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Abstract. A growing number of researchers in Cognitive Science advocate the
thesis that human cognitive capacities are constrained by computational tractabil-
ity. If right, this thesis also can be expected to have far-reaching consequences for
work in Artificial General Intelligence: Models and systems considered as basis
for the development of general cognitive architectures with human-like perfor-
mance would also have to comply with tractability constraints, making in-depth
complexity theoretic analysis a necessary and important part of the standard re-
search and development cycle already from a rather early stage. In this paper we
present an application case study for such an analysis based on results from a
parametrized complexity and approximation theoretic analysis of the Heuristic
Driven Theory Projection (HDTP) analogy-making framework.

Introduction: Cognition, Tractability and AGI

The declared goal of what is known as Artificial General Intelligence (AGI) is the
(re)creation of intelligence in an artificial system on a level at least comparable to hu-
mans. As detailed in [1], an AI research project, in order to qualify for being an AGI
project, amongst others has to “(...) be based on a theory about ‘intelligence’ as a whole
(which may encompass intelligence as displayed by the human brain/mind, or may
specifically refer to a class of non-human-like systems intended to display intelligence
with a generality of scope at least roughly equalling that of the human brain/mind)”.
Thus, even in the second case, humans and their performance and capabilities (although
not without any alternative) stay the main standard of comparison for the targeted type
of system — which in turn makes it seem highly likely that understanding and sub-
sequently modeling and implementing human-style cognitive capacities could play a
crucial role in achieving the goals of AGI.

A common way of proceeding in designing models and computational implemen-
tations of cognitive faculties is based on taking a computational-level theory of the
cognitive process (as, e.g., often directly originating from research in cognitive psy-
chology) and to construct an algorithmic-level implementation simulating the respec-
tive cognitive faculty. Different researchers over the last decades have proposed the use
of mathematical complexity theory, and namely the concept of NP-completeness, as
an assisting tool in specifying the necessary properties and limiting constraints rele-
vant when deciding for a particular computational-level theory of a cognitive faculty,
bringing forth the so called “P-Cognition thesis”: Human cognitive capacities are hy-
pothesized to be of the polynomial-time computable type. Following the recognition



that using polynomial-time computability as criterion might be overly restrictive, [2]
with the “FPT-Cognition thesis” recently introduced a relaxed version of the original
thesis, demanding for human cognitive capacities to be fixed-parameter tractable for one
or more input parameters that are small in practice (i.e., stating that the computational-
level theories have to be in FPT).3

Taking inspiration in the latter formulation of the idea that complexity considera-
tions can provide guidance in selecting suitable models and computational-level the-
ories of cognitive capacities, in [5] we for the first time presented a basic version of
a similar thesis suitable for the use in attempts to (re)create cognitive capacities in an
artificial system:

Tractable AGI thesis
Models of cognitive capacities in artificial intelligence and computational cognitive systems
have to be fixed-parameter tractable for one or more input parameters that are small in prac-
tice (i.e., have to be in FPT).

From a purely theoretical point of view, this requirement seems rather intuitive and
reasonable, though its practical use and implications might not be initially obvious. In
this paper we therefore want to have a closer look at a worked example, illustrating
the possible usefulness of the Tractable AGI thesis by providing an in-depth analysis
of the computational complexity of Heuristic-Driven Theory Projection (HDTP), an
established framework for computational analogy-making. The choice for using HDTP
in the analysis was not arbitrary: In our eyes the system suits the purpose as it addresses
a core cognitive capacity, its use of first-order logic as representation formalism makes
it sufficiently expressive as to be considered a general domain system, and the overall
approach and applied techniques reflect acknowledged standards in the field.

(In)Tractability and Heuristic-Driven Theory Projection

During the course of a day, we use different kinds of reasoning processes: We solve puz-
zles, play instruments, or discuss problems. Often we will find ourselves in situations in
which we apply our knowledge of a familiar situation to a structurally similar novel one.
Today it is undoubted that one of the basic elements of human cognition is the ability
to see two a priori distinct domains as similar based on their shared relational structure
(i.e., analogy-making). Key abilities within everyday life, such as communication, so-
cial interaction, tool use and the handling of previously unseen situations crucially rely
on the use of analogy-based strategies and procedures. Relational matching, one of the
key mechanisms underlying analogy-making, is also the basis of perception, language,
learning, memory and thinking, i.e., the constituent elements of most conceptions of
cognition [6] — some prominent cognitive scientists even consider analogy the core of
cognition itself [7].

Because of this crucial role of analogy in human cognition researchers in cog-
nitive science and artificial intelligence have been creating computational models of

3 A problem P is in FPT if P admits an O( f (κ)nc) algorithm, where n is the input size, κ is a
parameter of the input constrained to be “small”, c is an independent constant, and f is some
computable function. (For an introduction to parametrized complexity theory see, e.g., [3, 4].)



analogy-making since the advent of computer systems. This line of work has resulted
in several different frameworks for computational analogical reasoning, featuring sys-
tems as prominent as Hofstadter’s Copycat [8] or the famous Structure-Mapping En-
gine (SME) [9] and MAC/FAC [10]. Whilst the latter two systems implement a ver-
sion of Gentner’s Structure-Mapping Theory (SMT) [11], more recently a different,
generalization-based approach has been proposed: Heuristic-Driven Theory Projection
(HDTP) [12, 13].

In what follows, we want to give a detailed complexity analysis of the mechanisms
underlying the analogy process in HDTP as worked example for how the study of com-
plexity properties can provide important contributions to understanding and designing
an artificial cognitive system. For doing so, we will first introduce the theoretical ba-
sis of HDTP, before continuing with a presentation of results addressing parametrized
complexity and approximation theoretic properties of the model, and in conclusion dis-
cussing the obtained insights in the broader context of AGI and cognitive modeling.

Heuristic-Driven Theory Projection for Computational Analogy-Making

The Heuristic-Driven Theory Projection framework [12] has been conceived as a mathe-
matically sound framework for analogy-making. HDTP has been created for computing
analogical relations and inferences for domains which are given in form of a many-
sorted first-order logic representation [14]. Source and target of the analogy-making
process are defined in terms of axiomatisations, i.e., given by a finite set of formulae.
HDTP aligns pairs of formulae from the two domains by means of anti-unification:
Anti-unification tries to solve the problem of generalizing terms in a meaningful way,
yielding for each term an anti-instance, in which distinct subterms have been replaced
by variables (which in turn would allow for a retrieval of the original terms by a sub-
stitution of the variables by appropriate subterms).4 As of today, HDTP extends classi-
cal first-order anti-unification to a restricted form of higher-order anti-unification, as
mere first-order structures have shown to be too weak for the purpose of analogy-
making [13]: Just think of structural commonalities which are embedded in different
contexts, and therefore not accessible by first-order anti-unification only.

Restricted higher-order anti-unification as presently used in HDTP was introduced
in [16]. In order to restrain generalizations from becoming arbitrarily complex, a new
notion of substitution is introduced. Classical first-order terms are extended by the in-
troduction of variables which may take arguments (where classical first-order variables
correspond to variables with arity 0), making a term either a first-order or a higher-order
term. Then, anti-unification can be applied analogously to the original first-order case,
yielding a generalization subsuming the specific terms. As already indicated by the
naming, the class of substitutions which are applicable in HDTP is restricted to (com-
positions of) the following four cases: renamings, fixations, argument insertions, and
permutations (see Def. 3 below). In [16], it is shown that this new form of (higher-order)
substitution is a real extension of the first-order case, which has proven to be capable

4 In [15], Plotkin demonstrated that for a proper definition of generalization, for a given pair of
terms there always is a generalization, and that there is exactly one least general generalization
(up to renaming of variables).



of detecting structural commonalities not accessible to first-order anti-unification. On
the downside, in the higher-order case, the least general generalization loses its unique-
ness. Therefore, the current implementation of HDTP ranks generalizations according
to a complexity measure on generalizations (which in turn is based on a complexity
measure for substitutions), and finally chooses the least complex generalizations as pre-
ferred ones [17].

In order to anti-unify not only terms, but formulae, HDTP extends the notion of
generalization also to formulae by basically treating formulae in clause form and terms
alike (as positive literals are structurally equal to function expressions, and complex
clauses in normal form may be treated component wise). Furthermore, analogies do in
general not only rely on an isolated pair of formulae from source and target, but on two
sets of formulae. Here, heuristics are applied when iteratively selecting pairs of for-
mulae to be generalized: Coherent mappings outmatch incoherent ones, i.e., mappings
in which substitutions can be reused are preferred over isolated substitutions, as they
are assumed to be better suited to induce the analogical relation . Once obtained, the
generalized theory and the substitutions specify the analogical relation, and formulae
of the source for which no correspondence in the target domain can be found may be
transferred, constituting a process of analogical transfer between the domains.

The HDTP framework has successfully been tested in different application scenar-
ios, and its use in several others has been proposed and theoretically grounded. Amongst
others [18] shows a way how HDTP can be applied to model analogical reasoning in
mathematics by a case study on the inductive analogy-making process involved in es-
tablishing the fundamental concepts of arithmetic, [14] applies HDTP to conceptual
blending in the mathematics domain by providing an account of a process by which
different conceptualizations of number can be blended together to form new conceptu-
alizations via recognition of common features, and judicious combination of distinctive
ones. On the more theoretical side, [19] considers how the framework could fruitfully
be applied to modeling human decision-making and rational behaviour, [20] elaborates
on how to expand HDTP into a domain-independent framework for conceptual blend-
ing, and [21] provides considerations on the applicability of HDTP in computational
creativity.

The Complexity of HDTP: Results, Interpretation, and Implications

This section continues our work originally started in [5]. There, for the first time param-
etrized complexity results of HDTP had been presented. As basis for this analysis we
had used the observation that HDTP can naturally be split into two distinct mechanisms,
namely the analogical matching of input theories, and the re-representation of input
theories by deduction in First-Order Logic (FOL). Clearly, from a complexity point of
view, this type of re-representation is undecidable due to the undecidability of FOL.
Therefore the analysis focused on the analogical matching mechanism only.

In the following, after introducing some necessary terminology and concepts, we
provide a compact reproduction of the main results from [5] concerning the current ver-
sion and implementation of HDTP as described in [13] as basis for further discussion.
Then, we will add new approximation algorithmic theoretic considerations to the study
of HDTP before proceeding with a general discussion and more detailed interpretation



of the overall complexity theoretic insights (including both, results taken from [5] and
our newly added analysis) against the background of the Tractable AGI thesis.

Terms and substitutions in restricted higher-order anti-unifications

HDTP uses many-sorted term algebras to define the input conceptual domains.
Definition 1. Many-sorted signature
A many-sorted signature Σ = 〈Sort,Func〉 is a tuple containing a finite set Sort of sorts, and
a finite set Func of function symbols. An n-ary function symbol f ∈ Func is specified by
f : s1× s2× ·· ·× sn → s, where s,s1, . . . ,sn ∈ Sort. We will consider function symbols of
any non-negative arity, and we will use 0-ary function symbols to represent constants.

Definition 2. Terms in HDTP
Let Σ = 〈Sort,Func〉 be a many-sorted signature, and let V = {x1 : s1,x2 : s2, . . .} be an
infinite set of sorted variables, where the sorts are chosen from Sort. Associated with each
variable xi : si is an arity, analogous to the standard arity of function symbols. For any i≥ 0,
we let Vi be the variables of arity i.
The set Term(Σ,V ) and the function sort : Term(Σ,V )→ Sort are defined inductively as
follows:

1. If x : s ∈ V , then x ∈ Term(Σ,V ) and sort(x) = s.
2. If f : s1× s2×·· ·× sn→ s is a function symbol in Σ, and t1, . . . , tn ∈ Term(Σ,V ) with

sort(ti) = si for each i, then f (t1, . . . , tn) ∈ Term(Σ,V ) with sort( f (t1, . . . , tn)) = s.
We now fix one term algebra and introduce the term substitutions and generaliza-

tions allowed in restricted higher-order anti-unification [13].
Definition 3. Substitutions in restricted higher-order anti-unification

1. A renaming ρ(F,F ′) replaces a variable F ∈ Vn with another variable F ′ ∈ Vn:

F(t1, . . . , tn)
ρ(F,F ′)−−−−→ F ′(t1, . . . , tn).

2. A fixation φ(F, f ) replaces a variable F ∈ Vn with a function symbol f ∈ Cn:

F(t1, . . . , tn)
φ(F, f )−−−−→ f (t1, . . . , tn).

3. An argument insertion ι(F,F ′,V, i) is defined as follows, where F ∈ Vn,F ′ ∈
Vn−k+1,V ∈ Vk, i ∈ [n]:

F(t1, . . . , tn)
ι(F,F ′,V,i)−−−−−−→

F ′(t1, . . . , ti−1,V (ti, . . . , ti+k−1), ti+k, . . . , tn).
It “wraps” k of the subterms in a term using a k-ary variable, or can be used to insert a
0-ary variable.

4. A permutation π(F,τ) rearranges the arguments of a term, with F ∈ Vn, τ : [n]→ [n] a
bijection:

F(t1, . . . , tn)
π(F,τ)−−−→ F(tτ(1), . . . , tτ(n)).

A restricted substitution is a substitution which results from the composition of any sequence
of unit substitutions.

Previous results on the parametrized complexity of HDTP

In [5], we defined three (increasingly complex and expressive) versions of higher-order
anti-unification by successively admitting additional types of unit substitutions to be



included in the anti-unification process, and subsequently analyzed the computational
complexity of the resulting notions.

Problem 1. F Anti-Unification
Input: Two terms f ,g, and a natural k ∈ N
Problem: Is there an anti-unifier h, containing at least k variables, using only renamings and
fixations?

Problem 2. FP Anti-Unification
Input: Two terms f ,g, and naturals l,m, p ∈ N.
Problem: Is there an anti-unifier h, containing at least l 0-ary variables and at least m higher
arity variables, and two substitutions σ,τ using only renamings, fixations, and at most p
permutations such that h σ−→ f and h τ−→ g?

Problem 3. FPA Anti-Unification
Input: Two terms f ,g and naturals l,m, p,a ∈ N.
Problem: Is there an anti-unifier h, containing at least l 0-ary variables, at least m higher arity
variables, and two substitutions σ,τ using renamings, fixations, at most p permutations, and
at most a argument insertions such that h σ−→ f and h τ−→ g?

Theorem 1. Complexity of HDTP Analogy-Making I
1.) F Anti-Unification is solvable in polynomial time.
2.) FP Anti-Unification is NP-complete and W[1]-hard w.r.t. parameter set {m, p}.
3.) Let r be the maximum arity and s be the maximum number of subterms of the input
terms. Then FP Anti-Unification is in FPT w.r.t. parameter set {s,r, p}.
4.) FPA Anti-Unification is NP-complete and W[1]-hard w.r.t. parameter set {m, p,a}.

With respect to the original version of HDTP, [5] also offers some insight. As de-
tailed in [12], instead of using restricted higher-order anti-unifications, HDTP initially
was based on a mechanism reducing higher-order to first-order anti-unifications by in-
troducing subterms built from what was called “admissible sequences”:

Definition 4. Admissible Sequence
Let Term(Σ,V ) be a term algebra. Given a term t denote the set of all subterms of t as st(t)
and the set of variables in t as var(t).
Let X be a set of terms. A set {t1, . . . , tn} ⊆ X is called admissible relative to X if⋃n

i=1 var(ti) =
⋃

t∈X var(t).

Problem 4. Function Admissible-Sequence
Input: A term f (t1, t2, . . . , tn) ∈ Term(Σ,V ), a natural k < |st( f (t1, t2, . . . , tn))|
Problem: Is there a set X ⊆ st( f (t1, t2, . . . , tn)) such that |X | ≤ k and X is admissible relative
to st( f (t1, t2, . . . , tn))?

Unfortunately, also this version of analogy-making in HDTP turns out to be in-
tractable.

Theorem 2. Complexity of HDTP Analogy-Making II
Function Admissible-Sequence is W[2]-Hard (and NP-Complete) w.r.t. parameter k.

Approximation theoretic complexity of HDTP

Before presenting our approximation theoretic results, we have to introduce some tech-
nical machinery. For doing so, we presuppose basic knowledge of and familiarity with
fundamental concepts from approximation theory as can, e.g., be obtained from the
introduction given in [22].



In the following, let PTAS denote the class of all NP optimization problems that ad-
mit a polynomial-time approximation scheme, let APX be the class of NP optimization
problems allowing for constant-factor approximation algorithms, and let APX-poly be
the class of NP-optimization problems allowing for polynomial-factor approximation
algorithms. We also have that PTAS ⊆ APX ⊆ APX-poly (with each inclusion being
proper in case P 6= NP).

Problem 5. MAXCLIQUE
Input: An n vertex, m-edge graph G
Problem: Compute and return the maximal clique in G.

Theorem 3. Approximation of MAXCLIQUE [23]
MAXCLIQUE is NP-hard to approximate to below O(n1−ε) for any ε > 0.

This theorem, combined with the NP-hardness of CLIQUE, implies that MAXCLIQUE
is not in APX-poly.

From Theorem 1 we know that FP Anti-Unification is W[1]-hard to compute for a
parameter set m, p, where m is the number of higher-arity variables and p is the num-
ber of permutations used. From the point of view of complexity theory, this shuts the
door on any polynomial-time algorithm to compute generalizations which are “suffi-
ciently complex” (i.e., with a lower bound on the number of higher-arity variables)
while, simultaneously, upper bounding the number of permutations (according to [5]
W[1]-hardness already is given for a single permutation). Although this is a strong neg-
ative result, it begs the following question: What if one considers generalizations which
merely approximate the “optimal” generalization in some sense – and what is the right
way to measure the quality of generalizations in the first place?

In [16], a measure of complexity for any composition of the substitutions allowed
in the context of restricted higher-order anti-unification was introduced.

Definition 5. Complexity of a substitution
The complexity of a basic substitution σ is defined as C(s) =

0, if σ is a renaming.
1, if σ is a fixation or permutation.
k+1, if σ is a k-ary argument insertion.

The complexity of a restricted substitution σ = σ1 ◦ · · · ◦σn (i.e., the composition of any
sequence of unit substitutions) is the sum of the composed substitutions: C(σ) = ∑

n
i=1 C(σi).

Consider the problem of finding a generalization which maximizes the complexity
over all generalizations. First it should be noted that this may not be without merit: In-
tuitively, a complex generalization would contain the “most information” present over
all of the generalizations chosen (i.e., one may think of this as the generalization maxi-
mizing the “information load”, which is another idea put forward in [16]).

But now, taking the proof of the W [1]-hardness of FP anti-unification which made
use of the maximum clique problem (MAXCLIQUE), we also can obtain an inapprox-
imability result: It is known that MAXCLIQUE is NP-hard to approximate under a mul-
tiplicative factor of O(n1−ε) for any ε > 0 [23]. This implies that MAXCLIQUE /∈ APX
if P 6= NP, and especially that it is hard for the class APX-poly. Finally, taking into
account that the reduction given in [5] is actually approximation preserving, we may
state that:



Theorem 4. Complexity of HDTP Analogy-Making III
FP anti-unification is not in APX.

Concerning an interpretation of the results presented in the last section and this one,
especially when also having the Tractable AGI thesis in mind, several points should
be emphasized. First, note that the W[2]-hardness of the function admissible-sequence
problem clearly shows that problems can already arise when only treating with reduc-
tions from higher-order to first-order anti-unification. And also the result showing that
FP higher-order anti-unification is W[1]-hard gives a hint at the difficulty introduced by
the operations admissible within the restricted higher-order anti-unification on the com-
plexity of the analogy-making process. Indeed, the only way that FP anti-unification can
restructure the order of the terms is by argument permutations, and the results show that
even allowing as few as one single permutation is enough to imply computational hard-
ness. Unfortunately, the situation does not improve when not only considering precise
solutions to the problem, but also taking into account approximation techniques: As
we just showed FP anti-unification stays computationally hard in that it does not allow
for a polynomial-time approximation algorithm with approximation ratio bounded by a
constant factor.

But we explicitly want to point out that this — although being a rather strong state-
ment — should not be considered an exclusively negative result: The given parametrized
complexity results specifically point out that there is a complexity “dichotomy”, and
that giving an efficient algorithm requires at least the restriction to a permutationless
input (as permutation operations have been identified as sources of intractability by the
analysis). On the positive side, Theorem 1, no. 1, shows that in the (restricted) case
of F Anti-Unification there is a tractable algorithm, and by the Tractable AGI thesis it
suggests that we cannot do much better using this model of analogy, thus also providing
positive guidance for the development of a tractable model.

Moreover, the found restrictions and limitations also allow for a connection to re-
sults from experimental studies on human analogy-making. In [24], it is reported that
anxiety and time pressure made participants of an analogical-reasoning experiment
switch from a preference for complex relational mappings to simple attribute-based
mappings, i.e., an impairment on available working memory (as known consequence
of anxiety) and computation time caused a change from a complexity-wise more de-
manding strategy using complex relational structures to a simple single-attribute-based
procedure. The computation of analogies between highly relational domains makes the
use of permutations almost unavoidable, whereas exclusively attribute-based analogical
mappings are more likely to be computable without requiring a re-ordering of the argu-
ment structure of functions — thus making the experimentally documented switch from
the more complex relational to the simpler surface-based form of analogy-making seem
quite natural and expectable in case of strongly restricted computational resources.

Regardless, the obtained complexity results cast a shadow over the ambitions of us-
ing HDTP as basis for the development of a general computational theory of creativity
and a uniform, integrated framework of creativity as, e.g., hinted at in [21]: Scalability
to problem domains other than small and rather strongly restricted example scenarios
is at the best doubtful (even when “only” considering approximate solutions to the re-
spective problems), and any deeper rooted form of cognitive adequacy (if this shall
be considered as one of the models goals) seems implausible. Of course this does not



mean that Heuristic-Driven Theory Projection as an approach to modeling and formal-
izing high-level cognitive capacities entirely has to be abandoned, but only qualifies
the naive approach to creating a general cognitive system based on HDTP as almost
certainly unfeasible. Provided that future research searches for and investigates pos-
sibilities of mitigating the computational intractability of the approach (for instance
by redefining restricted higher-order anti-unification and the complexity of substitu-
tions in a fitting manner, or by changing the underlying representation formalism into
a computationally less demanding form), the limitations and barriers introduced by the
previously given complexity theoretic results might be suspended or avoided.

Future Work & Conclusion

Concerning the introduction of the Tractable AGI thesis into cognitive systems research
and artificial intelligence, this paper merely can be seen as a very first step, leaving am-
ple space for further work: The presented thesis has to be further specified, its implica-
tions and ramifications have to be identified and discussed, and more than anything else
its merit and applicability have to be further demonstrated and supported by additional
examples and theoretical underpinnings. With respect to our working example HDTP
and its analysis in complexity theoretic terms, the approximation theoretic parts of the
analysis could be complemented and completed by further investigations starting out
from a structural approximation perspective [25]. Here, the basic idea is shifting inter-
est from solutions that approximate the optimal solution according to some objective
function towards solutions which best “structurally” approximate the optimal solution
(the term “structurally” needs to be defined on a problem-by-problem basis).

Concludingly, we again want to express our firm belief that methods originally taken
from complexity theory can be fruitfully applied to models and theories in artificial in-
telligence and cognitive systems research, allowing on the one hand for in-depth anal-
ysis of particular systems and theories, and on the other hand for the formulation and
evaluation of general guiding principles.
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Mathematical reasoning with higher-order anti-unifcation. In: Proc. of the 32st Annual Con-
ference of the Cognitive Science Society. (2010) 1992–1997

19. Besold, T.R., Gust, H., Krumnack, U., Abdel-Fattah, A., Schmidt, M., Kühnberger, K.U.: An
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