

The Role of models@run.time in Autonomic Systems:

Keynote

Nelly Bencomo
ALICE, School of Engineering and Applied Science

Aston University

B4 7ET, Birmingham, UK

Email: nelly@acm.org

Abstract—Autonomic systems manage their own behaviour in

accordance with high-level goals. This paper presents a brief

outline of challenges related to Autonomic Computing due to

uncertainty in the operational environments, and the role that

models@run.time play in meeting them. We argue that the

existing progress in Autonomic Computing can be further

exploited with the support of runtime models. We briefly

discuss our ideas related to the need to understand the extent

to which the high-level goals of the autonomic system are being

satisfied to support decision-making based on runtime evidence

and, the need to support self-explanation.

1. Background

As systems become more interconnected and diverse,
software designers and architects are less able to anticipate
and design interactions among components, and therefore
they are not able to offer an a priori model to specify the
system’s dynamic behaviour and architecture. Such issues
are left to be solved at runtime [1]. The expected result is
that systems will become too large and complex for even
the most skilled professionals to install, configure, optimize,
and maintain. It will be virtually impossible to make timely,
decisive responses to the rapid stream of conflicting and
changing demands. Systems are increasingly expected to
change themselves and self-react to continue to ensure their
expected behaviour.

Autonomic Computing has emerged as the solution to
the situation described above. An autonomic system is capa-
ble of self-management and able to monitor and analyze its
runtime behaviour to make decisions on its own, and manage
its behaviour according to high-level goals [2]. However,
before end users and system administrators can take the
benefits of autonomic computing for granted, researchers
need to overcome different obstacles in designing them and
understanding their behaviour.

2. Synergy between Autonomic Computing

and models@run.time: experiences

Traditional software automation and adaptation tech-
niques usually require an a priori model for a system’s

dynamic behaviour. Under the uncertainty present in cur-
rent and future scenarios, this model is difficult to define
and labour-intensive to maintain, and tends to get out of
date due to architecture decay. Modern approaches, such as
“models@runtime” [1], do not necessarily require defining
the system‘s behaviour model beforehand. Instead, it can
involve different techniques such as machine learning, or
mining software component interactions from system execu-
tion traces to build a model which is in turn used to analyze,
plan, and execute adaptations [3], and synthesize emergent
software on the fly [4]. Autonomic Computing and runtime
models can be used together to support the new paradigm
needed to break the boundary between design time and
runtime [5]. Models would not be just design artefacts but
would continue to live and evolve at runtime according to
changes while the system is running. Autonomic Computing
can provide the intelligent support needed during runtime to
update and evolve the runtime models.

Uncertainty will inevitably provoke emergent behaviour
that is not expected as it has not been foreseen previously.
A crucial issue to be tackled by an autonomic system is
its ability to continuously quantify the deviation between
the behaviour exposed and the behaviour expected, which
is dictated by its high-level goals, based on collection and
evaluation of new evidence [6]. The system would therefore
be goal-aware. According to how large the deviation gap
is, the autonomic system should decide to take corrective
actions or, to flag that an abnormal situation is happening.
Appraisal of new evidence by the running system will
improve its judgement while performing decision-making.

In [6], [7], [8], we have proposed ways to use techniques
such as Bayesian learning to collect runtime evidence, and
therefore inform and update runtime models accordingly, en-
hancing the judgement and decision-making process of the
system. We have used the concept of Bayesian surprise [9]
to measure how observed data modify, during runtime,
previous assumptions of the world. The notion of Bayesian
surprise specifically measures the divergence between prior
and posterior distributions given evidence observed, and
which will be used to quantify the size of the gap between
the behaviour targeted by the goals of the autonomic system
and the behaviour exposed. The final result is a better-
informed decision making by enabling the re-appraisal and

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aston Publications Explorer

https://core.ac.uk/display/141438622?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:nelly@acm.org
mailto:models@run.time
mailto:models@run.time
mailto:models@run.time

update of the runtime models according to evidence gathered
from the operational environment. We have shown how new
evidence could imply that design-time assumptions are not
valid anymore. The role of Bayesian surprises is to offer sup-
port to flag these situations. Among others, the techniques
we are developing will enable the autonomic system to
(i) temporarily and autonomously “relax” requirements and
face unanticipated but transient environmental conditions
which could trigger unnecessary actions [10], (ii) disclose
conflicts between non-functional requirements and support
reasoning about these conflicts based on the new knowledge
obtained during execution. The newly acquired knowledge,
which may have been impossible to know before runtime,
provides a better understanding of the operating environment
by the running system [6].

Another well-known problem with autonomic systems is
that users may not understand them due to the emergent be-
haviour. The difficulty in predicting the system’s behaviour
means that the system may surprise its customers and/or
developers. Such a lack of understanding compromises the
trust by end users and can end in situations where they cease
to use a system [11]. Because its behaviour is emergent,
an autonomic system needs to promote confidence in its
end users and it needs to resolve any surprise. The latter
can only be attained if an autonomic system is also capable
of self-explanation [12]. In the context of goal-awareness,
the technique for quantifying the gap is based on a run-
time goal model and qualitative and quantitative reasoning
about how the organisation of the goal-based model changes
over time [13] and its impact on the architecture of the
system and viceversa. Additional research challenges worth
exploring includes how best to present explanations, which
essentially consist of a trace of system behaviour, in our
case a sequence of operations applied to the runtime goal
models and/or architecture models [14]. We need to in-
corporate techniques such as artificial intelligence, machine
learning, optimization, planning, decision theory, emergent
behaviour analysis, and bio-inspired computing into our
systems while retaining the ability to reason about system
behaviour and provide explanation with respect to the goals
and requirements of the system. To produce these required
techniques, there are plenty of lessons to learn from research
communities such as ICAC and models@run.time.

3. Concluding Remarks

This short paper highlights synergies between autonomic

systems and models@run.time.This short paper is also a
call for more mutual awareness and recognition. The com-
munities behind runtime models, software engineering, and
autonomic systems should work in a cooperative way to
further investigate means for conceiving autonomic software
systems that users trust and understand. How do we put in
contact all these communities to work together towards a
common goal? This is a big challenge!

Acknowledgments

The author would like to thank Amel Belaggoun and
Luis Garcia-Paucar as the postgraduate students supporting
the research described in this paper.

References

[1] G. Blair, N. Bencomo, and R. B. France, “Models@ run. time,”

Computer, vol. 42, no. 10, pp. 22–27, 2009.

[2] J. O. Kephart and D. M. Chess, “The vision of autonomic computing,”

Computer, vol. 36, no. 1, pp. 41–50, Jan 2003.

[3] N. Esfahani, E. Yuan, K. R. Canavera, and S. Malek, “Inferring
software component interaction dependencies for adaptation support,”
pp. 26:1–26:32, 2016.

[4] N. Bencomo, A. Bennaceur, P. Grace, G. Blair, and V. Issarny, “The
role of models@run.time in supporting on-the-fly interoperability,”
Computing, vol. 95, no. 3, pp. 167–190, 2012.

[5] L. Baresi and C. Ghezzi, “The disappearing boundary between
development-time and run-time,” in Proceedings of the Workshop on
Future of Software Engineering Research, FoSER 2010, at the 18th
International Symposium on Foundations of Software Engineering,
2010, USA, 2010, pp. 17–22.

[6] N. Bencomo, “Quantun: Quantification of uncertainty for the reassess-
ment of requirements,” in 23rd IEEE International Requirements
Engineering Conference, RE, 2015, pp. 236–240.

[7] N. Bencomo, A. Belaggoun, and V. Issarny, “Dynamic decision
networks to support decision-making for self-adaptive systems,” in
(SEAMS), 2013.

[8] L. Garcia-Paucar, N. Bencomo, and K. Yuen, “Juggling preferences
in a world of uncertainty,” in Proceedings of the Reqirements Engi-
neering Conference 2017, RE-NEXT Track, 2017.

[9] N. Bencomo and A. Belaggoun, “A world full of surprises: bayesian
theory of surprise to quantify degrees of uncertainty,” in ICSE, 2014,
pp. 460–463.

[10] J. Whittle, P. Sawyer, N. Bencomo, B. H. C. Cheng, and J. M. Bruel,
“RELAX: A language to address uncertainty in self-adaptive systems
requirement,” Requirements Engineering, vol. 15, no. 2, pp. 177–196,
2010.

[11] B. Muir, “Trust in automation: Part i,” Theoretical Issues in the Study
of Trust and Human Intervention in Automated Systems. Ergonomics,
vol. 37, no. 11, pp. 1905–1922, 1994.

[12] P. Sawyer, N. Bencomo, J. Whittle, E. Letier, and A. Finkelstein,
“Requirements-aware systems: A research agenda for RE for self-
adaptive systems,” in Proceedings of RE, ser. RE ’10. Washington,
DC, USA: IEEE, 2010.

[13] K. Welsh, P. Sawyer, and N. Bencomo, “Run-time resolution of
uncertainty,” in RE 2011, 19th IEEE International Requirements
Engineering Conference, Trento, Italy, August 29 2011 - September
2, 2011, 2011, C, pp. 355–356.

[14] N. Bencomo, K. Welsh, P. Sawyer, and J. Whittle, “Self-explanation
in adaptive systems,” Transactions on Computational Collective In-
telligence, 2014.

mailto:models@run.time
mailto:models@run.time.This
mailto:models@run.time

