

City, University of London Institutional Repository

Citation: Gajrani, J., Tripathi, M., Laxmi, V., Gaur, M. S., Conti, M. & Rajarajan, M. (2017).
sPECTRA: a Precise framEwork for analyzing CrypTographic vulneRabilities in Android
apps. 2017 14th IEEE Annual Consumer Communications & Networking Conference
(CCNC), pp. 854-860. doi: 10.1109/CCNC.2017.7983245

This is the accepted version of the paper.

This version of the publication may differ from the final published
version.

Permanent repository link: http://openaccess.city.ac.uk/18627/

Link to published version: http://dx.doi.org/10.1109/CCNC.2017.7983245

Copyright and reuse: City Research Online aims to make research
outputs of City, University of London available to a wider audience.
Copyright and Moral Rights remain with the author(s) and/or copyright
holders. URLs from City Research Online may be freely distributed and
linked to.

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

City Research Online

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by City Research Online

https://core.ac.uk/display/141438871?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

sPECTRA: a Precise framEwork for analyzing
CrypTographic vulneRabilities in Android apps

Jyoti Gajrani∗, Meenakshi Tripathi∗, Vijay Laxmi∗, M.S. Gaur∗, Mauro Conti†, Muttukrishnan Rajarajan‡
∗MNIT, Jaipur, INDIA, {2014rcp9542,mtripathi.cse,vlaxmi,gaurms}@mnit.ac.in

†University of Padua, Italy, conti@math.unipd.it
‡City University London, R.Muttukrishnan@city.ac.uk

Abstract—The majority of Android applications (apps) deals
with user’s personal data. Users trust these apps and allow them
to access all sensitive data. Cryptography, when employed in
an appropriate way, can be used to prevent misuse of data.
Unfortunately, cryptographic libraries also include vulnerable
cryptographic services. Since Android app developers may not
be cryptographic experts, this makes apps become the target of
various attacks due to cryptographic vulnerabilities.

In this work, we present sPECTRA: an automated framework
for analyzing wide range of cryptographic vulnerabilities in
Android apps at large scale. sPECTRA is more precise and
accurate in comparison to state-of-the-art approaches as it
reduces both false negatives and false positives. The inclusion
of Intelligent UI exploration during dynamic analysis makes
sPECTRA deployable to analyze apps at large scale. Moreover,
sPECTRA works on apk files without the need of any source
code.

We evaluate sPECTRA on 7,000 apps collected from 7 most
popular Android app stores. Results indicate that 90% of apps
are exploitable because of cryptographic vulnerabilities. We made
sPECTRA available as an open source1.

Index Terms—cryptographic, APIs, vulnerabilities, Android,
attacks.

I. INTRODUCTION

With the rapid growth of smartphone technology, our daily
life is becoming more dependent on smartphones. Among var-
ious smartphone technologies, Android share is worth 84.1%
by Q1 2016 [1]. Users trust mobile apps and grant them access
to their personal information. Therefore, all the private data
that is taken by these apps either for storage on the device or
for transmission out of the device must be secured with strong
cryptographic services.

Cryptographic providers like Java Cryptographic Architec-
ture (JCA) [7], BouncyCastle [14] and SpongyCastle [12]
provide a set of cryptographic APIs (Application Program
Interface) for developers. These cryptographic APIs and as-
sociated parameters must be used in the correct way to
provide strong security guarantees otherwise the incorrect
way may lead to attacks such as Man-in-the-mobile (MitMo)
attacks, Brute-force attacks, and Dictionary attacks. In [19],
researchers shown the first key recovery attack on full AES-
128 with computational complexity 2126.1.

Android has become the preferred target for financial mal-
ware due to large market coverage and plenty of reported

1URL: https://bitbucket.org/spectra2016/sourcecode/src/32021e83cec2

attacks. Cryptographers know what are the most secure pa-
rameters to be used with these APIs in the way to ensure
strong security guarantee however, may not be the same for
software developers. Developers may invoke a wrong API
function, set incorrect parameters, and check the return values
improperly and so on. Therefore, not only the developers but
app distributors must check for vulnerabilities in apps before
publishing them to markets to prevent any loss of end-user.
Correct usage of cryptographic primitives (low-level crypto-
graphic algorithms) such as strong encryption algorithms, ran-
dom keys, key-length, padding with block ciphers, validation
of SSL/TLS certificates, digital signature algorithms, salts,
and iteration count ensures resilience against cryptographic
exploits.

In this paper, we propose sPECTRA, an automated frame-
work using hybrid analysis for detection of such vulnerabilities
in Android apps to provide high-security guarantees to app
users. The main contributions of sPECTRA are summarized
as follows:

• sPECTRA analyzes a wide range of cryptographic vul-
nerabilities in comparison to state-of-the-art approaches.

• sPECTRA includes intelligent techniques to enable auto-
mated vulnerability analysis at large scale. We show the
efficacy of sPECTRA by analyzing of 7000 Android apps
collected from 7 different app repositories. The results
show that almost 90% of the apps using cryptographic
features are vulnerable.

• sPECTRA includes lightweight approaches to speedup
the analysis.

We release sPECTRA as open source1 to drive research in
this direction. sPECTRA will be made available as web-based
analysis service to benefit developers and app stores.

II. CRYPTOGRAPHIC PRIMITIVES AND ASSOCIATED
VULNERABILITIES

This section briefly covers cryptographic primitives and the
inappropriate usage of these primitives which makes the apps
vulnerable to various cryptographic attacks.
A. Cryptographic APIs

Listing 1 shows the code that implements encryption of
IMEI number using Password-Based Encryption (PBE).
This code contains a set of cryptographic vulnerabilities.

TABLE I: Cryptographic Primitives and Associated Vulnerabilities
Primitive Use/Focus Vulnerabilities Implemented Attacks Few Relevant APIs Examples

DES Algo (key 56 bits) [5]
Symmetric Securely storing data/keys. AES in ECB Mode Chosen-plaintext attacks. IvParameterSpec.init()
Encryption Secure transmission of AES key size <=128 bit [18] Brute-force attacks KeyGenerator.init()

sensitive data. AES CBC/CTR Mode with Static IV [21] Cipher.getInstance()
Digital Signature Digitally Signing certificates Signing Algorithm SHA1withRSA [13] Hash Collision Signature.getInstance()
Padding Randomizing the ciphers NoPadding [21] Padding oracle attack Cipher.getInstance()

Message Digest Hashes of user credentials. Algorithms - MD4, MD5,SHA-1 [15] Length Extension attacks. MessageDigest.getInstance()
Data Integrity Brute-force attacks

Password-Based Iteration Count <1000 [11] Dictionary-based attacks. PBEKeySpec.init()
Encryption Encyption based on password. Salt - Static Collision-based attacks SecretKeyFactory.getInstance()

Key Derivation Random Key generation Static key Material Brute-force attacks. SecretKeySpec.init()
using secure PRNG SecretKeyFactory.generateSecret()

Pseduo-Random Random Salt Chosen-plaintext attacks.
Number Generation Initialization Vector(IV) Constant Seed Collision-based attacks. SecureRandom.setSeed()
(PRNG) Nonces, OTPs Replay attacks.
SSL/TLS protocol Communication Security HostnameVerifier, TrustManager MitMo attacks. -
On-Device Storage Storing data in shared storage writing to “/sdcard/*” Covert/Overt channel attacks File.init()

SecureRandom class provides a cryptographically strong
pseudo-random number generator unfortunately, this is seeded
with constant Seed (Line 4). Use of static value for seeding
may completely replace the cryptographically strong default
seed causing it to generate an anticipated sequence of salts
(Line 7) which are unfit for secure use. Random salt restricts
the attackers from pre-computing a dictionary of derived keys.
1 //Random-Number Generation
2 SecureRandom random=new SecureRandom();
3 byte[] seed = password.getBytes("UTF-8");
4 random.setSeed(seed);
5 //Salt Generation
6 byte[] salt=new byte[8];
7 random.nextBytes(salt);
8 //Key Generation
9 KeySpec ks = new PBEKeySpec(password, salt, 256, 128);

10 SecretKeyFactory f = SecretKeyFactory.getInstance("
PBKDF2WithHmacSHA1");

11 SecretKey t = f.generateSecret(ks);
12 SecretKey sec = new SecretKeySpec(t.getEncoded(), "AES");
13 //Encrypt the message
14 Cipher c = Cipher.getInstance("AES/ECB/NoPadding");
15 c.init(Cipher.ENCRYPT_MODE, sec);
16 byte[] encrypted = c.doFinal((imei).getBytes());

Listing 1: Vulnerable use of cryptographic Primitives

PBEKeySpec (Line 9) used for generating KeySpec is
vulnerable due to use of static salt (second parameter of
PBEKeySpec API) and iteration count (IC) (third parameter
of PBEKeySpec API) with value 256 (must be minimum
1000 [11]). Larger IC complicate the key derivation function
and increases the difficulty of brute force attack. Further, it
performs encryption using AES algorithm in ECB mode (Line
14) which has proven vulnerable. This is because this mode
will generate the same cipher-text if the same plain-text is
encrypted with the same key. The code specifies NoPadding
as Padding Scheme (Line 14). However, Padding must be
present with ciphers to prevent the cryptanalyst in predicting
plain-text message length.

Table I summarizes various cryptographic primitives used
by Android apps, associated vulnerabilities based on National
Institute of Standards and Technology (NIST) and Federal
Office for Information Security (BSI) recommendations, and
the attacks that can exploit these vulnerabilities. To prevent
Android apps from these attacks, all the cryptographic APIs
must be critically analyzed. For each primitive mentioned
in Table I, column 1, we exhaustively identified all APIs
provided by all three libraries SunJCE, BouncyCastle and

SpoungyCastle. Further, we analyzed all vulnerable values for
each of these APIs and prepared vulnerability database. Table
I, last column include some of the these APIs from SunJCE.

B. SSL/TLS Connection Validation
Apps use SSL/TLS protocols with the goal to securely transmit
sensitive data to the server. During SSL connection establish-
ment, two conditions are validated:
• Hostname of the server must match CommonName men-

tioned in certificate presented by server.
• There must exist trust chain between the certificate pre-

sented by the server and the root CA certificates pre-
installed on mobile.
Two JCA classes HostnameVerifier and

X509TrustManager are used to validate above conditions
respectively but vulnerability in custom implementation of
validation methods may lead to MitMo attacks. Listings
2-3 shows code snippet with HostnameVerifier
vulnerability. HostnameVerifier’s verify() method
always returns true as shown in Listing 2 (Line 3) which
means even if Hostname does not match CommonName, it
returns true. This makes the code vulnerable. In Listing 3,
SSLSocketFactory create SSL socket but it allows all
hostnames (Line 2) through setHostnameVerifier API.
1 HostnameVerifier allHostValid = new HostnameVerifier(){
2 public boolean verify(String hname, SSLSession s){
3 return true; }};
4 URL url = new URL("https://www.server.com/");
5 HttpsURLConnection con = (HttpsURLConnection)url.

openConnection();
6 con.setDefaultHostnameVerifier(allHostValid);}

Listing 2: Vulnerable HostnameVerifier

1 SSLSocketFactory s=new AndroidSSLSocketFactory(Keystore);
2 s.setHostnameVerifier(SSLSocketFactory.

ALLOW_ALL_HOSTNAME_VERIFIER);

Listing 3: Vulnerable HostnameVerifier

Listing 4 shows code snippet with TrustManager vul-
nerability. Here, SSLSocketFactory accept all certifi-
cates irrespective of its signer as shown by blank overridden
checkServerTrusted() method without any exception.
1 private static SSLSocketFactory vs() {
2 SSLContext c = SSLContext.getInstance("TLS");

3 TrustManager tm = new X509TrustManager() {
4 @Override
5 public void checkServerTrusted(X509Certificate[] chain,

String authType) {} };
6 c.init(null, new TrustManager[] { tm }, null);
7 return c.getSocketFactory();}

Listing 4: Vulnerable TrustManager

C. Vulnerable On-device Storage
External storage is shared in Android and must not be used
for storing any private data of an app. Even encrypted storage
is also vulnerable through covert and overt channels.

III. METHODOLOGY AND DESIGN

Figure 1 shows overall work-flow of framework. sPECTRA
is designed to work in two phases. Phase 1 prepares the
set of all cryptographic APIs used by app. The app using
cryptographic primitives is potentially sensitive app. Sec-
tion III.1 covers the detail of this phase. Phase 2 performs
precise vulnerability analysis of only sensitive apps. This
phase comprises four major functions: SSL/TLS Vulnerability
Identification, App Hooking and Repackaging, Intelligent UI
Exploration and Log Parsing. Section III.2 covers the details
of Phase 2.

Class, Method,

 Descriptor

Non-Sensitive

App

Empty

Non-Risky App

Analyze apk

using

AndroGuard

Method filtering

using

descriptor

Non-Empty

App execution

in sandbox

with intelligent

UI exploration

 Java parser to

analyze run

time logs

APK repackaing

to add sensitive API

monitoring

(Smali Hooking)

Risky App

Vulnerability

Report

SSL/TLS Vulnerability AnalysisVulnerability Report

Prepare set

(1) (2)

(3)

(4.a)

(4.b)(5)(6)

Fig. 1: sPECTRA WorkFlow

1. Phase 1

Implementation of this phase is done using Androguard
framework [2]. A method descriptor represents the type
of parameters that the method takes and the value that it
returns. Method descriptors extracted from app using An-
droguard (get_descriptors() utility), are used to fil-
ter sensitive apps. The four primary packages, relevant to
crypto APIs are javax.crypto, javax.crypto.spec,
java.security and javax.net.ssl. Therefore, all
methods that make use of cryptographic APIs have patterns
“crypto”, “security” or “ssl”, in their descriptors. All methods
having any of above descriptor pattern are filtered in Step
2, Figure 1 (using get_methods() utility). Next step con-
structs the set ξA (the set of all cryptographic sensitive APIs
used by the app A) using filtered methods (Step 3, Figure 1).
It is done by finding actual APIs used in source code, with
the help of get_source() method of Androguard.

As shown in Equation 1, empty set ξA indicates that the app
is Non-Sensitive app. App with Non-Empty set ξA is marked
as a potentially sensitive app.

App =

{
Non− Sensitive, if ξA = ∅
Sensitive, otherwise (1)

Listing 5 shows the result of Phase 1 analysis for Mobikwik
app2. As shown in result, few of the arguments can be
checked for vulnerability directly but for others, vulnerability
identification require actual run-time values. Moreover, it is
observed that for obfuscated apps, the vulnerable arguments
can not be inferred from phase 1. The parameter declara-
tion, definition and API using it may all be distributed over
different components. The asynchronous nature and presence
of multiple components in Android makes static backward
slicing imprecise to find arguments. Therefore, to obtain
vulnerabilities precisely, sensitive app is further analyzed by
Phase 2. The set ξA is input for next phase.
1 //VULNERABLE !! -> ITERATION COUNT 4
2 new javax.crypto.spec.PBEKeySpec(new StringBuilder().

append(p7).append(p8).toString().toCharArray(), com.
mobikwik_new.helper.ab.b, 4, 128);

3 //VULNERABLE !! -> SIGNING ALGORITHM SHA1withRSA
4 java.security.Signature.getInstance("SHA1withRSA");
5 //VULNERABLE !! -> AES in ECB mode
6 javax.crypto.Cipher.getInstance("AES/ECB/PKCS7Padding");
7 //MAY BE VULNERABLE !! -> CHECK KEY MUST NOT BE STATIC
8 javax.crypto.spec.SecretKeySpec(v0.getBytes(), "AES");
9 //MAY BE VULNERABLE !! -> CHECK PARAMETER

10 javax.crypto.spec.IvParameterSpec(com.mobikwik.helper.ab.
a);

Listing 5: Phase 1 result for Mobikwik app

2. Phase 2

The details of four major modules of this phase are as
follows:
A. SSL/TLS Certificate Validation
The module identifies vulnerable implementations of SSL/TLS
certificate validation using static analysis. The analysis is
implemented on top of Soot library [23]. Soot’s tagging
feature is employed to tag apps as “Vulnerable” or “Non-
Vulnerable”. Initially, tags are set to “Non-Vulnerable”. The
analysis utilizes Soot’s Points-To analysis, Control Flow Graph
(CFG) and Data-Flow analysis features. Point-To analysis is
a static analysis techniques that aims to find objects, a point-
er/reference may point during execution of program. For e.g. if
p=&x; p=&y; then p may points to x or y during execution.
Therefore Points-To analysis of p, gives set Points-To(p)
= {x,y}. sPECTRA first generate intermediate representations
(IRs) in form of CFG, Points-To set and then apply following
checks on IRs:

a) The module analyze exit nodes in CFG of class con-
taining HostnameVerifier interface for return value.
Vulnerability is reported if it always returns a true value.
Listing 6 shows the source code snippet. Whenever verify
method of HostnameVerifier class is called (Line 4),
UnitGraph is constructed for the class (Line 5). The state

2https://play.google.com/store/apps/details?id=com.mobikwik new&hl=en

is marked as VULNERABLE if all the tails (Line 6) of
graph return value of 1 (True) (Line 12).

b) For listing 3, to find whether HostnameVerifier
is vulnerable or not, Points-To set of
SSLSocketFactory is calculated. If the set contains
AllowAllHostnameVerifier then it is marked as
vulnerable.

c) sPECTRA mark the absence of an exception in custom
implementations of X509TrustManager as vulnerable.
The absence of exception means not generating alerts in
the case of non-validation of signing authority.
In all above cases, before reporting vulnerability,

sPECTRA confirms that vulnerable instantiations of
HostnameVerifier and TrustManager are used
in any SSL connection using Data-Flow analysis. For e.g.
vulnerabilities are reported for Listing 2 and 4 because
vulnerable instantiation of HostnameVerifier in Listing
2-Line 1 is used at Line 6 and vulnerable TrustManager
in Listing 4-Line 3 is used at Line 6. The Data-Flow analysis
approach helps sPECTRA in addressing false positives.

1 finalstate = "Non-VULNERABLE"; allstatestrue=1;
2 InvokeExpr exprm = stmt.getInvokeExpr();
3 SootMethod m = exprm.getMethod();
4 if(m.toString().contains("verify")){
5 UnitGraph graph = new BriefUnitGraph(b);
6 for (Unit u : graph.getTails()) {
7 if (u instanceof ReturnStmt) {
8 ReturnStmt rs = (ReturnStmt) u;
9 if (rs.getOp().equals(IntConstant.v(0))) {

10 allstatestrue = 0;
11 break;}}}
12 if (allstatestrue == 1)
13 finalstate = "VULNERABLE";

Listing 6: Code to Check HostnameVerifier Vulnerability

B. App Hooking and Repackaging
The sensitive app is repackaged to add monitoring code for
the API set ξA with the help of APIMonitor [4] (Step 4(b),
Figure 1). APIMonitor provides the feature of configuring
APIs, those need monitoring at run time. The monitoring
code logs the run-time parameters and returned values on
the invocation of APIs from set ξA during execution. The
repackaged app is then installed and executed in an fresh
emulator.

C. Intelligent UI Exploration
In dynamic analysis based system, a critical step in detecting
a vulnerability is to generate the vulnerable behavior by
simulating the user interaction expected by the app. Android’s
provides Monkey tool [8] and MonkeyRunner [9] as default
exploration tools. However, experiments show their unsuitabil-
ity for large-scale analysis. A large number of crashes are
reported for MonkeyRunner in literature [28]. Also, at the
crash, it does not generate any error trace. MonkeyRunner
testing needs the object’s coordinates to perform the touch
and drag actions. Hence, a minor change in location of view
will require the test cases to be re-written. It requires the
position of view to be known in advance which restrain to
use it as generic exploration system. However, sPECTRA is a
generalized system which does not depend on object’s position

on screen. Invalid inputs by Monkey for text based UI elements
lead to crash or stop the application.

To address the issues, we propose and develop a more
complete and systematic UI Exploration approach. The im-
plementation uses APIs from Robotium framework [3] which
provides APIs for writing user interface tests for Android
applications. Exploration starts with launcher activity. All
views (view is an object that draws something on the screen
for user interaction) are divided in four major categories: Input
views, Click views, Scrollable views, and Zoom views. Views
of current activity are retrieved and maintained in arraylist
when the activity is loaded first time. For an already traversed
activity, actions (click, zoom, scroll etc.) will be performed on
unexplored views in depth-first order. The method continues
till all activities/views are covered at least once. Flags are
maintained for explored activities/views.

Algorithm 1 covers the approach in more detail. UI
Exploration begins by first finding all activities in the app A
(app to test) and setting the corresponding flag as unexplored
(Line 1). Exploration starts with Launcher Activity (Line 2).
It finds all type of views in current activity if this activity is
being loaded the first time and set the respective flags as false
initially (Lines 7-11). Next, it performs zoom, scroll and click
events on respective views in Depth-First order with all input
type of views intelligently filled. An input value is provided
based on the nearest placeholder of view. E.g., a placeholder
with values “Number”, “Contact Number”, “Mobile”, “cell”,
is given a valid mobile number as input. After performing
event on any view, the flag associated with that view is set.
A delay is added to load the activity fully (Lines 13-23), and
the process is repeated with loaded activity. Once all views
of activity are explored, the activity’s explored flag is set
(Lines 25-26) and ensured that this activity is not considered
again (Line 6). App Exploration continues in this case by
loading previous activity. It ensures that previous activity is
not loaded if the current activity is Launcher Activity (Lines
25-31).

D. Log Parsing
The module exhaustively finds the vulnerabilities from the
logs collected during app execution in the emulator. The logs
collection is made using logcat utility of adb in parallel
of UI Exploration by running both in separate subprocesses.
sPECTRA maintains a database of cryptographic APIs along
with vulnerable arguments and return values of all APIs of
3 crypto libraries. After the app exploration finishes, Parser
module intelligently processes the collected logs. The module
identifies vulnerabilities by testing each argument and the
return value of the API against the database. If the app uses
primitives like salt, key-material then the app exploration
and log collection modules are executed second time. From
processing both the logs it is ensured that multiple runs of
app use the different values.

IV. EVALUATION

sPECTRA’s evaluation is done on three fronts:

Input : App A
Output: UI Exploration of App A

1 Set explored activity(i)=false for all activities i in A;
2 Set Launcher Activity as CurrentActivity;
3 function Explore()
4 If explored activity(i) is true for all activities i in A
5 Stop App Exploration;
6 i = Get CurrentActivity with explored activity(i)==false;
7 if i is loaded first time then
8 I(i)=List of all InputType Views in current Activity;
9 C(i)=List of all click, scroll, zoom views in current

Activity;
10 clicked view(j)=false for all views j in C(i);
11 end
12 allviews explored(i)=true;
13 for j in all views in C(i) where do
14 if clicked view(j)==false then
15 Provide intelligent user-input to views I(i);
16 Set clicked view(j) = true;
17 allviews explored(i)=false;
18 Perform a click on view j ;
19 if launched activity <> currentactivity then
20 wait to load Activity;
21 Explore();
22 end
23 end
24 end
25 if allviews explored(i)==true then
26 set explored activity(i)=true;
27 if i <> launcher activity then
28 Load previous activity using GoBack() utility;
29 end
30 Explore();
31 end
32 end function
Algorithm 1: sPECTRA approach for UI Exploration

Vulnerability Coverage sPECTRA covers wide range of
vulnerabilities compared to earlier work as shown in Table II.

TABLE II: Comparison with Cryptographic Analysis
Frameworks - Covered(3), Uncovered(7)

Vulnerability Framework

⇓ sPECTRA CryptoLint [22] SMV-HUNTER [24] CMA [27]
Symmetric Encryption
(Algo and Mode) 3 3 7 3
Digital Signature 3 7 7 7
Padding 3 7 7 3
Message Digest 3 7 7 3
Salt 3 3 7 7
Key-material 3 3 7 7
Initialization Vector 3 3 7 3
Seed 3 3 7 7
Key-Size 3 7 7 3
Iteration Count 3 3 7 7
SSL/TLS 3 7 3 7
On-Device Storage 3 7 7 7

Features
⇓

Scalability 3 3 3 7
Open-Source 3 7 3 7
Web based service 3 7 7 7

Code Coverage Android’s default provided Monkey and
MonkeyRunner are not suitable for large-scale analysis due
to the reasons covered in Section III.2.C. sPECTRA’s UI
automation module improves code coverage, when compared
to the monkey tool due to the use of complete and determin-
istic exploration. EMMA [6], a code coverage measurement
tool is used to obtain code coverage of both sPECTRA’s
Intelligent UI Exploration module and Android’s Monkey.
EMMA requires source code to find code coverage of Monkey.

Therefore, we downloaded 40 apps belonging to various
categories from F-Droid3 and modified them by adding code
coverage code. EMMA generates % code coverage in terms
of Class, Method, Block and Line. Figure 2 shows the mean
coverage (Class, Method, Block and Line) for both sPECTRA
and Monkey for 14 representative apps (out of 40 measured).
In the experiments, the Monkey is set to execute 5000 events
that is quite a large number. Results for all 40 apps confirm
that sPECTRA performs better than Monkey. This is attributed
to following reasons:

 20

 30

 40

 50

 60

 70

 80

 90

 100

Text
Editor

Airpush
detector

Piano Voice
Notify

Wifi
Manager

Cpu
Spy

Activity
Launcher

Atime
tracker

File
Explorer

External
Ip

Onclick
Listner

Ringy
Dingy
Dingy

Sense
rium

Timer

%
 M

e
a

n
 C

o
v

e
ra

g
e

App Name

sPECTRA
Monkey

Fig. 2: UI Exploration Comparison
1) sPECTRA includes context aware input generation for

TextViews. A set of predefined inputs is maintained for
different placeholders. E.g., a placeholder with values
“Number,” “Contact Number,” etc. is given a valid mobile
number as input. In this way, sPECTRA address the
problem of Monkey which terminates the app on invalid
input.

2) sPECTRA handles advanced UI elements like swipes,
Long Press, tabs, spinners, etc. which are missing in
Monkey.

3) The systematic handling of explored and unexplored
views in each activity makes sPECTRA more complete
system for code coverage.

Not only code coverage but sPECTRA also improves over
Monkey and MonkeyRunner in other regards as mentioned in
Table III.

TABLE III: Comparison with Android’s default UI
frameworks

Property sPECTRA Monkey Property sPECTRA MonkeyRunner
Repeatable Events 7 3 Crash Handling 3 7
Intelligent Text Input 3 7 Scalability 3 7

Effective Exploration 3 7
Coordinate based
UI Interaction 7 3

Code Coverage High Low

False Negatives SMV-HUNTER [24] propose a hybrid
approach for detection of SSL/TLS vulnerabilities where static
analysis first marks the app as vulnerable if overriding of
default validation methods is done. Then the dynamic phase
performs actual Man-in-the-middle (MITM) attack for the
marked app to confirm the vulnerability. But, due to re-
ported crashes of MITM proxies in processing large number
of requests, sPECTRA develop static analysis approach as
detailed in Section III.2.A. For HostnameVerifier vulnerability,
sPECTRA considers both the cases of Listing 2 and 3 while
SMV-HUNTER only considers the case of Listing 3. This

3https://f-droid.org/repository/browse/

leads to considerable number of false negatives by SMV-
HUNTER. The popular playstore apps like BuzzWidget, SMS
Blocker, OneDrive are found to be vulnerable by sPECTRA
while SMV-HUNTER does not report the same.

In dynamic analysis based approach, a critical step in
reducing false negatives is to trigger the vulnerable behavior
by simulating the user interaction that leads to vulnerability.
sPECTRA’s handling of advance views like tabs, long presses,
spinners, valid inputs for textviews reduces the false negatives.

V. RESULTS

Table IV shows the market-wise statistics of analyzed apps.
We use Google-Play citegcrawler and Third-Party crawlers
[10] to collect the samples for analysis. Out of these apps, 107
apps failed during analysis. Some of the apps failed as Soot
was not able to analyze them, some failed during repackaging
and some during exploration (not compatible with emulator).

TABLE IV: Sample’s Statistics

Domain/Market-Name #Apps Domain/Market-Name #Apps
google playstore 800 gfan 6000
nduoa 700 androidpur 366
mobomarket 58 appsapk 82
apkfun 31

Vulnerability report (partial) for mobikwik app after Phase
2 is as shown in Listing 7. The Listing shows that same salt
(Vulnerable 1), same key-material (Vulnerable 2) and same
IV (Vulnerable 3) is used in two runs. Iteration count value
is only 4 as shown in vulnerability 1. HostnameVerifier
vulnerability is also present. It uses AES algorithm in ECB
mode and signing algorithm is SHA1withRSA (Phase 1
report).
1 //Vulnerable 1 -> Same Password and Salt is used in

multiple (4) runs. Low Iteration Count
2 PBEKeySpec;-><init> : 4
3 A1 (Password) {c, o, m, ., m, o, b, i, k, w, i, k, _, n,

e, w, j, y, o, t, i, ., g, a, j, r, a, n, i, @, m, n,
i, t, ., a, c, ., i, n

4 A2 (Salt) {-46, 90, 68, -128, -103, 57, -74, -64, 51, 88,
-95, -45, 77, -117, -36, -113, -11, 32, -64, 89}

5 A3 (Iteration-Count) { I=4 }
6 //Vulnerable 2 -> Same Key material used in 4 instances

for generation of secret key
7 SecretKeySpec;-><init> : 4
8 ([B={-52, 51, -68, -121, -44, -114, -59, -20, -79, 22,

34, -77, -48, -75, 45, 93}, "AES")
9 //Vulnerable 3 -> Same Initialization Vector 2 times

10 IvParameterSpec;-><init> : 2
11 ([B={16, 74, 71, -80, 32, 101, -47, 72, 117, -14, 0, -29,

70, 65, -12, 74})
12 //VULNERABLE 4 -> HostnameVerifier always returning true
13 Class Path : org/apache/cordova/filetransfer
14 final class FileTransfer$2 implements HostnameVerifier{
15 public boolean verify(String paramString, SSLSession

paramSSLSession) {return true; }}

Listing 7: Precise Report of Analysis for Mobikwik App

Table V shows detailed results for some of the highest
downloaded apps of Google-playstore from various categories.
The name of banking app is not disclosed for privacy reasons.
The analysis shows that even the most popular Android apps
are vulnerable due to improper use of cryptographic primitives.

Out of 7000 apps analyzed, 4529 apps are found to be
using cryptographic primitives. Out of these 4529 apps, 3877
apps are vulnerable with at least one factor. Figure 3 shows

TABLE V: Analysis Results
App/Category/Download in 106 Vulnerabilities Identified

Banking App/Banking/1-5

MessageDigest algorithm is SHA-1
Static Key Material for Secret-Key Generation
AES in ECB Mode
Signature Algorithm is SHA1withRSA
HostnameVerifier always return TRUE
TrustManager does not throw any exception

Mobikwik/LifeStyle/10-50

Iteration Count in PBE is 4
Static Key Material for Secret-Key Generation
Static Salt
MessageDigest algorithm is MD5
Initialization vector in AES/CBC mode is static
AES in ECB mode
Signature Algorithm is SHA1withRSA
SSL TrustManager Vulnerability

Password Notes/Tools/.5-1

Iteration Count in PBE is 100
Static Salt
AES in ECB mode
Key Length (32 bit) in PBE

TaxiForSure/Transport/1-5
AES in ECB mode
MessageDigest algorithm is SHA-1
SSL TrustManager vulnerable

Snapdeal/Shopping/10-50 AES in ECB mode
Signal/Communication/1-5 Iteration Count in PBE is 100

the number of apps (out of 7000 analyzed) using the specific
cryptographic primitive and out of those apps, the apps which
are vulnerable. The results indicate that nearly 90% (out of
using crypto) of apps are vulnerable. More than 50% of the
apps are vulnerable to Hash collision attacks due to signing
algorithm vulnerability. Still, these apps use SHA1WithRSA
as the signature algorithm that is declared vulnerable [13].
75% of apps still use DES encryption algorithm having the
56-bit key length that makes them vulnerable to brute-force
attacks. Moreover, the vulnerable apps also belong to critical
categories like banking, finance, shopping, or education.

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

Symmetric
Encription

Symmetric
Encription

Digital
Signature

Padding Message
Digest

Salt Key
Material

Initialization
Vector

PRNG KeySize Iteration
Count

SSL/TLS
Vul.

OnDevice
Storage

APPs using primitive

Vulnerable Apps

A
E

S
/E

C
B

 (
4

1
.8

%
)

D
E

S
 (

7
5

.3
6

%
)

S
H

A
1

w
it
h

R
S

A
 (

5
3

.4
3

%
)

N
o

P
a

d
d

in
g

 (
4

3
.1

3
%

)

S
H

A
-1

/M
D

5
 (

9
4

.0
4

%
)

S
ta

ti
c
 (

2
4

.8
1

%
)

S
ta

ti
c
 (

3
5

%
)

S
ta

ti
c
 (

5
0

.5
7

%
)

C
o

n
s
ta

n
t

S
e

e
d

 (
4

.9
4

%
)

<
 M

in
 (

1
.9

6
%

)

<
 M

in
 (

3
4

.9
4

%
)

(8
.0

4
%

)

Fig. 3: Vulnerability by Primitive

VI. RELATED WORK

Static Analysis Egele et al. developed CryptoLint to stat-
ically analyze cryptographic vulnerabilities based on misuse
of symmetric and PBE in Google playstore apps [22]. Ad-
ditionally, sPECTRA analyze other vulnerabilities as detailed
in Table II. The critical observations show that CryptoLint
being the pure static approach, may not determine vulnera-
bility for obfuscated, run-time dependent or logical condition

based parameters. Moreover, the security prerequisites put
necessity on using non-unique and non-predictable values for
critical security parameters like Initialization Vector, Salts, etc.
Static analysis can only infer that these critical parameters
are derived from static components or not while sPECTRA
reports the vulnerability on the use of same values for critical
parameters in different executions. The comparison of results
of sPECTRA is not done with CryptoLint due to it’s unavail-
ability.

Hybrid Analysis CMA uses hybrid approach for analysis
[27]. However, the approach relies on manual analysis which
limits it’s scalability for large app stores. Specifically, the aim
of sPECTRA is to enable the automatic large scale analysis.
Moreover, sPECTRA covers the wider range of vulnerabilities
compared to CMA as shown in Table II. Overall, sPECTRA’s
approach makes it a lightweight framework compared to
CMA. Mauro et al. proposed a light weight, system MITHYS
for protecting against SSL vulnerabilities [20]. Steven et al.
propose OpenCCE system which provides developers with
cryptographically correct code blueprint based on their re-
quirement [16]. However, our focus is to verify the apps after
development.

Automated Analysis Dynodroid [25] is an automatic input
generation system that instruments the Android SDK for cap-
turing system events. On average, it achieves a code coverage
of 55%. Dynodroid’s results show that monkey also per-
forms comparable code coverage, but Monkey requires nearly
20X more input events for same code coverage. However,
Dynodroid is only supported for Android version 2.3 while
sPECTRA is tested till version 5.1.1. Appsplayground’s [26]
UI exploration is closely related to sPECTRA. However, it
works on modified Android software stack while sPECTRA
works on unmodified software stack. This restricts Appsplay-
ground current implementation applicable only for single API
level. The critical issue of emulator fails in loading snapshot
with exception “savevm: unable to load section RAM” is
observed during experiments with Appsplayground.
A3E [17] constructs a high-level CFG that captures legal

transitions among activities (app screens). This graph is then
used to develop an exploration strategy. The time of explo-
ration modules are more than hour which is very high and
create the problem in scaling. It does not handle multi-touch
gestures such as pinching and zooming and only tested for
Android version 2.3.4.

VII. CONCLUSIONS

sPECTRA is an automated and lightweight framework to
precisely analyze cryptographic vulnerabilities in Android
apps at large scale. The aim is to prevent exploitation of user’s
private information by Android apps. Our results show that
even popular apps available at Google playstore are vulnerable
to cryptographic attacks. The important feature of sPECTRA
is that it does not require any root access, source code,
and works without any alteration to Android source code.
sPECTRA also works for obscured/obfuscated apps due to
run-time analysis. sPECTRA currently includes analysis for

12 categories of vulnerabilities. We are working on analyzing
more vulnerabilities. sPECTRA is currently unable to explore
custom views, and system events. We are also working on
these to increase code coverage.

REFERENCES

[1] http://www.gartner.com/newsroom/id/3323017.
[2] Androguard. https://code.google.com/p/androguard/.
[3] Android user interface testing with Robotium. http://www.vogella.com/

tutorials/Robotium/article.html.
[4] APIMonitor. https://code.google.com/p/droidbox/wiki/APIMonitor.
[5] BLOCK CIPHERS: Approved Algorithms. http://csrc.nist.gov/groups/

ST/toolkit/block ciphers.html.
[6] EMMA: a free Java code coverage tool. http://emma.sourceforge.net/.
[7] Java Cryptography Architecture(JCA). http://docs.oracle.com/javase/7/

docs/technotes/guides/security/crypto/CryptoSpec.html.
[8] Monkey. http://developer.android.com/tools/help/monkey.html.
[9] monkeyrunner. http://developer.android.com/tools/help/monkeyrunner

concepts.html.
[10] Mssun. https://github.com/mssun/android-apps-crawler.
[11] Password-Based Cryptography. http://www.rfc-base.org/txt/rfc-2898.txt.
[12] Spongy Castle. https://rtyley.github.io/spongycastle/.
[13] The Hacker News : Security in a serious way. http://thehackernews.

com/2014/02/98-of-ssl-enabled-websites-still-using.html.
[14] The Legion of the Bouncy Castle. https://www.bouncycastle.org/.
[15] Vulnerability Note. http://www.kb.cert.org/vuls/id/836068.
[16] Steven Arzt, Sarah Nadi, Karim Ali, Eric Bodden, Sebastian Erdweg,

and Mira Mezini. Towards secure integration of cryptographic software.
In 2015 ACM International Symposium on New Ideas, New Paradigms,
and Reflections on Programming and Software (Onward!). ACM, 2015.

[17] Tanzirul Azim and Iulian Neamtiu. Targeted and depth-first exploration
for systematic testing of android apps. In ACM SIGPLAN Notices,
volume 48, pages 641–660. ACM, 2013.

[18] Elaine Barker and Allen Roginsky. Transitions: Recommendation for
transitioning the use of cryptographic algorithms and key lengths. NIST
Special Publication, 800:131A, 2011.

[19] Andrey Bogdanov, Dmitry Khovratovich, and Christian Rechberger.
Biclique cryptanalysis of the full aes. In Advances in Cryptology–
ASIACRYPT 2011, pages 344–371. Springer, 2011.

[20] Mauro Conti, Nicola Dragoni, and Sebastiano Gottardo. Mithys:
Mind the hand you shake-protecting mobile devices from ssl usage
vulnerabilities. In Security and Trust Management. Springer, 2013.

[21] Morris Dworkin. Recommendation for block cipher modes of operation.
methods and techniques. Technical report, DTIC Document, 2001.

[22] Manuel Egele, David Brumley, Yanick Fratantonio, and Christopher
Kruegel. An empirical study of cryptographic misuse in android
applications. In Proceedings of the 2013 ACM SIGSAC conference on
Computer & communications security, pages 73–84. ACM, 2013.

[23] Arni Einarsson and Janus Dam Nielsen. A survivor’s guide to java
program analysis with soot. BRICS, Department of Computer Science,
University of Aarhus, Denmark, 2008.

[24] David Sounthiraraj Justin Sahs Garret Greenwood and Zhiqiang Lin Lat-
ifur Khan. Smv-hunter: Large scale, automated detection of ssl/tls man-
in-the-middle vulnerabilities in android apps. 2014.

[25] Aravind Machiry, Rohan Tahiliani, and Mayur Naik. Dynodroid: An
input generation system for android apps. In Proceedings of the 2013
9th Joint Meeting on Foundations of Software Engineering, pages 224–
234. ACM, 2013.

[26] Vaibhav Rastogi, Yan Chen, and William Enck. Appsplayground:
automatic security analysis of smartphone applications. In Proceedings
of the third ACM conference on Data and application security and
privacy, pages 209–220. ACM, 2013.

[27] Shao Shuai, Dong Guowei, Guo Tao, Yang Tianchang, and Shi Chen-
jie. Modelling analysis and auto-detection of cryptographic misuse in
android applications. In Dependable, Autonomic and Secure Computing
(DASC), 2014 IEEE 12th International Conference on, pages 75–80.
IEEE, 2014.

[28] Michael Spreitzenbarth, Thomas Schreck, Florian Echtler, Daniel Arp,
and Johannes Hoffmann. Mobile-sandbox: combining static and dynamic
analysis with machine-learning techniques. International Journal of
Information Security, 14(2):141–153, 2015.

