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Maximising the impact of inactivated polio vaccines
With the globally coordinated switch from the trivalent 
oral polio vaccine (OPV) to the bivalent OPV in 
April, 2016, the international public health community 
entered a new chapter in the endgame of polio. Although 
OPV has served as the cornerstone of polio eradication 
efforts over the past 30 years, trivalent inactivated 
polio vaccine (IPV) has re-ascended to prominence 
in the past year, now acting as the sole source of 
protective immunity against type 2 poliovirus in routine 
immunisation programmes. Despite its immense public 
health value, the global supply of IPV is failing to meet 
demand. The October, 2016, meeting of the Strategic 
Advisory Group of Experts on Immunization cautioned 
that, “the IPV supply situation is further deteriorating; 
50 countries are experiencing delays in supply or stock-
outs, a situation which is likely to persist until 2018”.1

Given the existing resource constraints, pragmatic 
solutions are urgently needed to maximise the 
impact of IPVs during the transitional and post-OPV 
immunisation era. In The Lancet Infectious Diseases, 
Birgit Thierry-Carstensen and colleagues2 report one 
such novel strategy in the form of reduced-dose IPVs 
administered intramuscularly with an aluminium 
hydroxide (Al) adjuvant. The three IPV-Al candidates 
were formulated at one-third, one-fifth, and one-tenth 
the concentration of standard IPV and administered 
to healthy children living in the Dominican Republic 
at 6, 10, and 14 weeks of age. The results of the well 
conducted phase 2 trial indicate that the antigen-sparing 
IPV-Als were able to achieve substantial (ie, ≥75%) 

seroconversion against the three serotypes of polio after 
only two vaccine doses. Promisingly, after three doses, all 
three formulations of IPV-Als achieved more than 94% 
seroconversion to poliovirus types 1, 2, and 3, and the 
seroresponses were non-inferior to those of the standard 
IPV, which was administered unadjuvanted, but at up to 
ten-fold higher concentrations.

Enhancing the immunogenicity of IPVs is an important 
achievement in view of the ongoing shortfalls in IPV 
production by global pharmaceutical firms. Moving 
forward, an antigen-sparing IPV with adjuvant would 
be a welcome addition to the expanding portfolio of 
alternative IPV approaches under development, which 
also includes fractional (ie, reduced-volume) intradermal 
IPVs3,4 and enhanced potency high dose IPVs5 that might 
limit the number of serial doses required to uniformly 
induce immunity. Overall, dose-sparing IPV strategies 
have the potential to reduce costs of immunisation 
activities,6 facilitate the protection of individuals during 
outbreaks by enabling both prompt responses and 
high levels of coverage,7 and stretch dwindling vaccine 
supplies. However, selecting and then operationally 
optimising an IPV strategy for a specific context will 
be challenged by a number of logistical barriers (eg, 
scalability and costs of vaccine production and storage, 
availability of trained vaccinators, procurement 
of immunisation devices) and immunological 
considerations (eg, scheduling to mitigate interference 
by maternal antibodies, inducing seroprotection of an 
appropriate magnitude and duration).8
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In preparing the global public health system to 
withstand shortages in IPV supply moving forward, it is 
also important to give due consideration to a limitation 
of all IPVs—namely, that inactivated vaccines appear to 
have a limited capacity to induce intestinal immunity 
against polio. There is no question that serum antibodies 
produced in response to IPVs are able to successfully 
protect vaccinees against paralytic polio by inhibiting 
viraemia and entry into the CNS. Perhaps less appreciated 
is that with polio—and probably many other pathogens 
replicating at mucosal surfaces—a vaccine’s ability to 
induce mucosal immunity is tightly linked to the vaccine’s 
capacity to block viral shedding and, thereby, potential 
onward transmission. Mounting evidence from OPV 
challenge trials5,9,10 indicates that, when delivered in a 
primary vaccine series, IPV seems to have only limited 
effects on the duration and degree of viral shedding. 
By contrast, the intestinal immunity induced by live, 
oral vaccines is close to achieving the ideal of sterilising 
immunity.10–12 Ultimately, blocking transmission (eg, 
via integrated OPV-IPV intestinal immune-boosting 
strategies13,14 and the development of the more highly 
attenuated and genetically stable novel OPVs) and 
thus reducing IPV demand for outbreak control is also a 
paramount consideration for capitalising on the utility of 
IPVs under the reality of existing supply limitations.

Eradication of polio is tantalisingly close. In the final 
steps toward eradication and for the post-eradication era, 
there is a need for as many arrows in the quiver as possible, 
and it would be valuable to add aluminium hydroxide-
enhanced IPV to that arsenal.
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Should we continue to monitor 4CMenB coverage with MATS?
A long research process has led to development of a 
multicomponent vaccine indicated for prevention of 
invasive meningococcal disease associated with sero-
group B Neisseria meningitidis (4CMenB; Bexsero, 
GlaxoSmithKline Vaccines, Siena, Italy).1 The vaccine 

was licensed despite no clinical trial data for efficacy 
because of the very low prevalence of the disease. Similar 
to conjugate vaccines against other serogroups, the 
licensure process was based on data obtained through 
correlates of protection.2 For polysaccharide conjugate 
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