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Flexible semiparametric joint modeling: 
an application to estimate individual lung 
function decline and risk of pulmonary 
exacerbations in cystic fibrosis
Dan Li1  , Ruth Keogh2, John P. Clancy3 and Rhonda D. Szczesniak4*

Abstract 

Background:  Epidemiologic surveillance of lung function is key to clinical care of individuals with cystic fibrosis, but 
lung function decline is nonlinear and often impacted by acute respiratory events known as pulmonary exacerba-
tions. Statistical models are needed to simultaneously estimate lung function decline while providing risk estimates 
for the onset of pulmonary exacerbations, in order to identify relevant predictors of declining lung function and 
understand how these associations could be used to predict the onset of pulmonary exacerbations.

Methods:  Using longitudinal lung function (FEV1) measurements and time-to-event data on pulmonary exacerba-
tions from individuals in the United States Cystic Fibrosis Registry, we implemented a flexible semiparametric joint 
model consisting of a mixed-effects submodel with regression splines to fit repeated FEV1 measurements and a 
time-to-event submodel for possibly censored data on pulmonary exacerbations. We contrasted this approach with 
methods currently used in epidemiological studies and highlight clinical implications.

Results:  The semiparametric joint model had the best fit of all models examined based on deviance information 
criterion. Higher starting FEV1 implied more rapid lung function decline in both separate and joint models; however, 
individualized risk estimates for pulmonary exacerbation differed depending upon model type. Based on shared 
parameter estimates from the joint model, which accounts for the nonlinear FEV1 trajectory, patients with more posi-
tive rates of change were less likely to experience a pulmonary exacerbation (HR per one standard deviation increase 
in FEV1 rate of change = 0.566, 95% CI 0.516–0.619), and having higher absolute FEV1 also corresponded to lower risk 
of having a pulmonary exacerbation (HR per one standard deviation increase in FEV1 = 0.856, 95% CI 0.781–0.937). At 
the population level, both submodels indicated significant effects of birth cohort, socioeconomic status and respira-
tory infections on FEV1 decline, as well as significant effects of gender, socioeconomic status and birth cohort on 
pulmonary exacerbation risk.

Conclusions:  Through a flexible joint-modeling approach, we provide a means to simultaneously estimate lung 
function trajectories and the risk of pulmonary exacerbations for individual patients; we demonstrate how this 
approach offers additional insights into the clinical course of cystic fibrosis that were not possible using conventional 
approaches.

Keywords:  Bayesian analysis, Cystic fibrosis, Functional data analysis, Longitudinal studies, Mixed model analysis, 
Pulmonary decline, Pulmonary function, Joint modeling, Registry analyses, Spline regression
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Background
Maintaining pulmonary function is essential for sur-
vival in individuals with cystic fibrosis (CF), a lung dis-
ease that currently affects nearly 70,000 individuals 
worldwide [1]. Lung function is measured primarily 
as forced expiratory volume in 1  s of percent predicted 
(hereafter, FEV1), which is the primary marker of dis-
ease severity in individuals with CF. FEV1 declines in a 
nonlinear fashion over age and exhibits substantial het-
erogeneity both between patients and within an individ-
ual patient over time (Fig.  1). Most individuals with CF 
have decreased FEV1 over age, but initial FEV1 and rate 
of decline vary between patients. Linear mixed modeling 
is an established approach to estimate age-related FEV1 
progression. Historically, CF epidemiologic studies have 
not accounted for nonlinearity in the FEV1 trajectory; 
however, recent approaches have included piecewise 
polynomials, either in the form of regression splines or 
change-point models, to estimate decline in FEV1 [2, 3]. 
These approaches have shown that FEV1 decline is varia-
ble with maximal loss occurring in adolescence and early 
adulthood.

Meanwhile, the clinical course of CF is often marked by 
the occurrence of an acute respiratory event known as a 
pulmonary exacerbation, which intensifies the severity of 
this chronic disease. Increased pulmonary symptoms and 
decreased lung function and weight are common clinical 
indicators of this event [4]. A study of the United States 
Cystic Fibrosis Foundation Patient Registry showed that, 
after having a pulmonary exacerbation, 25% of patients’ 
lung function levels did not recover to baseline (pre-
pulmonary exacerbation) levels [5]; this study identified 
lower socioeconomic status (use of Medicaid insurance), 
malnutrition, having respiratory infections and patho-
gens, and being female as risk factors. Another study 

identified pulmonary exacerbations as a risk factor for 
more rapid lung function decline [6].

Although much information has been gleaned, these 
and other epidemiologic studies in CF have modeled the 
longitudinal and time-to-event processes of lung func-
tion and pulmonary exacerbations separately. Efficiency 
and additional information about the disease course may 
be gained by modeling them simultaneously. Joint mod-
eling of longitudinal and event processes have enjoyed 
a renaissance in recent years among biostatisticians and 
epidemiologists, largely due to software developments 
and modern applications demonstrating their clinical 
utility for the purposes of monitoring disease progres-
sion and making predictions [7]. Developments in joint 
models have also been motivated by data on CF disease 
progression, focusing on simultaneously fitting a longitu-
dinal submodel of lung function and a survival submodel. 
For example, Schluchter et al. [8] developed a joint lon-
gitudinal-survival model to create prognostic indicators 
of CF disease severity, such as predicted age at death and 
other empirical Bayes estimates of parameters in the lon-
gitudinal submodel, such as slope, which could be used 
to estimate rate of decline in FEV1 adjusted for survivor 
bias. They combined a linear mixed effects model for lon-
gitudinal FEV1 with a Gaussian model for age at death 
and applied it to data taken from a local CF center. They 
later extended this model to account for left truncation, 
as follow-up does not necessarily begin at age zero for CF 
patients [9]. Such joint models can be classified as shared 
parameter approaches, meaning that FEV1 and the event 
of interest are assumed to be conditionally independent 
given a set of random effects.

In this study, we utilize the aforementioned advantages 
of joint modeling in the shared-parameter framework 
and combine them with flexible semiparametric regres-
sion splines to estimate FEV1 trajectories in the longi-
tudinal submodel. In this context, joint modeling would 
account for informative dropout due to pulmonary exac-
erbation events; not accounting for these events could 
bias estimates of the FEV1 trajectories. Our objectives are 
to identify relevant predictors of lung function trajecto-
ries and pulmonary exacerbation events, and to under-
stand how associations found from a joint model could 
be used to predict the onset of pulmonary exacerbations 
for individual CF patients.

Methods
Study design and cohort
This longitudinal cohort study consisted of clinical 
encounter and hospitalization data from the U.S. Cystic 
Fibrosis Foundation Patient Registry (CFFPR) between 
January 1, 2003, and December 31, 2011. This registry has 
been tracking CF demographic and clinical variables for 

Fig. 1  FEV1 versus age (in years) for 100 randomly selected patients 
with cystic fibrosis from the U.S. CFFPR, 2003–2011. Points have been 
connected over age for the 50 patients who were observed with 
pulmonary exacerbation (in blue)
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more than 40 years, and has been thoroughly described 
elsewhere [10]. Because the majority of relevant predic-
tors of lung function decline and pulmonary exacerba-
tion events were consistently documented beginning in 
2003, we considered data available from this year onward. 
Patients younger than 6 years of age were excluded due 
to the potential for unreliable data from pulmonary func-
tion testing. Data from those older than 45 years of age 
were excluded due to the possibility that these individu-
als have milder phenotypes that are not representative of 
typical CF disease progression.

The longitudinal outcome of interest, FEV1 % predicted 
(hereafter, FEV1), was obtained at each clinical encoun-
ter; % predicted values were calculated using Wang and 
Hankinson reference equations [11, 12]. The event out-
come of interest, onset of first pulmonary exacerbation, 
was subject to censoring. A pulmonary exacerbation was 
considered to have occurred if documented in the CFFPR 
as warranting treatment with intravenous antibiotics. 
Analyses were restricted to patients with at least ten 
measurements of FEV1. Longitudinal data were included 
up to the time of the first pulmonary exacerbation on 
record and censored thereafter. Baseline was defined as 
the time point at which the first FEV1 measurement was 
available. Covariates of interest were selected from the 
literature on FEV1 [13, 14] and pulmonary exacerbation 
[5, 6] as separate models, and included age, gender, ini-
tial FEV1 measure and baseline lower socioeconomic sta-
tus (lower SES, defined as having only state/federal or no 
insurance; recorded as 1, and 0 otherwise); a birth cohort 
covariate was used to adjust for potential left truncation 
bias; time-varying covariates included CF-related dia-
betes (CFRD, with or without fasting hyperglycemia), 
positive cultures for methicillin-resistant staphylococcus 
aureus (MRSA), Burkholderia cepacia (B. cepacia), and 
Pseudomonas aeruginosa (Pa).

Joint model formulation and estimation
Each joint model consists of two linked submodels, a 
mixed model to fit longitudinal FEV1 and a Weibull 
model to fit pulmonary exacerbation data.

Longitudinal submodel for FEV1

Both the separate modeling approach and the joint mode-
ling approach require specification of a model for the lon-
gitudinal measure of FEV1. In this subsection we describe 
this model before linking it to the time-to-event model 
in subsequent sections. Suppose there are N  patients in 
the CFFPR indexed by i = 1, 2, . . . ,N . Let FEV 1ij repre-
sent lung function measured for the ith patient at the jth 
time, represented as ageij (corresponding to patient age, 
in years), j = 1, . . . , ni. The longitudinal submodel con-
sists of a linear mixed model with random effects:

where the population-level mean response f
(

ageij
)

 is 
modeled as a continuous function of time, which com-
bines the time-related fixed effects terms and regression 
splines15; mi

(

ageij
)

= x
′
1i

(

ageij
)

α1 refers to the sub-
ject-level fixed effects. The vector x1i

(

ageij
)

 represents 
static and time-varying covariates defined above, and 
the vector α1 contains their corresponding regression 
coefficients. The expression W1i

(

ageij
)

= z
′
1i

(

ageij
)

Ui 
incorporates random effects that describe how subject-
specific true FEV1 levels deviate from their expected 
behavior, where the vector Ui corresponds to subject-
specific random slopes and intercepts. We used the usual 
Laird-Ware form8, W1i

(

ageij
)

= U0i + U1iageij, cor-
responding to z1i

(

ageij
)

=
(

1, ageij
)′; this specification 

allows individuals to have varying baseline FEV1 meas-
urements and different rates of change in FEV1 over time. 
Lastly, the term εij ∼ N

(

0, σ 2
ε

)

 denotes zero-mean Gauss-
ian measurement error.

We considered two nonlinear representations of 
f
(

ageij
)

, which we hereafter refer to as semiparamet-
ric and cubic, and examined both in the joint modeling 
framework. First, we used penalized splines with a cubic 
truncated power basis in order to provide smooth esti-
mates of the longitudinal course of FEV1 measurements. 
Second, we considered only global cubic polynomials to 
represent population-level FEV1 decline by excluding the 
basis functions in f

(

ageij
)

. Details of the two formula-
tions are available in the “Appendix 1”. Taking the first 
derivative with respect to age in Eq. (1) yields overall and 
subject-specific estimates of the rate of change in FEV1, 
and has been used previously to model FEV1 decline [2].

Time‑to‑event submodel for pulmonary exacerbation
Let Ti denote the possibly censored survival time to a 
pulmonary exacerbation event for the ith patient. In a 
Weibull model, we assume that the survival time fol-
lows a Weibull distribution, that is ti ∼ Weibull(k ,µi(t)) , 
where µi(t) = exp

{

x
′
2i(t)α2 +W2i

}

 and k > 0. The haz-
ard at time t for the ith patient is

which monotonically increases with time if k > 1, 
decreases if k < 1, and reduces to the exponential haz-
ard and remains constant if k = 1. The vectors x2i(t) and 
α2 represent possibly time-dependent covariates and the 
corresponding regression coefficients. Covariates x2i(t) 
need not have elements in common with x1i

(

age
)

 in 
the longitudinal model as shown in Eq.  (1). Notice that 
W2i could have a time-dependent form [15], but we do 
not consider it here since this level of complexity is not 

(1)FEV 1ij = f
(

ageij
)

+mi

(

ageij
)

+W1i

(

ageij
)

+ εij ,

(2)hi(t) = kt(k−1) exp
(

x
′
2i(t)α2 +W2i

)

,
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required for our data. Similar to the form of W1i

(

age
)

 
in Eq.  (1), W2i = θ0U0i + θ1U1i corresponds to patient-
specific random intercepts and slopes, but has distinct 
regression parameter coefficients, θ0 and θ1. If none of the 
covariates vary over time, W2i reduces to 0 in the absence 
of random effects. The main idea of this approach is to 
connect the longitudinal and survival processes with a 
latent bivariate Gaussian process. We can add a frailty 
term in W2, i.e., W2i = θ0U0i + θ1U1i + U3i, where 
(U0i,U1i)

′ follows a bivariate Gaussian distribution, while 
U3i ∼ N

(

0, σ 2
3

)

, independent of (U0i,U1i)
′.

Submodel links
Pulmonary exacerbation event times were associated 
with longitudinal FEV1 measurements through stochas-
tic dependence between W1i and W2i from Eqs. (1)–(2) by 
assuming:

The subject-specific random intercept and slope, depict-
ing varying initial values and rates of FEV1 decline for 
each patient after accounting for the nonlinear FEV1 tra-
jectory, are contained in the vector Ui, which is shared 
between the longitudinal and time-to-event submodels. 
Here Ui is assumed to follow a bivariate normal distri-
bution N (0,�), where � has diagonal entries σ 2

0 , σ 2
1  and 

off-diagonal entries σ01. The joint model with (4) allows 
both the random intercept U0i and slope U1i, involved 
in (3), to affect the risk of the event. Thus, deviations of 
the patient-specific FEV1 trajectories from the popula-
tion-level FEV1 curve enter the pulmonary exacerbation 
model in the form of random intercepts and slopes. If 
this type of association exists between the longitudinal 
FEV1 and pulmonary exacerbation event processes, then 
inference from the joint model should be less biased and 
more efficient, compared to modeling the processes sepa-
rately [16]. Given that absolute FEV1 (intercept) and rate 
of change in FEV1 (slope) are on different scales, we used 
the estimated SDs of the random effects to express each 
corresponding HR as per SD change in the respective 
covariate. These quantities were obtained from the joint 
model by estimating exp {θ0 ∗ σ0} and exp {θ1 ∗ σ1}, where 
θ0 and θ1 are the association parameters estimated ordi-
narily from the HRs exp {θ0} and exp {θ1}, and σ0 and σ1 
are the respective SDs of intercept U0i and slope U1i as 
defined previously.

MCMC sampling procedure
Conventional likelihood-based estimation of the param-
eters requires integration of the two submodels over the 
distribution of random effects. As the number of random 

(3)W1i

(

age
)

= U0i + U1i age;

(4)W2i(t) = W2i = θ0U0i + θ1U1i.

effects in the model increase, the dimension of integra-
tion in the joint model likelihood increases; as a result, 
parameter estimation typically involves specialized 
numerical algorithms and becomes computationally bur-
densome [17]. Alternatively, we employed Markov-Chain 
Monte-Carlo (MCMC) via Gibbs sampling in WinBUGS 
[18] to simulate data from the respective posterior distri-
butions under each model. The highest posterior density 
(HPD) and accompanying 95% credible interval (CI) were 
used to estimate each parameter of interest. Specifica-
tion of priors and sampling procedures are detailed in the 
“Appendix 2”.

Model comparisons
We calculate the deviance information criterion (DIC) to 
compare the performance of the separate and joint mod-
els [19]. The DIC measure balances the fit of a model to 
the data with its complexity. The components of DIC for 
the two submodels, denoted as DIC1 and DIC2, were also 
provided to evaluate their relative contributions to the 
total DIC score. Formulas are provided in the “Appendix 
3”. A smaller value of DIC indicates the preferred model.

Research ethics
The Internal Review Board of Cincinnati Children’s Hos-
pital Medical Center (Cincinnati, OH, USA) approved 
the study.

Results
Study cohort
There were 7672 individuals who met inclusion criteria, 
yielding a total of 136,051 FEV1 measurements. Median 
(IQR) follow-up was 5.8 (4.0–7.7) years; 3349 (43.7%) 
of the patients experienced a pulmonary exacerbation. 
Median age at entry was 10.8 (6.9–16.6) years; 4298 
(56%) of the patients were male; 2690 (35%) had lower 
SES (only state/federal or no insurance). In total, 1036 
(13.5%), 1176 (15.3%), 2144 (27.9%) and 3316 (43.2%) of 
the patients were born before 1981, between 1981 and 
1988, between 1989 and 1994, and after 1994, respec-
tively. Few patients had infection with B. cepacia (2.5%), 
but 1589 (20.7%) had Pa infection at baseline. Mean (SD) 
FEV1 at entry was 92.3 (19.6) % predicted.

Longitudinal submodel for FEV1

Both the separate and joint modeling of longitudi-
nal FEV1 indicated that decline was nonlinear over age 
(Table  1, Semiparametric longitudinal submodel). In 
both models, having higher FEV1 at entry corresponded 
to higher FEV1 over time; lower SES, diagnosis with 
CFRD and the presence of infections were associated 
with lower FEV1 over age. The younger birth cohorts 
appeared to have similar FEV1 progression, while being 
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Table 1  Posterior estimates for  lung function decline and  pulmonary exacerbation onset based on  separate and  joint 
models

* In the Bayesian sense, a 95% CI that excludes zero indicates statistical significance at the 0.05 level. Parameters b1 − b6 are regression coefficients of the cubic 
truncated power functions defined in “Appendix 1”

Parameter Separate model (Model I) Joint model (Model III)

Posterior mean 95% HPD CI Posterior mean 95% HPD CI

Semiparametric longitudinal submodel for FEV1

Curve

 β0, intercept 18.57 [16.33, 20.68] 16.89 [14.63, 20.39]

 β1, age 2.846 [2.545, 3.143] 3.121 [2.74, 3.382]

 β2, age2 − 0.1295 [− 0.1393, − 0.1197] − 0.1367 [− 0.1481, − 0.124]

 β3, age3 − 0.0012 [− 0.0014, − 0.0009] − 0.0016 [− 0.0017, − 0.0014]

 b1 0.0058 [0.0044, 0.0077] 0.0073 [0.0058, 0.0084]

 b2 0.0083 [0.0076, 0.0089] 0.0103 [0.0095, 0.0111]

 b3 − 0.0143 [− 0.0187, − 0.0114] − 0.0206 [− 0.0248, − 0.0167]

 b4 − 0.0023 [− 0.0056, 0.0027] 0.0029 [− 0.001, 0.0085]

 b5 0.0041 [− 0.0015, 0.0101] 0.0015 [− 0.0033, 0.007]

 b6 − 0.0011 [− 0.012, 0.0102] 0.0008 [− 0.0095, 0.0101]

 Baseline FEV1 0.6828 [0.6722, 0.6933] 0.6834 [0.6676, 0.6945]

 Male − 0.1665 [− 0.6403, 0.3137] − 0.1650 [− 0.6054, 0.2971]

 Birth cohort

  < 1981 11.37 [9.651, 12.97] 12.39 [10.89, 13.95]

  1981–1988 3.766 [2.749, 4.839] 4.936 [3.995, 5.916]

  1989–1994 − 0.1912 [− 0.698, 0.3584] 0.0608 [− 0.4059, 0.5908]

  > 1994 (reference)

 Lower SES − 0.6318 [− 1.075, − 0.1686] − 0.5984 [− 1.062, − 0.1119]

 CFRD − 0.4528 [− 0.765, − 0.1465] − 0.3695 [− 0.6731, − 0.0633]

 MRSA − 0.8209 [− 1.033, − 0.6121] − 0.8114 [− 1.016, − 0.6134]

 B. cepacia − 0.8318 [− 1.531, − 0.1367] − 0.7705 [− 1.441, − 0.1022]

 Pa − 0.5661 [− 0.6963, − 0.4314] − 0.5673 [− 0.6971, − 0.4373]

Sources of variation

 σ 2 (measurement error) 59.29 [58.83, 59.76] 59.24 [58.77, 59.73]

 σ 2
0  (between patients, intercept) 324.9 [307.6, 342.2] 326.8 [311, 343.8]

 σ 2
1  (between patients, slope) 2.566 [2.441, 2.694] 2.602 [2.484, 2.727]

 σ01 (covariance, intercept and slope) − 25.51 [− 26.82, − 24.16] − 25.76 [− 27.11, − 24.49]

Weibull event submodel for pulmonary exacerbation

k 2.467 [2.395, 2.537] 2.564 [2.487, 2.634]

Intercept − 3.705 [− 3.988, − 3.416] − 3.568 [− 3.804, − 3.296]

θ0 (random intercept) – – − 0.0086 [− 0.0137, − 0.0036]

θ1 (random slope) – – − 0.3532 [− 0.4104, − 0.2979]

Baseline age − 0.0021 [− 0.0187, 0.0147] 0.0023 [− 0.0131, 0.0176]

Baseline FEV1 − 0.0158 [− 0.0178, − 0.0138] − 0.0198 [− 0.0218, − 0.0179]

Male − 0.2973 [− 0.3618, − 0.2314] − 0.2940 [− 0.3606, − 0.2267]

Birth cohort

 < 1981 − 0.3785 [− 0.7538, − 0.0028] − 0.5348 [− 0.9056, − 0.1726]

 1981–1988 − 0.1805 [− 0.3947, 0.0182] − 0.2348 [− 0.4405, − 0.0339]

 1989–1994 0.1431 [0.031, 0.2544] 0.1261 [0.0178, 0.2335]

 > 1994 (reference)

Lower SES 0.1173 [0.049, 0.1872] 0.1059 [0.0382, 0.1804]
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in an older birth cohort was associated with higher FEV1. 
Although results were consistent between the two mod-
els in Table 1, estimates from the joint model tended to 
be lower for some of the covariate effects. This could be 
attributable to incorporating the effect of pulmonary 
exacerbation through the shared intercept and slope 
terms in the joint modeling. Both models had similar 
variance component estimates and indicated substantial 
heterogeneity in the FEV1 response, in terms of measure-
ment error, as well as between and within subjects.

We examined the smoothed posterior estimates of indi-
vidual FEV1 obtained from the longitudinal submodel. 
The estimated curves of FEV1 for adolescents and young 
adults who were observed with pulmonary exacerbation 
showed more rapid decline than those who had not expe-
rienced a pulmonary exacerbation (Fig. 2).

Time‑to‑event submodel for pulmonary exacerbation
Both Weibull event models indicated that the hazard of 
pulmonary exacerbation significantly increased over age. 
Neither model suggested that age at entry was a signif-
icant factor (zero was an element of each 95% CI). The 
separate model indicates a negative association between 
age and risk of pulmonary exacerbation and the joint 
model suggests that the association was positive; how-
ever, these associations were not statistically significant. 
Both models imply that being male, having higher FEV1 
at entry, and belonging to one of the earlier birth cohorts 
were associated with decreased risk of pulmonary exac-
erbation; however, being born between 1989 and 1994 
corresponded to a decreased risk of pulmonary exacerba-
tion, compared to the youngest birth cohort (those born 
after 1994). Lower SES was associated with an increase in 
the hazard of pulmonary exacerbation.

Submodel links
Parameter estimates from the joint model indicate that 
lung function trajectory is associated with risk of having 
a pulmonary exacerbation. Formally, the intercept and 
slope parameters corresponding to the shared random 
effects in the joint model (Table  1, θ0 and θ1 estimates, 
respectively) imply that higher values along the FEV1 tra-
jectory correspond to a decreased hazard of having a pul-
monary exacerbation (HR = exp

(

θ̂0

)

= 0.991 for every 
1% predicted increase in FEV1, 95% CI 0.986–0.996; HR 
per one SD increase in FEV1  =  0.856, 95% CI 0.781–
0.937) and positive rates of change or improvements in 
the FEV1 trajectory also correspond to decreased haz-
ard (HR  =  exp

(

θ̂1

)

= 0.702 for every increase of one 
percentage point (1% predicted) in the rate of change 
per year in FEV1, 95% CI 0.663–0.742; HR per one SD 
increase in FEV1 rate of change = 0.566, 95% CI 0.516–
0.619). This is clinically reasonable, since a higher level of 
FEV1 represents better lung function; patients with FEV1 
measurements that are low or with more rapid decline 
would be expected to have a higher hazard of pulmonary 
exacerbation.

Model comparisons
Obvious differences between separate and joint modeling 
can be graphically observed. We investigated patients 
with observed FEV1 trajectories but unknown pulmo-
nary exacerbation event times. We selected two such 
patients, Patient A and Patient B and compared their 
estimated posterior median pulmonary exacerbation 
event time distributions using an established approach 
[20]. Although neither patient had an observed pulmo-
nary exacerbation, they were censored at ages 16.8 and 
17, respectively. Patient A’s FEV1 trajectory began rela-
tively high and remained steady, but Patient B had a tra-
jectory that started relatively low and declined over time 
(Fig. 3a, b). We compared the median time to pulmonary 
exacerbation for the two selected patients using posterior 
distributions from the separate pulmonary exacerbation 
event model and the two joint models. The predicted 
median time to pulmonary exacerbation for Patient A 
was younger under the separate model, compared to each 
joint model (Fig.  3c). The semiparametric joint model 
with cubic splines indicated that pulmonary exacerbation 
onset would occur at an older age than estimated for the 
joint model with only cubic polynomials and no splines; 
however, the distributions for the joint model parameters 
had substantial overlap. The two joint models were in 
closer agreement regarding time to pulmonary exacerba-
tion for Patient B, but the estimate from the separate pul-
monary exacerbation model projected a later event time 
(Fig.  3d). This is due to joint model’s accounting of the 
correlation between the longitudinal and survival data.

Fig. 2  Smoothed posterior estimates of individual FEV1 for the 100 
randomly selected patients presented in Fig. 1. Red lines are the 
smoothed estimates for individuals who were observed with pulmo-
nary exacerbation, while black lines are the smoothed estimates for 
individuals who were not observed with pulmonary exacerbation
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The semiparametric mixed effects joint model had 
the best fit of all models considered based on total DIC 
(Table 2), followed by the cubic polynomial model with-
out splines, then the separate modeling of the longi-
tudinal and event processes. The association between 
submodels through the common random intercepts 
and slopes in each joint model yielded a slight decrease 
in DIC1 for the longitudinal submodel and a substantial 
decrease in DIC2 for the survival submodel, compared to 
separate modeling.

In comparing the two joint models, which only dif-
fered based on inclusion of splines in the longitudinal 
submodel, posterior estimates of age-related FEV1 pro-
gression are quite similar until adolescence (Fig.  4a). 
Based on rates of change, the semiparametric model esti-
mates more rapid decline into early adulthood (Fig. 4b). 
Although the cubic regression closely resembles the 
spline-based estimates, it shows an upward trend in FEV1 
at the later range of age. Patients attained their most 
rapid decline at 17.6 (6.1) years; median (IQR) estimates 

Fig. 3  Observed data and estimated FEV1 over time (a), the rate of decline in FEV1 over time (b) and estimated posteriors of the median time to 
pulmonary exacerbation for two patients (c) and (d)

Table 2  Model comparison results

Each of DIC1 and DIC2 is the sum of the posterior mean deviance (D̄) and the effective number of parameters (pD); DICtotal obtained by summing DIC1 and DIC2 from 
separate or submodels (see “Appendix 4” for details). Lower values indicate better model fit

Model Submodel 1 Submodel 2 DIC1 DIC2 D̄ pD DICtotal

Separate model

I Semiparametric mixed effects Weibull 952,566 21,110.9 962,619 11,057.7 973,676

Joint model

II Cubic mixed effects Weibull 952,915 20,712.5 962,485 11,142.6 973,628

III Semiparametric mixed effects Weibull 952,409 20,605.4 961,923 11,091.4 973,015
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are 17.5 (IQR 13.7–18) years. The rate of decline contin-
ues at a slower pace until patients approximately reach 
30 years of age. Figure 4b indicates the cubic regression 
provided poorer fit and unrealistic estimates of the trend 
in FEV1 decline at the later range of age. The improve-
ment afforded by the semiparametric model was likely 
due to the localized splines, which captured more vari-
ability in FEV1 than cubic polynomial terms alone, and in 
particular allowed for a more reasonable fit at later ages.

As a sensitivity analysis, we compared the joint model 
to a “two-stage” version of the joint model in “Appen-
dix 5”. The two-stage model yielded similar estimates, 
and detected the same significant effects in the random 
intercept and slope as the joint model. Based on DIC, the 
joint model had a better fit to the data than the two-stage 
model, while the two-stage model was superior to the 
separate modeling. It demonstrates that the joint model 
not only allows uncertainty in the random effects to carry 
through to the event model, but also allows the estima-
tion of random effects to depend on both FEV1 decline 
and the occurrence of pulmonary exacerbation.

Discussion
In this paper, we described a flexible joint modeling 
technique aimed at analyzing long sequences of longitu-
dinal and time-to-event data, and used it to simultane-
ously characterize the nonlinear progression of FEV1 and 
assess risk of pulmonary exacerbation events for indi-
vidual CF patients. We demonstrated how this approach 
could be used to inform patient management regarding 
rapid decline in lung function and assessment of pulmo-
nary exacerbation risk over time. On the population level, 
we identified clinical and demographic risk factors asso-
ciated with more rapid decline in FEV1 and earlier onset 
of pulmonary exacerbation, which could be used to tar-
get subpopulations at increased risk of rapid decline or 

pulmonary exacerbation. Translating these individualized 
results into clinical care is important because, once a pul-
monary exacerbation occurs, it is possible that patients 
will not recover to their previous FEV1 levels [5].

In addition to individualized estimates of pulmonary 
exacerbation risk that account for patient-specific longi-
tudinal trajectories and sources of variation in FEV1, this 
study examined the effect of established risk factors for 
lung function decline and onset of pulmonary exacerba-
tion. We found significant effects of birth cohort, socio-
economic status and infections with MRSA, Pa and B. 
cepacia on FEV1 decline, as well as significant effects of 
gender, socioeconomic status and birth cohort on pulmo-
nary exacerbation risk. These findings corroborate what 
has been shown in separate modeling of FEV1 and pul-
monary exacerbation onset [2, 5, 6]; thus, findings from 
joint and separate modeling of pulmonary exacerbation 
appear consistent on the levels of population and sub-
populations stratified by risk factors. In addition, this 
study is the first to our knowledge that has implemented 
a joint modeling approach to examine the relation-
ship between FEV1 decline and pulmonary exacerba-
tion events. Through this approach, further insights are 
gained on an individual patient, the level at which joint 
and separate modeling results appear to diverge.

Our findings have a number of implications for the 
epidemiologic study of CF lung disease. Longitudinal 
modeling of FEV1, joint or separate, shows that there is 
an inverse relationship between starting FEV1 and rate 
of decline (Table  1), which corresponds to a correlation 
of −  0.60 between initial FEV1 at age 6  years (the age at 
which patients typically begin performing reliable pulmo-
nary function testing) and slope estimates in our selected 
model. This association echoes the “ceiling effect” discov-
ered in a previous study of pediatric CF registry data [6]. 
Our model setup allows us to estimate the population- and 

Fig. 4  Posterior estimates obtained from joint models with semiparametric (solid line) and cubic (dashed line) submodels, and separate model with 
semiparametric (dash-dotted line) submodel of decline (a), and the rate of decline (b) in FEV1 over age (in years) for the overall population
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subject-specific progression of lung function decline, with 
the latter being important for personalized medicine. We 
demonstrated through a specific example that a patient 
with a less severe FEV1 trajectory is predicted to be free 
from a pulmonary exacerbation much longer than a 
patient with a more severe trajectory. It is likely that these 
differences among the separate and joint models regard-
ing median pulmonary exacerbation time are attributable 
to the joint model’s correctly accounting for the correla-
tion between the longitudinal and survival data. In terms 
of model fit, including the time-to-event submodel for pul-
monary exacerbation appeared to have a greater impact 
than including the splines to accommodate nonlinear FEV1 
progression, although both features improved fit (Table 2). 
Furthermore, having the localized differences fitted from 
the FEV1 trajectory has been shown to offer more insights 
into rate of decline [2, 3], particularly in examining the first 
derivative estimates from our study (Fig. 4). Higher-order 
random effects could be included to estimate more com-
plex changes over time. Adding a frailty term to Eq.  (2) 
did not improve the total DIC (results not shown). Similar 
findings have been reported regarding the fits of models 
with and without the frailty term, all other portions of the 
model being the same [17].

This study has some limitations that should be con-
sidered, which are related to survivor and delayed entry 
biases, reference equations for lung function and lack of 
a clear definition of pulmonary exacerbation. Our joint 
modeling approach corresponds to a missing not at ran-
dom mechanism as described on pg. 90 by Rizopoulos 
[21]; the pulmonary exacerbation event process, which 
is modeled through the random effects, corresponds to 
the attrition mechanism in a drop-out model. There is a 
clear birth cohort effect on results from both separate and 
joint models, which has been noted in other CF registry 
studies [2, 14, 22] and could be reflective of advancements 
in care that were largely unavailable to older patients or 
survivor bias. Our inclusion of birth cohort in the mod-
eling is only a partial adjustment for left truncation bias, 
as the correlation between age at registry entry and birth 
cohort will dictate the extent to which this approach 
combats left truncation bias. Current WinBUGS imple-
mentation is not flexible enough to specify the likelihood 
for each patient as being conditional on his or her entry 
time into the registry, which would be necessary to model 
the delayed entry; we refer to Crowther and colleagues’ 
Eq.  (5) [23]. Although there are alternative R packages, 
such as ‘rstan’ [24], for flexible likelihood formulations 
to include delayed entry, estimation can be slow with a 
large number of patients. Faster computing algorithms 
would be needed to practically implement this model in 
large patient registry studies. FEV1 trajectories, which are 
modeled based on % predicted values over age, may differ 

according to the type of spirometry reference equation 
applied to the raw FEV1 data, which is expressed in lit-
ers. In terms of fitting the FEV1 trajectory, CFFPR data for 
patients aged 8–17  years taken from 2013 was analyzed 
in another study; Wang and Hankinson equations yielded 
higher median FEV1 values, compared to values obtained 
using the Global Lung Initiative equations [25]. Moni-
toring changes in FEV1, by contrast, appear to be less 
susceptible to this effect. There is no standard definition 
for what constitutes a pulmonary exacerbation; however, 
CFFPR studies typically infer its occurrence based on 
intravenous treatment with antibiotics documented in the 
registry [10]. This definition overlooks less severe exac-
erbations that impact lung function but do not warrant 
intravenous antibiotics. Sensitivity to this definition could 
be assessed with additional data from an individual CF 
center, which would likely have documentation on mild 
pulmonary exacerbation events. These events periodically 
occur throughout the course of CF; thus, extensions to the 
joint modeling approach presented here could be used to 
examine risk of recurrence (Additional files 1, 2).

In conclusion, we have utilized novel statistical mod-
eling of data from a national patient registry to provide 
more realistic estimates of the FEV1 trajectory and indi-
vidualized assessment of pulmonary exacerbation risk 
in patients with CF. Through the Bayesian approach 
implemented here using existing software, posterior pre-
dictive distributions of this model could be used to aid 
clinicians in estimating risk of pulmonary exacerbation 
and rate of lung function decline for individual patients. 
This approach could be extended to a multivariate joint 
model [26], in which temporal associations of the evolu-
tions of infections and other characteristics are assessed 
in conjunction with lung function and exacerbations in 
CF patients. Furthermore, this joint modeling approach 
could be used to characterize lung function decline in 
other diseases and disorders, and to identify subgroups 
of individuals who may benefit from novel therapeutics 
being tested in clinical trials.
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Appendix 1: Regression splines used in the 
longitudinal submodel
The function f (t) is defined as a cubic truncated power 
basis function for the semiparametric representation:

where β0,β1,β2 and β3 are respectively the coeffi-
cients for intercept, linear, quadratic and cubic terms; 
the term 

∑L
l=1 bl(t − κl)

3
+ represents basis func-

tions for the cubic splines evaluated at time s, and 
(t − κl)+ = max(t − κl , 0). We selected the number and 

f (t) = β0 + β1t + β2t
2 + β3t

3 +

L
∑

l=1

bl(t − κl)
3
+,

location of knots (κl , l = 1, . . . , L) for the corresponding 
spline basis functions using the quantile-based approach 
described in Ngo and Wand [27]. Please see “Appen-
dix 2” for more discussion on knot specification. Six 
knots used across the [6, 45] age (in years) interval were 
κ = (10.78, 15.31, 19.89, 24.96, 30.49, 37.34).

The second formulation of the longitudinal submodel 
defines f (t) without the basis functions, which we refer 
to as the cubic representation:

Appendix 2: Knot specification
The main idea of choosing knots is to choose enough 
knots to resolve the essential structure in the underly-
ing regression function, but to keep the number of knots 
relatively low considering the computational advantages. 
A reasonable default is to choose the knots to ensure that 
there are a fixed number of unique observations (e.g., 
4–5) between each knot. However, for large data sets, this 
may lead to an excessive number of knots, so a maximum 
number of knots (e.g., 20–40) is recommended. A simple 
default choice of L that always works well is:

A reasonable default rule for the knot location is:

for l = 1, . . . , L. The default choice of knots can be gener-
ated in R using the function defined as below:

default.knots <- function(x, num.knots) {  
      if (missing(num.knots))  
         num.knots <- max(5, min(floor(length(unique(x))/4), 35))
      return(quantile(unique(x), seq(0, 1, length = 
(num.knots+2))[-c(1, (num.knots+2))])) 
} 

Appendix 3: Prior specification and sampling
We used a fully Bayesian version of the joint modeling 
approach implemented via Markov chain Monte Carlo 
(MCMC) method to fit the joint model. Although we 
focus on a particular form, the Bayesian framework 
allows for easier comparison among many forms of 
association between W1 and W2. The data analyses are 
conducted using MCMC through WinBUGS software 
[28]. R and WinBUGS codes implementing the pro-
posed method are available in  Additional files 1 and 
2. We selected vague prior distributions in the Bayesian 
analysis. For each of the regression coefficients of the 
cubic penalized spline and the subject-level covariate 
effects β , b and α1, we used a multivariate normal prior 
with mean vector 0 and precision matrix 0.01 · I, where 
I is the identity matrix; and an inverse gamma prior19 
IG(0.01, 0.01) for the measurement error variance σ 2

ε . 

f (t) = β0 + β1t + β2t
2 + β3t

3

L = max

{

5,min

(

1

4
× number of uniquet ′i s, 35

)}

.

Kl = {(l + 1)/(L+ 2)}th sample quantile of the unique’s,
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Similarly, we selected a vague normal prior in the survival 
submodel, α1 ∼ N (0, 0.01 · I). For the random effects Ui 
common to both submodels, we took a non-informative 
multivariate inverse-Wishart distribution with degrees of 
freedom equals to 2 (the number of random effect com-
ponents). Finally, for the association parameters, we set 
θ0 ∼ N (0, 100) and θ1 ∼ N (0, 100).

Complete conditional distributions were used to 
approximate the posterior distributions for the parame-
ters of interest. MCMC diagnostics to assess convergence 
were performed in accordance with standard techniques 
[29]. Early samples were discarded based on graphical 
inspection of burn-in across MCMC iterations. The 95% 
credible intervals (CIs) were obtained by taking the 2.5th 
and 97.5th percentiles of the posterior samples post burn-
in. For each model, we conducted the MCMC simulation 
for 40,000 iterations. The first 20,000 draws were dis-
carded as a burn-in phase. The effective iterations were 
thinned by storing every 10th iteration in order to reduce 
level of correlation between successive values of the sam-
ple. The posterior mean and 95% confidence interval (CI) 

were calculated with the resulting 2000 values. The com-
puting time for each model is shown in Table 3.

Appendix 4: DIC formulation
Each deviance information criterion (DIC) for assessing 
model fit is calculated as DIC = D + pD, with the poste-
rior mean of deviance D penalized by the effective num-
ber of parameters pD under the Bayesian framework. 
Since small D indicates good fit while small pD indicate a 
parsimonious model, smaller values indicate better model 
fit, compared to larger values. We respectively write the 
components of DIC for the longitudinal and survival sub-
models as DIC1 and DIC2, which evaluate the contribu-
tions to the overall DIC, denoted as DICtotal in Table  2. 
All DIC values are output directly from WinBUGS.

Appendix 5: Comparison between two‑stage 
model and joint model
In the joint modeling literature, various two-stage meth-
ods have been proposed. Here we compare the predic-
tive power of a joint model with that of a simple (naïve) 
two-stage model. The naïve two-stage model consists 
of: (Stage I) longitudinal model for FEV1; and (Stage II) 
Weibull model for pulmonary exacerbation with random 
effects from Stage I as covariates. To be consistent with 
the joint model (Model III), we use the same semipa-
rametric mixed effects modeling for FEV1. The posterior 
means of subject-specific random effects (i.e., random 
intercept Ũ0i and slope Ũ1i) from Stage I are included as 
covariates in the Weibull model in Stage II. The param-
eters of the two-stage model are given the same pri-
ors as the joint model, and are estimated using the fully 
Bayesian-MCMC (WinBUGS) approach. The results of 

Table 3  Computing time for each model in WinBUGS

* The data set contains 7672 individuals, and the total number of longitudinal 
observations (FEV1 measurements) is 36,051. For each model, we run 40,000 
iterations, discard the first 20,000 as a warm-up phase and thin by 10, yielding a 
total of 2000 posterior samples

Model Submodel 1 Submodel 2 Computing time

Separate model

I Semiparametric mixed 
effects

Weibull 9 h 57 min

Joint model

II Cubic mixed effects Weibull 8 h 45 min

III Semiparametric mixed 
effects

Weibull 11 h 14 min
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Table 4  Posterior estimates under two-stage model and joint model for lung function decline and pulmonary exacerba‑
tion onset

Parameter Two-stage model Joint model (Model III)

Posterior mean 95% HPD CI Posterior mean 95% HPD CI

Semiparametric longitudinal submodel for FEV1

Curve

 β0, intercept 18.15 [15.54, 20.95] 16.89 [14.63, 20.39]

 β1, age 2.86 [2.477, 3.189] 3.121 [2.74, 3.382]

 β2, age2 − 0.1306 [− 0.1418, − 0.117] − 0.1367 [− 0.1481, − 0.124]

 β3, age3 − 0.0011 [− 0.0013, − 0.0009] − 0.0016 [− 0.0017, − 0.0014]

 b1 0.0051 [0.0039, 0.0061] 0.0073 [0.0058, 0.0084]

 b2 0.0108 [0.0097, 0.0119] 0.0103 [0.0095, 0.0111]

 b3 − 0.0177 [− 0.0226, − 0.0133] − 0.0206 [− 0.0248, − 0.0167]

 b4 − 0.0001 [− 0.0044, 0.0065] 0.0029 [− 0.001, 0.0085]

 b5 0.0033 [− 0.0024, 0.0083] 0.0015 [− 0.0033, 0.007]

 b6 − 0.0009 [− 0.0114, 0.0095] 0.0008 [− 0.0095, 0.0101]

 Baseline FEV1 0.686 [0.6728, 0.6978] 0.6834 [0.6676, 0.6945]

 Male − 0.15 [− 0.582, 0.2736] − 0.1650 [− 0.6054, 0.2971]

 Birth cohort

  < 1981 11.43 [9.837, 13.29] 12.39 [10.89, 13.95]

  1981–1988 4.0 [2.992, 4.978] 4.936 [3.995, 5.916]

  1989–1994 − 0.1924 [− 0.7038, 0.3305] 0.0608 [− 0.4059, 0.5908]

  > 1994 (reference)

 Lower SES − 0.623 [− 1.091, − 0.175] − 0.5984 [− 1.062, − 0.1119]

 CFRD − 0.4613 [− 0.7895, − 0.1506] − 0.3695 [− 0.6731, − 0.0633]

 MRSA − 0.816 [− 1.026, − 0.6022] − 0.8114 [− 1.016, − 0.6134]

 B. cepacia − 0.7964 [− 1.465, − 0.1291] − 0.7705 [− 1.441, − 0.1022]

 Pa − 0.5643 [− 0.6953, − 0.4345] − 0.5673 [− 0.6971, − 0.4373]

Sources of variation

 σ 2 (measurement error) 59.29 [58.83, 59.78] 59.24 [58.77, 59.73]

 σ 2
0  (between patients, intercept) 324.1 [307.6, 341.3] 326.8 [311, 343.8]

 σ 2
1  (between patients, slope) 2.564 [2.443, 2.69] 2.602 [2.484, 2.727]

 σ01 (covariance, intercept and slope) − 25.46 [− 26.81, − 24.18] − 25.76 [− 27.11, − 24.49]

Weibull event submodel for pulmonary exacerbation

k 2.524 [2.456, 2.601] 2.564 [2.487, 2.634]

intercept − 3.509 [− 3.802, − 3.26] − 3.568 [− 3.804, − 3.296]

θ0 (random intercept) − 0.0098 [− 0.0149, − 0.0048] − 0.0086 [− 0.0137, − 0.0036]

θ1 (random slope) − 0.3273 [− 0.3825, − 0.2728] − 0.3532 [− 0.4104, − 0.2979]

Baseline age 0.0002 [− 0.0136, 0.0161] 0.0023 [− 0.0131, 0.0176]

Baseline FEV1 − 0.0193 [− 0.0211, − 0.0175] − 0.0198 [− 0.0218, − 0.0179]

Male − 0.2919 [− 0.36, − 0.2194] − 0.2940 [− 0.3606, − 0.2267]

Birth cohort

 < 1981 − 0.5046 [− 0.8512, − 0.1807] − 0.5348 [− 0.9056, − 0.1726]

 1981–1988 − 0.2297 [− 0.4382, − 0.0415] − 0.2348 [− 0.4405, − 0.0339]

 1989–1994 0.1171 [0.0086, 0.2197] 0.1261 [0.0178, 0.2335]

   >1994 (reference)

Lower SES 0.1091 [0.0369, 0.1799] 0.1059 [0.0382, 0.1804]
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posterior estimates and model comparison for two-stage 
model and joint model (Model III) are given in Tables 4 
and 5.

The two-stage model yields similar estimates, and 
detects the same significant effects in the random inter-
cept and slope as the joint model. However, DIC in Table 
A3 suggests that the joint model (DICtotal  =  973,015) 
gives a much better fit of the data than the two-stage 
model (DICtotal = 973,294).
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