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 34 

Abstract 35 

Allergic diseases are on the rise globally, in parallel with a decline in parasitic infection. The 36 

inverse association between parasitic infections and allergy at an ecological level suggests a 37 

causal association. Studies in humans have generated a large knowledge base on the 38 

complexity of the inter-relationship between parasitic infection and allergy. There is evidence 39 

for causal links, but the data from animal models are the most compelling: despite the strong 40 

Type 2 immune responses they induce, helminth infections can suppress allergy through 41 

regulatory pathways. Conversely, many helminths may cause allergic-type inflammation 42 

including symptoms of “classical” allergic disease. From an evolutionary perspective, 43 

individuals with an effective immune response against helminths may be more susceptible to 44 

allergy. This narrative review aims to inform readers on the most relevant up to date 45 

evidences on the relationship between parasites and allergy. Experiments in animal models 46 

have demonstrated the potential benefits of helminth infection or administration of helminth-47 

derived molecules on chronic inflammatory diseases, but clinical trials in humans have not so 48 

far demonstrated unequivocal clinical benefits. Nevertheless, there is sufficiently strong 49 

evidence to support the continued investigation of the potential benefits of helminth-derived 50 

therapies for the prevention or treatment of allergic and other inflammatory diseases.  51 

 52 

Keywords: Allergy, asthma, parasite infection, helminths, epidemiology, mechanisms. 53 
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 113 

Introduction 114 

The frequency of allergic disease has been rising in urban and urbanizing populations,
1
 while 115 

an overall decline in rates of infections has been observed. Studies of the inverse association 116 

between parasitic infections and allergy suggest the existence of a causal link.  117 

While humans can be infected with some 300 species of worms and over 70 species 118 

of protozoa
2
 we will focus on soil-transmitted helminths (STH). Worldwide, it is estimated 119 

1.5 billion humans are infected with one of these species.
3 

We will also refer to Schistosoma 120 

spp. that infect humans through contact of skin with water infested with larvae and it is 121 

estimated to infect 230 million people.
4
  122 

For example, Figure 1 shows typical features of a rural household in a village of 123 

Conde, Northeast Brazil, from 2005, in which the prevalence of helminth infections was 124 

83.5%.
5
 In the City of Salvador, 185 km away, the frequency of helminth infection among 125 

children was below 20%.
6
 An ecological study including all Brazilian municipalities reported 126 

hospitalization rates due to asthma were lower in those endemic for S. mansoni or for STH 127 

parasites.
7 

A typical urban underserved neighborhood of Salvador, is presented in Figure 2. 128 

Insert Figure 1. 129 

Typical features of a rural household in a village in the municipality of Conde, 130 

Northeast Brazil 131 

 132 

Insert Figure 2.  133 

Typical urban underserved neighborhood of Salvador, Northeast Brazil 134 



 135 

The purpose of this narrative review is to inform clinicians and researchers on the 136 

most current evidence on this topic, from epidemiological studies to mechanisms and 137 

molecules identified in helminths that are candidates for novel therapeutics. 138 

 139 

Global trends in parasite infections and allergy  140 

 141 

Global trends  142 

Allergic diseases are among the most common chronic diseases
1
 particularly in populations 143 

undergoing urbanization.
8
 Individual risk of allergy is considered to reflect a complex 144 

interaction between genetic predisposition and environmental exposures over the life course.
9
 145 

Geographic differences in the prevalence of allergy between and within populations is more 146 

likely to reflect exposures to common environmental factors that may either increase or 147 

decrease risk. The most consistent environmental exposures considered to reduce risk of 148 

allergy are those associated with rural residence and include farming, animal exposures
10

 and 149 

infections with parasites.
11

 150 

Protective immunity against STHs is mediated through type 2 immune mechanisms
11

 151 

and parasites can survive to cause chronic infections by modulating these allergic 152 

inflammatory responses. The prevalence of STH infections is declining worldwide. This 153 

reflects a combination of factors leading to reductions in transmission of these infections, 154 

including reductions in extreme poverty and improvements in the living environment (potable 155 

water and disposal of feces) and the wide availability of anthelmintic drugs. Reductions in 156 



STH prevalence, while beneficial, might raise concerns in case of being causally associated 157 

with allergy. 158 

 159 

Epidemiological evidence for associations between parasites and allergy  160 

There is evidence in support of protection against allergy by STH infections, but many 161 

studies in human populations present discordant effects.  162 

Meta-analyses of observational studies have shown differences in effects on asthma 163 

symptoms for different parasites: while A. lumbricoides was associated with an increased risk 164 

of asthma, hookworm infection was associated with a reduced risk.
12

 In contrast, studies that 165 

have measured the presence of Ascaris-specific IgE - recommended by some as a marker of 166 

infection in areas of low prevalence
13

 but perhaps more appropriately used as a marker of 167 

allergic sensitization to Ascaris - have shown consistently positive associations with asthma 168 

symptoms and even disease severity.
14,15

  169 

In the case of atopy, generally measured by allergen SPT reactivity, most cross-170 

sectional studies have shown inverse associations with STH infections.
16

 A meta-analysis of 171 

cross-sectional studies showed that current STH infections were protective against atopy, an 172 

effect that was consistent for all 3 of the most common STH infections and also 173 

schistosomiasis.
16

 STH infections are not alone in their SPT attenuating effects. A cross-174 

sectional study showed that, in addition to A. lumbricoides, several different childhood 175 

infections were independently and inversely associated with SPT, including visceral worm 176 

Toxoplasma gondii,  Herpes simplex and Epstein-Barr virus infections.
6
 This observation 177 

raises the possibility that rather than mediating protection directly, STH infections might be 178 

markers of poor environmental conditions that mediate protection through alternative 179 



mechanisms. Interestingly, in the study mentioned above, T. gondii was the only organism 180 

associated with a reduction in allergen-specific IgE in this population.
6
  181 

Few prospective studies have explored the effects of geohelminths on the 182 

development of allergy. It has been suggested that the key effects of protective environmental 183 

exposures, occur during early life during which there may be a limited window of 184 

opportunity for such exposures to mediate their effects.
9
 If this is the case, prospective studies 185 

of the effects of STH infections on allergy should start in early childhood, ideally before birth 186 

to measure any potential in utero effects of maternal STH infections. Four such prospective 187 

studies have been published to date; i) a birth cohort in Ethiopia where the prevalence of 188 

helminthiasis was considered to be too low to explore effects on wheeze and eczema to 5 189 

years;
17

 ii) an observational analysis within a randomized-controlled trial of anthelmintic 190 

treatment during pregnancy showed that maternal and childhood hookworm and childhood T. 191 

trichiura were associated with a reduced risk of eczema to 5 years;
18

 iii) a prospective study 192 

showed that T. trichiura infections during the first 5 years of life were associated with a 193 

reduced risk of SPT in later childhood;
19

 and iv) a birth cohort in a rural area did not show an 194 

effect of maternal STH infections on SPT, wheeze, or eczema during the first 3 years of 195 

life,
20

 but follow-up of the cohort is in progress to determine if childhood infections may 196 

affect risk of allergy at school age.
21

 197 

Another way used to test the causal link has been the interventional studies in which 198 

the protective exposure (i.e. STH) is removed through anthelmintic treatment thus intended to 199 

reverse any existing effects. If helminths are truly protective, one might expect to observe an 200 

increase in the prevalence of allergy in the group receiving treatment. Several intervention 201 

studies have inconsistent findings.
22,23,24

 None of the studies were able to show an effect on 202 

the prevalence of asthma symptoms, one showed that a single dose of anthelmintic drugs 203 

given during the latter part of pregnancy was associated with an increased risk of eczema in 204 



infancy,
22

 and two showed an increase in either the incidence
23

 or frequency
24

 of positive 205 

SPT after at least 1 year of treatments.  206 

Overall, the evidence suggests that A. lumbricoides infection and particularly Ascaris-207 

specific IgE is associated with an increased risk of asthma symptoms in endemic areas but 208 

that STH infections may reduce the prevalence of positive SPT, but not specific IgE (sIgE) to 209 

aeroallergens. There is still very limited evidence that STH infections protect against allergic 210 

symptoms in human populations, and the effects of early life exposures to STH infections on 211 

the development of allergy in childhood, either through maternal or childhood infections, is 212 

still insufficiently studied.  213 

In case of schistosomiasis, all published studies have been cross-sectional showing an 214 

inverse association between Schistosoma mansoni infection and SPT reactivity to common 215 

aeroallergens in most cases
16

. A recent study in Uganda was unable to demonstrate an 216 

association between S. mansoni infection and wheeze but an earlier study in Brazil showed 217 

that S. mansoni infection was associated with a milder form of asthma.
25

 218 

 219 

Host immune response against parasites  220 

Helminths are the largest organisms to infect vertebrate hosts, leading to the release of large 221 

quantities of parasite molecules that interact with the immune system. It might be expected 222 

that helminth infections should induce an overwhelming immune response, resulting in the 223 

elimination of the parasites, while causing potentially damaging inflammation. However, co-224 

evolution of hosts and parasites over millennia has allowed both host and parasite to survive 225 

through the development of mechanisms that dampen the host inflammatory response to the 226 

parasite or even allow the parasite to evade the host immune response, resulting in infections 227 



that are often asymptomatic.
11

 For example, Schistosoma spp adults, that live within the 228 

human vascular system, can survive for many years without inducing strong host 229 

inflammatory responses.
26

 230 

Although the most widely studied host immune response against helminths is the 231 

acquired Th2-type response, we shall discuss both innate and adaptive host immune 232 

responses to helminth parasites. The Th2 type response is characterized by the production of 233 

high levels of the cytokines IL4, IL5, IL9, IL10, IL13, IL21, IL33. These cytokines 234 

orchestrate immediate hypersensitivity that involves B cell class switching to IgG4 and IgE, 235 

eosinophilia, goblet cell hyperplasia and mastocytosis, alternative activation of macrophages, 236 

and the influx of inflammatory cells such as eosinophils that contribute to parasite killing. 237 

Such a response may control parasite numbers by killing them in tissues or expelling them 238 

from the intestinal lumen.
≈
 The host response to helminth infections is associated with 239 

allergic phenomena that are a consequence of killing or an attempt to kill or expel these 240 

parasites.
27

 Examples are shown in Table 1.  241 

Although helminth parasites are universal in inducing all or most of these Th2 242 

effector pathways in the host, the specific effector pathway mediating protection varies 243 

between different parasites, life cycle stages, and site of infestation. For example, the 244 

intestinal helminths, Heligmosomoides polygyrus and Trichinella spiralis, are expelled from 245 

the intestinal lumen by several Th2 effector pathways such as IgE-mediated activation of 246 

mucosal mast cells. Th1 responses may also have a role in protective immunity against some 247 

helminth parasites such as S. mansoni infection,
28 

 while the control of parasite burden in 248 

strongyloidiasis is highly dependent on type 2 responses.
29 

 249 

The parasite’s first contact with the host’s immune system is through CD11chigh DC 250 

which undergo alternative activation for example, in response to excretory-secretory (ES) 251 



molecules from the murine intestinal helminth parasites Heligmosomoides polygyrus and 252 

Nippostrongylus brasiliensis.
30

 Helminth molecules bind to TLR2, 3, 4 receptors on the 253 

dendritic cell membrane driving the acquired immune response from naive Th0 to a Th2 254 

profile.
31

  255 

An important group of innate immunity cells, the innate lymphocyte (ILCs), which 256 

lack B or T cells antigen specific receptors, and do not express myeloid or dendritic cell 257 

markers, has been shown to comprise three sub-sets: ILC1 (related to T1 profile), ILC2 258 

(related to T2) and ILC3 (related to ThI7).
32

 ILC2 produce a large set of T2 cytokines (IL4, 259 

IL5, IL9, IL13 and IL21) in response to stimulation with IL25, IL33 and TSLP
32

 and play an 260 

important role in protection against helminths. However, unlike Th2 cells, ILC2 are 261 

stimulated by alternatively activated macrophages (AAMΦs), express MHC-II, and are able 262 

to endocytose and process antigen.
33

 AAMΦs are phenotypically distinct from classically 263 

activated macrophages (CAMΦs) that are typical of Th1 type responses. AAMΦs do not 264 

produce IFNγ and instead of inducible nitric oxide synthase (iNOS), have upregulated 265 

expression of Arginase-1 that has higher affinity for arginine, competing with iNOS present 266 

in CAMΦs. AAMΦs are induced during infections with several helminth parasites.
34

 267 

Interestingly, an interaction between ILC2 and Th2 cells for maintaining AAMΦs in lungs of 268 

hookworm-infected mice has been reported.
35

  269 

Other immune cells reported to play a role in immunity against helminth infection are 270 

the Th17, derived from CD4(+) T cells after antigen maturation. Th17 cells are important for 271 

the clearance of several extracellular pathogens, such as bacteria and helminths.
36

 In S. 272 

japonicum-infected mice, there was an increase in Th17 cells following granuloma 273 

development, attributed to the presence of induced factors (e.g. TGFB, IL23 and IL21) in 274 

greater amounts than inhibitory factors (e.g. Treg and T2 cells, and IL-4).
37

  275 



Helminths have developed several mechanisms to suppress or avoid host anti-parasite 276 

responses. For example, S. mansoni has developed parasite stage-specific evasion strategies. 277 

Entry of cercariae through the skin is followed by the release of larval ES products (e.g. 278 

PGD2) that cause host cells to release PGE2.
38

 Both host and parasite-derived prostaglandins 279 

induce the production of IL10 in the skin that inhibits the migration of epidermal Langerhans 280 

cells to the invasion site.
39

  281 

The most remarkable evasion strategy used by helminths, particularly those dwelling 282 

within host tissues and in blood and lymphatic systems, is the down-modulation of the host 283 

immune system leading to a form of immunologic tolerance that, itself, may have effects on 284 

host responses to other infections and allergy. The cells mediating this effect are the Treg sub-285 

set of the CD4+ T lymphocytes that produce the immune modulatory cytokines IL10 and 286 

TGFB. The presence of regulatory cells is associated with a reduction in Th2 cells and the 287 

development of a modified type 2 immune response. Other cells involved are alternatively 288 

activated macrophages and B-regulatory cells.
11

  289 

 290 

Insert Figure 3. 291 

Schematic representation summarizing the findings from epidemiological studies of the 292 

relationships between helminth parasites and atopy and asthma 293 

 294 

Commonalities between the immune response to parasites and allergy 295 

The host immune response to helminth parasites has many features in common with allergy. 296 

Bronchial inflammation of atopic asthma is coordinated by cells of the adaptive immune 297 

system, but also by ILC2 of the innate response, which together induce a type 2 response.
40

 298 



During helminth infections type 2 immunity is initiated at the site of parasite invasion by 299 

epithelial cells, which release the alarmins IL25 and IL33 to prompt ILCs to produce IL13 300 

and other cytokines that are also involved in the pathoetiology of asthma. In the absence of 301 

either IL25 or IL33, resistance to helminth infections is severely impaired.
41

 Tregs cells have a 302 

dual role in helminth infections: they protect the host from excessive inflammatory responses 303 

during infection, but they also may decrease protective immunity and, thereby, permit 304 

parasite persistence.
42

 In the case of asthma, several studies have shown allergic patients to 305 

have lower numbers of Tregs in both the bronchoalveolar lavage and peripheral blood 306 

monocytes cells (PBMC).
43

 Thus, there are notable parallels between the immune responses 307 

associated with allergy and those observed in response to helminth infection.   308 

Host type 2 immune responses to parasites and allergens are induced by a limited 309 

number of protein families that contain allergens such as tropomyosins. There is extensive 310 

structural homology between allergens from helminths and other environmental sources.
44

 311 

Further, allergen homologues derived from parasites and aeroallergens do not just exhibit IgE 312 

cross-reactivity but can also induce cross-sensitization in murine models.
45

 Cross-reactivity 313 

between helminths and aerollergens has a number of important consequences including false-314 

positive reactions for specific IgE when used in the diagnosis of allergy and also a potential 315 

increase in morbidity caused by inflammatory reactions directed against cross-reactive 316 

allergens. In the case of the latter, cross-reactivity could help drive the exaggerated responses 317 

associated with inflammatory syndromes that have been reported in human helminth 318 

infections such as tropical pulmonary eosinophilia in the case of lymphatic filariasis
46

 and 319 

Loeffler’s syndrome in ascariasis.
47

 Likewise, it has been suggested that immune modulation 320 

during chronic helminth infections, which subvert Th2-mediated inflammation permitting 321 

parasite survival, could affect atopic responses to common aeroallergens through either 322 

bystander effects or immunological cross-reactivity.
45  

323 



 324 

Insert Figure 4. 325 

Helminths suppress autoimmunity and allergy via type 2 or regulatory immune response.
48

 326 

 327 

Genetic determinants of protection against helminths and risk of allergy  328 

 329 

Characterization of parasite genomes and subsequent comparison of parasites to more 330 

complex species such as mammalian hosts have contributed to our understanding of the 331 

mechanisms of parasite evolution and have provided evidence for the role of host–parasite 332 

interaction in genetic adaptation. An understanding of that genetic adaptation has elucidated 333 

candidate genes, which may drive susceptibility to other diseases of the immune system, 334 

including atopy and asthma.
49

 Thus, genetic variants affecting any of the classical key-roles 335 

inflammation inducing factors as well as proteins related to controlling inflammation through 336 

immune regulatory mechanisms such as Treg may play a role on both helminth resistance and 337 

allergic conditions. Genetic studies have highlighted common variants (MAF >10-30%) that 338 

affect allergy in many different ways. In Figure 5, an analysis using PANTHER version 11
50

 339 

is presented showing different pathways related to the main genes described in GWAS to 340 

date, in which one may observe 3 out of the top 4 pathways linked to asthma are related to 341 

interleukin signaling and inflammation. 342 

The genetic variants that affect protection against helminths and risk of allergy, can 343 

be organized in two main groups: those affecting Th2 immune response and those affecting 344 

regulatory mechanisms. 345 



 346 

Insert Figure 5: 347 

Pathway analysis using Panther 11 version for the top SNPs associated in GWAS for 348 

asthma to date. 349 

 350 

 351 

Variants that affect Th2 immune response 352 

 353 

Common genetic variants of type 2 immune signaling relating to allergy and asthma provide 354 

credence to the hypothesis that the origin of these allergy-promoting variants derives from 355 

evolutionary mechanisms and their selection occurred in the presence of widespread, 356 

endemic helminth infection.
51

 A region on chromosome 5, 5q31-q33, for example, has been 357 

associated with resistance to S. mansoni through the presence of genes such as those of 358 

granulocyte-macrophage factor (CSF2), IL3, IL4, IL5 and IL13, that are important in 359 

protective immunity against S. mansoni.
52

 The same locus (5q31-q33) has been linked to 360 

asthma and atopy. Other relevant loci that are also linked to asthma are 7q and 21q.
53

   361 

In terms of asthma susceptibility, several immune molecules have been associated 362 

with asthma/allergy. In both GWAS and candidate genes studies some 200 genes have been 363 

associated with asthma or related phenotypes. Among these genes, there are those related to a 364 

possible modulation of plasma tIgE levels.
54

 Association studies of genes encoding the 365 

epithelial cell-derived cytokines, IL33 and TSLP, and the IL1RL1 gene encoding the IL33 366 

receptor, ST2, highlight the central roles for innate immune response pathways that promote 367 



the activation and differentiation of Th2 cells. These genes are the most consistent variants 368 

associated with asthma, allergy and helminth infections across ethnically diverse 369 

populations.
55

  370 

In this context, GWAS studies for allergic diseases have pinpointed IL33 and IL1RL1 371 

as key susceptibility genes for allergic asthma, underscoring the pivotal role of this pathway 372 

in the pathophysiology of this diseases.
56

 Studies involving the genes codifying the IL33/ST2 373 

route have been widely replicated in different populations,
57

 confirming their association with 374 

asthma
58

 and blood eosinophilia.
59

 The mechanism whereby the IL33/ST2 axis induces Th2-375 

inflammation was demonstrated recently.
60

 Local airway soluble ST2 (sST2) levels, as well 376 

as circulating plasma sST2 levels, contribute to neutralization of IL33 in the tissues.  377 

The role of human genetic determinants of IL33/ST2 in helminth infection is poorly 378 

understood. Using a generalized estimating equation model, three SNPs associated with 379 

higher SWAP specific IgE/IgG4 (a measure of resistance to S. mansoni) were found.
61

 The 380 

most significant SNP mapped to intron 1, and the allele, which has been shown to confer 381 

asthma risk in an African-American population, also conferred protection against 382 

schistosomiasis.  383 

Major polymorphisms within the 5q31-q33 genomic region, previously associated 384 

with resistance to S. mansoni infection have been studied.
52,53

 The region includes several 385 

genes related to immune function including IL-4, IL-5, and IL-13 genes in the Th2 cluster.  386 

Resistance to S. haematobium was associated with the IL13-1055T/T genotype
62

 which has 387 

also been implicated in asthma exacerbations.
63

 Further, a functional IL13 polymorphism, 388 

rs1800925T, was shown to contribute to the risk of late-stage schistosomiasis caused by S. 389 

japonicum.
64

 In another study, two quantitative traits, tIgE levels (representing Th2 pathway 390 

activation) and S. mansoni egg counts, that reflect host immunity to helminths were 391 



investigated, providing a unique opportunity for the genetic dissection of the Th2 pathway in 392 

the context of schistosomiasis.
7
 Significant associations were seen between two functional 393 

variants on the IL13 gene and S. mansoni egg counts, indicating IL13 to be protective, but no 394 

associations of IL13 gene variants with tIgE levels. Since the functional effect of both 395 

variants on the gene product, IL13, is to increase its amount or activity, this finding suggests 396 

IL13 functions to increase anti-helminth immunity, and functional variants may be an 397 

evolutionary vestige of selective forces that may now favor atopic phenotypes.
5
  398 

 399 

Variants that affect immune regulatory mechanisms 400 

Alterations in regulatory cytokine levels are believed to play an important role in mediating 401 

immune suppression in helminth immune response. Genetic variants affecting IL10 and 402 

TGFB1 may be associated with both asthma/allergy and heminthiasis. We described a variant 403 

(rs3024496, G allele) in the IL-10 gene associated with the suppression of IL-10 production 404 

in A. lumbricoides antigen-stimulated cultures of peripheral blood leukocytes, and also, other 405 

variants within the same gene, were both positively associated with atopy and asthma and 406 

negatively associated with helminth co-infections.
65

  407 

Several IL10 promoter polymorphisms have been extensively studied. Some variants 408 

were significantly associated with high PBMC proliferative responses to Onchocerca 409 

volvulus antigen.
66

 One of these promoter variants, the G-1082A was also associated with 410 

immune-related diseases including type 2 diabetes, multiple sclerosis, and asthma.
67

 411 

Moreover, the same variant was associated with pediatric asthma.
68

 In an endemic area for S. 412 

mansoni alleles at the three promoter SNPs were associated with high tIgE levels in the same 413 

direction as in atopic individuals, but not with egg counts. IL10 promoter polymorphisms 414 

appear to influence non-specific tIgE levels, but not schistosomiasis-specific immunity.
7
 415 



Genetic polymorphisms in TGFB1 are associated with airway responsiveness and 416 

exacerbations in children with asthma.
69

 Common variants in TGFB1 gene affect both 417 

asthma/allergy and helminth infections. We demonstrated a negative association between 418 

rs1800470 (C allele), atopic wheezing and markers of allergy. In contrast, a positive 419 

association was observed between the haplotype ACCA and T. trichiura and A. lumbricoides 420 

infection. This later haplotype was also associated with increased IL10 production.
70

 421 

The main cellular source of both IL10 and TGFB1 are Tregs, critical for the 422 

maintenance of immune homeostasis. The activation of FOXP3 transcriptional factor is 423 

pivotal for Tregs function. The human FOXP3 gene is located on the X-chromosome 424 

(Xp11.23) and because of sex differences among X-variants, insufficient efforts have been 425 

made to include X variants in GWAS. Ppolymorphisms in the FOXP3 gene have been 426 

evaluated in association studies for allergy
71 

but only a few studies on asthma have been 427 

reported. A study reported a significant interaction between SNPs in FOXP3-IL2R genes and 428 

sIgE for worm eggs and asthma.
72

 The SNPs rs2294019 and rs5906761 were associated with 429 

the risk of egg sensitization only in females.
71

 The heterozygote genotype for rs3761547 was 430 

a risk factor for allergic rhinitis, and this association was reproduced in gene-gene interaction 431 

analysis with rs3761548.
72

  432 

The immune regulation of allergic disease results not only from protective 433 

environmental factors including helminths, but also from genetic factors relating to IL10 434 

production or hyperactivation of type 2 immune responses. From an evolutionary perspective, 435 

the selective advantage acquired by humans able to mount an efficient protective immune 436 

response to helminth infections may make them more vulnerable to atopy and asthma. 437 

 438 

Immunoregulation by helminths and clinical practice   439 



Insert Table 1. 440 

Examples of helminth infections and the allergic-type inflammatory responses with which 441 

they are associated. 442 

Treatment of allergic diseases with systemic corticosteroids at immunosuppressive 443 

doses increase the risk of opportunistic infections. The helminth reported to affect immune 444 

suppressed hosts most frequently is Strongyloides stercoralis, occasionally resulting in 445 

uncontrolled dissemination of the parasite in the potentially fatal hyper-infection syndrome. 446 

Strongyloides hyperinfection has been associated also with other immunosuppressive drugs, 447 

lymphomas, and infection with HTLV-1 virus.
73

 Because of the presumed central role of IgE 448 

in protective immunity against helminth parasites, treatment of severe asthma with anti-IgE 449 

antibody raised concerns about risk of severe or disseminated helminth infections. A 450 

multicentre randomized controlled trial of omalizumab for the treatment of asthma and 451 

rhinitis was safe in a population at risk of STH infections, although there was a modest 452 

increase in geohelminth infection.
74

 The same safety concerns will be present in populations 453 

at risk of helminthiasis for other immunomodulatory compounds for treatment of allergic 454 

diseases, particularly those targeting specific type 2 effector pathways such as anti-IL5 and 455 

anti-IL13/IL4.  456 

Helminth infections induce cellular immune hyporesponsiveness.
11

 Such 457 

hyporesponsiveness has been associated with suboptimal vaccine responses.
75,76

 Among 458 

pregnant women, soluble parasite antigens cross the placenta and modify fetal immune 459 

responses in such a way as to possibly affect vaccine responses in childhood.
77

 Modification 460 

of the host immune response to helminths affects how humans respond immunologically to 461 

other pathogens such as those causing malaria
78

 and tuberculosis,
79

 however, effects on 462 

clinically measurable outcomes are less clear.  463 



 464 

Insert Clinical Notes I. 465 

Notes of relevance for clinical allergy practice on immunopathology of helminth infections. 466 

 467 

Reports have indicated possible benefits of helminth infections on autoimmune 468 

diseases, inflammatory bowel disease, and even in the metabolic syndrome.
80

 For example, 469 

an inverse association between lymphatic filariasis and type II Diabetes was reported,
81

 and 470 

past infection with S. japonicum was associated with a lower prevalence of metabolic 471 

syndrome.
82

 Intestinal helminth infections were inversely associated with risk factors for 472 

cardiovascular diseases, such as body mass index and lipid levels.
83

   473 

Insert Clinical Notes II. 474 

Notes of relevance on protection against allergy and other chronic diseases. 475 

 476 

Exploring the immunomodulatory potential of helminths and helminth molecules  477 

Helminth infection and immunomodulation of diseases 478 

An observational study of patients with multiple sclerosis, who had acquired gastrointestinal 479 

helminth infections, reported remission of multiple sclerosis for over 4 years. Patients 480 

infected with parasites had reduced inflammatory cytokine responses and enhanced 481 

production of IL10 as well as TGFB. Six of these subjects were followed up and remission 482 

continued into the sixth year, when four patients were offered anthelmintic treatment due to 483 

gastrointestinal problems. Subsequently their multiple sclerosis activity resumed while IL10 484 

and TGFB levels declined.
84 

 485 



Experimental infections of humans with live parasites employing either the pig 486 

whipworm, T suis, or the human hookworm, N. americanus have been reported.
85

 The 487 

premise is that the immune system can be modulated with amelioration or remission of the 488 

inflammatory disease. In the case of treatment with T. suis, parasite eggs are administered 489 

orally. Initial studies reported a beneficial effect on Crohn’s disease and ulcerative colitis.
86

 490 

T. suis eggs have been used to treat other immune disorders. A randomized controlled trial 491 

tested the efficacy of T. suis for the treatment allergic rhinitis in Denmark but showed no 492 

efficacy.  Although T. suis infection generated a measurable anti-parasite response, infection 493 

did not affect allergen-specific responses.
87

 Patients with Crohn’s patients were infected with 494 

N. americanus, with the majority showing improvements in symptom scores.
88

 A trial of N. 495 

americanus in patients with coeliac disease was unable to demonstrate clinical benefit.
89 

A 496 

small randomized control trial in patients with asthma showed no significant benefit of 497 

hookworm infection on clinical symptoms, bronchial responsiveness or SPT reactivity.
90

 498 

 What may be the reasons for the disappointing findings of clinical trials to date? 499 

Experimental animal models have demonstrated helminth parasites reduce allergic reactivity, 500 

but most studies have been designed to prevent the development of allergic reactivity rather 501 

than treat established disease. Only a handful of studies have reported the effects of these 502 

infections on already established allergic reactivity.
91

 Most of the experimental data available 503 

suggest that once the allergic reaction is established, helminth infections can do little to revert 504 

the disease process, raising the question whether there is any reasonable possibility of 505 

obtaining benefit through infections of individuals with active disease. Nonetheless, there are 506 

sufficient doubts with respect to optimal timing of treatment, the dose and systemic versus 507 

non-systemic infections, to justify future well-designed and justified randomized-controlled 508 

trials of helminth therapy for inflammatory conditions.  509 

  510 



Tests with helminth molecules as immunomodulatory candidates 511 

Recombinant proteins can reproduce the biological effects observed in infections with live 512 

worms. In experimental models of inflammatory disease, recombinant proteins derived from 513 

helminth molecules induce anti-inflammatory and inhibit pro-inflammatory cytokine 514 

production, promote regulatory cell recruitment and immune deviation.
92

 515 

In mouse models, helminth ES molecules, and helminth-derived synthetic molecules 516 

have shown usefulness in treating or preventing the development of inflammatory diseases 517 

such as inflammatory bowel diseases, type 1 Diabetes, multiple sclerosis, rheumatoid arthritis 518 

and asthma. The synthetic production of ES-derived immune modulators avoids concerns 519 

raised by the use of live organisms.
93

 Further, the molecule-based helminth treatment offers 520 

the advantage of delivery directly to the site of pathology.  521 

 We present in Table 2 a summary of pre-clinical and clinical studies of helminth 522 

molecules for the treatment of chronic inflammatory conditions affecting humans.   523 

Insert Table 2. 524 

Helminth molecule candidates for the treatment of inflammatory diseases. 525 

 526 

Discussion  527 

There is conflicting evidence of an inverse association between exposure to helminth 528 

infections and human chronic inflammatory diseases including allergic conditions. A possible 529 

causal relationship is supported largely by the findings from experimental animal models, 530 

while evidence from human studies has been equivocal. Evidence from clinical trials of live 531 

helminth parasites has been disappointing.  532 



 One explanation for the associations between allergy and helminths in 533 

epidemiological studies is the genetic evolutionary advantage of mounting strong type 2 534 

responses protective against helminth infection although increasing the risk of allergy.
65

 535 

Alternatively, the sort of environmental and unhygienic living conditions where parasite 536 

infections are likely to occur also expose populations to multiple other microorganisms which 537 

may contribute to the modulation of inflammatory responses.
94,95

 Moreover, there is evidence 538 

that several other contextual factors not always controlled for in observational studies might 539 

contribute to the inverse association between helminthes and allergy. Such factors include 540 

diet, nutrition, obesity, gut microbiome, physical activity, exposure to air pollution, stress and 541 

use of vaccines and antibiotics, all of which are related to an urbanized lifestyle, which has 542 

clearly been an important risk factor for allergy.
96,97

 543 

 How do we interpret the negative results of clinical trials of live helminth infections 544 

when helminth infections or helminth-derived molecules have proved so effective in 545 

controlling animal models of inflammatory diseases? The effects of helminth infections in 546 

humans are related to parasite burden and duration of infection. Clearly, there are safety and 547 

ethical concerns with treating humans with large infectious doses and maintaining infections 548 

for period of years that may be required to induce clinically relevant immune modulatory 549 

effects. Further, trials in humans have attempted to modify preexisting disease while most 550 

animal models have studied the ability of helminths to prevent disease.  551 

  552 

Conclusions  553 

There is consolidated evidence from studies in humans for a negative association of helminth 554 

infection with allergy, although the effect seems to vary by helminth species, parasite burden, 555 

and age of infection. Helminth infections may also provoke symptoms of allergy, although 556 



such allergic inflammation tends to be modulated during chronic infections. Experiments in 557 

animal models of chronic inflammatory diseases have demonstrated the potential benefits of 558 

helminth infection or the use of helminth-derived molecules against allergic disease, but 559 

clinical trials in humans have been disappointing. We still have an inadequate understanding 560 

of the complex interplay between helminths and allergy and there is a need for more studies 561 

in humans and experimental studies in animal models to understand these interactions more 562 

fully. Certainly, the exploitation of helminth-derived molecules for the treatment of 563 

inflammatory conditions offers promising new avenues for research and development. 564 

 565 
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 914 

 915 

 916 

 917 

Clinical Notes Box I.  918 

Notes of relevance for clinical allergy practice on immunopathology of helminth infections. 919 

 920 

 Accuracy of allergy testing 921 

when dealing with patients from endemic areas for helminth infections, an allergy workup 922 

including specific IgE may be more sensitive than SPT, but in subjects with a very high 923 

total IgE, in vitro tests may be false positive 924 

 Interpretation of total IgE and blood eosinophilia 925 

elevated total IgE and peripheral blood eosinophilia may indicate helminth infection  926 

 Potential reduction in efficacy of vaccines for prevention of infectious diseases  927 

it is important children and adults are free of worms for optimal efficacy of vaccines 928 

 Risks of prolonged use of systemic corticosteroids and immunobiological supressors of 929 

T2 inflammation mediators (Anti-IgE, Anti-IL5, Anti-IL4/13)  930 



treatment of severe asthma with continuous oral corticosteroids, Anti-IgE, Anti-IL5 or 931 

Anti-IL4/13 poses risk of helminth superinfection. It is advisable to observe the patient 932 

closely, investigate and treat if necessary, when living or coming from a region that is 933 

endemic for worms.  934 

 935 

 936 

Clinical Notes Box II.  937 

Note of relevance on protection against allergy and other chronic diseases 938 

 939 

 Inverse association between helminth infection and allergy and other chronic 940 

diseases there is compelling evidence of a strong inverse association between 941 

infection by various helminths and biomarkers of chronic inflammatory diseases and 942 

allergy 943 

 A causal association is plausible  944 

a direct causality is plausible, taking into consideration experimental studies in animal 945 

models and humans 946 

 No robust association between helminth infection and protection against diseases 947 

we found no robust evidence for causal associations between helminth infection and 948 

clinically relevant protection against disease, however 949 

 Exposure to helminths occur in a diverse environment that may be itself protective  950 

in the real world, exposure to helminths often occur in a markedly different 951 

environmental, ethnical and lifestyle context, including contrasts in ancestrality, 952 

physical activity, diet, nutrition, stress, exposure to air pollution and to 953 

microorganisms 954 

 A protective environment may overshadow the effects of helminth infection 955 

the potential influence of multiple factors in the health and diseases balance may 956 

overshadow the impact of exposure to parasites 957 

 The inverse associations may not be directly causal  958 

the inverse associations between helminth infections and biomarkers of chronic 959 

inflammatory diseases and allergy may not be directly causal, but linked to conditions 960 

related to parasite infections 961 

 962 

FIGURE LEGEND 963 

 964 



Figure 1. Typical features of a rural household in a village in the municipality of 965 

Conde, Brazil, in which the prevalence of helminth infections was 83.5% (Grant et al, 966 

2008) (picture taken in 2005).  967 

 968 

Figure 2. Typical urban underserved neighborhood of Salvador, Brazil, in which the 969 

prevalence of helminth infection among children was below 20% (Alcantara-Neves et 970 

al, 2011).  971 

 972 

Figure 3. Schematic representation summarizing the findings from epidemiological 973 

studies on the relationships between helminth parasites, atopy and asthma. 974 

 975 

Figure 4. Helminths suppress autoimmunity and allergy via type 2 or regulatory 976 

immune response. Immunomodulatory molecules (IMs) of parasites activate innate 977 

immune cells that promote either Th2 or Treg responses. IMs that induce TGFβ, IL10 978 

by dendritic cells (DCs) or macrophages (Mθ) prime IL10 or TGFβ-producing Treg 979 

cells suppress Th2 responses,Th1 or Th17 responses. A separate set of helminth-980 

derived IMs activate type 2 innate cells, including basophils, M2 macrophages, and 981 

type 2 innate lymphoid cells (ILC2) and induce innate IL-4 production, which drives 982 

differentiation of Th2 cells. Th2 cells and type 2 innate immune cells can suppress 983 

Th1 and Th17 responses (modified from Finlay et al, 201448). 984 

 985 

Figure 5. Pathway analysis using Panther 1187 version for the top SNPs associated 986 

in GWAS for asthma to date. 987 



Helminth infection Allergic-type reactions and syndromes 

Intestinal helminths 

Ascaris lumbricoides 

Trichiura trichiura 

Hookworm 

Strongyloides stercoralis 

Enterobius vermicularis 

 

‘Asthma-like’ syndrome 

Tropical dysentery syndrome 

Ground itch/allergic enteritis 

Larva currens/urticaria/’asthma-like’ syndrome 

Itchy anus 

Schistosomiasis 

S. mansoni 

S. haematobium 

S. japonicum 

 

Cercarial dermatitis/acute schistosomiasis/urticaria/ ‘asthma-

like’ syndrome 

 

Filariasis 

Wuchereria bancrofti 

Onchocerca volvulus 

Loa loa 

 

Tropical pulmonary eosinophilia/acute lymphangitis 

Sowda/acute popular onchodernatitis/punctate keratitis 

Calabar swellings 

Others 

Toxocara spp. 

Anisakis spp. 

Paragonimus spp. 

Trchinella spiralis 

Echinococcus granulosus 

Ancylostoma braziliense 

 

Visceral larva migrans/’asthma-like’ syndrome 

‘gastroallergic’/asthma-like syndrome/urticara/anaphylaxis 

Asthma-like syndrome 

Acute trichinosis 

Acute anaphylaxis associated with rupture of cyst 

Cutaneous larva migrans 

 

 

Table 1. Examples of helminth infections and the allergic-type inflammatory responses with which they are associated. 

Tables



Table 2. Helminth molecule candidates for the treatment of inflammatory diseases.  

 

Molecule Study phase Treatment Results References 

Excretory/secretory-62 animal models rheumatoid 
arthritis and 
systemic lupus 
erytematosus 

reduce disease severity 
and progression 

Rodgers at al, 
2015159 

Neutrophil inhibitory Factor 
(NiF) 

animal models and 
humans (Phase I/II) 

acute stroke, 
allergen induced 
lung 
inflammation and 
diabetic 
retinopathy 

no benefit in human stroke, 
favourable results in 
mouse models of lung 
inflammation and 
retinopathy 

Krams et al, 
2003;160 
Schnyder-
Candrian et al, 
2012;161 
Veenstra et al, 
2013162 

Migration inhibitory Factor 
(MiF) 

animal models colitis and 
allergic airway 
inflammation 

favorable Cho et all, 
2011;163 Park et 
al, 2009164 

Cystatins animal models colitis and 
allergic airway 
inflammation 

favorable Whelan et al, 
2014165 

Helminth defense 
molecules 

animal models LPS-induced 
inflammation 

favorable Alvarado et al, 
2017166 

Anti-inflammatory protein-2 
(AIP-2) 

animal models model of asthma favorable Navarro et al, 
2016167 

TGFB Pathway 
Manipulation 

studies in vitro molecular biology 
stage 

promising  Freitas et al, 
2009168 

Prostaglandin E2 (PGE2) studies in vitro molecular biology 
stage 

promising  Liu et al, 2013169 

ShkT domains   animal models and 
humans (Phase I and 
II) 

human psoriasis unknown results Beeton et al, 
2006170 and 
NCT02435342 

AcK1 and BmK1 studies in vitro immunology 
stage 

promising  Steinfelder et al, 
2016171 

 

Tables



Figure No. 1
Click here to download high resolution image

http://ees.elsevier.com/jaci/download.aspx?id=1305998&guid=81c075c6-484d-4d8c-ae83-415ff20225e6&scheme=1


Figure No. 2
Click here to download high resolution image

http://ees.elsevier.com/jaci/download.aspx?id=1305999&guid=fd74637c-86ad-42e4-819e-ccd37bd6af60&scheme=1


asthma 

sIgE 

SPT 

positive association 

sIgE – allergen IgE 

SPT – allergen skin prick test reactivity 

negative association, or inhibition 

A. lumbricoides 

A. lumbricoides 

T. trichiura 

A. lumbricoides 

T. trichiura 

Ancyostoma spp. 

Schistosoma spp. 

T. trichiura 

A. lumbricoides 

Ancyostoma spp. 

Schistosoma spp. 

interaction 

Figure No. 3
Click here to download Figure No.: Figure 3.pptx

http://ees.elsevier.com/jaci/download.aspx?id=1306000&guid=7d45465d-b249-4877-9cbb-e086941ccb64&scheme=1


Figure No. 4
Click here to download high resolution image

http://ees.elsevier.com/jaci/download.aspx?id=1306001&guid=690ebcf4-65c2-429f-b7ba-58daf5d8918e&scheme=1


 

 

 

0 1 2 3 4 5 6 7 8 

Interleukin signaling pathway (P00036) 

Gonadotropin-releasing hormone receptor … 

TGF-beta signaling pathway (P00052) 

Inflammation mediated by chemokine and … 

CCKR signaling map (P06959) 

Wnt signaling pathway (P00057) 

EGF receptor signaling pathway (P00018) 

Huntington disease (P00029) 

T cell activation (P00053) 

Metabotropic glutamate receptor group III … 

Ionotropic glutamate receptor pathway … 

Endothelin signaling pathway (P00019) 

Cadherin signaling pathway (P00012) 

Heterotrimeric G-protein signaling pathway-… 

FGF signaling pathway (P00021) 

Axon guidance mediated by netrin (P00009) 

ALP23B signaling pathway (P06209) 

Axon guidance mediated by Slit/Robo … 

JAK/STAT signaling pathway (P00038) 

Alzheimer disease-presenilin pathway … 

Integrin signalling pathway (P00034) 

p53 pathway feedback loops 2 (P04398) 

p53 pathway by glucose deprivation (P04397) 

Parkinson disease (P00049) 

PDGF signaling pathway (P00047) 

Cytoskeletal regulation by Rho GTPase … 

MYO signaling pathway (P06215) 

Blood coagulation (P00011) 

BMP/activin signaling pathway-drosophila … 

Metabotropic glutamate receptor group I … 

Activin beta signaling pathway (P06210) 

p53 pathway (P00059) 

Heterotrimeric G-protein signaling pathway-… 

GABA-B receptor II signaling (P05731) 

Plasminogen activating cascade (P00050) 

Figure No. 5
Click here to download Figure No.: Figure 5..docx

http://ees.elsevier.com/jaci/download.aspx?id=1306002&guid=d364f928-e116-48cc-8751-a46425be85e7&scheme=1

