≤s≤t

|Qγ,t(s, x)|p ≤ Cγp(1−κ).

The same bound holds for Qγ,t,m, that is, the same process as Qγ,t but defined via Mγ,m

instead of Mγ .

One important result is that these iterated integrals are almost Hermite polynomials with
renormalization constant chosen as [Rγ,t(·, x)]s.

Proposition 4.3 Define

E:n:
γ,t(s, x) def

= Hn(Rγ,t(s, x), [Rγ,t(·, x)]s)−R:n:
γ,t(s, x) , (4.9)

for any x ∈ T2. Here, we view [Rγ,t(·, x)]s as defined on all of T2, by extending it as a
trigonometric polynomial of degree ≤ N . Then for any n ∈ N, κ > 0, t > 0 and 1 ≤ p <∞,
there exists C = C(n, p, t, κ) > 0 such that for every sufficiently small γ > 0,

E sup
x∈T2

sup
0≤s≤t

|E:n:
γ,t(s, x)|p ≤ Cγp(1−κ).

The same bound holds for E:n:
γ,t,m - the same process as E:n:

γ,t but defined via Mγ,m instead of
Mγ .



26 WICK POWERS AND PROOF OF THE MAIN THEOREM

Proof of Prop. 4.1 - 4.3. For the case of the Kac Ising model, these results are Prop 4.2,
Lemma 5.1 and Prop 5.3 in [MW16]. Several modifications of these proofs are necessary for
the case of our Blume-Capel model.

The first necessary modification is due to the difference in the scalings (2.13) and (2.14).
This difference comes into play via the estimates on the kernels Kγ and P γ

t used throughout
the proofs. We list all these kernel estimates in Section 5. These estimates with modifications
in the second regime lead to the desired bounds mutatis mutandis.

Another necessary modification of the proof for the case of our Blume-Capel model
is due to the fact that the martingale we use to build Z :n:

γ is different. For Proposition 4.1,
the only place where the martingale enters into play is [MW16, Lemma 4.1], which is a
consequence of Burkholder-Davis-Gundy inequality. The proof of that lemma only used two
facts that depend on the martingale. First, a jump of the spin at ε−1z causes a jump of size
2δ−1ε2Kγ(y − z) for Mγ(y), and in our case this becomes an upper bound of the jump size
since a spin could jump by 1 or 2. Second, in the quadratic variation of Mγ which was given
by

d

dt
〈Mγ(·, x),Mγ(·, y)〉t = 4c2

γ,2

∑
z∈Λε

ε2Kγ(x− z)Kγ(y − z)Cγ(t, z) ,

and Cγ is a rate function therein which is bounded between 0 and 1. For our case, in the
quadratic variation given in (3.8), one also has

0 ≤
∑

σ̄∈{±1,0}

(σ̄ − σ(α−1s, ε−1z))2Cγ(s, z, σ̄) ≤ 5 . (4.10)

Since the desired bound in [MW16, Lemma 4.1] allows a proportionality constant, nothing
else needs to be proved.

For Proposition 4.2, by Burkholder-Davis-Gundy inequality, one needs to bound the
quadratic variation 〈Qγ,t(·, x)〉t, which can be again explicitly expressed as in the case for
Rγ,t(·, x) in (4.4); using the bound (4.10) one eventually obtains

〈Qγ,t(·, x)〉t ≤
Cε6

αδ4

∫ t

0

∑
z∈Λε

ε2(P γ
t−s ?ε Kγ)4(z) ds .

Using the bound ‖P γ
t−s ?ε Kγ‖L∞(Λε) ≤ C γ2

ε2
and (ε2γ4/αδ4) ≤ 2γ2 which turn out to hold

in both regimes, the proof of [MW16, Lemma 5.1] again goes through.
Proposition 4.3 is then a consequence of the first two propositions by the proof in [MW16],

and therefore nothing needs to be re-proved.

One then has the following tightness and convergence results.

Proposition 4.4 For every m ∈ N and ν > 0, the family {Z :n:
γ,m, γ ∈ (0, 1

3
)} is tight on

D(R+, C−ν). Any weak limit is supported on C(R+, C−ν). Furthermore, for any p ≥ 1 and
T > 0, we have

sup
γ∈(0, 1

3
)
E sup

0≤t≤T
‖Z :n:

γ,m(t, ·)‖pC−ν <∞ . (4.11)

Proof. Once Proposition 4.1 (in particular the bounds (4.5) and (4.6)) is shown, this tightness
result follows in exactly the same way as [MW16, Proposition 5.4].
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Recall that we have defined Z :m: below (2.25).

Proposition 4.5 For every m ∈ N and n ∈ N, the processes (Z :1:
γ,m, . . . , Z

:n:
γ,m) defined above

converge (jointly) in law to (Z :1:, . . . , Z :n:) with respect to the topology of D(R+, C−ν)n.

Proof. Since by Proposition 4.4 for every n, the family of vectors (Z :1:
γ,m, . . . , Z

:n:
γ,m), γ ∈ (0, 1

3
)

is tight with respect to the topology of D(R+, C−ν)n, we only need to show convergence
of the finite dimensional distributions. We follow the diagonal argument as in [MW16,
Theorem 6.2]. Define

Rt(s, x) def
=
√

2/βc

∫ s

r=0

Pt−r dW (r, x) ,

where βc is a critical value of β as above. The process s 7→ Rt(s, x) for s < t is a continuous
martingale. For n > 1 define

R:n:
t (s, x) def

= n

∫ s

r=0

R:n−1:
t (r, x) dRt(r, x) = Hn (Rt(s, x), 〈Rt(·, x)〉s) . (4.12)

For s < t R:n:
t (s, x) is a regular approximations of the limiting objects Z :n:(t, ·); indeed, as

discussed in [MW16, (3.10)], for all ν > 0, 0 ≤ λ ≤ 1, p ≥ 2 and T > 0, there exists
C = C(ν, λ, p, T ) such that

E‖Z :n:(t, ·)−R:n:
t (s, ·)‖pC−ν−λ ≤ C|t− s|

λp
2 (4.13)

for all 0 ≤ s ≤ t ≤ T . Write

Zγ = (Z :1:
γ,m, . . . , Z

:n:
γ,m) , Z = (Z :1:, . . . , Z :n:) ,

Rγ,t = (R:1:
γ,t,m, . . . , R

:n:
γ,t,m) , Rt = (R:1:

t , . . . , R
:n:
t ) .

Fix K ∈ N and t1 < t2 < . . . < tK . Let F : (C−ν)n×K → R be bounded and uniformly
continuous. For s1 < t1, . . . , sK < tK ,

|EF (Zγ(t1), . . . ,Zγ(tK))− EF (Z(t1), . . . ,Z(tK))|
≤ E |F (Zγ(t1), . . . ,Zγ(tK))− F (Rγ,t1(s1), . . . ,Rγ,tK (sK))|

+ |EF (Rγ,t1(s1), . . . ,Rγ,tK (sK))− EF (Rt1(s1), . . . ,RtK (sK))|
+ E |F (Rt1(s1), . . . ,RtK (sK))− F (Z(t1), . . . ,Z(tK))| .

(4.14)

The estimates (4.13) and (4.7) yield moment bounds of arbitrary order of ‖Zγ(ti)−Rγ,ti(si)‖(C−ν )n

uniformly in γ. We can thus make the first and the third terms on the right-hand side of (4.14)
small uniformly in γ by choosing |ti − si| small enough.

Some extra care has to be taken in the case of our model for the second term on the
right-hand side of (4.14). By Proposition 4.3, it suffices to show that

H`(Rγ,ti,m(si, x), [Rγ,ti,m(·, x)]si) ` = 1, . . . , n, i = 1, . . . , K

converges in law to (Rt1(s1), . . . ,RtK (sK)) in (C−ν)K . By (4.12) and Prop 4.2, it suffices to
show the two convergences in law

(Rγ,t1,m(s1), . . . , Rγ,tK ,m(sK)) −−→
γ→0

(Rt1(s1), . . . , RtK (sK)) ,
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(〈Rγ,t1,m(·, ·)〉s1 , . . . , 〈Rγ,tK ,m(·, ·)〉sK ) −−→
γ→0

(〈Rt1(·, ·)〉s1 , . . . , 〈RtK (·, ·)〉sK ) ,

for a suitable topology, e.g. (L∞)K in the first convergence and (Lp)K for p large enough
for the second convergence. For the first convergence, note that Rγ,ti,m(si) = P γ

ti−siZγ,m(si).
[MW16, Corollary 8.7] then gives an error control if P γ

ti−si is replaced by the continuous heat
kernel Pti−si . So the first convergence follows from Theorem 3.3 (convergence of Zγ(t)),
continuity of the mapping Pti−si and the continuous mapping theorem.

Regarding the second convergence, recall the explicit expression (4.4) for the quadratic
variation 〈Rγ,ti,m(·, x)〉si . The constant c2

γ,2 is deterministically close to 1 by (2.15), and
therefore Proposition 3.4 shows that the quadratic variation 〈Rγ,ti,m(·, x)〉si is given by

2

βc

∫ si

0

∑
z∈Λε

ε2 (P γ
ti−r ?ε Kγ)

2(z − x) dr

up to an error Ẽt(s) which satisfies E‖Ẽt(s)‖pLp(T2) → 0. This expression in turn converges to
the limiting object 〈Rti(·, ·)〉si by the calculation as in [MW16, (6.14)].

We now summarize the results obtained above and prove our main result, Theorem 2.5.
To show the convergence of discrete evolution (3.1) to the solution of

X(t, ·) = PtX
0 +

∫ t

0

Pt−s ?
(
a1X(s, ·)− ac(4ac − 1)β3

c

3(2ac + 1)2
X :3:(s, ·)

)
ds

+ Z(t, ·) on T2

(4.15)

in the first regime and

X(t, ·) =PtX
0 +

∫ t

0

Pt−s ?
(
− 20

9
X :5:(s, ·) + a3X

:3:(s, ·)

+a1X(s, ·)
)
ds+ Z(t, ·) on T2

(4.16)

in the second regime, we need to control the following error terms.
(1) The error Eγ in (3.1) arising from the Taylor expansion in Section 2.
(2) In the second regime the discrepancies caused by Cβ,θ 6= −20

9
, the coefficient in front

of X3
γ − 3cγXγ in (2.18) is not exactly a3, and the coefficient in front of Xγ in (2.18) is

not exactly a1; similarly in the first regime there are also such discrepancies of coefficients
comparing with (2.16).

(3) The operator Ext which extends a function on Λε to a function on T2 defined in (2.35)
does not commute with powers. As in [MW16] this is dealt with by decomposing the field
Xγ into a “high” and a “low” frequency part

X low
γ

def
=
∑

2k<N
20

δkXγ , Xhigh
γ

def
=
∑

2k≥N
20

δkXγ , (4.17)

where we refer to [MW16, (A.7)] for the precise definition of the operator δk (we recall that
N ≈ γ−2 in the first regime and N ≈ γ−3 in the second regime). For X low

γ the operator Ext
does commute with the powers appearing below and we need to control the error caused by
the high frequencies.
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(4) Recall that in the discussion on the limiting SPDE, the actual renormalization constant
used to define the Wick powers Z :n:

ε in (2.25) is a time-dependent constant cε(t), and the
time-dependent coefficients ak(t) is introduced in place of the time-independent ones ak
in order to take care of the difference between cε(t) and cε, i.e. to guarantee that (2.27)
holds. For the discrete model, we have cγ 6= cε, and we will introduce the approximate
time-dependent renormalization constant

cγ(s, x) def
= [Rγ,s(·, x)]s (4.18)

(and extend this to all x ∈ T2 as a trigonometric polynomial). So we need to control the error
caused by the fact that Eq. (2.27) does not exactly hold anymore if the subscript ε in (2.27) is
replaced by γ.

(5) The error from P γ
t X

0
γ 6= PtX

0.
(6) The processes Z :n:

γ,m are defined via iterated integrals, which are not exactly the same
as Hermite polynomials with constant cγ(s, x) (see Prop. 4.3).

(7) ∆ 6= ∆̃γ .
In the following Lemma we control the errors from (1)-(4). We will frequently use the fact

that an L∞(Λε) bound on Xγ can be extended to an L∞(T2) bound by loosing an arbitrarily
small power of γ ([MW16, Lemma B.6]), and the fact that the L∞ norm can be bounded by
the C−ν norm of Xγ multiplied by a factor γ−bν ([MW16, Lemma B.3]) if X̂γ has vanishing
frequency larger than γ−b (b = 2, 3 depending on the regime).

Before stating the lemma, we recall that the constant cε is defined in (2.24), the constant
cε(t) is defined in (2.26), the constant cγ is defined in (2.36), the constant cγ(t, ·) is defined
in (4.18), the constant a1 (resp. a1 and a3) are introduced in (2.17) (resp. (2.21)) in the first
(resp. second) regime. The constants a(ε)

k (t) are defined in (2.27), and here we will use the
ε→ 0 limits of them: in the second regime, by (2.28) and (2.29) with a5 substituted by − 9

20

we define a1(s), a3(s) as ε→ 0 limits of a(ε)
1 (s), a(ε)

3 (s), namely

a3(s)− a3 = −9

2
c̄(s) , a1(s)− a1 = 3a3c̄(s)−

27

4
c̄(s)2 , (4.19)

where c̄(s) def
= limε→0(cε(s)− cε) (see (2.31) for existence of this limit). In the first regime we

simply define a1(t) = 3a3c̄(s) + a1 = −ac(4ac−1)β3
c

(2ac+1)2 c̄(s) + a1.

Lemma 4.6 For every t ≥ 0, we have on T2 (we drop the space variables for readability)

Xγ(t) = P γ
t X

0
γ +

∫ t

0

P γ
t−sKγ ?

(
− ac(4ac − 1)β3

c

3(2ac + 1)2

(
X3
γ (s)− 3cγ(s)Xγ(s)

)
+ a1(s)Xγ(s) + Err(1)(s)

)
ds+ Zγ(t) .

(4.20)

in the first scaling regime and

Xγ(t) =P γ
t X

0
γ +

∫ t

0

P γ
t−sKγ ?

(
− 9

20

(
X5
γ (s)− 10cγ(s)X3

γ (s) + 15cγ(s)2Xγ(s)
)

+ a3(s)
(
X3
γ (s)− 3cγ(s)Xγ(s)

)
+ a1(s)Xγ(s) + Err(1)(s)

)
ds+ Zγ(t)

(4.21)

in the second scaling regime, such that the following holds. For every T > 0 and κ > 0,
there exists C = C(T, κ, ν) such that for all 0 ≤ s ≤ T , x ∈ T2 and sufficiently small γ > 0

|Err(1)(s, x)| ≤ C γ−30ν−κ(‖Xγ(s, ·)‖7
C−ν + 1)

×
(
γ

2
3 s−

1
3 + ‖Xhigh

γ (s, ·)‖L∞(T2) + ‖Qγ,s(s, ·)‖L∞(Λε) + |Ẽ(s, x)|
)
,

(4.22)
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where Ẽ is defined in (3.19). Here Err(1) is different in the two regimes but the bound holds
for both regimes.

Remark 4.7 Recall the stopping time τγ,m defined in (3.5). Denote by Xγ,m the solution to
(4.21) with Zγ replaced by Zγ,m and Err(1) replaced by Err(1)

m which is equal to Err(1) before
the time τγ,m and is set to 0 after τγ,m. Taking the Lp(T2) norm on both sides of (4.22), one
has the bound

‖Err(1)
m (s, ·)‖Lp(T2) ≤Cγ−(30ν+κ)

(
γ

2
3 s−

1
3 + ‖Xhigh

γ (s, ·)‖L∞(T2)

+ ‖Qγ,s(s, ·)‖L∞(Λε) + ‖Ẽ(s, ·)‖Lp(T2)

)
,

(4.23)

where C depends on T,m, p, κ, ν.

Proof of Lemma 4.6. We first consider the second regime. With the choice of parameters as
in (2.21), or equivalently (2.19) and (2.20), the discrete evolution (3.1) can be written as

Xγ(t, ·) =P γ
t X

0
γ +

∫ t

0

P γ
t−sKγ ?

(
Cβ,θX

5
γ (s, ·) +

(9

2
cγ + a3

)
X3
γ (s, ·)

+
(
− 3cγa3 −

27

4
c2
γ + a1

)
Xγ(s, ·) + Eγ(s, ·)

)
ds+ Zγ(s, ·) on Λε.

We apply Ext on both sides, and compare it with the continuous equation (4.21). We then
have

Err(1) = err(1) + err(2) + err(3) , (4.24)

where the error terms are given by

err(1)(s) = Eγ(s) +
(
Cβ,θ +

9

20

)
Ext(X5

γ (s)) ,

err(2)(s) = − 9

20

(
Ext (X5

γ (s))− (Ext Xγ(s))5
)

+
(9

2
cγ + a3

)(
Ext (X3

γ (s))− (Ext Xγ(s))3
)
,

err(3)(s) =
(9

2
cγ + a3 −

9

2
cγ(s)− a3(s)

)
X3
γ (s)

−
(27

4
c2
γ + 3a3cγ − a1 −

27

4
cγ(s)2 − 3a3(s)cγ(s) + a1(s)

)
Xγ(s) ,

where in the expression of err(3) and also below we simply denote Xγ = ExtXγ . The analysis
for err(1) and err(2) follow essentially the same way as in [MW16, Proof of Lemma 7.1], so
we will only write down the bounds we eventually obtain for these errors.

For the first term err(1), using the assumption (2.21) on (β, θ), and the definition of Cβ,θ,
one has |Cβ,θ + 9

20
| ≤ Cγ2cγ . Then by the definition of Eγ in (2.12), and that cγ has only

logarithmic divergence, we can finally get that for any arbitrary small κ > 0

‖err(1)(s, ·)‖L∞(T2) ≤ C(κ, ν)γ2−κ−30ν(‖Xγ(s, ·)‖7
C−ν + 1) .

For the second term err(2), by decomposing Xγ into low and high modes as in (4.17), we
can obtain the bound

‖err(2)(s, ·)‖L∞(T2) ≤ C(κ)γ−κ−15ν‖Xhigh
γ (s, ·)‖L∞(T2)‖Xγ(s, ·)‖4

C−ν . (4.25)
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In order to control the term err(3), we first consider the quantity

cγ − cγ(s, x) + lim
ε→0

(cε(s)− cε) , (4.26)

which is called cγ − cγ(s, x) +A−A(s) in [MW16, Proof of Lemma 7.1] (see the definition
of Aε(s) below [MW16, (3.11)]); note that the ε → 0 limit is well-defined as discussed
around (2.31) in the proof of Lemma 2.3. By the definition of cγ in (2.36), the definition of
cγ(s, x) in (4.18), and (2.31), we have that for x ∈ T2, (4.26) is equal to∑

ω∈{−N,...,N}2
ω 6=0

|K̂γ(ω)|2

4βcγ−b(1− K̂γ(ω))
− [Rγ,s(·, x)]s +

s

2βc
−
∑
ω∈Z2

ω 6=0

exp(−2sπ2|ω|2)
4βcπ2|ω|2

.

Here b = 4 and βc = 3 since we are considering the second regime. Recall from (4.8) that
for x ∈ Λε, [Rγ,r(·, x)]r = 〈Rγ,r(·, x)〉r +Qγ,r(s, x). According to (4.4) we get for x ∈ Λε

〈Rγ,s(·, x)〉s

= c2
γ,2

∫ s

0

∑
z∈Λε

ε2(P γ
s−r ?ε Kγ)

2(x− z)
∑

σ̄∈{±1,0}

(σ̄ − σ(α−1r, ε−1z))2Cγ,m(r, z, σ̄) dr

=
2

βc

∫ s

0

∑
z∈Λε

ε2(P γ
s−r ?ε Kγ)

2(x− z) dr + err(4)(s, x) + Ẽs(s, x)

=
1

2βc

∫ s

0

∑
ω∈{−N,...,N}2

exp
(
− 2r

γb
(1− K̂γ(ω))

)
|K̂γ(ω)|2 dr + err(4)(s, x) + Ẽs(s, x)

=
s

2βc
+

∑
ω∈{−N,...,N}2

ω 6=0

|K̂γ(ω)|2

4βcγ−b(1− K̂γ(ω))

(
1− e−

2s

γb
(1−K̂γ (ω))

)
+ err(4)(s, x) + Ẽs(s, x)

where err(4) is the error that arises by replacing c2
γ,2 in the second line by 1, and Ẽ is defined in

(3.19). By |c2
γ,2−1| ≤ γ2 and

∫ s
0

∑
z∈Λε

ε2 (P γ
t−r ?εKγ)

2(z−x) dr ≤ C log γ−1 ≤ C(κ)γ−κ

one has |err(4)(s, x)| ≤ Cγ2−κ. Proposition 3.4 gives the stochastic bound on Ẽs(s, x).
Therefore up to the terms Qγ,s(s, x), err(4)(s, x) and Ẽs(s, x), the quantity (4.26) is equal

to ∑
ω∈{−N,...,N}2

ω 6=0

|K̂γ(ω)|2

4βcγ−b(1− K̂γ(ω))
e
− 2s

γb
(1−K̂γ (ω)) −

∑
ω∈Z2

ω 6=0

exp(−2sπ2|ω|2)
4βcπ2|ω|2

. (4.27)

We bound the sums over |ω| < γ−2 and |ω| ≥ γ−2 separately. In the case |ω| < γ−2 we use
the fact that according to Lemma 5.1 γ−4(1− K̂γ(ω)) approximates π2|ω|2 up to an error
≤ Cγ2|ω|3 (which implies in particular that K̂γ(ω) approximates 1 up to an error≤ Cγ4|ω|2).
For |ω| ≥ γ−2 we treat the two sums separately and use Lemma 5.2 which yields in particular
the upper bound |K̂γ(ω)| ≤ C|γ2ω|−2 as well as the lower bound 1 − Kγ(ω) ≥ 1. After
some calculations (the details of which are as in [MW16, Equation (7.7) ]) we conclude that
(4.27) is bounded by Cγ

2
3 s−

1
3 .

Now to really bound the coefficients appearing in err(3)(s, x), note that the coefficient of
X3
γ (s) in err(3)(s, x) can be expressed as

9

2
cγ + a3 −

9

2
cγ(s)− a3(s) =

9

2
(cγ − cγ(s) + c̄(s))
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which is exactly the quantity (4.26) we have bounded times 9
2
. Furthermore, the absolute

value of the coefficient of Xγ(s) in err(3)(s, x) is∣∣∣27

4
c2
γ + 3a3cγ − a1 −

27

4
cγ(s)2 − 3a3(s)cγ(s) + a1(s)

∣∣∣
=
∣∣∣27

4

(
c2
γ − cγ(s)2

)
+ 3
(
a3cγ +

9

2
c̄(s)cγ(s)− a3cγ(s)

)
+ 3a3c̄(s)−

27

4
c̄(s)2

∣∣∣
=

27

4

∣∣∣cγ(s) + cγ − c̄(s) +
4

9
a3

∣∣∣ · ∣∣∣cγ − cγ(s) + c̄(s)
∣∣∣

≤ C(κ)γ−κ|cγ − cγ(s) + c̄(s)|

where in the second line we applied (4.19), the third line is obtained by elementary factoriza-
tion, and in the last line we have used that each term in cγ(s) + cγ − c̄(s) + 4

9
a3 is bounded by

≤ C log γ−1 uniformly in s. So the bound of this coefficient again boils down to the bound
on (4.26).

The Ẽ dependent terms in err(3) are

−9

2
Ẽs(s, x)X3

γ (s, x) +
27

4

(
cγ(s) + cγ − c̄(s) +

4

9
a3

)
Ẽs(s, x)Xγ(s, x) (4.28)

whose absolute value is bounded by

C(ν, κ)γ−10ν−κ
(
‖Xγ(s, ·)‖3

C−ν + 1
)
|Ẽs(s, x)| .

Summarizing all the above bounds we obtain (4.22).
The proof for the first regime is analogous and is thus omitted; in particular we can obtain

bounds with slightly larger (but still negative) powers of γ and lower powers of ‖Xγ(s, ·)‖C−ν
than that in (4.22) but the latter is sufficient for our purpose.

The error (5) is bounded by [MW16, Lemma 7.3] as

sup
0≤t≤T

‖P γ
t X

0
γ − PtX0‖C−ν ≤ C‖X0 −X0

γ‖C−ν + C̄γ
κ
2 → 0 (4.29)

for every T > 0, where C̄ depends on ν, κ, T and ‖X0
γ‖C−ν+κ .

In the sequel, we let n̄ = 3 in the first regime and n̄ = 5 in the second regime.
At this stage, note that if we define

Xγ,m(t, ·) def
= PtX

0 + Zγ,m(t, ·) + ST (Zγ,m, Z :2:
γ,m, · · · , Z :n̄:

γ,m)(t, ·) , (4.30)

where ST is the solution map defined in Theorem 2.4, then by the convergence in law of
(Zγ,m, Z :2:

γ,m, · · · , Z :n̄:
γ,m) with respect to the topology of L∞([0, T ], C−ν)n̄ to (Z,Z :2:, · · · , Z :n̄:),

and by the continuity of the map ST as stated in Theorem 2.4, one has that Xγ,m converges in
law to X .

Therefore, it remains to compare Xγ,m and Xγ,m. The idea is to follow a discrete version
of Da Prato-Debussche argument [DPD03], namely, setting

vγ,m(t, x) def
= Xγ,m(t, x)− Zγ,m(t, x)− P γ

t X
0
γ (t, x) x ∈ T2 ,

vγ,m(t, x) def
= Xγ,m(t, x)− Zγ,m(t, x)− PtX0(t, x) x ∈ T2 ,

(4.31)
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and we compare vγ,m and vγ,m. Define

Z̃ :k:
γ,m

def
=

k∑
`=0

(P γ
t X

0
γ )k−`Z :`:

γ,m , Z
:k:

γ,m
def
=

k∑
`=0

(PtX0)k−`Z :`:
γ,m . (4.32)

Note that if the above Wick powers were defined via Hermite polynomials rather than iterated
integrals then the above identities would follow from basic properties of Hermite polynomials
Hk(x+ y) =

∑k
`=0 x

`Hk−`(y).
Now it is straightforward to check that vγ,m satisfies

vγ,m(t) = −
∫ t

0

Pt−sΨγ,m(s) ds , (4.33)

where we have set

Ψγ,m(s) def
=
ac(4ac − 1)β3

c

3(2ac + 1)2

3∑
k=0

(
3

k

)
Z

:k:

γ,m(s) v3−k
γ,m (s)− a1(s) (vγ,m(s) + Zγ,m(s)) (4.34)

in the first regime and

Ψγ,m(s) def
=

9

20

5∑
k=0

(
5

k

)
Z

:k:

γ,m(s) v5−k
γ,m (s)− a3(s)

3∑
k=0

(
3

k

)
Z

:k:

γ,m(s) v3−k
γ,m (s)

− a1(s) (vγ,m(s) + Zγ,m(s)) .

(4.35)

in the second regime. On the other hand, by Lemma 4.6 and (4.31), vγ,m satisfies (on T2)

vγ,m(t) =−
∫ t

0

P γ
t−sKγ ? (Ψγ,m(s) + Err(1)

m + Err(2)
m (s, ·)) ds , (4.36)

where Ψγ,m(s) is defined in the same way as (4.34) or (4.35) with Z
:k:

γ,m, Zγ,m replaced by
Z̃ :k:
γ,m, Z̃γ,m and vγ,m replaced by vγ,m. Here the term Err(1)

m was estimated in Lemma 4.6, and
Err(2)

m controls the error (6) i.e. the fact that the iterated integrals do not exactly coincide
with Hermite Polynomials. In fact, the difference between Hermite polynomials and iterated
integrals was already bounded in Lemma 4.3. Relying on these bounds and using (4.32) it is
straightforward (see [MW16, Lemma 7.4] for the analogous details in the Kac-Ising case) to
check that in both regimes one has for 0 ≤ s ≤ T

‖Err(2)
m (s, ·)‖L∞(T2) ≤ C(T, ν, κ)

(
1 + s−3ν−κ + ‖vγ,m‖4

C
1
2

) 5∑
k=2

‖E:k:
γ,s,m(s, ·)‖L∞(T2) (4.37)

where E:n:
γ,t(s, x) was introduced in Proposition 4.3. The following estimate holds in both

regimes.

Lemma 4.8 For every 0 ≤ t ≤ T and sufficiently small γ > 0, we have

‖vγ,m(t, ·)− vγ,m(t, ·)‖
C

1
2
≤C1

∫ t

0

(t− s)−
1
3 s−

1
6‖vγ,m(s, ·)− vγ,m(s, ·)‖

C
1
2
ds

+ C1(γ
κ
2 + ‖X0

γ −X0‖C−ν ) + Err(3)(t) , (4.38)



34 WICK POWERS AND PROOF OF THE MAIN THEOREM

where the constant C1 depends on ν, κ, T , ‖X0‖C−ν+κ , ‖X0
γ‖C−ν+κ as well as the random

quantities sup0≤s≤T ‖vγ,m(s, ·)‖
C

1
2
, sup0≤s≤T ‖vγ,m(s, ·)‖

C
1
2
, and

sup
0≤s≤T

‖Z :k:
γ,m(s, ·)‖C−ν for k = 1, . . . , n̄ .

There exists some p ≥ 2, such that the error term Err(3) satisfies that for every T ≥ 0 and
0 < λ ≤ 1

2

E sup
0≤t≤T

|Err(3)(t)|p ≤ C2γ
λ , (4.39)

for a constant C2 = C2(p, T, λ).

Proof. Using (4.33) - (4.36), we get that for any t ≥ 0 and γ > 0,

vγ,m(t, ·)− vγ,m(t, ·) = −
∫ t

0

(Pt−s − P γ
t−s ? Kγ) Ψγ,m(s) ds

−
∫ t

0

P γ
t−s ? Kγ ? (Ψγ,m(s)−Ψγ,m(s)) ds

+

∫ t

0

P γ
t−s ? Kγ ? (Err(1)

m (s, ·) + Err(2)
m (s, ·)) ds ,

(4.40)

where Ψγ,m(s) was defined in (4.35) and Ψγ,m(s) was defined below (4.36). The rest of the
proof relies on the crucial multiplicative inequality [MW16, Lemma A.5] which is the linchpin
around which the Da Prato-Debussche argument revolves (see [DPD03, Proposition 2.1] for
a similar result); it states that if β < 0 < ν with ν + β > 0, then there exists a constant C
depending only on ν and β such that

‖Z1 Z2‖Cβ ≤ C‖Z1‖Cν ‖Z2‖Cβ . (4.41)

Proceeding as in the proof of [MW16, Lemma 7.5], which uses the above multiplicative
inequality, together with the (discrete) heat kernel estimates in Sec. 8 of that reference, we can
bound ‖Ψγ,m(s)‖C−ν in (4.40) in terms of ‖vγ,m(s, ·)‖

C
1
2

and ‖Z :k:

γ,m(s, ·)‖C−ν where ν < 1
2
,

and the latter quantity is by (4.32) further bounded in terms of ‖Z :k:
γ,m(s, ·)‖C−ν and ‖X0‖C−ν .

Therefore the C 1
2 norm of the first term on the RHS of (4.40) can be eventually bounded by

Cγ
1
2 where C may depend on all the quantities stated in the lemma, and the small factor γ

1
2

arises from a bound on ‖(Pt − P γ
t ? Kγ)‖C−ν→C 1

2
.

The C 1
2 norm of the second term on the RHS of (4.40) can be bounded in the same way

using the multiplicative inequality (4.41) and heat kernel estimates, by

C

∫ t

0

(t− s)−
1
3 s−

1
6‖vγ,m(s)− vγ,m(s)‖

C
1
2
ds+ C‖X0

γ −X0‖C−ν + Cγ
κ
2 ,

where again C may depend on all the quantities stated in the lemma.
Now we consider the C 1

2 norm of the last term on the RHS of (4.40). We use [MW15,
Rem. 3.6 and Prop. 3.7] which state that the space Lp is continuously embedded in B0

p,∞
and the latter is further continuously embedded in Bα∞,∞ (i.e. the space Cα) provided that
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α + 2/p = 0. Thus applying (4.23), we have that for any κ̄ > 0 there exists C = C(p, κ̄)
such that∥∥∥∫ t

0

P γ
t−s ? Kγ ? Err

(1)
m (s, ·) ds

∥∥∥
C

1
2
≤ C

∫ t

0

(t− s)−
1
4
− 1
p
−κ̄‖Err(1)

m (s, ·)‖Lp(T2) ds

≤ Cγ−(30ν+κ)
∫ t

0

(t− s)−
1
4
− 1
p
−κ̄
(
γ

2
3 s−

1
3 + ‖Xhigh

γ (s, ·)‖L∞(T2)

+ ‖Qγ,s(s, ·)‖L∞(Λε) + ‖Ẽ(s, ·)‖Lp(T2)

)
ds

≤ Cγ
2
3
−(30ν+κ)

∫ t

0

(t− s)−
1
4
− 1
p
−κ̄s−

1
3ds

+ Cγ−(30ν+κ)
(∫ t

0

(t− s)−( 1
4

+ 1
p

+κ̄)p? ds
) 1
p?

×
(
‖Xhigh

γ ‖L∞(T2×[0,T ]) + ‖Qγ,s‖L∞(Λε×[0,T ]) + ‖Ẽ‖Lp(T2×[0,T ])

)

(4.42)

where p? is such that 1
p?

+ 1
p

= 1. Choosing (and fixing from now on) p sufficiently large
(depending only on κ̄) the above expression can be bounded by

C(T, p, κ̄)γ−(30ν+κ)
(
γ

2
3 + ‖Xhigh

γ ‖L∞(T2×[0,T ]) + ‖Qγ,s‖L∞(Λε×[0,T ]) + ‖Ẽ‖Lp(T2×[0,T ])

)
.

We have Proposition 3.4 to bound Ẽ, Proposition 4.2 to bound Qγ . Regarding the term Xhigh
γ ,

which is equal to Zhigh
γ +vhigh

γ,m + (P γ
s X

0
γ )high, we can bound ‖·‖L∞(T2) of the last two quantities

by Cγ1‖ · ‖
C

1
2
. Finally for Zhigh

γ , by [MW16, Lemmas 4.6] with minor changes in the proof
due to the scaling-regime-dependent definition (4.17) and kernel estimates in Section 5, one
has E‖Xhigh

γ (s, ·)‖pL∞ ≤ Cγp(1−κ). Therefore by choosing ν, κ small enough depending on
the previously fixed p one has that

E sup
0≤t≤T

∥∥∥∫ t

0

P γ
t−s ? Kγ ? Err

(1)
m (s, ·) ds

∥∥∥p
C

1
2
≤ C(p, T )γ

1
2 .

Similarly for Err(2)
m , invoking Proposition 4.3 to bound E:k:

γ,s,m, one has

E sup
0≤t≤T

∥∥∥∫ t

0

P γ
t−s ? Kγ ? Err

(2)
m (s, ·) ds

∥∥∥p
C

1
2
≤ C(p, T )γ

p
2 .

Therefore (4.39) is obtained.

Now we prove our main theorem of the article.

Proof of Theorem 2.5. The proof is essentially the same as [MW16]; we give the proof for
completeness. Our arguments hold for both scaling regimes. For r and m ≥ 1, we define the
events AZr = AZr (γ,m), and AE = AE(γ,m) by

AZr
def
= {‖Z :k:

γ,m‖C−ν ≤ r on [0, T ], k = 1, . . . , 5} ,

AE def
={ sup

0≤t≤T
|Err(3)(t)| ≤ γ

1
2p } ,
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where p is the constant in (4.39). For every m, r ≥ 1 and every bounded uniformly continuous
mapping F : D([0, T ], C−ν)→ R, we have

|E(F (Xγ,m))− E(F (X))| ≤ |E(F (Xγ,m))− E(F (X))|

+ E
( ∣∣F (Xγ,m

)
− F (Xγ,m)

∣∣ 1AZr ∩AE

)
+ ‖F‖L∞ P

(
AZr ∪ A

E
)
.

(4.43)

Recall that Xγ,m converges in law to X , see (4.30) and the discussion below it.
To bound the second term on RHS of (4.43), note that on the event AZr and by continuity

of ST (Theorem 2.4), we have sup0≤t≤T ‖vγ,m(t)‖
C

1
2
≤ C(T, r) for some finite constant

C(T, r). Applying Gronwall’s inequality to the bound obtained in Lemma 4.8, one has that
on the event AZr ∩ AE

‖vγ,m(t, ·)− vγ,m(t, ·)‖
C

1
2
≤ C

(
γ
κ
2 + ‖X0

γ −X0‖C−ν
)

(4.44)

for all t ≥ 0 such that ‖vγ,m(t)‖
C

1
2
≤ C(T, r) + 2. In particular for γ small enough, the right

hand side of (4.44) is bounded by 1. By continuity of vγ and v̄γ (which follows by definition
(4.31) - the jumps in the evolution of Xγ are all contained in the part Zγ,m), the bound (4.44)
must actually hold for all t ∈ [0, T ].

This together with (4.29), (4.31) implies that the second term on RHS of (4.43) vanishes.
Regarding the last term in (4.43), it follows from (4.39) i.e. the bound for Err(3)(t) and

Chebyshev’s inequality that limγ→0 P(AE) = 1. For the event AZr , we know that the limiting
quantities sup0≤t≤T ‖Z :k:(t)‖C−ν are finite a.s.; on the other hand it is easy to argue that the
stopping time that ‖Z :k:

γ,m(t)‖C−ν first exceeds the value r will converge to 2 the stopping time
that ‖Z :k:(t)‖C−ν first exceeds the same value r. Thus we can choose r large enough, so that
lim infγ→0 P(AZr ) is arbitrarily close to 1.

This proves that Xγ,m converges in law to X as γ tends to 0, for any fixed value of m.
We can remove m by the same reasoning as above. The stopping time τγ,m defined in (3.5)
converges in law to 3 the stopping time τm defined in the same way for X , for every m.
Moreover, we know from Theorem 2.4 that sup0≤t≤T+1 ‖X(t)‖C−ν is a.s. finite. Hence by
choosing m = m(T, ε) sufficiently large, lim infγ→0 P(Xγ,m = Xγ) can be made arbitrarily
close to 1. Therefore we have proved that Xγ also converges in law to X .

This concludes the proof of Theorem 2.5. Note that item (2) of the theorem is clearly just
the degenerate case of the item (1) that the cubic term equals zero and therefore one obtains a
linear limit.

5 Appendix: Kernel estimates

We need some estimates about Kγ and P γ . In the case of the first scaling regime (2.13), these
estimates are proved in [MW16, Section 8]. For the second scaling regime (2.14), we list all
these results, without proving them since the proofs follow exactly the same way except that
one simply applies the new scaling relations.

We begin with the Fourier transforms of these kernels. For ω ∈ {−N, . . . , N}2,

K̂γ(ω) =
∑
x∈Λε

ε2Kγ(x) e−iπω·x = cγ,1
∑
x∈γZ2

?

γ2 K(x) e−iπ(ε/γ)ω·x , (5.1)

2outside a countable set of r that ‖Z :k:
γ,m(t)‖C−ν attains r as a local maximum with positive probability

3outside a countable set for the same reason
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where K is the smooth function introduced in (2.2), γZ2
?

def
= γZ2 \ {0}, and note that ε/γ ≈ γ

in the first regime and ε/γ ≈ γ2 in the second regime. Also,

P̂ γ
t (ω) = exp

(
tγ−b(K̂γ(ω)− 1)

)
, (5.2)

where b = 2 in the first regime and b = 4 in the second regime.
We now list some estimates which state that some properties of K̂(γω) (resp. K̂(γ2ω))

also hold for K̂γ in the first (resp. second) regime, uniformly in γ.

Lemma 5.1 The following statement holds with b = 1 in the first regime and b = 2 in the
second regime. There exists C > 0 such that for all 0 < γ < 1

3
and for |ω| ≤ γ−b we have

for j = 1, 2

|γ−2b(1− K̂γ(ω))− π2|ω|2| ≤ Cγb|ω|3 , (5.3)

| − γ−2b∂jK̂γ(ω)− 2π2ωj| ≤ Cγb|ω|2 , (5.4)

| − γ−2b∂2
j K̂γ(ω)− 2π2| ≤ Cγb|ω| . (5.5)

Lemma 5.2 The following statements hold with b = 1 in the first regime and b = 2 in the
second regime. There exists C > 0 such that for all 0 < γ < 1

3
, ω ∈ [−N − 1

2
, N + 1

2
]2 and

j = 1, 2,
(1) (Estimates most useful for |ω| ≤ γ−b)

|K̂γ(ω)| ≤ 1 , |∂jK̂γ(ω)| ≤ Cγb(|γbω| ∧ 1) , |∂2
j K̂γ(ω)| ≤ Cγ2b . (5.6)

(2) (Estimates most useful for |ω| ≥ γ−b)

|γbω|2 |K̂γ(ω)| ≤ C, |γbω|2 |∂jK̂γ(ω)| ≤ Cγb, |γbω|2 |∂2
j K̂γ(ω)| ≤ Cγ2b. (5.7)

Furthermore, there exist constants C1 > 0 and γ0 > 0 such that for all 0 < γ < γ0 and
ω ∈ [−N − 1

2
, N + 1

2
]2 ,

1− K̂γ(ω) ≥ 1

C1

(|γbω|2 ∧ 1) . (5.8)

Lemma 5.3 Let γ0 > 0 be the constant introduced in Lemma 5.2. For every T > 0, there
exists a constant C = C(T ) such that for all 0 < γ < γ0, 0 ≤ t ≤ T and x ∈ T2, we have

|P γ
t ? Kγ(x)| ≤ C(t−1( log(γ−1))2 ∧ γ−2b log(γ−1)) , (5.9)

where b = 1 in the first regime and b = 2 in the second regime.
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[CKS95] L. CHAYES, R. KOTECKÝ, and S. B. SHLOSMAN. Aggregation and intermediate phases
in dilute spin systems. Comm. Math. Phys. 171, no. 1, (1995), 203–232.

[CST16] I. CORWIN, H. SHEN, and L.-C. TSAI. ASEP(q, j) converges to the KPZ equation. arXiv
preprint arXiv:1602.01908 (2016).

[CT15] I. CORWIN and L.-C. TSAI. KPZ equation limit of higher-spin exclusion processes. to
appear in Ann. Probab. (2015). arXiv:1505.04158.

[DGP17] J. DIEHL, M. GUBINELLI, and N. PERKOWSKI. The Kardar–Parisi–Zhang Equation as
Scaling Limit of Weakly Asymmetric Interacting Brownian Motions. Comm. Math. Phys.
354, no. 2, (2017), 549–589. doi:10.1007/s00220-017-2918-6.

[DPD03] G. DA PRATO and A. DEBUSSCHE. Strong solutions to the stochastic quantization
equations. Ann. Probab. 31, no. 4, (2003), 1900–1916.

[DT16] A. DEMBO and L.-C. TSAI. Weakly Asymmetric Non-Simple Exclusion Process and
the Kardar–Parisi–Zhang Equation. Comm. Math. Phys. 341, no. 1, (2016), 219–261.
doi:10.1007/s00220-015-2527-1.
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