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Update on the effects of physical activity on insulin sensitivity in humans 21 

Abstract  22 

Purpose and Methods: This review presents established knowledge on the effects of 23 

physical activity on whole-body insulin sensitivity (SI) and summarises the findings of recent 24 

(2013 - 2016) studies.  25 

Discussion and Conclusions: Recent studies provide further evidence to support the notion 26 

that regular physical activity reduces the risk of insulin resistance, metabolic syndrome and 27 

type 2 diabetes, and SI improves when individuals comply with exercise and/or physical 28 

activity guidelines. Many studies indicate a dose response, with higher energy expenditures 29 

and higher exercise intensities, including high intensity interval training, producing greater 30 

benefits on whole-body SI, although these findings are not unanimous. Aerobic exercise 31 

interventions can improve SI without an associated increase in cardiorespiratory fitness as 32 

measured by maximal or peak oxygen consumption. Both aerobic and resistance exercise 33 

can induce improvements in glycaemic regulation, with some suggestions that exercise 34 

regimens including both may be more efficacious than either exercise mode alone. Some 35 

studies report exercise-induced benefits to SI that are independent of habitual diet and 36 

weight loss, whilst others indicate an association with fat reduction, hence the debate over 37 

the relative importance of physical activity and weight loss continues. During exercise, 38 

muscle contraction stimulated improvements in SI are associated with increases in AMPK 39 

activity, which deactivates TCB1D1, promoting GLUT4 translocation to the cell membrane 40 

and thereby increasing glucose uptake. Post-exercise, increases in Akt deactivate TCB1D4 41 

and thereby increase GLUT4 translocation to the cell membrane. The reduction in 42 

intramuscular saturated fatty acids (FA) and concomitant reductions in ceramides, but not 43 

diacylglycerols (DAGs), provide a potential link between intramuscular lipid content and SI. 44 

Increased skeletal muscle capillarisation provides another independent adaptation through 45 

which SI is improved, as does enhanced beta cell activity. Recent studies are combining 46 
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exercise interventions with dietary and feeding manipulations to investigate the potential for 47 

augmenting the exercise induced improvements in SI and glycaemic control. 48 

Key words: Exercise, Physical Activity, Insulin Sensitivity (SI), Diabetes  49 
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Introduction 50 

Individuals with poor insulin sensitivity (SI) are characterized by impaired insulin action on 51 

whole-body glucose uptake. This results in elevated blood [glucose], impaired glycaemic 52 

control, a risk of pancreatic beta cell failure and the development of type 2 diabetes (T2D). In 53 

developed countries the prevalence of this pre-diabetic state is currently reported to be 15 – 54 

20%.[1]  Furthermore, it is estimated that 366 million people, ~8% of the population are 55 

affected by diabetes wordwide,[2] hence strategies for the treatment of the prediabetic state, 56 

its prevention and preventing progression from prediabetes to T2D are an imperative. Key 57 

amongst these is the inclusion of physical activity into a healthy lifestyle, and current 58 

research in this field continues to seek to understand the behavioural and molecular aspects 59 

of exercise in preventing diabetes and poor SI, with the intent to identify efficacious exercise 60 

interventions.   61 

The comparison of results between research studies into the effects of a physically active 62 

lifestyle and/or exercise on insulin sensitivity and glycaemic control are problematic due to 63 

differences in the methods of assessment of outcome variables. Whilst the precise protocols 64 

vary, the general methods for assessing insulin sensitivity/glycaemic control include: (i) 65 

measuring fasting insulin concentrations, with elevated fasted [insulin] >25mIU/L indicating 66 

poor insulin sensitivity, as the pancreas endeavours to compensate for the lack of peripheral 67 

insulin sensitivity by secreting greater amounts of insulin, thereby resulting in 68 

hyperinsulinaemia; (ii) Oral Glucose Tolerance Testing (OGTT), which involves the ingestion 69 

of a standard glucose bolus (75 g), followed by blood glucose monitoring for the subsequent 70 

2 hours. Blood glucose concentrations of >7.8 and <11.0 mmol/L at 2 hours are indicative of 71 

impaired glycaemic control, and >11.0 mmol/L indicates diabetes; (iii) Hyperinsulinaemic 72 

euglycaemic clamp, in which the participant is infused with insulin at a known rate, creating a 73 

hyperinsulinaemic state (~100 µU/ml), while simultaneously blood glucose levels are 74 

monitored and adjusted by a variable-rate infusion to maintain glycemia (5.0 – 5.5 mmol/L). 75 
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A high rate of glucose infusion indicates insulin sensitivity as the glucose is being rapidly 76 

taken up by the cells of the body, whilst a low rate of glucose infusion indicates a loss of 77 

insulin sensitivity, as the glucose is remaining in the blood rather than being taken up by the 78 

cells of the body;[3] (iv) Hyperglycaemic clamp, in which plasma glucose levels are initially 79 

increased to ~125mg/dl above basal values and then maintained at this hyperglycaemic 80 

level, through the infusion of glucose. High infusion rates indicated good insulin sensitivity, 81 

whilst low infusion rates indicate insulin resistance. [3]; (vi) Homeostatic Model Assessment 82 

of Insulin Resistance (HOMA-IR), which uses fasting [glucose] and [insulin], and is 83 

calculated as (glucose mmol/L x insulin)/ 22.5, with a relatively low score indicating well 84 

regulated fasting glucose that is being maintained through relatively low concentrations of 85 

insulin, hence good insulin sensitivity, whereas an elevated HOMA-IR value, such as >2.5 86 

indicates insulin resistance. In the updated homeostatic model, HOMA2-IR, values >1.5 87 

suggest insulin resistance; (vii) HOMA-β is a measure of beta-cell function derived from 88 

fasting values using the equation (20 x Insulin)/(Glucose mmol/L - 3.5) %. With this measure 89 

indicating the extent to which a deficient beta-cell function, as opposed to insulin resistance, 90 

contributes to hyperglycaemia in the fasting state; (viii) Quantitative Insulin Sensitivity Check 91 

Index (QUICKI), which is an index of insulin sensitivity, calculated as QUICKI = 1/(log 92 

(fasting plasma insulin µU/ml) + log (fasting blood glucose mg/dL)). [4] 93 

Regardless of the methods used to assess insulin sensitivity/glycaemic control,  a lifestyle 94 

incorporating regular physical activity has  been identified as a key factor for maintaining and 95 

improving many aspects of health, including insulin sensitivity.[5, 6] In this context, the term 96 

physical activity covers all forms of muscular movement, including that associated with 97 

strenuous physical work, active transport (walking and cycling), household tasks (cleaning 98 

and gardening), incidental physical activity which occurs when undertaking other tasks, sport 99 

and other active leisure pursuits. Whereas the term ‘exercise’ refers specifically to the 100 

context of physical activity that is undertaken with the specific intent of improving health 101 

and/or fitness and is therefore a subset of physical activity. Hence many cross-sectional 102 
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studies investigate physical activity levels as well as specific exercise habits, but 103 

interventions tend to involve exercise, as they have the specific intent of affecting an aspect 104 

of health.  105 

Cross-sectional studies identify an association between regular physical activity and/or 106 

aerobic fitness and superior SI.[5, 6] Adding further support to this association, studies 107 

involving exercise interventions usually report an amelioration or in some cases, complete 108 

reversal of insulin resistance.[7, 8] Assessments of the impact of a physically active lifestyle 109 

suggest a dose response with each 500 kcal/wk increase in physical activity, reducing the 110 

risk of type 2 diabetes by ~9%. [9]  111 

Physical activity has both immediate (acute) and longer term effects on insulin sensitivity. 112 

The immediate effects are the direct result of a single exercise bout and may be evident 113 

during and/or for up to 72 hours post exercise. If repeated regularly these bouts produce 114 

additional long term chronic improvements to SI, thereby providing superior baseline 115 

glycaemic control compared to that typically seen in less active individuals. In this healthy, 116 

physically active, ‘trained’ condition, the effects of individual exercise bouts may then 117 

produce further acute responses from this already elevated SI state and thereby promote 118 

optimal SI and glycaemic control. Some key issues around physical activity that are 119 

considered in recent literature include: the effects of manipulating the mode of exercise; the 120 

influence of exercise intensity and exercise duration; the potential benefits of high intensity 121 

interval training; and the relative effects of the aforementioned on groups of different ages 122 

and at different levels of impaired SI. Other innovative strategies that have received recent 123 

attention include assessing whether the impact of exercise on SI is affected by whether it is 124 

undertaken in a fed or fasted state, and whether a short exercise bout (exercise snack) 125 

performed before meals is beneficial. 126 

The purpose of this review is to provide an overview of the topic for those new to it and an 127 

update of recent developments for the established researcher. 128 



 
 

7 
 
 129 

Methods 130 

A literature search was undertaken using PubMed in in November 2015, using search terms 131 

‘Exercise’ OR ‘Physical activity’, AND ’Insulin sensitivity’.  This resulted in 10,185 articles, 132 

which were then limited to clinical trials (n = 1,672 articles), filtered using the terms ‘Human’ 133 

and limited to English Language publications (n = 1,371). Reviews and key articles 134 

published in English since 2000 were used to present established knowledge and set the 135 

background context, whilst to identify recent updates the search was reduced to articles 136 

published after 2012: this resulted in 394 articles. The abstracts of these articles were then 137 

evaluated and studies included if the main focus was an exercise intervention or cross 138 

sectional study of physical activity habits and not confounded by the inclusion of other 139 

interventions, such as drugs or diseases such as cancer. Studies were excluded if SI or 140 

other measures of glycaemic control were not included as an outcome measure. Titles were 141 

manually sorted and articles rejected if primary objectives were not exercise-based. They 142 

were then divided on the basis of whether they assessed the acute responses that occur 143 

during or immediately after a bout of physical activity, or the chronic adaptations that occur 144 

over a more prolonged period of time due to repeated exercise bouts – the training effects. A 145 

further search using the same search criteria was undertaken in July 2016 when the 146 

manuscript was undergoing minor revisions. This identified a further 80 articles that met the 147 

criteria of the search terms and the aforementioned manual sorting produced the resultant 148 

total of 53 recent articles which are summarised in Tables 1 - 3. 149 

In presenting this review, the authors acknowledge the growing evidence for the adverse 150 

effects of sedentary behaviour on diabetes risk and SI, and that this aspect of behaviour 151 

needs to be considered in the wider context of metabolic health.  Likewise that exercise may 152 

benefit the SI of patients with a number of chronic disease conditions, such as cancers, but 153 

due to word limits, these scenarios were beyond the scope of this review. 154 
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 155 

Molecular mechanisms for exercise-induced changes in insulin sensitivity and 156 

glycaemic control 157 

Glucose uptake into skeletal muscle occurs via facilitated diffusion down the diffusion 158 

gradient through the presence of the glucose transporter GLUT4 in the sarcolemma and T-159 

tubules. A single bout of exercise promotes acute increases in glucose uptake into the 160 

skeletal muscle, both during the exercise bout and for some hours post-exercise. This 161 

increase occurs as a result of GLUT4 being translocated from intracellular sites to the 162 

sarcolemma and T-tubules, thereby increasing the sites at which glucose can diffuse into the 163 

muscle. For a detailed review of the processes resulting in increased glucose uptake during 164 

exercise, readers are directed to that by Richter and Hargreaves,[10] 165 

In summary, During a bout of exercise the increased contraction-stimulated glucose uptake 166 

is linked to increases in AMP-activated protein kinase (AMPK), which results in the 167 

phosphorylation of the Rab-GTPase-activating protein TBC1D1.[11] This phosphorylation 168 

appears to inactivate the TBC1D1, although there is some suggestion that the TBC1D1 169 

needs to be phosphorylated at both the AMPK and Akt sites for deactivation to occur.[12] 170 

Since active TBC1D1 has an inhibitory effect, its deactivation enables GTP to react with Rab 171 

proteins on the GLUT4 vesicles, and as a consequence there is an increase in GLUT4 172 

vesicle translocation and glucose uptake into the cell.   173 

It appears that a slightly different pathway is utilised to regulate glucose uptake at rest, and 174 

involves TBC1D4 (also known as AS160), the paralogue of TBC1D1. TBC1D4 is involved in 175 

the insulin stimulated regulation of GLUT4 translocation and glucose uptake in adipocytes 176 

and myocytes. Insulin promotes the phosphorylation of TBC1D4 causing its deactivation and 177 

thereby increasing GLUT4 activity. TBC1D4 is also involved in the regulation of glucose 178 

uptake post-exercise, when increases in SI are associated with elevated intracellular kinase 179 
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Akt, which results in the phosphorylation of TBC1D4.[11]  TBC1D4 has similar properties to 180 

TBC1D1 and produces similar effects, in that the active form TBC1D4 promotes the 181 

hydrolysis of GTP to GDP on Rab proteins, thereby preventing the translocation of GLUT4 to 182 

the cell membrane. Whereas when TCB1D4 is phosphorylated and deactivated the GTP 183 

reaction with Rab proteins increase GLUT4 translocation to the cell membrane and T 184 

tubules, which elevates SI.[13] However, in contrast with TCB1D1, TCB1D4 appears to 185 

display a delayed response to exercise/contraction stimuli, with its deactivation exerting an 186 

effect post-exercise rather than during exercise, [11] an effect which has also been reported 187 

in rats.[14] Regular exercise training may also result in chronic improvements in TBC1D4 188 

phosphorylation and thereby increase basal SI.[11] 189 

Repeated exercise bouts (exercise-training) has been demonstrated to increases GLUT4 190 

concentrations in populations with metabolic syndrome and type 2 diabetes, [15] and these 191 

increases are associated with changes in SI.[6, 16, 17] Such improvements are tissue 192 

specific, as exercise appears to improve skeletal muscle but not hepatic SI, nor insulin-193 

stimulated glucose uptake in adipose tissue.[18, 19] In addition to which the improvements 194 

are primarily located in the muscle fibres undertaking most of the work during the 195 

exercise.[20]  196 

Other molecules associated with the SI regulatory processes include insulin receptor 197 

substrate 1 (IRS-1) and IRS-2. Whilst the precise roles of these receptor molecules require 198 

further elucidation, it is evident that they are activated by the insulin receptor tyrosine kinase 199 

and promote the phosphorylation/activation of Akt.[21] Thereby promoting glucose uptake 200 

into the cell. Reduced p-IRS-1 (ser612) phosphorylation has been reported in obese and 201 

obese insulin-resistant subjects, suggesting an association between lower concentrations of 202 

activated IRS-1 and impaired SI. Whereas acute increases in IRS-1 phosphorylation have 203 

been demonstrated following a single 60 minute bout of moderate intensity exercise (60% 204 

VO2 peak), suggesting an association with increased activation of IRS-1 and improved SI.[22] 205 
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 206 

Obesity, excess lipid availability and SI 207 

It is well established that obesity and an associated excess of available lipids results in a 208 

loss of SI in skeletal muscle, and this may be linked with impaired deactivation of 209 

TCB1D4.[23] Paradoxically, whilst obesity increases intramyocellular triglycerides (IMTG) 210 

concentrations, so does endurance-exercise training.[24] Yet the skeletal muscles of obese 211 

sedentary individuals have a compromised SI, whilst those of well-trained endurance 212 

athletes are highly insulin sensitive.[24, 25]  Hence there must be distinct molecular basis, 213 

other than differences in IMTG concentration to explain their contrasting SI characteristics. 214 

Diacylglycerols (DAGs) and ceramides are lipid intermediates that have been proposed to 215 

explain this apparent paradox. However, whilst some studies have demonstrated that 216 

exercise can reduce DAGs in previously inactive obese individuals, with a concomitant 217 

increases in SI,[25, 26] the causative role of DAGs has been questioned as the muscles of 218 

endurance trained athletes have been shown to have nearly twice the DAG content of obese 219 

sedentary individuals and have a 50% higher DAG content than normal weight sedentary 220 

individuals.[27, 28] 221 

Conversely, evidence is accumulating for the view that ceramides (sphingolipid metabolites) 222 

may be the causal link between saturated fatty acid content (but not unsaturated fats) in 223 

skeletal muscle and impaired SI.[27, 28, 29] In the acute phase, exercise has been 224 

demonstrated to increase serum ceramide [30], but these returned to basal levels 2 h post-225 

exercise, whilst the sphingolipids lipids measured in this study were not elevated during 226 

exercise but declined to below basal levels post-exercise. However, exercise training has 227 

been demonstrated to reduce plasma ceramides and these changes are negatively 228 

correlated with increased SI.[31] An explanation for the molecular link between ceramides 229 

and SI is through the presence of excess saturated FFA.[29]   This explanation suggests that 230 

the excess saturated FFA and associated high ceramide content inhibits Akt/PKB 231 
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phosphorylation and activation by protein phosphatase 2A, thereby preventing the 232 

translocation of Akt/PKB from the cytoplasm to the membrane. This may then link to the 233 

aforementioned effects on the activation of other signalling molecules, leading to an impaired 234 

translocation of GLUT4 to the membrane.  235 

 236 

Other molecular and physiological changes linked to exercise induced improvements to SI 237 

Other molecules that may be linked to aerobic exercise induced changes in SI include 238 

intracellular adhesion molecule 1, C-reactive protein and serum amyloid A, all of which have 239 

been shown to be associated with impaired SI, but are reduced by exercise and weight loss, 240 

thereby suggesting a link with vascular inflammation.[22] Additionally, exercise stimulated 241 

increases in glycogen synthase activity, have also been proposed as a factor that increases 242 

SI.[23] 243 

 244 

Another process through which SI may be improved is through the exercise-training 245 

stimulated increase in skeletal muscle capillarisation. Prior et al.,[32, 33] reported that 246 

increases in capillarisation correlated with improvements in insulin sensitivity following 6 247 

months of aerobic exercise with weight loss in older adults with impaired glucose tolerance. 248 

This outcome was further investigated when after 6-months of training the participants 249 

followed a 2-week no aerobic exercise washout phase, in order to isolate the acute post-250 

exercise changes in SI from the training effects.  The outcome of which was that whilst many 251 

of the aforementioned molecular factors returned to baseline after the washout, capillary 252 

density and SI remained elevated by 15% and 18% respectively, providing evidence for a 253 

link between these two factors.[34]  254 

 255 

Additionally, whilst a good level of cardiorespiratory fitness (CRF) is associated with a 256 

reduced risk of poor insulin sensitivity, exercise interventions don’t always find an 257 

association between improvements in SI and CRF (VO2 max). This may be because 258 



 
 

12 
 
improvements in CRF are a result of a combination of both peripheral adaptations within the 259 

muscle and central cardiovascular adaptations, such as increases in cardiac output, the 260 

latter of which may not impact upon SI directly.[35] 261 

 262 

An alternative mechanism by which exercise could improve glycaemic control, is via the 263 

enhancement of pancreatic beta cell activity, which can become compromised as a 264 

consequence of overstimulation and excessive insulin secretion in response to a loss of SI. 265 

In support of this, it has been reported that exercise training plus weight loss can increase 266 

pancreatic β-cell function in a linear dose-response manner in adults with pre-diabetes.[34] 267 

Although in this study, relatively high exercise doses of >1,900 kcal/wk were used and the 268 

exercise intensity increased from 60-65% HRmax during the first 4 weeks, to a relatively high 269 

80 – 85% HRmax for the following 8 weeks. Hence the intervention was of relatively high 270 

volume and intensity, which may not be feasible for most of the population in question.  By 271 

comparison, Madsen et al.,[36] reported improved beta cell function in type 2 diabetic 272 

patients following more moderate volumes of exercise training in the form of high intensity 273 

interval training (HIIT), hence the exercise intensity may be key. However, Slentz et al., [37] 274 

have suggested that whilst both moderate and vigorous exercise are capable of stimulating 275 

improvements in beta-cell function as indicated by the Disposition Index (Disposition Index 276 

(DI) = Insulin Sensitivity (SI) x Acute Insulin Response to Glucose (AIRg)), they may do so 277 

via different mechanisms. Since in their 8-month intervention study, large volumes of 278 

moderate intensity exercise produced a greater DI improvement than vigorous exercise, and 279 

achieved this with an improvement in SI but virtually no change in AIRg, whilst the vigorous 280 

exercise improved SI and resulted in a compensatory reduction in AIRg. 281 

 282 

Updates to acute SI responses to exercise 283 
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Studies assessing the acute responses during or immediately following a single bout of 284 

aerobic exercise suggest that SI is improved by more than 50% for up to 72 hours after the 285 

last exercise bout.[6] However, this acute improvement in SI is lost within 5 days after the 286 

last exercise bout, even in highly trained subjects.[6]  287 

Table 1 summarises recent studies that assessed acute responses to exercise on SI.  288 

Rynders et al.’s study confirms the previously reported improvements in SI in prediabetics of 289 

around 50% one hour after aerobic exercise.[38] Likewise, Newsom et al. reported an 290 

increase in SI in sedentary obese adults the day after moderate intensity exercise,[39] 291 

indicating that the acute response was evident for some hours. However, whereas Rynders 292 

et al.,[38]  reported higher intensity exercise to produce greater improvements in SI (85% 293 

following high intensity exercise vs 51% following moderate intensity exercise), Newsom et 294 

al.,[39]  found that it did not. Indeed Newson et al., reported that their lower intensity (50% 295 

VO2 peak) but longer duration bout of the same calorific cost was more effective as it resulted 296 

in a statistically significant 35% improvement in SI, whereas their bout at 65% VO2 peak only 297 

resulted in a 20% increase that was not statistically significant. The discrepancy between 298 

these studies may at least in part be due to the differences in the ‘higher’ exercise intensities 299 

used in these studies, with Newsom et al.’s being of a more ‘moderate’ rather than ‘high’ 300 

intensity.  301 
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Table 1.  Summary of recent studies assessing acute insulin sensitivity responses to exercise 302 

Reference Participants Study type Exercise type and 
inensity  

Outcome measure Authors conclusions and 
comments 

de Matos et 
al., 2014 [22] 

Twenty-seven 
obese or obese 
insulin-resistant 
patients.  
 

Exercise 
intervention. 

Acute 60 min of aerobic 
exercise on a cycle 
ergometer at 60 % of 
peak oxygen 
consumption. 

Compared with paired 
eutrophic controls, 
obese subjects had 
higher basal levels of p-
JNK and p-IRS-
1(ser612), and reduced 
HSP70. Exercise 
reduced p-IRS-1(ser612) 
for both obese and 
obese insulin-resistant 
subjects. A main effect 
of exercise was 
observed for HSP70. 

A single session of exercise 
promotes changes that are 
characteristic of a reduction in 
cellular stress. Such changes 
may contribute to an exercise-
induced increase in SI. 

Rynders et 
al., 2014 [38] 

Eighteen pre-
diabetic adults. 

Randomised 
controlled trial of 
acute responses 
to exercise. 

Moderate intensity 
exercise at Lactate 
threshold (LT) vs High 
Intensity Exercise (75% of 
difference between LT 
and peak O2 consumption 
vs Control (1 hour of 
seated rest).  One hour 
after exercise, subjects 
undertook an oral glucose 
tolerance test (OGTT). 

SI improved by 51% 
following Moderate 
intensity exercise and 
85% following High 
intensity exercise. 

Acute exercise had an 
immediate and intensity-
dependent effect on improving 
postprandial glycaemia and SI. 

Newsom et 
al., 2013 [39] 

Eleven 
sedentary, obese 
adults. 

Randomised 
controlled trial. 

Three experimental trials: 
(i) exercise at 50% VO2 

peak for ~70 min 
(expending ~ 350 Kcal); 
(ii) exercise at 65% VO2 

peak for ~55 min to expend 

Seventy minutes of 
exercise at 50% VO2 peak 
increased insulin 
sensitivity by 35% 
compared with control 
condition. Whereas the 

A prolonged single session of 
exercise at a moderate 
intensity improved SI the next 
day in obese adults. This may 
be more effective than a 
shorter duration bout at a 
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350 kcal; (iii) no exercise. 
Exercise was undertaken 
in the afternoon SI 
assessed the following 
morning. 

55 min of exercise at 
65% VO2 peak produced 
average increase SI of 
20% compared to control 
condition, this was not 
statistically significant.  

higher intensity. 
 

Malin et al., 
[40], 

Fifteen 
prediabetics 
aged 49.9 ± 3.6 
years 

Randomised, 
controlled, cross 
over trial, with 
control condition. 

Three trial conditions: (i) 1 
hr rest (control); (ii) 200 
kcal cycle ergometer 
exercise bout at lactate 
threshold; and (iii) 200 
kcal cycle ergometer 
exercise bout at 75% of 
difference between lactate 
threshold and VO2 peak. A 
75g OGTT was 
undertaken 1 hr post-
exercise/control. 

Compared to control, 
exercise lowered 
skeletal muscle insulin 
resistance independently 
of exercise intensity, but 
hepatic and adipose 
insulin resistance was 
increased. Glucose-
stimulated insulin 
secretion did not differ 
between conditions, but 
post-prandial glucose 
levels were lower post-
exercise. 

Exercise promoted insulin 
sensitivity in skeletal muscle 
post exercise. The increase in 
insulin resistance in adipose 
and hepatic tissue, may further 
promote glucose uptake and 
glycogen restoration in the 
muscles. 

Ortega et al., 
2015 [43] 

Ten healthy 
young men. 

Randomised 
cross-over trial 
with control 
condition. 

Sprint Interval Training 
(SIT) of 4 x 30 s sprints vs 
continuous low intensity 
exercise at 46% VO2 peak 
vs moderate intensity 
exercise at 77% VO2 peak 
vs Control. Intravenous 
glucose tolerance tests 
undertaken 30 min, 24 h 
and 48 h post-exercise. 

All exercise conditions 
improved SI for at least 
48 h compared to the 
control condition. Thirty 
minutes post-exercise 
the improvements 
induced by SIT were 
greater than for either of 
the continuous exercise 
bouts. 

All exercise bouts improved SI, 
and in the short-term (30 
minutes post-exercise) SIT 
was more effective than low or 
moderate intensity continuous 
exercise at improving SI. 

Terada et al., 
[44], 

Ten diabetics 
aged 45 – 75  
years 

Randomised, 
controlled, cross 
over trial, with 
control condition. 

Four exercise conditions 
each of 60 minutes 
duration: (i) HIIT 
(repetitions of 3 minutes 

HIIT reduced overnight 
and fasting glycemia the 
day after the exercise by 
more than moderate 

HIIT resulted in acute benefits 
to glycemic regulation, which 
were further enhanced by 
undertaking the exercise in a 
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at 40% VO2 peak and x 1 
minute at 100% VO2 peak) 
in fasted state; (ii) HIIT 
post-breakfast; (iii) 
Moderate intensity 
exercise (55% of VO2 peak) 
in fasted state; and (iv) 
and Moderate intensity 
exercise, post-breakfast; 
plus no exercise (control). 

intensity exercise. 
Exercising in a fasted 
state rather than ‘post-
breakfast’ attenuated 
post-prandial glycemic 
increments. Compared 
to the control condition, 
HIIT in a fasted state 
produced significant 
improvements to: 24-h 
mean glucose, fasting 
glucose, postprandial 
glycemic increment, 
glycemic variability and 
time spent in 
hyperglycemia. 
 

fasted state. 

Whyte et al., 
2013 [45] 

Ten 
overweight/obese 
men aged 26.9 ± 
6.2 years. 

Randomised, 
controlled, cross 
over trial. 

Three trial conditions: (i) 
four maximal 30-s sprints, 
with 4.5 min recovery 
between each (SIT); (ii) a 
single maximal extended 
sprint (ES) matched with 
SIT for work done; and (iii) 
no exercise (CON). Oral 
glucose tolerance tests 
were undertaken on the 
days following each of the 
above. 

SI Index was 44.6% 
higher following ES than 
CON, but did not differ 
significantly between SIT 
and CON. On the day 
following exercise, fat 
oxidation in the fasted 
state was increased by 
63% and 38%, 
compared to CON, in 
SIT and ES, 
respectively. 

A single ES, which may 
represent a more time-efficient 
alternative to SIT, can increase 
SI and increase fat oxidation in  
overweight/obese sedentary 
men. 

 303 
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In a more recent study, Malin et al.,[40] sought to identify the acute impact of exercise 304 

intensity on different components of insulin sensitivity and indicators of glycaemic control, 305 

including: glucose-stimulated insulin secretion (GSIS), skeletal muscle insulin resistance 306 

(SMIR), hepatic insulin resistance (HOMAIR) and adipose insulin resistance (ADIPOSEIR). In 307 

their study they administered a 75 g OGTT 1 hr post-exercise/control and in their analyses 308 

they assessed the relationship between the aforementioned measures and reported that 309 

exercise lowered SMIR independently of exercise intensity, but that compared to controls, 310 

high intensity exercise (200 kcal cycle ergometer exercise bout at 75% of difference between 311 

lactate threshold and VO2 peak) increased HOMAIR and ADIPOSEIR: which may initially 312 

appear contradictory. However, since GSIS was not reduced post-exercise and the 313 

disposition index (DI) of the hepatic and adipose tissues were lowered with high intensity 314 

exercise, whilst that of muscle increased, it resulted in a lower post-prandial blood glucose. 315 

Based on these findings the authors suggest that insulin secretion from the pancreas 316 

matches the combined requirements of these tissues and there is some communication 317 

between them to produce this outcome. They also suggest that the elevated HOMAIR and 318 

ADIPOSEIR may be beneficial post-exercise, as it could promote greater glucose uptake into 319 

the skeletal muscle, in which insulin resistance is lower, and thereby more effectively 320 

promote the restoration of muscle glycogen post-exercise. 321 

The variable of exercise intensity is manipulated and taken to greater extremes through the 322 

prescription of ‘high-intensity interval training’ or Sprint Interval Training (SIT), in which 323 

relatively short bursts of high intensity exercise are interspersed with lower intensity activity 324 

or rest recovery.[41] Gibala et al., [42] propose that the term HIIT be used when repeated 325 

short bouts of exercise at intensities of between 80 – 100% HRmax are used, whilst protocols 326 

that involve repeated short bouts of maximal ‘all-out’ exercise at intensities greater than the 327 

work rate that elicits VO2 max be classified as SIT. 328 
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In the context of studies assessing the impact of short duration, high-intensity exercise, 329 

including HIIT and SIT, Ortega et al., [43] found that whilst their high intensity intervals (four 330 

x thirty second sprints), continuous low intensity (46% VO2 peak) and moderate intensity (77% 331 

VO2 peak) exercise bouts all improved insulin sensitivity in healthy men for at least 48 hrs. The 332 

repeated sprints produced the greatest short term effects 30 minutes post exercise. 333 

Similarly, the study by Terada et al., [44] reported that 60 minutes of HIIT (repetitions of 3 334 

minutes at 40% VO2 peak and x 1 minute at 100% VO2 peak), reduced overnight and fasting 335 

glycemia the day after the exercise by more than a bout of continuous moderate intensity 336 

exercise at 55% of VO2 peak. They also reported that exercising in a fasted state rather than 337 

‘post-breakfast’ attenuated post-prandial glycemic increments; and compared to the control 338 

condition, HIIT in a fasted state produced significant improvements to: 24-h mean glucose, 339 

fasting glucose, postprandial glycemic increment, glycemic variability and time spent in 340 

hyperglycemia. 341 

In comparison, Whyte et al. compared four maximal 30-s sprints with 4.5 min recovery 342 

between each (SIT) and a single maximal extended sprint matched for work done.[45]  The 343 

day following exercise, the SIT session had failed to improve SI over a control (no exercise) 344 

condition, but the extended sprint had improved SI by 45%. Hence the failure of SIT to 345 

improve SI in this study contradicts the findings of Ortega et al.,[43] but raises the possibility 346 

of a single bout of high intensity exercise, of relatively short duration (approximately 2 – 3 347 

minutes) being sufficient stimulus to promote the regulatory processes underlying 348 

improvements in SI, and this requires further elucidation. 349 

  350 
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Updates on the association between SI and physical activity - lifestyle studies 351 

Table 2 summarises the results from recent studies assessing potential links between a 352 

lifestyle involving regular physical activity and SI.  Uemura et al.’s[46] survey confirms 353 

previous work that demonstrates a link between a lifestyle involving physical activity and 354 

better glycaemic control, as did Rosenberger et al.,[47] who reported that a lifestyle involving 355 

regular walking and other activities reduced by 50% the odds ratio for metabolic syndrome.  356 

Similarly, Caro et al.,[48] reported a significantly lower (21 vs 46%) prevalence of metabolic 357 

syndrome in people who complied with the aerobic exercise guidelines of 30 – 60 minutes of 358 

moderate activity 5 days per week.  359 

The importance of lifestyle is evident even in young people as a survey of children found that 360 

physical activity was negatively associated with markers of insulin resistance, [49] and the 361 

study by Telford et al., found that the prevalence of insulin resistance was reduced in 362 

primary school age children when physical activity was increased in school.[50] 363 
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Table 2.  Summary of recent studies assessing the association between regular physical activity and insulin sensitivity  364 

Reference Participants Study type Physical Activity or 
other data collected  

Outcome measure Authors conclusions and 
comments 

Uemura et 
al., 2013 [46] 

Five hundred and 
eighteen eligible 
subjects (380 
men and 138  
women) who 
attended the 
Tokushima 
Prefectural 
General Health 
Checkup Center. 

Survey. Questionnaire on 
lifestyle characteristics, 
including leisure-time 
exercise and daily non-
exercise activities. 

Subjects with longer 
durations of daily non-
sedentary activities had 
significantly lower adjusted 
odds ratios for metabolic 
syndrome. Daily non-
sedentary activities were 
associated with lower 
homeostasis model of 
assessment-Insulin 
Resistance (HOMA-IR). 

A lifestyle involving greater time 
spent in non-sedentary 
activities reduced the risk of 
insulin resistance. 

Rosenberger 
et al., 2013 
[47] 

Three hundred 
and one 
overweight/obese 
pre-diabetics. 

Survey of 
physical activity 
habits. 

Participants reported 
walking and other 
activities, and were 
assessed for factors 
associated with 
metabolic syndrome 
(MetS). Participants 
were categorised as 
those with and those 
without MetS. 

18% of subjects with MetS 
reported at least 150 
minutes of activity minutes 
per week compared with 
29.8% of those without 
MetS. The odds of MetS 
was lower with greater 
activity minutes. 

Meeting Physical Activity goals 
of 150 min/wk, reduced MetS 
odds in overweight/obese pre-
diabetic adults. 

Caro et al., 
2013 [48] 

One hundred and 
one adults with 
no personal 
history of disease 
aged 30-70 
years. 

A cross-sectional, 
observational 
study in an adult 
population. 
Participants were 
age- and 
sex-matched for 
comparison. 

Participants were 
classified into: (i) those 
who undertook regular 
exercise of 30-60 
minutes of moderate 
physical exercise 5 
days per wk, and (ii) 
non exercising controls 
who exhibited a 

Indicators of fasting plasma 
insulin levels HOMA-IR 
were significantly lower in 
the regular physical activity 
group. Prevalence rates of 
metabolic syndrome were 
20.7% and 45.8% in the 
regular physical activity 
and sedentary groups 

Moderate regular physical 
activity is associated with 
higher SI. 
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sedentary lifestyle. respectively. 

Jiménez-
Pavón et al., 
2013 [49] 

One thousand 
and fifty three 
boys and girls, 
aged 12.5 -17.5 
years. 

A cross-sectional 
study in a school 
setting. 

Physical Activity (PA) 
was assessed via 
accelerometry; Cardio 
Respiratory Fitness 
(CRF) assessed via a 
20-m shuttle run test. 
Fasting insulin and 
glucose concentrations 
were measured. The 
HOMA-IR and 
quantitative SI index 
were calculated. 

In males, vigorous PA 
(VPA) was negatively 
associated with markers of 
resistance (IR) after 
adjusting for confounders 
including waist 
circumference. In females, 
moderate PA, moderate to 
vigorous PA, and average 
PA were negatively 
associated with markers of 
IR after adjusting for 
confounders. When the 
sample was segmented by 
CRF levels, all the PA 
intensities were 
significantly negatively 
associated with the 
markers of IR in females 
with low CRF but not in 
those with middle-high 
CRF after adjusting for 
confounders. 

The findings suggest that PA is 
negatively associated with 
markers of IR after adjusting for 
confounders including total and 
central body fat in both sexes. 
This relationship is modified by 
the CRF levels, which are 
especially important in those 
females with low CRF. 
Preventive strategies should 
focus not only on increasing the 
volume of PA but also on 
enhancing CRF through VPA. 

Telford et al., 
2013 [50] 

Seven hundred 
and eight primary 
school children, 
mean age 8.1 ± 
0.35 years. 

4-yr cluster-
randomized 
intervention study 
into the effects of 
specialists vs 
non-specialists 
delivering 
physical 
education 
classes. 

The intervention 
involved the 
employment of 
specialist Physical 
Education teachers to 
deliver PE classes 
(intervention) in 
primary schools, rather 
than delivery by 
generalist primary 

The PE classes delivered 
by the PE specialists 
involved more fitness work 
than the control PE classes 
delivered by primary 
generalists (7 vs 1 min) 
and more moderate 
physical activity (17 vs 10 
min respectively). There 
were no differences at 

Specialist-taught primary school 
PE increased physical activity 
in PE classes, and was 
associated with a lower 
prevalence of IR in community-
based children. 
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teachers (control).  baseline, but by grade 6, 
the intervention had 
lowered the prevalence of 
insulin resistance (IR) by 
14% in the boys and by 9% 
in the girls, also the 
percentage of children with 
insulin resistance (IR) 
greater than 3 (a cut off 
point for metabolic risk) 
was lower in the 
intervention than the 
control group (combined, 
22% vs 31%; boys, 12% vs 
21%; girls, 32% vs 40%). 
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Updates from studies assessing the effects of exercise training upon SI 365 

Exercise training studies generally report health benefits for the majority of participants, 366 

providing the exercise dose is of an appropriate intensity, frequency, duration, and 367 

undertaken for sufficient time.[7, 20]  Meta-analyses and reviews indicate that regular 368 

aerobic exercise that complies with exercise prescription guidelines,[51] increases SI by 369 

~25-50%.[6, 8] This training adaptation is likely induced by the increased activity of the 370 

muscle fibres, since low intensity aerobic activity, which primarily utilises type 1 fibres, 371 

induces changes in type 1 fibres expressing myosin heavy chain (MHC) I,  but not type 2 372 

fibres (expressing MHC  IIA or MHC  IIX).[12] If such adaptations are specific to the fibres 373 

that experience increased activity, then this presents the possibility of higher intensity 374 

exercise, which involves a greater recruitment of the type 2 fibres, inducing beneficial 375 

adaptations in both type 1 and type 2 fibres. 376 

 377 

Aerobic exercise interventions, including the assessment of the influence of exercise volume 378 

and intensity 379 

Table 3 summarises the results of recent studies assessing the effect of exercise 380 

interventions upon SI. Studies consistently show that moderate aerobic exercise for 30 381 

minutes or more, 3 or more times a week for 8 or more weeks improves SI and other 382 

markers of glycaemic control.  This has been reported in a range of populations including 383 

diabetic women,[52] diabetic and impaired glucose tolerance men and women,[53, 54] 384 

obese men,[55] obese women,[56] obese and overweight postmenopausal women,[38] 385 

obese adolescents,[57, 58] obese patients,[59] sedentary moderately overweight young 386 

men,[19, 60] subjects with metabolic syndrome,[61] older obese adults with impaired 387 

glucose tolerance,[34] obese adolescent girls,[62] and adults with T2DM and non-alcoholic 388 

fatty liver disease.[63]  389 
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Table 3.  Summary of recent studies assessing exercise training effects on insulin sensitivity  390 

Reference Participants Study type Exercise mode  Outcome measure Authors conclusions and 
comments 

Stuart et al., 
2013 [15] 

Eleven 
participants with 
the metabolic 
Syndrome and 
seven non-
diabetic, 
sedentary 
controls. 

Exercise 
intervention. Pre- 
v post 
intervention 
comparison. 

Eight weeks of 
increasing intensity 
stationary cycle 
training. 

Cycle training without 
weight loss did not change 
insulin resistance in 
metabolic syndrome 
subjects or sedentary 
controls. Muscle insulin 
receptor expression 
increased in both metabolic 
syndrome and sedentary 
groups, while GLUT4 
expression also increased 
in the metabolic syndrome 
subjects. The excess 
phosphorylation of insulin 
receptor substrate 1 (IRS-
1) at Ser337 in metabolic 
syndrome muscle tended 
to increase further after 
training in spite of a 
decrease in total IRS-1. 

In the absence of weight loss, 
the cycle training of metabolic 
syndrome subjects increased 
the expression of insulin 
receptors and GLUT4 in muscle 
but did not decrease the insulin 
resistance. 

Malin et al., 
2013 [18] 

Twenty four, 
older, obese 
adults with 
impaired fasting 
glucose (IFG) 
and/or impaired 
glucose tolerance 
(IGT). 

Exercise 
intervention. 

12-wks of exercise (60 
min/day, 5 days/wk at 
∼85% HRmax). 

Exercise increased clamp-
derived peripheral and 
hepatic SI more in adults 
with IFG or IGT alone than 
with IFG + IGT. 

Exercise increased peripheral 
but not hepatic SI. 

Reichkendler 
et al., 2013 

Sixty-one, 
healthy, 

Randomised, 
controlled trial. 

Moderate (300 
kcal/day) 

Aerobic exercise training 
increased insulin-

Aerobic exercise training 
enhances glucose uptake in 
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[19] sedentary, 
moderately 
overweight, 
young men. 

or high (600 kcal/day) 
physical exercise for 11 
wks, vs sedentary 
living (control).  
Pre and post training, 
insulin-stimulated 
glucose uptake was 
assessed in five 
individual femoral 
muscle groups and four 
different adipose tissue 
regions. 

stimulated glucose uptake 
in skeletal muscle but not 
in adipose tissue. 

muscle but not adipose tissues, 
indicating a differential effect on 
these tissues. 

Prior et al., 
2014 [32] 

Sixteen, 
sedentary, 
overweight-
obese, older men 
and women, with 
impaired glucose 
tolerance. 

Pre- vs post- 
intervention 
comparison. 

Six-months of aerobic 
exercise and weight 
loss. Three sessions a 
week progressing from 
20 min at 50% heart 
rate reserve to 45 min 
at 85% of heart rate 
reserve. 

Hyperinsulinemic-
euglycemic clamp and oral 
glucose tolerance test 
(OGTT). Capillary density 
was measured via biopsies 
of the vastus lateralis. 

Insulin sensitivity increased and 
120-min post-prandial glucose 
was lower post-intervention. 
These changes were 
associated with increases in 
capillary density.  

Malin et al., 
2013 [34] 

Thirty five, older, 
obese, adults 
with prediabetes. 

Exercise 
intervention. 

Progressive 12-wk 
exercise intervention 
(60 min at ~85% HRmax 
5 days/wk). 

Exercise increased first- 
and second-phase 
disposition index (DI; β-cell 
function = glucose-
stimulated insulin secretion 
× clamp-derived SI). 

Exercise training plus weight 
loss increased pancreatic β-cell 
function in a linear dose-
response manner in adults with 
pre-diabetes. Relatively high 
exercise doses (>2,000 
kcal/wk) may be necessary to 
enhance β-cell function in 
adults with poor insulin 
secretion capacity. 

Madsen et 
al., 2015 [36] 

Ten, non-active 
type 2 diabetic 
patients (56 ± 2 
years) and 

Pre v post 
intervention 
comparison. 

Three sessions per 
week of HIIT (10 x 60s) 
for 8 weeks for both 
type 2 diabetics and 

Type 2 diabetics displayed 
significant improvements in 
HOMA-IR and β cell 
function. The healthy 

HIIT was effective in improving 
HOMA-IR and β cell function in 
type 2 diabetics. 
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thirteen matched 
healthy 
participants.  

healthy participants. 
Glycemic control was 
assessed using 
HOMA-IR and β cell 
function assessed. 

group, who displayed 
superior HOMA-IR and β 
cell function results at 
baseline, exhibited no 
change in these measures, 
which was not unexpected 
given their baseline values.   

Brennan et 
al., 2014 [37] 

Seventy seven, 
sedentary, obese 
men and women. 

Repeated 
measures, 
intervention vs 
control condition. 

Three to four months of 
aerobic exercise vs 
control 

Hyperinsulinemic-
euglycemic clamp and VO2 

peak. 

Changes to insulin sensitivity 
were not associated with 
changes to VO2 peak. 

de Sousa et 
al., 2014 [40] 

Forty-four, type 2 
diabetic patients, 
aged 48-68 years 
(27 females, 17 
males). 

Randomized trial: 
Diet vs Football 
training plus diet. 

Football training: 3 × 
40 min/week for 12 
weeks. 

Football training plus diet 
group displayed 
improvements in HOMA-IR, 
whereas diet alone did not 

Football training plus diet was 
potentially better at preventing 
T2D complications than diet 
alone. It was also more 
effective than diet alone at 
improving other markers of 
metabolic and cardiovascular 
health, such as blood lipid 
profile and CRF. 

Motahari-
Tabari, et al., 
2014 [52] 

Fifty-three, type 2 
diabetic women. 

Randomized 
clinical trial: 
exercise vs 
control. 

Thirty minutes at a 
maximum intensity of 
60% increase in heart 
rate, 3 times a week for 
8 weeks. 

HOMA-IR improved and 
fasting plasma glucose and 
insulin were lowered.  

Exercise was effective at 
improving SI.  

Ryan et al., 
2014 [53] 

Seventy-seven, 
overweight and 
obese, 
sedentary, 
postmenopausal, 
women. 

Prospective 
controlled study. 

Six months of: ‘aerobic 
exercise (3 d/wk) + 
weight loss’ vs ‘weight 
loss without exercise’.  

Insulin resistance 
decreased in both groups. 
Glucose utilization 
increased by 10% with 
‘aerobic exercise + weight 
loss’ and 8% with ‘weight 
loss without exercise’. 

No statistically significant 
difference in changes to insulin 
resistance between ‘aerobic 
exercise + weight loss’ vs 
‘weight loss without exercise’. 
However, exercise benefitted 
other markers of metabolic 
health. 

Mitranun et 43 participants Randomised Sedentary (control) vs Fasting blood glucose Both continuous and interval 
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al., 2014 [54] with type 2 
diabetes. 

controlled trial.   continuous exercise vs 
interval training. For 30 
and 40 min/day, 3 
times/week for 12 
weeks. 

levels decreased in both 
exercise groups. 
Glycosylated haemoglobin 
levels decreased only in 
the interval training group. 

training were effective in 
improving  
glycaemic control, but the 
interval training program 
appears to confer greater 
improvements. 

Skleryk et 
al., 2013 [55] 

Sixteen, 
sedentary, obese 
men. 

Exercise 
intervention. 

Two weeks of reduced-
volume sprint interval 
training (SIT) (three 
sessions of 8-12 × 10 s 
sprints/wk) compared 
to traditional exercise 
recommendations 
(TER) (5 x 30 min 
sessions at 65% peak 
oxygen 
consumption/wk). 

HOMA-IR, AS160  
phosphorylation and COX 
II, COX IV, GLUT-4, Nur77 
and SIRT1 protein 
expression assessed at 
baseline and approximately 
72 h after the final training 
bout were unaltered in 
either group. 

Two weeks of reduced-volume 
SIT or TER did not elicit any 
measurable metabolic 
adaptations in previously 
sedentary, obese men. 

Trachta et 
al., 2014 [56]  

Fifteen, obese 
women. 

Intervention with 
comparison 
group comprising 
of ‘healthy’ lean 
subjects who did 
not undertake the 
exercise 
intervention. 

Three-month exercise 
program consisting of 
30 min of aerobic 
exercise, 3 times a 
week. 

HOMA-IR improved in the 
obese group. 

Three months of regular 
exercise improved, blood 
glucose and HOMA-IR, but had 
no significant effect on lipid 
profile and blood pressure. 

Many et al., 
2013 [57] 

Eleven, morbidly 
obese minority 
adolescents (BMI 
41.4 ± 1.8 kg/m2)  

Exercise 
intervention. 

Eight weeks of aerobic 
exercise training (~180  
min/wk at 40-55% VO2 

peak). Pre- and post-
intervention, SI and 
inflammatory markers 
were assessed. 

Insulin action improved in 
response to training, as 
indicated by a ~37% 
increase in SI. 

This study supports the efficacy 
of exercise training 
interventions on improving 
metabolic syndrome features in 
morbidly obese minority youth. 

Racil et al., 
2013 [58] 

Thirty-four, 
obese, 

Randomised 
controlled trial. 

Twelve-weeks of 
moderate-intensity 

Significant decrease in 
insulin resistance (HOMA-

Interval training improved SI. 
High intensity interval exercise 
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adolescent 
females. 

interval training (MIIT) 
or high-intensity (HIIT) 
interval training 
exercise. 

IR) occurred in both HIIT 
and MIIT groups (-
29.2 ± 5.3 and -
18.4 ± 8.6 %, respectively. 

produced greater benefits than 
moderate intensity interval 
exercise. 

Kurose, et 
al., 2014 [59] 

Forty three, 
obese patients. 

Exercise 
intervention. 

Thirty minutes on a 
cycle ergometer or 
treadmill, 3 times per 
week for 6 months, 
with training intensity 
adjusted to anaerobic 
threshold. 

HOMA-IR improved. Aerobic exercise improved SI.  
Additionally, insulin resistance 
was the only independent factor 
influencing improvement in 
endothelial function. 

Reichkendler 
et al., 2014 
[60] 

Sixty-one, 
healthy, 
sedentary, 
moderately 
overweight, 
young men. 

Randomised 
controlled trial. 

Eleven weeks of 
physical activity at 
moderate dose (300 
kcal/day); high dose 
(600 kcal/day); or 
sedentary living. 

In both exercise groups, 
peripheral SI improved. 
Homeostasis model 
assessment of insulin 
resistance decreased. 

Physical activity improved SI 
and small additional health 
benefits were found when 

exercising at ∼3,800 vs ∼2,000 
kcal/week in young moderately 
overweight men. 

Di Raimondo 
et al., 2014 
[61] 

One hundred and 
seventy-six 
subjects with 
metabolic 
syndrome. 

Exercise 
intervention. 

Walking for 1 h, 5 days 
a week for 24 weeks at 
an intensity higher than 
the one classified as 
'comfortable' by the 
patient. 

Mean fasting glucose 
improved. 

Regular walking at a moderate 
to hard intensity improved 
glycaemic control. 

Lee et al., 
2013 [62] 

Forty-four, 
obese, 
adolescent girls. 

Randomised 
controlled trial. 

Three months of 180 
min/wk aerobic 
exercise vs resistance 
exercise vs a non-
exercising control 
group. SI was 
evaluated by a 3-h 
hyperinsulinemic (80 
mU·m2·min-1) 
euglycemic clamp. 

Compared with control, 
aerobic exercise improved 
SI but resistance exercise 
did not. 

In obese, adolescent, girls, 
aerobic exercise but not 
resistance exercise was 
effective in improving SI and did 
so independently of weight loss 
or calorie restriction. 

Bacchi et al., Thirty-one, Randomized Effects of 4-months of Post-training, SI was Resistance training and aerobic 
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2013 [63] sedentary, 
adults, with type 
2 diabetes, and 
non-alcoholic 
fatty liver 
disease. 

controlled trial. aerobic or resistance 
training on SI. 
 

increased and hepatic fat 
content reduced in both 
groups. 

training were both effective in 
improving SI and reducing 
hepatic fat content in patients 
with non-alcoholic fatty liver 
disease. 

Motahari-
Tabari et al., 
2015. [64] 

Fifty-three, type 2 
diabetic women. 

Exercise 
intervention vs 
non-exercise 
control condition. 

Eight weeks of walking 
for 30 minutes three 
times a week. 

Exercise improved HOMA-
IR, fasting plasma insulin 
and glucose. 

The exercise intervention was 
effective in lowering plasma 
glucose, insulin levels and 
insulin resistance. 
 

Herzig et al., 
2014 [65] 

One hundred and 
thirteen pre-
diabetic males 
and females. 

Exercise 
intervention vs 
non-exercise 
control condition. 

Three sessions of 60 
minutes walking per 
week, for 3 months vs 
non-exercise control. 

The exercise intervention 
improved HOMA-IR, fasting 
insulin and glucose. 

Compared to controls, the 
exercise group improved 
HOMA-IR and fasting insulin, 
but did not improve VO2 max or 
fasting glucose. 

Damirchi, et 
al., 2014 [66] 

Twenty-one, 
middle-aged, 
men with 
Metabolic 
Syndrome 
(MetS). 

Exercise, 
intervention vs 
control condition. 

Six-weeks of aerobic 
exercise: 3 sessions 
per week, for 25 – 40 
minutes of walking or 
running at 50 – 
60%VO2 peak. Followed 
by 6 weeks of 
detraining. 

HOMA-IR improved after 6 
weeks of training, but had 
returned to baseline after 6 
weeks of detraining. 

Regular exercise improved 
insulin sensitivity, but needs to 
be maintained as insulin 
sensitivity is lost if regular 
exercise ceases. 

Solomon et 
al., 2013 [67] 

One hundred and 
five participants, 
with impaired 
glucose tolerance 
or type 2 
diabetes. 

Observational 
clinical study. 

Twelve to 16 weeks of 
aerobic exercise 
training. 

Glycosylated haemoglobin, 
fasting glucose, and 2-hour 
oral glucose tolerance test 
were improved post-
intervention in 69%, 62%, 
and 68% of subjects, 
respectively, while SI 
improved in 90% of the 
participants. 

Training-induced changes in 
glycaemic control were related 
to changes in glucose-
stimulated insulin secretion, but 
not SI. 
 
Training-induced changes in β-
cell function may be a key 
determinant of training-induced 
improvements in glyacemic 



 
 

30 
 

control. 

Grieco et al., 
2013 [68] 

Forty-five, 
healthy, 
recreationally 
active, young 
adults.  

Randomised 
controlled trial. 

Six-week exercise 
intervention. Four 
groups: moderate-
intensity (50% heart 
rate reserve [HRR]); 
vigorous-intensity (75% 
HRR); maximal-
intensity intervals 
(95/50% HRR); and 
non-exercising control 
group. 

There were no significant 
changes in insulin 
effectiveness (homeostasis 
model assessment 
(HOMA) and quantitative SI 
check index (QUICKI) in 
any exercise group.  
 

The exercise intervention did 
not significantly affect insulin 
effectiveness in a young adult 
population as assessed by 
HOMA or QUICKI. 

Chen et al., 
2015 [69] 

Twenty three, 
men and women 
with metabolic 
syndrome (MetS) 
and 87 men and 
women without 
metabolic 
syndrome. Mean 
age 48 and 49 
years 
respectively.  

Pre vs post 
exercise 
intervention 
comparison.  

Three months home 
based exercise 
program of three x 30 
minute sessions per 
week at a moderate 
intensity of either 
‘stepper’ or ‘cardio-
dance’. 

HOMA-IR was maintained 
in the non-MetS group (1.8 
vs 1.9), but deteriorated in 
the MetS group (3.6 vs 
4.3). 

The authors reported that 72% 
of the non-MetS group but only 
39% of the MetS group 
achieved the minimum exercise 
compliance, and suggested that 
this may have affected the poor 
outcome in the MetS group. 

Duvivier et 
al., 2013 [74] 

Eighteen, healthy 
subjects. 

Cross-over 
design to 
compare daily 
regimens of 
activity and 
exercise. 

Four days of each of 
the following regimens: 
(i) 14 hr/d sitting; (ii) 13 
hr/d sitting + 1 hr/d 
vigorous exercise; (iii) 
8 hr/d sitting + 4 hr/d 
walking + 2 hr/d 
standing. 

Oral Glucose Tolerance 
Tests (OGTT) were 
undertaken the morning 
after 4 days on each 
regimen. Area Under the 
Curve (AUC) for insulin 
was lower following the 
walking and standing 
regimen compared to the 
others.  

Reducing sitting time by 
walking and standing was more 
effective than one hour of 
vigorous exercise in 
maintaining SI. 

Earnest et Men at risk for Randomised, Three months of Twenty-four hour and 72 h Eucaloric AER and INT appear 
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al., 2013 [75] insulin 
resistance. 

controlled, 
exercise 
intervention trial.  

eucaloric (12 
kcal/kg/wk) steady 
state aerobic training 
(AER) compared with 
interval training (INT). 

post-exercise fasting OGTT 
improved. HOMA-IR was 
improved with INT and 
AER. Stratification of 
participants based on pre-
training values for HOMA-
IR revealed that  
both low and high HOMA-
IR participants 
demonstrated significant 
reductions with INT, 
whereas only high HOMA-
IR  showed significant 
improvements with  AER. 

to affect fasting glucose OGTT 
similarly.  Both INT and AER 
benefitted those with high 
HOMA-IR, while INT also 
benefitted those with low 
HOMA-IR, thereby suggesting 
that INT may have a greater 
impact by benefitting across a 
wider spectrum of HOMA-IR. 

Gillen et al., 
2016 [76] 

Twenty-five 
sedentary men 
(27 ± 8 years) 

Randomised 
control trial. 

For 12-weeks, three 
sessions per week of 
either: (i) Sprint Interval 
Training (3 x 20s 
maximal sprint, 
interspersed with 2 min 
cycling recovery at 
50W), or (ii) 45 mins of 
moderate intensity 
cycling at ~75% HRmax 
(~110W), or (iii) non-
exercise control.  
Insulin sensitivity was 
assessed via 
intravenous glucose 
tolerance tests. 

Both exercise regimens 
produced significant and 
similar improvements in SI 
as measure via intravenous 
glucose tolerance tests 
performed before and 72 
hrs post-exercise. Likewise 
VO2 peak improved (~19%) 
in both exercise groups, as 
did skeletal muscle 
mitochondrial content.   
There were no statistically 
significant changes in the 
control group.   
 

Sprint Interval Training 
produced similar fitness and SI 
improvements to prolonged 
moderate intensity exercise, 
despite requiring a five-fold 
lower exercise volume and time 
commitment. 

Shepherd et 
al., 2015 [77] 

Ninety, 
previously 
inactive 
volunteers.  

Randomised 
control trial. 

Ten weeks, 3 sessions 
per week of either: (i) 
HIIT (15 – 60s with 
target HR >90% HRmax, 

HOMA improved in both 
groups, but was achieved 
with less time commitment 
and greater adherence in 

HIIT may provide a time-
efficient alternative to 
continuous moderate intensity 
exercise. 
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with 45 – 120 s active 
recovery for a total of 
18 – 25 minutes, 
including warm up) or 
(ii) 30 - 45 min 
continuous exercise at 
an intensity ~70% 
HRmax. 

the HIIT group. 

Arad et al., 
2015 [80] 

Twenty-eight 
overweight/obese 
African American 
women.  

Randomised 
control trial, with 
diet determined 
to maintain body 
weight. Exercise 
intervention n = 
14; control n = 
14. 

For 14-weeks, three 
sessions per week of 
HIIT (4 x 30-60s at 75-
90% Heart Rate 
Reserve (HRR) with 
180-210s at 50% HRR 
between high intensity 
bouts) or non-exercise 
control.  Insulin 
sensitivity was 
assessed using 3 hr 
euglycaemic-
hyperinsulinemic 
clamp.  

Whilst some parameters of 
exercise metabolism 
improved, there were no 
improvements in SI 
compared to control group. 

HIIT did not improve SI when 
weight was maintained. 

Lanzi et al., 
2015 [81] 

Nineteen obese 
men.  

Randomised 
control trial. 

Two week exercise 
intervention, 4 sessions 
per week of either: (i) 
HIIT (10 x 60s at 90% 
HRmax, with 60s 
recovery), or (ii) 40 -50 
min continuous 
exercise at an intensity 
identified as that 
eliciting maximal fat 
utilisation (Fatmax). 

Aerobic fitness improved in 
both groups, but HOMA2-
IR only improved in the 
Fatmax group. 

In the short-term (2 weeks) 
exercise training of a 
continuous moderate intensity 
(Fatmax) was more effective than 
HIIT at improving glycemic 
control. 

Fisher et al., Twenty-eight Randomised Six weeks, 5 sessions Post-intervention, both Both exercise regimens 
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2015 [82] sedentary 
overweight/obese 
men (20 ± 1.5 y).  

control trial. per week of either: (i) 
HIIT (twenty minutes 
comprising of repeated 
bouts of 30s at 85% of 
peak Wingate power 
with 4 min recovery at 
15%  of peak Wingate 
power), or (ii) 45 - 60 
min continuous 
exercise at an intensity 
of 55-65% VO2 max. 

exercise groups displayed 
improvements in SI but 
neither exercise group 
displayed statistically 
significant improvements in 
HOMA-IR.  

improved SI, as determined by 
OGGT, but not HOMA-IR 
(fasting insulin (µU/ml) x fasting 
glucose (mmol/L)) 

Matsuo et 
al., 2015 [83] 

Twenty-six men 
with metabolic 
risk factors.  

Randomised 
control trial. 

Eight-week exercise 
intervention, three 
sessions per week of 
either: (i) HIIT, (3 x 
3min at~ 80-85% VO2 

peak with 2 min recovery 
at 50% VO2 peak, or (ii) 
40min at 60 – 65% VO2 

peak. Followed by four 
weeks of a low-calorie 
diet. 

Both exercise interventions 
showed trends for 
improving HOMA-IR, and 
this was statistically 
significant in the HIIT group 
after the subsequent 4-
week low calorie diet. 

SI trended towards 
improvement with both HIIT and 
moderate intensity exercise, 
and was further improved with 
the low calorie diet in the HIIT 
group. 

Inoue et al., 
2015 [87] 

Forty-five, post-
pubertal, obese, 
adolescents. 

Pre vs post 
intervention 
comparing an 
aerobic exercise 
regimen (AT), 
with two exercise 
regimens that 
included both 
aerobic exercise 
and resistance 
exercise (LP and 
DUP). 

Twenty-six weeks of 
exercise intervention, 3 
x 60 minute sessions a 
week.  

Insulin sensitivity (HOMA-
IR) improved in both the 
groups undertaking 
combined aerobic and 
resistance training, but 
statistically significant 
improvements were not 
found in the group 
undertaking aerobic 
exercise without resistance 
training (AT). 

The combination of aerobic plus 
resistance exercise improved 
insulin sensitivity more 
effectively than aerobic 
exercise alone. 
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Dâmaso et 
al., 2014 [88] 

One hundred and 
sixteen, obese, 
adolescents. 

Pre vs post 
intervention 
comparing: (i) 
aerobic exercise 
regimen, with (ii) 
aerobic exercise 
plus resistance 
exercise regimen. 

One year of: (i) an 
aerobic exercise 
regimen, or (ii) aerobic 
exercise plus 
resistance exercise. 

Insulin sensitivity measured 
as HOMA-IR. 

Whilst both exercise regimens 
improved important clinical 
parameters, the ‘aerobic plus 
resistance exercise’ regimen 
produced better metabolic 
outcomes than aerobic exercise 
alone. 

Nikseresht et 
al., 2014 [89] 

Thirty-four, 
sedentary, 
obese, middle-
aged, men. 

Exercise, 
interventions vs 
control condition. 

Twelve weeks, of 3 
sessions per week of: 
(i) 40 – 65 minutes of 
resistance training; (ii) 
aerobic interval training 
(4 x 4 minutes at 80 - 
90% HRmax, with 3 
minutes recovery 
between intervals); (iii) 
non-exercise control. 

Fasting HOMA-IR. Compared to control condition, 
both aerobic interval training 
and resistance training were 
equally effective in reducing 
insulin resistance. 

Conceição et 
al., 2013 [90] 

Twenty, post-
menopausal 
women. 

Exercise 
intervention, 
randomised 
controlled trial. 

Resistance training: ten 
exercises, with 3 × 8-
10 maximal repetitions 
three times per week. 

Compared to control group, 
the resistance training 
group displayed decreases 
in fasting blood glucose. 

Resistance training performed 
three times a week may reduce 
the metabolic syndrome Z-
score with concomitant 
decreases in fasting blood 
glucose. 

Molsted et 
al., 2013 [91] 

Twenty-three 
patients treated 
by dialysis, with 
(n = 14) and 
without (n = 9) 
impaired glucose 
tolerance.  

Control period, 
followed by the 
exercise 
intervention. 

Sixteen weeks of 
strength training three 
times a week. 

After the strength training, 
fasting insulin, 2-hr insulin 
and ‘area under the curve’ 
insulin (AUC) were 
significantly lower in 
patients with impaired 
glucose tolerance or type 2 
diabetes.  

Strength training was 
associated with a significant 
improvements in glucose 
tolerance in patients with 
impaired glucose tolerance or 
type 2 diabetes undergoing 
dialysis. The effect was not 
associated with muscle 
hypertrophy. 

Mavros et One-hundred and Participants were Twelve-months of Within the resistance Improvements in metabolic 
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al., 2013 [92] three older adults 
with type 2 
diabetes. 

randomized to 
the resistance 
training 
intervention or 
non-exercise 
control group.  
 

resistance training, 3 
days per week, or 
sham exercise. 

training group, changes in 
HOMA2-IR were 
associated with changes in 
skeletal muscle mass and 
fat mass. Changes in 
visceral adipose tissue 
tended to be related to 
changes in HOMA2-IR. 

health in older adults with type 
2 diabetes were mediated 
through improvements in body 
composition, only if they were 
achieved through high-intensity 
progressive resistance training. 

Garnett et 
al., 2014 [93] 

One-hundred and 
eleven obese, 
pre-diabetic, or 
insulin resistant, 
adolescents. 

Repeated 
measures, 
exercise 
intervention with 
groups differing in 
dietary regimen. 

Twelve weeks of 45 – 
60 minutes, moderate 
to vigorous circuit 
training, twice a week.  

OGTT following an 
overnight fast. 

SI improved within 12 weeks of 
commencing the exercise 
intervention and was still 
improved compared to baseline 
at 12 months. 

Trussardi 
Fayh et al., 
2013 [97] 

Forty-eight, 
obese 
Individuals, age 
31.8 ± 6.0 years. 

Randomised 
clinical trial. 

Participants were 
allocated to a diet-only 
group or a diet and 
exercise group. The 
intervention was 
maintained until 5% of 
the initial body weight 
was lost.  

Both regimens produced 
significant and similar 
decreases of visceral 
adipose tissue and HOMA-
IR.   
 

Five percent weight loss 
reduced abdominal fat and 
insulin resistance in obese 
individuals, but exercise did not 
add to the effect of weight loss 
on the outcome variables. 

 391 

 392 
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A commonly advocated exercise prescription of 3 sessions per week of 30 minutes walking 393 

was used by Motahari-Tabari et al.,[64] who reported improvements in the Homeostatic 394 

Model Assessment of Insulin Resistance (HOMA-IR), fasting plasma insulin and fasting 395 

glucose in Type 2 diabetic women, following 8 weeks of this aerobic exercise regimen. 396 

Likewise, Herzig et al.,[65] found that 60 minutes of walking, three times a week for 3 397 

months in pre-diabetics improved HOMA-IR, fasting and 2-h insulin, despite no 398 

improvements in fasting 2-h glucose or VO2 max. The finding of an improvement in SI without 399 

an improvement in VO2 max concurs with some previously mentioned studies.[37]   400 

Damirchi et al.,[66] also demonstrated an improvement in insulin sensitivity in middle-aged 401 

men with Metabolic Syndrome (MetS) following a 6-week aerobic exercise program of 3 402 

sessions per week of 25 – 40 minutes walking or running at 50 – 60% VO2 peak, and also 403 

reported the interesting finding that this benefit was lost within 6 weeks of detraining. 404 

Solomon et al., reported improvements in glucose-stimulated insulin secretion, but not SI in 405 

participants with type 2 diabetes or impaired glucose tolerance, [67] and suggested that 406 

training-induced changes in β-cell function may be a key determinant of training-induced 407 

improvements in glycaemic control. Additionally, Skleryk et al., did not find any beneficial 408 

changes from 5 days a week of aerobic exercise at 65% VO2 peak in overweight/obese 409 

sedentary males,[55] but their exercise intervention was only for 2 weeks and may not have 410 

been of sufficient duration to induce detectable changes. Likewise, Grieco et al.’s study on 411 

recreationally active young adults did not change insulin effectiveness,[68] although, given 412 

that the participants were already recreationally active it may be that their pre-study values 413 

were not sufficiently poor to be changed by the relatively short  6-week intervention.  414 

Chen et al.’s study also produced results that were not in accordance with similar studies 415 

and they suggested that this may have been due to participants’ lack of compliance and 416 

exercise intensity,[69] with their non-metabolic syndrome group attaining greater compliance 417 

and thereby maintaining their SI, whilst their metabolic syndrome group displayed poorer 418 
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compliance, which may have contributed to their decline in SI. 419 

 420 

One exercise variable that is subject to manipulation in exercise interventions is that of 421 

exercise volume, and in general, studies that have examined a possible dose response 422 

report additional benefits from higher exercise doses (>1,900 kcal/wk), with increases in SI 423 

and improved β-cell function in adults with prediabetes.[34] Whilst such levels of activity may 424 

be desirable, compliance is often low even for much lower exercise volumes [70 - 73] and for 425 

those who are unable to meet these levels it is evident that much of the health benefit is 426 

attained from an exercise dose of only ~1,900 kcal/wk or even less, with only minor 427 

additional benefits to fitness, body fat and insulin sensitivity when exercising for 600 kcal/day 428 

compared with 300 kcal/day.[60] Indeed the commonly prescribed dose of 5 x 30 min of 429 

moderate intensity exercise/wk, which is reported on numerous occasions to be effective, 430 

would be around 475 – 950 kcal/wk. 431 

 432 

Another exercise variable that is receiving attention in the research is that of exercise 433 

intensity, as many of the adaptations that play a role in the exercise-induced increases in SI 434 

display a response that is related to the intensity of the activity. For example, while low 435 

intensity training such as walking for 30 minutes, 3 – 4 days per week, for 6 months 436 

improves markers of glycaemic control (such as ‘area under the curve’ [AUC] for insulin), a 437 

further 6 months of higher intensity exercise (jogging 3- 4 days per week for 6 months) elicits 438 

substantially greater improvements.[6] Some reviews suggest that higher intensity exercise 439 

(>75% of VO2 peak) is more efficacious than lower intensity (<60% of VO2 peak).[6] However, 440 

these findings are equivocal as others have reported that lower intensity activity, such as 441 

prolonged bouts of standing and walking are more effective than vigorous exercise of the 442 

equivalent energy expenditure in improving insulin sensitivity as indicated by oral glucose 443 

tolerance tests.[74] Hence in the context of sustained bouts of continuous exercise the issue 444 

of the relative importance of exercise volume in terms of duration or total calorific cost of the 445 
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exercise, versus the intensity of the exercise remains to be resolved. 446 

 447 

Interval training (HIIT and SIT) that utilise repeated brief bouts of exercise at intensities that 448 

are greater than those used in exercise sessions involving a more prolonged single 449 

continuous exercise bout has been demonstrated to induce significant increases in GLUT4 450 

protein (up to 260%) and SI (25 – 35%).[17, 54, 58, 75] With the overall outcomes indicating 451 

comparable and in some cases superior improvements in SI compared to moderate intensity 452 

continuous exercise training [76], despite it involving substantially less time commitment and 453 

reduced total exercise volume. Additionally, Earnest et al., [75] found interval training to 454 

benefit low HOMAIR patients as well as High HOMAIR patients, whereas moderate intensity 455 

aerobic exercise only benefitted the High HOMAIR patients. Hence interval training could be 456 

beneficial to both, and for those with relatively mild insulin resistance it may be more 457 

effective in preventing further decline and/or restoring SI. As an extension of this, it may be 458 

speculated that HIIT could be a more effective preventative exercise regimen for 459 

asymptomatic healthy individuals. Furthermore, Madsen et al.,[36] reported that HIIT 460 

improved both HOMA-IR and β cell function in type 2 diabetic patients, hence it could be 461 

beneficial across the insulin resistance spectrum. 462 

 463 

Shepherd et al., [77] investigated the efficacy of HIIT in a ‘gym-setting’ with ninety previously 464 

inactive volunteers. In this study they reported that both HIIT and moderate intensity 465 

exercise improved SI, but HIIT achieved this with less than half the time commitment and 466 

greater adherence. Such findings are important given that a ‘lack of time’ remains the most 467 

commonly cited barrier to regular exercise participation.[78, 79] This, combined with reports 468 

of greater enjoyment when compared with sessions undertaken at a constant high intensity, 469 

is likely to improve compliance, although the higher intensity of the exercise may make it 470 

unsuitable for some ‘at risk’ individuals with cardiovascular issues. However, not all studies 471 

have reported HIIT to improve insulin sensitivity, including those of Arad et al.[80] in which 472 
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overweight/obese African American women undertook 14-weeks of HIIT (3 sessions a 473 

week), whilst maintaining a stable weight and that of Lanzi et al.[81] in which moderate 474 

intensity exercise was more effective that HIIT in improving HOMA2-IR in obese men, 475 

although the exercise intervention for this later study was only 2-weeks. The complexity of 476 

the issue is exemplified in the findings of studies such as that of Fisher et al., [82] in which 477 

both HIIT and moderate intensity exercise improved SI, as determined by an OGGT, but did 478 

not improve insulin resistance as determined by HOMA-IR (fasting insulin (µU/ml) x fasting 479 

glucose (mmol/L)). In other work, whilst Matsuo et al. [83] reported beneficial trends in 480 

HOMA-IR following HIIT as well as moderate intensity exercise, the results only reached 481 

statistical significance when the participants went on to follow a 4-week low-calories diet. 482 

 483 

Effects of resistance training upon SI 484 

Whilst much of the early research into exercise and SI has focused on aerobic exercise, 485 

recent exercise interventions using resistance training (REX) have demonstrated that this 486 

mode of exercise can also improve indicators of glycaemic control in a variety of populations, 487 

including older overweight individuals with prediabetes [84] and postmenopausal women 488 

[85]. However, the training adaptations may not always change all indicators of glycaemic 489 

control as Eikenberg et al., [84], found that twice weekly resistance training for 12 weeks 490 

improved 2 hr OGTT results in their participants who commenced the study with impaired 491 

glucose tolerance (IGT) and impaired fasting glucose (IFG), but not in those who 492 

commenced with impaired fasting glucose (IFG) without IGT. Likewise, REX did not alter 493 

fasting glucose concentrations, AUC or ISI. 494 

At a molecular level, REX consisting of 2 – 3 sessions per week for 8 – 26 weeks, can 495 

increase GLUT 4 concentrations and translocation by 30 – 70%, and enhance SI by 10 – 496 

48%.[6, 17, 86] Some studies suggest that these improvements could be partially dependent 497 

upon the training stimulus increasing muscle mass, as well as qualitative changes within the 498 
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muscle.[86] With the metabolic adaptations potentially involving changes in the type 2A 499 

fibres that are likely to be recruited during REX, as well as Type 1 fibres. As indicated 500 

elsewhere these adaptations may not be homogeneic between fibre types or exercise 501 

modalities. Furthermore, since both endurance exercise and REX increase SI, it is possible 502 

that a combination of these two training modalities could have additive benefits,[16] 503 

particularly if the molecular targets of these activities differ. Indeed the study by Inoue et al., 504 

found that the combination of aerobic plus resistance exercise was better than aerobic 505 

exercise alone at improving insulin sensitivity in post-pubertal obese adolescents.[87] These 506 

results concur with the findings of Dâmaso et al., [88] whose findings also suggested that the 507 

combination of aerobic and resistance training had better metabolic outcomes than aerobic 508 

training alone for obese adolescents.  Furthermore, Nikseresht et al.,[89] compared the 509 

efficacy of aerobic interval training and resistance training and found them to be equally 510 

effective in reducing insulin resistance and fasting insulin levels, but suggested that the 511 

aerobic program had better anti-inflammatory effects. Consequently the findings of various 512 

studies have contributed towards ‘evidence-based’ exercise recommendations now including 513 

both aerobic and REX guidelines for healthy individuals.[17] 514 

A recent study by Conceição et al.,[90] adds further support to the incorporation of REX to 515 

improve glycaemic control in postmenopausal women.[90] However, the influence of 516 

changes in muscle mass through resistance exercise requires further elucidation since 517 

Molstead et al., reported improvements in fasting insulin, 2-hr insulin and the AUC for insulin 518 

in patients with impaired glucose tolerance or type 2 diabetes who had no increase in 519 

muscle mass, [91] whilst Mavros et al., reported that in their study the improvements in SI 520 

(HOMA2-IR) in older patients with T2DM were associated with changes in skeletal muscle 521 

mass.[92] Hence further work is required to elucidate the impact of quantitative (mass) and 522 

qualitative changes to the skeletal musculature on SI. Bacchi et al., in their study on patients 523 

with T2DM and non-alcoholic fatty liver disease found that both REX and aerobic exercise 524 

improved SI and reduced hepatic fat content.[63]  Likewise, as previously mentioned, 525 
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Nikseresht et al.,[89] found resistance training to be as effective as aerobic interval training 526 

in reducing insulin resistance in obese middle-aged men. Whereas Lee et al., did not find 527 

REX to improve SI in obese adolescent girls, whilst aerobic exercise did.[62]  528 

Circuit training is another variation of exercise mode, including elements of resistance 529 

training and HIIT, as the exercise sessions typically involve brief bouts of high intensity 530 

muscular resistance exercise interspersed with rest periods. In studies involving  obese 10 – 531 

17 year olds with pre-diabetes and/or insulin resistance, it has been demonstrated to 532 

improve insulin sensitivity, when undertaken with a dietary intervention.[93]  533 

 534 

The effect of exercising in a fed or fasted state and other exercise-food manipulations  535 

In 2010, Van Proeyen et al. [94] published a study in which they fed their participants a fat 536 

rich (50% of kcal) hyper-caloric (~+30% kcal/day) diet for 6 weeks. During this time the 537 

participants exercised (cycling and running) four times a week (2 x 60min and 2 x 90min). 538 

Some of these participants exercised in a fasted state, whilst others ate a carbohydrate rich 539 

breakfast ~90 min before the exercise, as well as receiving a carbohydrate drink during the 540 

exercise session (CHO-Fed). There was also a non-exercise control group. The overall 541 

outcome of this was that the group who trained in a fasted state did not increase their body 542 

mass, unlike those in the control and CHO-fed groups. The fasted group also displayed 543 

superior improvements in SI compared to the control group, whereas the CHO-fed group did 544 

not.  Furthermore the fasted group showed greater increases in GLUT4, and elevated AMP-545 

activated protein kinase α phosphorylation. The conclusions being that exercising in a fasted 546 

state may enhance the exercise induced benefits to SI, compared to exercising when 547 

carbohydrate had been recently ingested. The enhancements of these training effects 548 

appear to concur with the improved acute responses when exercising in a fasted state.[44] 549 

In related work, as mentioned previously Matsuo et al.[83]  reported that beneficial changes 550 
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in HOMA-IR were enhanced when the participants underwent a low-calories diet for 4-weeks 551 

following the exercise intervention, even though the exercise intervention had ceased, thus 552 

further highlighting the interaction between exercise and diet in influencing SI. 553 

Other exercise-feeding manipulations that have received recent attention include 554 

undertaking exercise before meals – ‘exercise snacks’ [95]. From which, findings indicate 555 

that brief bouts of exercise (6 x 1min incline walking at 90% HRmax) 30 minutes before main 556 

meals improved glycemic control in individuals with insulin resistance. 557 

 558 

Exercise, SI and changes to body mass  559 

Numerous studies have reported that exercise induced improvements in SI are independent 560 

of changes to body composition or diet induced weight loss, and that the benefits of exercise 561 

and weight loss are additive.[5, 6], as reported by de Sousa et al.,[96] who found football 562 

training couple with weight loss improved insulin sensitivity and blood lipid profile, whereas 563 

weight loss alone did not. However these findings are not unequivocal as some studies 564 

report weight loss to be the key component to improving SI, for example, Stuart et al., found 565 

that aerobic training without weight loss did not improve SI in individuals with metabolic 566 

syndrome, whereas exercise with weight loss did, thereby implying that the main influence 567 

on improving SI was weight loss rather than exercise.[15] Similarly, Trussardi Fayhn et al., 568 

found that exercise training did not add to the effect that weight loss had on improving SI in 569 

obese individuals.[97]  570 

By way of comparison, several recent studies suggest that the combination of exercise 571 

training and diet is more effective than diet alone in improving SI, and even when the 572 

additional benefits of exercise plus diet vs diet alone were modest,[62, 94] the inclusion of 573 

exercise improved other markers of metabolic health.[53] Likewise, Mavros et al., reported 574 

that improvements in metabolic health in older patients with T2DM were mediated through 575 
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improvements in body composition only if they were achieved through high-intensity 576 

progressive REX.[93]  577 

 578 

Non-responders and adverse responders to exercise interventions 579 

Whilst there is unequivocal evidence for physical activity improving population and 580 

participant group mean values, indicating positive changes in the majority of participants, 581 

within the data it is evident that there is considerable variation in the magnitude of response 582 

to exercise interventions within the population: with some individuals displaying considerably 583 

greater changes in a variety of health-related outcome measures than others, despite 584 

adhering to the same exercise regimen.[98]  Additionally, the magnitude of change in one 585 

factor, such as VO2 peak, is not necessarily associated with the magnitude of change in 586 

another factor. For example, in the HART-D study, a 9-month exercise training intervention 587 

for patients with T2DM,[99] 57% of participants displayed an increase in their peak oxygen 588 

uptake (VO2 peak), whilst the remaining 43% exhibited no change. Of those who did show an 589 

improvement, only around two-thirds increased their VO2 peak by > 5% (high-responders to 590 

exercise), and one-third displayed < 5% increase (low-responders to exercise). Yet despite 591 

this disparity in the magnitude of change in aerobic capacity, the exercise intervention 592 

induced similar improvements in HbA1c and body composition (reduction % body fat) in both 593 

responders and non-responders for VO2 peak. Hence the improvements in glycaemic control 594 

were associated with participating in the exercise training, but were not associated with 595 

changes to aerobic fitness, expressed as percentage improvement in VO2 peak, which was 596 

also a finding of the study by Herzig [65].  597 

Furthermore, there is also evidence that a minority of the population may respond adversely 598 

to exercise intervention, as reported in the HERITAGE study on 1,687 men and women, in 599 

which 126 (8.4%) displayed an adverse change (increase >3.5 mU/L) in fasting insulin.[100] 600 
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The underlying reasons for these adverse changes are unknown, but their elucidation may 601 

further the cause of individualised exercise prescription.[100] 602 

 603 

Conclusion 604 

Recently (published 2013 - 2016) studies involving physical activity confirm previous 605 

research findings of its efficacy in improving SI.  A lifestyle incorporating aerobic exercise 606 

and/or physical activity that complies with the guidelines of being of moderate intensity for at 607 

least 30 minutes on 3 – 5 days per week, is associated with improved SI and glycaemic 608 

control. Acute improvements in SI (2 – 72 h post exercise) occur after a single bout of 609 

exercise and chronic adaptations are evident from training studies involving interventions 610 

undertaken for at least 8-weeks. The benefits of physical activity/exercise are evident across 611 

all ages from children to older adults, including those categorised as asymptomatic/healthy, 612 

pre-diabetic/metabolic syndrome, and patients with T2DM. However, the findings are not 613 

unequivocal and even within studies not all indicators of insulin sensitivity and glycaemic 614 

control display improvements. Indeed, even with increases in the expression of IRS-1 and 615 

GLUT4, decreases in insulin resistance are not guaranteed [69]. A dose response is 616 

sometimes evident, and exercise sessions utilising higher intensities, including HIIT and SIT 617 

can produce greater benefits to SI, but not always. Indeed there remains the question of 618 

whether larger volumes of moderate intensity exercise or lower volumes of higher intensity 619 

may not only produce a different magnitude of adaptation, but could do so via stimulating 620 

different adaptations. Researchers are also assessing whether lower volume sessions may 621 

have the practical advantages of greater compliance, through increased enjoyment and a 622 

lesser time commitment, since lack of time is a commonly given reason for non-compliance 623 

with exercise recommendations.  624 
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Whilst aerobic exercise interventions usually benefit SI, improvements in SI are not always 625 

associated with changes to aerobic fitness (VO2 max), for reasons that may be explained by 626 

the different adaptations induced by the exercise in the cardiovascular system and 627 

peripheral musculature. 628 

REX can improve SI through qualitative changes within the muscle as well as increases in 629 

muscle mass but the benefits are not evident in all REX studies. However there is a growing 630 

body of evidence for including both aerobic exercise and REX in exercise regimens, as this 631 

appears to more effectively improve SI than either mode of exercise alone.  632 

The debate continues over the relative importance of exercise versus weight loss for 633 

improving SI and whether the combination of the two is more efficacious for achieving good 634 

glycaemic regulation. 635 

The molecular bases for exercise-training-induced improvements in SI are linked to 636 

increases in GLUT4 concentration and acute exercise-induced increases in Akt that 637 

deactivate TCB1D4 increasing GLUT4 translocation to the membrane, an effect that persists 638 

for several hours post-exercise. Additionally, the increased capillarisation of the skeletal 639 

muscle is another factor linked to improved SI. The concentration of ceramides within 640 

muscle may provide the casual link between a high concentration of intramuscular saturated 641 

fatty acids and impaired SI. 642 

Studies in which improvements to SI were not reported may have been a consequence of 643 

their interventions involving exercise intensities that were too low, durations that were too 644 

short or a population group whose glycaemic control was relatively good at baseline and/or 645 

were already ‘recreationally active’, and hence the capacity to change was limited.  646 

  647 
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What are the new findings? 648 

In addition to adding further support to the established position that a lifestyle that includes 649 

regular physical activity is associated with a good SI and exercise interventions can improve 650 

SI, evidence is growing for the following key findings: 651 

 Aerobic exercise may increase SI without a measurable increase in VO2 max or VO2 652 

peak. 653 

 A dose effect may be evident, with greater exercise volumes and higher exercise 654 

intensities, including HIIT or SIT, producing greater benefits to SI. 655 

 The combination of aerobic exercise training and REX may be more effective than 656 

either exercise mode alone.  657 

 Exercise induced benefits may be augmented by appropriate dietary and feeding 658 

manipulations. 659 

 Molecular research has identified key signalling molecules and proteins that are 660 

influenced by exercise and provide the link to resultant changes in SI. 661 

 Evidence is accumulating for ceramides to be the causal link between obesity and a 662 

reduced SI. 663 

 664 

Practical recommendations 665 

 Despite the aforementioned general consensus, not all findings are consistent, and 666 

the specific details of the most efficacious forms of exercise/physical activity for 667 

improving or maintaining SI require further elucidation in order for exercise 668 

prescription to be optimised. 669 

 Research needs to assess the interaction of dietary/feeding manipulations and 670 

exercise on SI and glycaemic control, as these may augment the beneficial outcomes 671 

of the interventions. 672 
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 Future research needs to consider the potential influence of exercise induced 673 

improvements to beta cell function and increased muscle capillarisation, alongside 674 

the contribution of intramuscular changes that result in improved SI, GLUT4 675 

availability and glycaemic control. 676 

 Studies will also need to consider potential differences in the adaptations induced by 677 

different: exercise modalities, Aerobic vs REX; exercise intensities and volumes, 678 

including interval training (HIIT and SIT); and differences in the adaptations of 679 

different fibre types. 680 

 Likewise, the potential to adapt and improve SI is likely to be influenced by the basal 681 

state of the participants: with healthy participants, overweight/obese, pre diabetic 682 

metabolic syndrome, and diabetic patients all likely to differ in the magnitude of 683 

adaptation and improvement. 684 

 Given the evident benefits of physical activity/exercise interventions for preventing 685 

diabetes, even amongst those with metabolic risk factors, studies aimed at identifying 686 

effective preventive strategies are paramount in order to prevent further increases in 687 

the prevalence of T2D, particularly since only 10% of current clinical trials focus on 688 

prevention and only ~12% use behavioural interventions such as physical activity 689 

rather than drugs, which are the focus of ~63.1% of studies.[101] 690 
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