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Abstract

Multi-locus sequence typing (MLST) is a widely used method for categorizing bacteria. Increasingly, MLST is being performed

using next-generation sequencing (NGS) data by reference laboratories and for clinical diagnostics. Many software

applications have been developed to calculate sequence types from NGS data; however, there has been no comprehensive

review to date on these methods. We have compared eight of these applications against real and simulated data, and

present results on: (1) the accuracy of each method against traditional typing methods, (2) the performance on real outbreak

datasets, (3) the impact of contamination and varying depth of coverage, and (4) the computational resource requirements.

DATA SUMMARY

1. Simulated reads for datasets testing coverage and mixed
samples have been deposited in Figshare; DOI: https://doi.
org/10.6084/m9.figshare.4602301.v1.

2. Outbreak databases are available from GitHub; url –

https://github.com/WGS-standards-and-analysis/datasets.

3. Docker containers used to run each of the applications
are available from GitHub; url – https://github.com/
andrewjpage/docker_mlst.

4. Accession numbers for the data used in this paper are
available in the Supplementary Material.

INTRODUCTION

A small number of bacterial foodborne pathogens, such as
Salmonella, Campylobacter, Listeria and Escherichia, cause a
huge burden of disease in humans and animals. With Liste-
ria monocytogenes, although the case count is small, the
case-fatality rate is high at approximately 21 to 38 % [1, 2]
and a high economic burden [3]. In the US, each foodborne
illness can cost anywhere from hundreds to millions of US
dollars depending on the organism. Therefore, investigating
potential foodborne outbreaks and preventing any illness is

advantageous from both economic and public
health standpoints. In order to understand these bacteria in
more depth, there have been many studies to describe their
population structure using phylogenetic methods based on
multi-locus sequence typing (MLST) [4, 5].

Additionally, there have been many large-scale surveillance
efforts for these pathogens. One of the most successful pro-
grams has been PulseNet International [6], which aids in
the detection of common source outbreaks. Recently, large
numbers of isolates have been subjected to whole-genome
sequencing (WGS) through an initiative between the Cen-
ters for Disease Control and Prevention (CDC), the US
Food and Drug Administration (FDA), the US Department
of Agriculture (USDA), and the National Center for Bio-
technology Information (NCBI). Through this collabora-
tion, every L. monocytogenes genome that is discovered in
the food supply, or in clinical samples, is being sequenced
and uploaded to the NCBI Sequence Read Archive (SRA)
database. This collaboration has since started sequencing a
large percentage of Escherichia coli, Salmonella enterica,
Campylobacter coli, Campylobacter jejuni and many others,
with the eventual goal of completely switching from pulsed-
field gel electrophoresis to WGS. In Europe, Public Health
England sequences every Salmonella and Mycobacterium
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tuberculosis isolate submitted to them and deposits the data

in the SRA. Perceiving a future need for worldwide collabo-

ration on these new methods, the Global Microbial Identi-

fier (GMI) [7] partnership was initiated in 2011 to

encourage data sharing among all nations for many pur-

poses, including public health and research.

To aid in population structure studies and in epidemiolog-

ical investigations, MLST has been used for nearly two

decades [8] to categorize different clonal expansions of

these pathogens into broad categories, based on allelic var-

iation amongst seven highly conserved housekeeping

genes. Sequence typing can be performed using both next-

generation sequencing (NGS) and classical sequencing

techniques. Whilst MLST is a low-resolution classification

compared to what is possible from NGS data, the nomen-

clature is in common usage by microbiologists and clini-

cians. A number of software applications have been

developed using a variety of fundamentally different tech-

niques to calculate sequence types (STs) from NGS data.

However, there has been no comprehensive review to date

on the accuracy, computational performance, robustness

and ease of use of these methods. In this paper, we have

evaluated multiple MLST software applications on a vari-

ety of datasets, both real and simulated, such as: (1) stan-

dard sets of outbreak data from the Gen-FS WGS

Standards and Analysis Working Group (available from

https://github.com/WGS-standards-and-analysis/datasets)

[9], which includes C. jejuni, E. coli, L. monocytogenes and

S. enterica; (2) Salmonella isolates that have been typed

using both traditional capillary sequencing and NGS; (3)

simulated reads of varying coverage; and (4) simulated

mixed strains. Here, we describe a comprehensive list of

command-line tools for MLST analysis and benchmark

them with these standardized datasets in terms of accuracy

and computer resources required.

SOFTWARE OVERVIEW

MLST software can be categorized according to the input

data they accept; there are tools that use raw sequence reads

and tools that use de novo assemblies. Calling MLST from

raw reads avoids the need to fully reconstruct the whole

genome, theoretically allowing for a lower running time.

However, in practice de novo assembly is routinely per-

formed for bacteria [10] and assemblies may already be

available for any given MLST analysis leading to faster

sequence typing. The process of de novo assembly can intro-

duce artefacts, particularly from short reads. For example, a

gene may be fragmented over multiple contigs. A full over-

view is given in Table 1. In general, the desired characteris-

tics of MLST software include:

(1) high specificity of calling STs,

(2) resilience in the face of mixed samples,

(3) tolerance with low sequencing coverage,

(4) efficient usage of computational and disk resources,

IMPACT STATEMENT

Sequence typing is rapidly transitioning from traditional

sequencing methods to using whole-genome sequencing.

A number of in silico prediction methods have been devel-

oped on an ad hoc basis and aim to replicate classical

multi-locus sequence typing (MLST). This is believed to be

the first study to comprehensively evaluate multiple MLST

software applications on real validated datasets and on

common simulated difficult cases. It will give researchers

a clearer understanding of the accuracy, limitations and

computational performance of the methods they use, and

will assist future researchers to choose the most appropri-

ate method for their experimental goals.

Table 1. Overview of MLST software

Software Input Algorithm Licence Source Tests Installation Interface

ARIBA Reads Assembly GPL3 GitHub Yes Pip, Apt, Docker Command line

BigsDB [11] Contigs BLASTN GPL3 GitHub No Manual Website

BioNumerics Reads/ contigs Proprietary/BLASTN Bespoke Proprietary NA Manual GUI

EnteroBase Reads UBLAST/USEARCH NA NA NA NA Website

MOST [14] Reads Mapping FreeBSD GitHub No Manual Command line

mlst* Contigs BLASTN GPL2 GitHub No Brew Command line

MLST-CGE [16] Contigs BLASTN Apache 2 Bitbucket No Docker Command line/Website

MLSTcheck [17] Contigs BLASTN GPL3 GitHub Yes CPAN, Docker Command line

SeqSphere+ [18] Contigs NA Bespoke Proprietary NA Manual GUI

SRST2 (24) Reads Mapping BSD GitHub Yes Apt, pip Command line

stringMLST [21] Reads k-mer Bespoke GitHub No Manual Command line

*https://github.com/tseemann/mlst
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(5) simple dependency management and installation,

(6) validated with automated tests to verify functionality
works as intended,

(7) transparency of algorithm,

(8) and scalability to large numbers of isolates.

The interfaces to the software applications fall into two cate-
gories, those that operate on the command line and those
that have a graphical interface. Command line input allows
for high throughput analysis, but has a high barrier to entry
for non-technical users. Graphical interfaces, such as web-
sites, provide point and click interfaces that non-technical
users find easier to use initially; however, they are often lim-
ited to the analysis of a few samples at a time. To reduce the
impact of this limitation, some websites precompute results
by downloading raw data directly from the short-read
archives (EnteroBase: http://enterobase.warwick.ac.uk) [11].

Most of the software packages are available under open-
source licences, with source code available in public reposi-
tories, such as GitHub (https://github.com). Source-code
availability facilitates transparency for the underlying meth-
ods. Comprehensive automated tests, if designed correctly,
ensure stability within software applications. Applications
packaged for easy installation and dependency management
such as: Apt (Debian), Homebrew, Docker, PyPy and CPAN

allow for the software to be installed in one step, allowing
for immediate use by a range of users. An overview of
MLST software applications follows.

Antibiotic Resistance Identification By Assembly (ARIBA)
(https://github.com/sanger-pathogens/ariba) takes raw
reads as input on the command line, and uses a combina-
tion of mapping and local de novo assembly to calculate
alleles. Like SRST2, it can be used more generally for gene
detection and classification, allowing for antibiotic-resis-
tance prediction, virulence-gene detection and plasmid rep-
lication gene classification. It is open source, has extensive
unit tests and is packaged for easy installation.

Bacterial Isolate Genome Sequence Database (BigsDB) [11]
is a web service whose primarily purpose is the management
of sequence typing databases, as opposed to querying them.
It is used by the majority of schemes as the backend for stor-
ing their typing data. The database can be queried in two
ways, via a web interface or programmatically through a
REST API. There is no described command line interface
for queries; however, the mechanisms are in place to allow
for it in the future. BigsDB can be used to create new MLST
schemes.

BioNumerics (http://www.applied-maths.com/bionumerics)
from Applied Maths is a commercial application that is
widely used by public-health laboratories to calculate STs.
Due to its proprietary nature, a full review is not possible;
however, the authors described a reads-based k-mer
sequence typing method in a patent [12] and do assembly-
based sequence typing using BLASTN.

EnteroBase (http://enterobase.warwick.ac.uk) is a web
resource that incorporates sequencing data from both public
databases and directly from users for four genera (Salmo-
nella, Escherichia, Yersinia and Moraxella), and assembles it
de novo with an adjusted pipeline using SPAdes [13]. Enter-
oBase succeeds the University College Cork/Warwick
MLST database (http://www.mlst.net/databases/), and
maintains the database and assigns new alleles of MLST
schemes for these genera. These data are mirrored through
PubMLST via the EnteroBase API, which is available for all
EnteroBase users. Alleles are called using nucleotide and
amino acid sequence with uSEARCH/uBLAST, which allows for
high sensitivity for divergent allele variants. However, the
source code is not publicly available.

Metric-Oriented Sequence Typer (MOST) [14] builds upon
SRST (version 1) [15] and uses a mapping-based approach to
align alleles to reads, with a traffic light system indicating
the confidence in the ST calling. One major difference to
SRST2 is that it takes a 100 base flanking region around the
locus from a reference genome, reducing the impact of cov-
erage drop off at the ends of the sequences. Additionally, it
can assign predicted serovars to Salmonella isolates. It is
used by Public Health England on clinical isolates and has
strict, well-defined conservative criteria for calling STs to
ensure accuracy. mlst (https://github.com/tseemann/mlst)
takes de novo assemblies as input on the command line and
uses BLASTN to align sequences to alleles. It is very fast and
searches all databases on pubMLST to automatically detect
the organism, then calculates the ST. Installation is very
easy using brew.

MLST from the Center for Genomic Epidemiology (MLST-

CGE) [16] is a web-based method for calculating MLST. It

can take assembled genomes or raw sequencing reads. If
raw sequencing reads are provided, it performs a de novo
assembly. Alleles are called using a BLAST-based method.

MLSTcheck [17] takes de novo assemblies as input on the
command line and uses BLASTn to align sequences to alleles.
It is packaged for easy dependency installation, and has unit
test coverage. It produces a multi-FASTA alignment of
concatenated allele sequences for each sample, which allows
for phylogenetic trees to be easily reconstructed. Novel allele
sequences are saved to allow for them to be submitted to the
MLST curators.

SeqSphere+ [18] from Ridom is a commercial application
that is widely used by public-health laboratories. It uses
assembled sequences to call STs. It is packaged for easy
installation and consists of a large suite of analysis pipelines
for automated sequence analysis. Due to its proprietary
nature, a full review is not possible.

Short Read Sequence Typing 2 (SRST2) [19] takes raw reads
as input on the command line and uses a mapping-based
approach to align reads to the alleles. It is packaged for easy
dependency installation and is widely used for a variety of
applications in addition to MLST including: antibiotic-resis-
tance prediction, virulence-gene detection and serotyping
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[20]. The software licence is free for both commercial and
non-commercial use, and it has unit tests.

stringMLST [21] takes raw reads as input on the command
line and uses k-mers to detect MLST alleles. Instead of
detecting allele coverage or parsing for potential SNPs, an
allele call is made by identifying the allele with the most
number of matching k-mers. The use of k-mers gives a sub-
stantial speed advantage, but at the expense of accuracy.
This method is fast enough to detect STs in real time during
sequencing, so it holds much promise for the future. It is
free for non-commercial purposes and it has no automated
tests.

The described applications were optimized to work with
MLST. Their performance on higher resolution schemes,
such as ribosomal MLST, core genome MLST, and whole
genome MLST, is quite different, with most scaling poorly
to schemes with hundreds or thousands of genes, as this was
a case the applications were never fundamentally designed
to handle. Alternative methods are required to cater for
these cases; thus, extended schemes are not covered in this
paper.

DATABASE AVAILABILITY

The availability of databases containing alleles and ST pro-
files for different species is an important aspect of any
MLST software application as outlined in Table 2, since this
dictates how easy it is to use the software. These databases
also need to be kept up to date, as the underlying schemes
are constantly being extended as new isolates are sequenced.
Out of date databases can mean that rapidly emerging
clonal expansions may be missed, impairing epidemiological
investigations. ARIBA, BioNumerics, mlst, MLSTcheck,
stringMLST, SeqSphere+ and SRST2 all provide automated
scripts/methods to download all of the latest databases from
pubMLST [11], which are immediately ready to use. This
provides immediate access to schemes for over 125 species.

mlst and stringMLST go one step further and additionally
bundle all available databases in their software repository,
which are regularly updated. MOST does not provide an auto-
mated method for downloading new or updated databases,
instead directing researchers to a set of manual steps. They
do provide a small number of bundled databases (six and
nine, respectively); however, these only represent a fraction
of the currently available databases on pubMLST. The data-
bases bundled with MOST were last updated in December
2015, so are missing all recent updates and additions to the
schemes, including new STs, so researchers cannot be cer-
tain novel results are indeed novel.

EVALUATION

A full comparison could only be performed with the six
open-source command line MLST software applications,
ARIBA (v2.7.2), mlst (v2.8), MLSTcheck (v2.1.1630910), MOST

(v 2e3da07), SRST2 (v0.2.0) and stringMLST (v0.3.6). Com-
parisons of the accuracy of results were performed for the
two commonly used commercial applications, BioNumerics
(v7.6.2) and Ridom SeqSphere +v4.0.0 (2017–04); compara-
ble computational performance evaluations were not possi-
ble; however, these are secondary to accuracy. BigsDB and
EnteroBase were excluded as they are web services with
extensively featured pipelines and the computational perfor-
mance of the MLST calling component could not be mea-
sured independently. MLST-CGE was excluded because an
essential internally hosted software repository was unavail-
able at the time of testing. Partial results are available for
EnteroBase for some datasets, where relevant.

Each application was evaluated on four different datasets,
two real and two simulated. Dataset 1 contained 85 samples
from standard sets of outbreak data from the Gen-FS WGS
Standards and Analysis working group (available from
https://github.com/WGS-standards-and-analysis/datasets).
Dataset 2 consisted of 72 Salmonella samples from Entero-
Base, which represent samples that have both MLST data
based using traditional capillary sequencing and using Illu-
mina NGS technologies. Dataset 3 consisted of artificially
generated reads with varying levels of coverage. From this,
the minimum sequence depth required for each software
application could be calculated. Dataset 4 consisted of artifi-
cially generated reads from two different Salmonella sero-
vars where all alleles differ, mixed in different ratios out of a
total depth of coverage of 50�. The accuracy of applications
could then be determined with mixed samples (a common
case) and the point at which the mixed samples became
detectable.

The experiments for Dataset 1 were performed using the
CDC compute infrastructure. For the rest of the experi-
ments [2–4], we used the MRC CLIMBOpenStack cloud [22]
as the base platform for the evaluations. Each of the applica-
tions was run in their own Docker container [23] available
from GitHub (https://github.com/andrewjpage/docker_
mlst). The Debian Testing distribution was used as the base
operating system for all containers as it provides access to a

Table 2. Overview of the MLST databases available with each software

application.

Software Automated

download

Bundled

DBs

Age of

bundled

DBs*

DBs ready

to use

ARIBA Yes 0 – Yes

BioNumerics Yes 0 – Yes

mlst Yes 125 1month Yes

MLSTcheck Yes 0 – Yes

MOST No 6 >1 year Yes

SeqSphere+ Yes 0 – Yes

SRST2 Yes 0 – Yes

stringMLST Yes 128 1month Yes

DB, Database.

*The age of the bundled databases was calculated on the 15

March 2017.
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large range of up-to-date bioinformatics software. The host
VM had four cores and 32GB of RAM running Ubuntu
16.04 (LTS); however, only a single core was used for the
evaluations. All datasets used for this analysis are available
for download as described in the data bibliography or from
the public archives using the accession numbers in the Sup-
plementary Material. Where assemblies were required as
input to MLST applications, the raw reads were de novo
assembled with SPAdes (v3.9.0) [13] using the default
parameters. SPAdes was chosen as it is widely used and con-
sistently produces high-quality results on bacterial data
[24]. All experiments using the two commercial applica-
tions, BioNumerics and SeqSphere+, were performed using
the CDC compute infrastructure with default options and
the SPAdes assemblies as described above.

REAL OUTBREAK DATASETS

Standard datasets (https://github.com/WGS-standards-and-
analysis/datasets), covering L. monocytogenes from stone
fruit [25], E. coli from sprouts [26], C. jejuni from raw milk
(http://www.outbreakdatabase.com/details/hendricks-farm-
and-dairy-raw-milk-2008/) and S. enterica from spicy tuna
[27], comprising 85 samples, were analysed by each of the
software applications. These are real outbreak datasets
where there were substantive epidemiological investigations
and full details are available [9]. No false positives were
reported by any application, they made either the correct
call, a low-confidence call or no call. A summary of the
overall performance is provided in Table 3, with extended
details available in Table S1 (available with the online Sup-
plementary Material). There was a wide variation in the
results, with only three applications (stringMLST, BioNu-
merics and MLSTcheck) correctly calling all of the STs.
MOST failed to confidently call any of the spicy tuna Salmo-
nella samples, but did identify the correct STs, flagged as
low confidence (amber). There was a 29-fold variation in

the running times between the applications (stringMLST vs
SRST2) using raw reads as input (Table 1). This extra compu-
tation imposes financial costs and increases the analysis
time after sequencing.

COMPARISON TO CAPILLARY DATA

This dataset consisted of 72 Salmonella samples that had been
sequenced using traditional capillary sequencing (originally
deposited in http://mlst.warwick.ac.uk, now available through
EnteroBase) and sequenced using NGS. This allowed for tech-
nology independent validation of the NGS MLST software
applications. The samples covered a wide range of Salmonella,
from hosts including humans, reptiles, birds and farm/domes-
tic animals, and from the environment, collected between
1940 and 2014. The dataset contained an estimated 32 differ-
ent STs, with 38 of the samples predicted to have a serovar of
Typhimurium, which causes severe disease in a wide range of
hosts, including humans. Full details of the samples (including
accession numbers) and results are in Table S2. The ST calls
matched in 89% (64/72) of cases between the capillary data
and the NGS MLST software applications, which additionally
includes MLST results from the EnteroBase website. Two
samples (RKS1252 and RKS1256) were suspected sample
swaps with each other. The sample E698 differed between the
capillary sequencing results and all other methods with no
overlapping alleles. It is possibly a sample swap with another
unknown sample or the original sample contained multiple
strains. For OLC-1602 and 556-59/192, six out of seven alleles
matched in all of the results, but the capillary sequencing data
reported a single different allele. Whilst capillary sequencing
data is recognized by the community as a gold standard, it is
not error free [28], with calls sometimes made using a single
read, leaving little resilience to sequencing errors. As the NGS
data had very high depth of coverage (over 30�) of this allele,
it is likely that the NGS results were correct. Nearly all of the
calls from MOST were low confidence (rated amber); however,
they correlated with the results from the other applications,
and it is just that MOSThas very stringent, validated, criteria for
calling an ST. Three samples were flagged by multiple applica-
tions as problematic; however, in every case the capillary
sequencing data, stringMLST, EnteroBase, SeqSphere+ and
BioNumerics confidently called an ST, indicating a contami-
nant has been missed. Eight applications flagged sample 139K
as problematic; however, stringMLST confidently called an
ST, indicating overconfidence in ST calling. MLSTcheck and
BioNumerics called a different ST for 2 samples; however, this
appears to be due to duplicate allele profiles in the underlying
database at pubMLST. Overall, we conclude that whilst the
MLST results between capillary sequencing data and NGS
data are nearly identical, the MLST based on NGS data is
more accurate and reliable when presented with edge cases.

IMPACT OF DEPTH OF COVERAGE

The impact of depth of coverage over the MLST genes was
assessed by artificially generating perfect paired-ended reads
with a length of 125 bases and a median insert size of 400
bases with varying levels of coverage using FASTAQ (v3.14.0).

Table 3. Summary of performance of each algorithm on real outbreak

data for four different species (85 samples)

Software Total time

(min)

Correct ST

(%)

No call/low confidence

(%)

ARIBA 109.5 98.8 1.2

BioNumerics NA 100 0

mlst* 1.9 (+2873) 96.5 3.5

MOST† 1189.7 49.4 50.6

MLSTcheck* 63.8 (+2873) 100 0

SeqSphere+ NA 96.5 3.5

SRST2 2380.2 95.3 4.7

stringMLST 80.8 100 0

Values in bold indicate the best results in each column.

*The time to assemble with SPAdes before running the applications

was 2873min and is included separately.

†MOST identified the correct ST in 97.6% of cases, but flagged 48.2% of

these calls as low confidence.
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The allele sequences plus 500 base flanking regions were
extracted from S. enterica Typhi CT18 [29], accession num-
ber AL513382, and artificial paired-end reads were gener-
ated with mean depths of coverage from 1� to 30�. The
simulated reads were free from sequencing errors to allow
for the effect of coverage alone to be measured. Therefore,
the minimum effective depth of coverage for each applica-
tion could be tested. All applications could accurately call
STs when the coverage was greater than 12�; however,
below this the minimum depth of coverage applications
required varied greatly, as shown in Fig. 1. stringMLST cor-
rectly called the ST with just 3� coverage; however, it gave
false-positive results for lower coverage alleles. ARIBA

correctly called the ST from 5� with no false-positive
results. SRST2 correctly called the ST from 12� coverage
with no false-positive results; however, it did correctly iden-
tify the ST from 6� with low confidence.

The computational resources required varied greatly with
stringMLST taking just 10 s to call an ST with 30� coverage,
as shown in Fig. 2, and the final disk space requirements
were negligible, as shown in Fig. 3. Whilst minimizing the
disk space resources needed for the application is generally
positive, stringMLST does not output enough information
about the allele calls to allow for further analysis, for exam-
ple, to interrogate a false-positive result. The time to call an
ST at 30� with ARIBA was 40 s with 0.1 Mbytes output data.
The disk-space requirement is higher than stringMLST, but
provides the allele assemblies used to call the ST, which is
useful for further analysis. SRST2 is an order of magnitude
slower, taking over 500 s to call an ST at 30�. The disk
space required for the final output is also very substantial at

147 Mbytes, which equates to a storage cost of 475 bytes per
base of sequencing as shown in Fig. 3. While MOST
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confidently correctly called each individual allele from 4�,
the overall ST call was flagged as low confidence below 10�
due to its inherently conservative nature. The running time
given for mlst and MLSTcheck includes the de novo assem-
bly time with SPAdes, which accounts for most of the run-
ning time. MLSTcheck takes on average four times longer
(25 s per sample) to return a result than mlst (5.9 s per sam-
ple), with the final results between the two being identical.

IMPACT OF MIXED SAMPLES

Contamination and mixed colonies are a standard complex-
ity in microbiology [30]. To understand the behaviour of
the different MLST software applications in the presence of
more than one strain, we constructed a simulated dataset
consisting of two Salmonella samples with different alleles
in varying ratios. This allowed us to see at what point con-
tamination/mixed strains becomes detectable. Once
detected, we would expect an MLST application to flag the
results as low confidence or provide no result at all to avoid
false positives. The flip side of this is that if algorithms are
too sensitive to low level contamination and sequencing
errors, they become less useful on real world applications,
so need to be tolerant to some low-level noise.

The allele sequences plus 500 base flanking regions were
extracted from S. enterica Typhi CT18 [29], accession num-
ber AL513382, and S. enterica Weltevreden 10 259 [31],
accession number LN890518. Artificial paired-end reads
were generated using FASTAQ to give a total coverage of 50�,
beginning with CT18 at 1� and 10 259 at 49� in a single

FASTQ file. The coverage of each sample was varied in steps
of 1� to generate a dataset of 49 FASTQ files. Fig. 4 shows
that the accuracy of the software varies, but follows a gen-
eral pattern, calling the sample with the highest coverage at
the highest levels, with uncertainty in the middle as the pro-
portion of the two samples becomes similar. The worst case
is where a software application calls an ST with high confi-
dence that is not in the underlying data (false positive), and
only occured with stringMLST. MOST and ARIBA are highly
conservative, detecting that there are mixed samples when
the samples are at very low levels of coverage (at 4–5�).
MLSTcheck, mlst, SeqSphere+ and BioNumerics all per-
formed identically, with the performance linked to how well
SPAdes assembled the underlying genomes. There was no
clear boundary with SRST2 and it varied between high-quality
calls and low-confidence calls as the mixing of the samples
changed.

CONCLUSION

It is clear that not all MLST calling applications function as
expected. Problems with some software include: out of date
databases, computationally inefficient methods, false-posi-
tive results, inability to call alleles at low coverage and vari-
able performance in the presence of mixed samples.
Therefore, there is scope for improvement. Overall though,
these software applications’ ST calls using NGS data are
concordant with traditional MLST calling methods based
on capillary sequencing data, perform moderately well with
low mean genome coverage, and are sometimes able to
report low confidence when faced with contamination.
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