-

View metadata, citation and similar papers at core.ac.uk brought to you byfz CORE

provided by LJMU Research Online

MNRAS 000, 1-17 (2017) Preprint 16th November 2017 Compiled using MNRAS IXTEX style file v3.0

Galaxy and Mass Assembly (GAMA): Small-scale anisotropic
galaxy clustering and the pairwise velocity dispersion of galaxies

J. Loveday,l* L. Christodoulou,! P. Norbelrg,2 J.A. Peacock,’ LK. Baldry,4
J. Bland-Hawthorn,”> M.J.I. Brown,® M. Colless,’ S.P. Driver,®° B.W. Holwerda,!?
AM. Hopkins,!! PR. Kafle,® J. Liske,'> A.R. Lopez-Sanchez,'"!3 E.N. Taylor!*

1Astronomy Centre, University of Sussex, Falmer, Brighton BN1 9QH, UK

2icc & CEA, Department of Physics, Durham University, South Road, Durham DH1 3LE, UK

3 Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ, UK

4Astrophysics Research Institute, Liverpool John Moores University, IC2, Liverpool Science Park, 146 Brownlow Hill, Liverpool, L3 SRF, UK
3Sydney Institute for Astronomy, School of Physics, University of Sydney, NSW 2006, Australia

6School of Physics, Monash University, Clayton, Victoria 3800, Australia

7Research School of Astronomy & Astrophysics, The Australian National University, Cotter Road, Weston Creek, ACT 2611, Australia

8 International Centre for Radio Astronomy Research (ICRAR), The University of Western Australia, 35 Stirling Highway, Crawley, WA6009, Australia
9School of Physics & Astronomy, University of St Andrews, North Haugh, St Andrews, KY16 9SS, UK

10pepartment of Physics and Astronomy, University of Louisville, Louisville, KY 40292, USA

W Australian Astronomical Observatory, PO Box 915, North Ryde, NSW 1670, Australia

2 Eyuropean Southern Observatory, Karl-Schwarzschild-Str. 2, 85748 Garching, Germany

3 Department of Physics and Astronomy, Macquarie University, NSW 2109, Australia

14 Centre for Astrophysics & Supercomputing, Swinburne University of Technology, P.O. Box 218, Hawthorn, VIC 3122, Australia

Accepted XXX. Received YYY; in original form ZZZ

ABSTRACT

The galaxy pairwise velocity dispersion (PVD) can provide important tests of non-standard
gravity and galaxy formation models. We describe measurements of the PVD of galaxies
in the Galaxy and Mass Assembly (GAMA) survey as a function of projected separation
and galaxy luminosity. Due to the faint magnitude limit (» < 19.8) and highly-complete
spectroscopic sampling of the GAMA survey, we are able to reliably measure the PVD to
smaller scales (r, = 0.01 7~ Mpc) than previous work. The measured PVD at projected
separations r, < 1/h~! Mpc increases near-monotonically with increasing luminosity from
op ~ 200kms™! at M, = -17 mag to oy ~ 600kms~! at M, ~ -22 mag. Analysis of
the Gonzalez-Perez et al. (2014) GALFORM semi-analytic model yields no such trend of PVD
with luminosity: the model over-predicts the PVD for faint galaxies. This is most likely a
result of the model placing too many low-luminosity galaxies in massive halos.

1711.05636v1 [astro-ph.CO] 15 Nov 2017

Key words: galaxies: kinematics and dynamics — galaxies: statistics

arXiv

1 INTRODUCTION Use of the PVD to constrain cosmological parameters then
fell out of favour, largely due to its sensitivity to the presence or

The pairwise velocity dispersion (PVD, 013), the dispersion in rel- absence of rich clusters in the survey data used (Mo et al. 1993).

ative peculiar velocity of galaxy pairs, has an illustrious history in
observational cosmology. It was first measured in 1973 by Geller
& Peebles (1973), and soon became popular as a way of estim-
ating the mean mass density of the Universe, Q,,, via the cosmic
virial theorem or cosmic energy equation (e.g. Peebles 1976a,b,
1979; Bean et al. 1983; Davis & Peebles 1983; Bartlett & Blan-
chard 1996). In fact, these measurements provided perhaps the first
evidence that we live in a Universe which has a sub-critical mass
density, Q,, < 1.

Nevertheless, knowledge of the (non-linear) PVD is required
when modelling the linear, large-scale Kaiser (1987) infall in order
to constrain the growth rate of structure (e.g. Peacock et al. 2001;
Guzzo et al. 2008; Blake et al. 2013). The PVD is an important
quantity for modeling the galaxy redshift-space correlation func-
tion, and can be used to test predictions of galaxy formation and
evolution models, the focus of this paper, and of the cold dark mat-
ter paradigm in general.

Recently, interest in use of the PVD as a cosmological dia-
gnostic has been reawakened, both due to the availability of large
* E-mail: J.Loveday @sussex.ac.uk spectroscopic surveys which encompass fair samples of the Uni-
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verse, and due to theoretical developments in modified gravity.
There have been several recent efforts to model modified gravity
using N-body simulations, allowing one to compare the predictions
of small-scale galaxy dynamics, e.g. Fontanot et al. (2013); Falck
et al. (2015); Winther et al. (2015); Bibiano & Croton (2017). In
particular, Hellwing et al. (2014) have shown that the PVD provides
one of the most sensitive diagnostics of modified gravity, with some
of these models predicting dispersions about 30 per cent larger or
smaller than General Relativity.

Since the first measurements of Geller & Peebles (1973), the
PVD has been measured for most redshift surveys, e.g. Bean et al.
(1983); Davis & Peebles (1983); Loveday et al. (1996); Jing et al.
(1998); Jing & Borner (2001a); Landy (2002); Zehavi et al. (2002);
Hawkins et al. (2003); Jing & Borner (2004); Li et al. (2006); Van
Den Bosch et al. (2007); Cabré & Gaztafiaga (2009). Predictions
of the PVD from HOD models and/or simulations have been made
by Slosar et al. (2006); Li et al. (2007); Tinker et al. (2007); Van
Den Bosch et al. (2007). A good summary of previous results for
the overall PVD, i.e. measured over all galaxy types and a wide
range of scales, is provided by Landy (2002). Most estimates range
from around 300 to 600 km s™!, and are sensitive to the presence or
absence of rich clusters in the data used (Mo et al. 1993). The ad-
vent of large redshift surveys, such as the two-degree Field Galaxy
Redshift Survey (2dFGRS; Colless et al. 2001) and the Sloan Di-
gital Sky Survey (SDSS; York et al. 2000), enabled detailed studies
of the dependence of the PVD on galaxy type and scale. Hawkins
et al. (2003) measure the PVD for 2dFGRS galaxies, finding a
peak o2 = 600km s7L at projected separations r; =~ 0.2-0.8
hl Mpc, with o5 declining to 300-400 km s~! at smaller and lar-
ger scales, consistent with contemporary semi-analytic model pre-
dictions. Jing & Borner (2004) find thatata scaleof k = 1 1 Mpc_l,
the 2dFGRS PVD has a minimum value of o5 ~ 400kms~! for
galaxies of luminosity M* — 1, increasing rapidly for both fainter
and brighter galaxies. Li et al. (2006) measure the PVD for SDSS
galaxies as a function of luminosity and stellar mass as well as other
galaxy properties. Consistent with Jing & Borner (2004), they find
that the PVD measured at k = 1 hMpc_1 has a minimum value
of oy ~ 500kms~! for galaxy luminosities around M* — 1, in-
creasing somewhat for less luminous galaxies, and markedly (to
012 ~ 700kms~1) for the most luminous galaxies in the sample.
They also find that red galaxies have systematically higher PVDs
than blue galaxies, particularly for less luminous galaxies. In a fol-
lowup paper, Li et al. (2007) compare the clustering and PVD of
SDSS galaxies with semi-analytic models, finding that the models
over-predict the clustering strength and PVD for sub-L* galaxies,
particularly at small scales.

The Galaxy and Mass Assembly (GAMA) survey (Driver et al.
2011) provides an ideal opportunity for a new measurement of the
PVD due to (i) being two magnitudes fainter than the SDSS main
galaxy sample, and (ii) having very high (> 98 per cent) spectro-
scopic completeness, even in high-density regions. The latter point
means that completeness corrections for “fibre collisions” are not
an issue with GAMA data. We utilise the three equatorial regions
in GAMA-II (Liske et al. 2015), covering a total area of 180 square
degrees, and including galaxies down to Petrosian r-band apparent
magnitude » = 19.8. The GAMA-II database has previously been
used to measure the projected galaxy clustering in bins of stellar
mass and luminosity (Farrow et al. 2015) and to measure the growth
rate of large-scale structure via linear-regime redshift-space distor-
tions (RSD) (Blake et al. 2013). Here, we focus on measuring RSD
in the non-linear regime, r; < 10 2~! Mpc.

The paper is structured as follows. We discuss the GAMA

data, mock and random catalogues in Section 2 and measurement of
two-dimensional and projected correlation functions in Section 3.
In Section 4, we describe two models for the redshift-space correl-
ation function, and demonstrate that the pairwise velocity distribu-
tion function is close to exponential. We test three different ways
of measuring the PVD using mock catalogues in Section 5. PVDs
for the GAMA data in luminosity bins, along with a comparison
of mock predictions, are shown in Section 6; we conclude in Sec-
tion 7. Throughout, we assume a Hubble constant of Hy = 100A
km s~! Mpc™! and an Qj; = 0.25, Q5 = 0.75 cosmology in
calculating distances, co-moving volumes and luminosities. Uncer-
tainties on all results from GAMA data and mocks are based on
jackknife sampling and from the scatter between realisations, re-
spectively.

2 DATA, MOCK AND RANDOM CATALOGUES
2.1 GAMA data

Our observed sample consists of galaxies from the GAMA-II
equatorial regions G09, G12 and G15, each 5 X 12 degrees in ex-
tent and 98 per cent spectroscopically complete to » = 19.8 mag
(Liske et al. 2015). Specifically, galaxy coordinates and magnitudes
come from TilingCatv46 (Baldry et al. 2010). Redshifts, corrected
by the multiattractor flow model of Tonry et al. (2000), as described
by Baldry et al. (2012), are taken from DistancesFramesv14. K-
corrections to reference redshift zo = 0.1 (Blanton & Roweis 2007)
and 4th-order polynomial fits are obtained from kCorrectionsv05
(Loveday et al. 2012).

In order to estimate errors on our results, we subdivide each
GAMA field into three 4 x 5 deg regions, and determine the cov-
ariance by omitting each of the nine jackknife regions in turn. The
median velocity uncertainty in GAMA is 33kms~! (Baldry et al.
2014), significantly less than the smallest measured velocity disper-
sions, and so we quote PVDs uncorrected for these measurement
errors. Similarly, we ignore the effect of blended galaxy spectra,
where galaxies are either lensed or overlapping (Holwerda et al.
2015), since this affects only 0.05 percent of the GAMA sample.

2.2 GALFORM mock catalogues

We compare our GAMA results with mock galaxy -cata-
logues based on the Millennium-WMAP7 Simulation (Guo
et al. 2013) and the Gonzalez-Perez et al. (2014) GALFORM
model, with lightcones produced using the method of Mer-
son et al. (2013); see Farrow et al. (2015) for further de-
tails of these GAMA mocks. Specifically, we queried the table
GAMA_vl..LC_multi_Gonzalez201l4a via the Durham-
hosted Virgo-Millennium Database! (Lemson & the Virgo Con-
sortium 2006).

We utilize 26 mock realisations of the three equatorial GAMA
fields (G09, G12 and G15), selecting galaxies down to apparent
SDSS r-band magnitude r < 19.8 mag. These mocks were ex-
tracted from the Millennium-WMAP7 simulation cube using ran-
dom observer position and orientations. As such they are not in-
dependent, but do allow some assessment of sample variance.
Since the mocks provide both an observed and a cosmological red-
shift, we can make a direct estimate of the PVD to compare with
our clustering-based PVD estimators. Covariance estimates for the

' Millennium DB at http: //virgodb.dur.ac.uk
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mocks come from comparing the 26 realisations. In practice, we
use only the diagonal elements of the covariance matrix. Since we
focus on the small-scale PVD, the relatively small number and lack
of true independence of the mocks is not a serious issue.

2.3 Random catalogues

In order to account for the survey boundaries and selection effects,
we generate random catalogues obeying the same mask and selec-
tion function as the GAMA data, but without clustering. The mask
and selection function are derived independently from those of Far-
row et al. (2015); we have checked that we obtain consistent res-
ults for the projected correlation function (see Appendix A). The
mock catalogues have a simple mask corresponding to the RA—dec
boundaries of the GAMA equatorial regions. The radial distribution
of random points for analysing the mocks is obtained by taking the
mock galaxy redshifts from all 26 realisations of the three GAMA
fields; large-scale structure in individual realisations is rendered in-
visible in the combined distribution. The following subsections de-
scribe the survey mask and radial selection function for the GAMA
data.

2.3.1 Survey mask

Since GAMA-II target selection was made from SDSS DR7 r-band
imaging, we mask out regions of r-band imaging identified by the
SDSS photometric pipeline as any of BLEEDING, BRIGHT_STAR,
TRAIL, HOLEZ. In addition we mask out areas around bright stars
(V < 12 mag) in the Tycho and Hipparcos catalogues — see Baldry
et al. (2010) for details.

In order to map spectroscopic completeness as a function
of position on the sky, we obtain a list of GAMA 2dF field
centres from the table AATFieldsv25. The (zero-weight) mask re-
gions and (unit-weight) spectroscopic fields are then combined us-
ing the PIXELIZE, SNAP and BALKANIZE commands in MANGLE
(Hamilton & Tegmark 2004; Swanson et al. 2008). The res-
ult is a list of polygons defined by overlap regions of the 2dF
fields with masked regions set to zero weight. We then set the
weight of each non-masked polygon to its spectroscopic complete-
ness by dividing the number of main-survey targets (survey_class
> 3) with reliable redshifts (nQ > 2) by the number of tar-
gets within each polygon. Finally, we trim the polygons to lie
within the equatorial coordinate ranges of the three GAMA re-
gions, namely @ = (129.0,141.0),(174.0, 186.0), (211.5,223.5),
6 = (-2.0,3.0),(-3.0,2.0),(-2.0,3.0), for G09, G12 and G15
respectively. The resulting spectroscopic completeness maps are
shown in Fig. 1. Angular coordinates of random points are gen-
erated using the MANGLE RANSACK command with density pro-
portional to the completeness within each polygon.

2.3.2 Radial selection function

When analysing samples that are not volume-limited, the radial co-
ordinates of random points are generated from each sample using
the joint stepwise maximum likelihood (JSWML) method of Cole
(2011), as adapted for use with GAMA by Loveday et al. (2015),
assuming evolution parameters P = Q = 1.

For volume-limited samples, we distribute points drawn at

2 See http://www.sdss.org/dr7/algorithms/masks.html
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Figure 1. Spectroscopic completeness mask for the GAMA-II regions.
Black regions correspond to holes cut around bright stars and SDSS ima-
ging defects.

random from a distribution uniform in comoving volume modu-
lated by the density-evolution factor 100-4Pz (Loveday et al. 2015,
equation 5). Limiting redshifts for each volume-limited sample are
chosen such that the distribution of individual K-corrections for
galaxies close to the limiting redshift results in a sample that is 95
percent complete.

2.3.3  Comparison with previous GAMA clustering measurements

Since both the angular mask and radial selection function for the
random catalogues have been derived independently from a previ-
ous measurement of galaxy clustering from the GAMA data (Far-
row et al. 2015), we compare our clustering estimates for a number
of galaxy subsamples in Appendix A. We find results that are in
excellent agreement on all small scales.

2.4 Data subsamples

We measure the PVD of GAMA galaxies in bins of absolute mag-
nitude, as summarized in Table 1. For all GAMA samples, we em-
ploy individual K-corrections to rest-frame z = 0.1 and assume


http://www.sdss.org/dr7/algorithms/masks.html
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Table 1. GAMA and mock galaxy subsamples. GAMA magnitudes are
evolution-corrected 0'er; mock magnitudes, 0'OMr, are taken directly
from the mock catalogues.

Name GAMA mag Ngal
Vo [-23,-20] 41757

Mock mag Nmock
[-23,-20] 53878 +3038

Ml [-23,-22] 3730 [-23.47,-22.36] 3507 + 108
M2 [-22,-21] 37904 [-22.36,-21.02] 38278 =934
M3 [-21,-20] 68791 [-21.02,-19.85] 67704 + 2468
M4 [-20,-19] 43105 [-19.85,—18.19] 44115 = 2133
M5 [-19,-18] 17550 [-18.19,-17.00] 17224 + 1570
M6 [-18,-17] 6037

M7 [-17,-16] 2080

MS [-16,-15] 805

luminosity evolution given by Q = 1 as described in Loveday et al.
(2015). We use a superscript prefix of 0.1, 0'er, to indicate an ab-
solute magnitude K-corrected to a passband blueshifted by z = 0.1.
This is done for the GAMA data to allow comparison with the res-
ults of Li et al. (2006). A superscript prefix of 0.0 indicates an ab-
solute magnitude K-corrected to the rest-frame of the galaxy, as
appropriate for the mock data.

Because the mocks do not provide an exact match to GAMA
in terms of luminosity function, K-corrections and evolution, we
cannot obtain a fair comparison by using the same magnitude lim-
its. Instead, we select samples matched on number density, as is
common in the literature, e.g. Berlind et al. (2003); Zheng et al.
(2005); Contreras et al. (2013); Farrow et al. (2015).

Allowing for the fact that the GAMA mask removes about 0.7
percent of the survey area (Baldry et al. 2010) and that the GAMA
redshift incompleteness is about 1.5 percent (Liske et al. 2015), one
would expect the GAMA catalogues to contain about 2.5 percent
fewer galaxies than the mocks if they have the same underlying
number density3. Starting with an absolute magnitude threshold
of 1), = —23 mag, we count the number of GAMA galaxies
brighter than this threshold within redshift z < 0.65. We find the
corresponding mock absolute magnitude threshold that gives 1.025
times as many galaxies when averaged over the 26 mock realisa-
tions within the same redshift limit. This process is repeated for
the remaining magnitude bins; the corresponding magnitude limits
for the mocks are given in Table 1. Note that the GAMA mag-
nitudes are K- and evolution-corrected to zg = 0.1, assuming lu-
minosity evolution given by Q = 1, whereas we use absolute r-
band magnitudes (SDSS_r_rest_abs) taken directly from the
mock catalogue without any evolution correction. For sample M5,
we set the mock faint magnitude limit to be —17 mag, even though
this sample contains fewer galaxies than the corresponding GAMA
sample. This is due to the resolution limit of the Millennium Simu-
lation: samples fainter than 000, ~ -17 mag will be incomplete in
a halo-dependent way. This incompleteness in the mock catalogues
may explain the spuriously high clustering signal measured by Far-
row et al. (2015, Fig. 11) for the —18 < 9034, < —17 mag mock
sample.

For testing our methods in Sections 4 and 5, we employ a
volume-limited sample (VO0), with 0-1p1, < =20 mag and redshift
z < 0.258. These limits are chosen in order to roughly maximize

3 Although the GAMA regions are underdense with respect to SDSS by
about 15 percent within z < 0.1 (Driver et al. 2011), there is no evidence
that this underdensity extends out to larger redshifts. The overall sample
variance of GAMA is expected to be about 3 percent (Driver & Robotham
2010).

the number of galaxies in a volume-limited sample. We choose the
same limits for the mocks, since number densities are very similar
at this magnitude. While the corresponding redshift limit will not
be identical for the mock catalogues, this is not an issue, as the ran-
dom distribution for analysing mock galaxy clustering is generated
from the mocks themselves.

The real-space correlation function for the VO mock sample is
well-fitted on scales » < 16 h~! Mpc by a power-law with y = 1.81,
ro = 5.6 h~! Mpc. From numerical integration of this power-law,
we find that the variance of galaxy counts in 8 A~! Mpc radius
spheres is very close to 1, 0'82 ~ (0.98. Since the simulations as-
sume the WMAP7 cosmology’(Qm =0.272, 08 = 0.807, Guo et al.
2013), the bias of this mock galaxy sample is b = 03 ¢ /0g ~ 1.23
and hence the expected value of the redshift space distortion para-
meter is given by 8 = Q?f/b ~ 0.37.

Our primary results (Section 6) show galaxies in non-volume-
limited bins of luminosity (M1-M8), as well as five samples drawn
from a single volume-limited sample.

3 MEASURING THE CORRELATION FUNCTION

Our measurements of the PVD are based on the two-dimensional
galaxy correlation function &(r, r))); the excess probability above
random of finding two galaxies separated by r along the line of
sight (LOS) and r, perpendicular to the LOS. These separations are
calculated in the usual way (e.g. Fisher et al. 1994). Two galaxies
with position vectors rq and r; are separated by vector s = rp —ry.
For an observer at the origin, the vector to the midpoint of the pair
is given by I = (ry +r;)/2. The LOS and perpendicular separations
of the galaxies are then given by r)| = |s.i |, with i being the unit

vector in the direction of I, and r; = /s.s - rﬁ.

To estimate £(ry, r)|), we use the Landy & Szalay (1993) es-
timator,

DD —-2DR + RR

RR ’
where DD, DR and RR are the normalised and weighted num-
bers of data-data, data-random and random-random pairs in a given
(ry, r”) bin. The random points are generated as described in the
previous section. For non-volume-limited samples, the pair counts
are weighted to allow for the declining selection function with red-
shift, giving a minimum-variance estimator (Hamilton 1993). Each
galaxy pair is given a weight

wij = {[1 + 4am(z;)J3(si )1 + 4an(z) I3 (s} L (2)

where 71(z) is the average galaxy number density of the correspond-
ing unclustered sample at the redshift of each galaxy, z; and z;,

E(ro, ) = M

and J3(s;j) = /OSU s2&(s)ds. For this integral, we assume a power-
law for the correlation function, &(s) = (s/sg)™”, with paramet-
ers sop = 5.59h~!Mpc and y = 1.84, and we integrate out to
the separation s;; of the galaxy pair, or 30 ' Mpc, if the sep-
aration is larger than this. We have checked that the correlation
function estimates are insensitive to the details of the assumed
power-law. If, instead, we assume a power-law consistent with the
clustering of GAMA galaxies in the faint magnitude bin M6, viz.
50 = 3.68 i~ Mpc, y = 1.84, individual wp(r1) estimates change
by less than the 1-sigma error bars. For volume-limited samples,
weighting is uniform, i.e. w;; = 1.

We then normalise for the relative total numbers of galaxies,
Ng, and random points, N;-, by dividing the summed pair weights

MNRAS 000, 1-17 (2017)
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Figure 2. The two-dimensional correlation function &(r, ry) for M, <
—20 volume-limited samples for (top) GAMA-II galaxies and (bottom) the
average from 26 mock catalogues. To visually clarify departures from iso-
tropy due to peculiar velocities, and to minimize aliasing effects when the
Fourier transform is taken, the clustering signal is reflected about both axes.
Following Li et al. (2006), contour levels increase by factors of 2 from
£ =0.1875t0 & = 48.

DD, DR and RR for each separation bin by Ng(Ng — 1), Ng N, and
Ny (N, — 1), respectively.

The two-dimensional correlation function for our volume-
limited sample of GAMA galaxies, along with the average correl-
ation function from 26 mock samples, are shown in Fig. 2. Elong-
ation of the clustering signal along the LOS (r|-axis) at small pro-
jected separations, 7, < 5 h~! Mpc, and a compression of the LOS
clustering signal at larger separations are both clearly visible. For
this plot, we have calculated £(r1, 7)) in 1 h~! Mpc bins in both
coordinates. We wish to determine the PVD measurement on the
smallest possible scales, fully exploiting the high spectroscopic
completeness of the GAMA survey. When estimating the PVD, we
thus measure &(r 1, ||) in logarithmically-spaced bins in both direc-

tions, with log;o(r/ h~! Mpc) ranging from =2 to 2 in 20 bins.

MNRAS 000, 1-17 (2017)
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Determination of the PVD also requires that the real-space
correlation function &.-(r) be known. We estimate &, (r) from
the data via the projected correlation function, wp(ry), which
is obtained in the usual way by integrating the observed two-
dimensional correlation function £(r, r||) along the LOS direction
r”:

r“max
wp(ry) = 2/0. E(re, ry)dry. 3

We use an upper integration limit of r|| =40 k=1 Mpc; see Ap-
pendix B for justification of this choice.

The real-space correlation function &, () may then be obtained
by performing the inversion

&)=~ / S~ r, “

This integral is evaluated by linearly interpolating between the
binned wj,(r.) values (Saunders et al. 1992); we use 20 logarith-
mically spaced bins from 0.01 to 100 A~! Mpc. Since this estimate
of &,(r) can be be rather noisy, we also approximate &,(r) using a
power-law fit to the projected correlation function w,(r, ) over the
separation range 0.01 h! Mpc <r; <5 h! Mpc. For a power-
law fit, &-(r) = (r/rg)™7, equation (4) yields (Davis & Peebles
1983),

wp(ry) = Ary”
A= TA/2Ty = /DTG /2), 5)

where I is the standard gamma function.

4 MODELLING THE CORRELATION FUNCTION

Historically, two complementary approaches have been taken to
model the two-dimensional galaxy correlation function in the pres-
ence of galaxy peculiar motions, the ‘streaming’ and ‘dispersion’
models. In this Section, we briefly review these two models and
then proceed to demonstrate that the peculiar velocity distribution
function at small scales is reasonably well-fit by an exponential
function for GAMA galaxies.

4.1 Streaming model

In the streaming model (e.g. Peebles 1980, 1993; Davis & Peebles
1983; Fisher 1995; Zehavi et al. 2002), £(r1, r))) is given by a con-
volution of the isotropic real-space correlation function &,(r) with
the pairwise LOS velocity distribution f(vy,):

00

Ve ran) =Ho [ 114600 fridy. ©)

(o]
Here, y is the true LOS separation of the galaxy pair, the total true
separation is r = ,/ri +y2, and vip = Ho(r) — y) is the relative
LOS peculiar velocity.
The pairwise velocities are most often assumed to follow an
exponential distribution:

1 \/§|V12 - V12|
e = — -—=, 7
fe(vi2) onts) exp ( D) ) (7
or a Gaussian distribution
1 (12 = V12)?
= - . 8
fc2) Vet exp ( 207,72 ) (8)
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The mean relative peculiar velocity of galaxies separated by a
distance r (by symmetry directed along the separation vector r) is
given by v{» = —Hyg(r)r, and thus vip = —Hyg(r)y is the LOS
component of this mean velocity. As discussed by Peebles (1993,
p 478), one expects g(r) to be close to unity on small scales where
the peculiar velocity cancels out the Hubble flow within bound
structures. At larger scales, g(r) should tend to zero as uncorrel-
ated galaxies move with the Hubble flow. In this work, we use the
expression given by Juszkiewicz et al. (1999, equation 6, hereafter
‘JSD model’) for the mean radial pairwise velocity v, (r).

The streaming model has been developed and improved by
a number of authors, including Fisher (1995); Sheth (1996);
Scoccimarro (2004); Reid & White (2011); Bianchi et al. (2015);
Uhlemann et al. (2015), in order to find a more complete descrip-
tion of the velocity distribution function f(v{,). The main focus of
these works has been to improve the model in the linear regime. In
the present work, we are focused on strongly non-linear scales, for
which we show that assuming an exponential velocity distribution
provides a good fit to simulations, provided that o1, (k) is allowed
to vary with scale.

4.2 Dispersion model

Rather than assuming a model for the mean streaming velocity
v12(r), the dispersion model combines the Kaiser (1987) linear in-
fall model with an assumed small-scale velocity distribution func-
tion. In Fourier space, the redshift space power spectrum Pg(k, 1)
may be related to the real space power spectrum Py (k) by (Peacock
& Dodds 1994; Cole et al. 1995; Jing & Borner 2001b)4

Py(k, ) = Pr(k)(1 + Bp®)> D(kporio(k)), )

where p is the cosine of the angle between the wavevector k and the
LOS. The factor (1+ Bu?)? is the Kaiser (1987) linear compression
effect’ and the factor D is the damping caused by random motions
of galaxies. For an exponential form of the pairwise velocity distri-
bution (equation 7), its Fourier transform D is a Lorentzian

D(kpoa(k)) = [1 +0.5(kuor2(k)*1 ™" (10)

The Kaiser (1987) linear infall model has been translated from
Fourier to configuration space by Hamilton (1992) to predict the
shape of the two-dimensional correlation function &’(r, 7)) due to
coherent infall:

E'(r,r)) = &()Po(k) + E2(s)Pa () + E4(5)Pa(p), (11)

where the P;(u) are Legendre polynomials and the harmonics of
the correlation function are defined in Appendix C. One can then
approximate the observed two-dimensional correlation function by
convolving &’(ry, r)) with the peculiar velocity distribution, e.g.
Hawkins et al. (2003),

Eroary) = / E(rs. 1y - via/ Ho) f(¥)dv, (12)

where f(v]7) is now assumed to be distributed around zero, and is
thus given by equation (7) or (8) with v, = 0.

4 See Scoccimarro (2004) for an improved version of the dispersion model
that allows for coupling between the velocity and density fields.

5 The linear redshift distortion parameter 8 = f(Q,)/b, where f(Q,,,) ~
Q?,‘f is the dimensionless growth rate of structure in the linear regime and
b is the galaxy bias parameter.
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Figure 3. The peculiar velocity distribution function (bottom) and its Four-
ier transform (top) for the GAMA V0 sample (symbols with errorbars). The
continuous green and red dashed lines show the best fit dispersion model
predictions with exponential and Gaussian velocity distribution functions
respectively.

4.3 Pairwise velocity distribution function

Previous work, e.g. Loveday et al. (1996); Landy et al. (1998);
Hawkins et al. (2003), has found that the galaxy pairwise velocity
distribution is better fit by an exponential than a Gaussian function.
Sheth (1996) shows that an exponential distribution is expected on
highly non-linear scales from Press—Schechter theory. We determ-
ine the pairwise velocity distribution for the GAMA-II data using
the method of Landy et al. (1998), also used by Landy (2002) and
Hawkins et al. (2003), which deconvolves the real-space correla-
tion function from the peculiar velocity distribution.

We take the 2D Fourier transform® of the E(ro,r)) grid
measured out to 32 A1 Mpc to give &(k, k”).7 By the slicing—
projection theorem (Landy et al. 1998), cuts of £(k, k) along the
ki and k| axes, i.e. f(kl, 0) and f(O,k”), are equivalent to the
Fourier transforms of the real-space projections of £(r1, 7)) onto

6 We utilise the Numerical Python discrete Fourier transform package
numpy . f£ft.

7 The true power spectrum will only be obtained by taking the Fourier
transform of the correlation function measured on all scales. We have veri-
fied that we get consistent results in this section when starting with &(r, ry|)
measured out to 64 h~! Mpc.
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Table 2. Fits of 3 infall parameter and velocity dispersion o7, (in kms™!) to the Fourier transformed velocity distribution function for both the GAMA V0
sample and the mean of the 26 mock VO samples. For all fits there are 29 degrees of freedom.

GAMA Mocks
Model B o X B o X
Exponential 0.75+0.03 676+34 32 0.68+0.05 69071 5
Gaussian -0.88+0.08 106+12 178 -0.92+0.04 11110 112
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Figure 4. As Fig. 3 but from the average of 26 mock catalogues.

the r; and r|| axes. The projection onto the r, axis is distortion-
free, whereas the projection onto the r| axis gives the real-space
correlation function convolved with the peculiar velocity distribu-
tion function. The ratio F[f(vi2)|(k) = (k1 = k,0)/£(0, k) = k)
is thus the Fourier transform of the peculiar velocity distribution
function; taking the inverse transform of this ratio yields f(vi2).
We fit the dispersion model to both the observations and
mocks, with free parameters 8 and o, by performing a y2 least—
squares fit of the predicted to the measured F[f(vi2)]. We fit
to F[f(vi2)] rather than f(v|;) since the covariance matrix of
f(v12) estimates shows significant anti-correlations between odd
and even-numbered bins. Both [ f(vi2)] and the inferred f(vi3)
for GAMA and mock volume-limited samples are shown in Figs. 3
and 4, along with best-fit predictions from dispersion models with
exponential and Gaussian velocity distribution functions. The best-
fit parameters and X2 values are given in Table 2. It is clear that
the exponential distribution function provides a much better fit to
both the GAMA data and the mocks than the Gaussian distribution,
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which also gives unphysical, negative values for 5. We therefore
assume an exponential form for f(v{,) for the rest of this paper.

While this method is useful for determining the shape of the
distribution function f(vy3), it is not ideal for estimating the val-
ues of B and the velocity dispersion o5, since it averages over a
range of linear and non-linear separations. In fact, the value of 3
obtained for the mock VO samples is completely inconsistent with
the expected value of 8 ~ 0.37 (Sec. 2.4). The uncertainties quoted
in Table 2 account only for scatter between realisations, and not
for systematic errors due to inadequacies in the dispersion model
when applied over a wide range of scales. In the following section
we obtain separation-dependent estimates of the velocity dispersion
o12(r ) by fitting directly to the £(ry, ) grid.

5 MOCK TESTS OF PVD ESTIMATORS

In this section, we test three methods for recovering the PVD from
observational data, two based on the correlation function in redshift
space, via the streaming and dispersion models, and one based on
the dispersion model in Fourier space. All start with the 2d correl-
ation function &(r, r”), measured as described in Section 3, and
are based on least-squares fitting of a model 2d correlation func-
tion or power spectrum to the measured one. The &(ry, r”) val-
ues are strongly correlated, and so one should in principle use the
full covariance matrix or its principal components (e.g. Norberg
et al. 2009) in least-squares fitting. In practice, even when using
mock catalogues, for which a covariance matrix may be reason-
ably well-determined, improvements over using just the diagonal
elements are negligible, at best. With only nine jackknife samples
for GAMA data, covariance matrix estimates are even more sus-
ceptible to noise. Therefore all fitting to data is done using only di-
agonal elements of the covariance matrix. We show in Section 5.3
below that this introduces only a small bias in the inferred PVD
using the dispersion model.

Before describing these clustering-based estimators of the
PVD, we first discuss a direct measurement of the PVD from the
mock catalogues, which will be used to test the veracity of the
clustering-based estimates.

5.1 Direct mock-PVD measurement

Using the observed (zghs) and cosmological (zges) redshifts
provided in the mock galaxy catalogues, one can determine the
LOS peculiar velocity (vpec) for each galaxy using (Harrison 1974)

L+ vpec/c = (1 + zops) /(1 + zcos)- (13)

We then define the relative LOS velocity for a pair of galaxies as
V12 = Vpec,2 — Vpec, 1, Where galaxy 1 is the closer of the pair, so that
v is negative for galaxies that are approaching each other. Note
that this formula is only accurate for galaxy pairs at small angular
separation, and so we limit our measurements to pairs of galaxies
separated by less than 12° (the RA extent of each GAMA region).
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Figure 5. LOS relative velocity distributions for mock galaxy pairs (stepped
histograms), exponential fits (continuous lines) and Gaussian fits (dashed
lines) in four bins of projected separation as labelled. We include all pairs
along the line of sight direction up to r = 50 h~! Mpc. Fit parameters and
reduced x? values are shown for the exponential fits on the left and for
Gaussian fits on the right.

The LOS pairwise velocity distributions for mock galaxy pairs
in four representative bins of projected separation, including all
pairs along the line of sight direction up to rj = 50 hl Mpc, are
shown in Fig. 5. Visually, the distributions are reasonably well-fit
by exponential functions for galaxy pairs at projected separation
ri < 1At Mpc (e.g. top two panels), even though the reduced
x2 values formally rule out an exponential fit (the standard error
from the scatter between mock realisations is tiny). At larger sep-
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Figure 6. Mean (top) and exponential dispersion (bottom) of the mock LOS
pairwise velocities, in logarithmic bins of redshift space separation. Contour
lines from left to right connect bins containing 102, 103, 104, 10° and 10°
galaxy pairs.

arations, a growing skewness in the distributions toward negative
velocities®, and decreasing random errors, result in poorer fits. It is
clear that a Gaussian grossly under-fits the tails of the distribution
at all separations.

For pairs of galaxies in logarithmically-spaced separation bins
(ry, r||) in redshift-space, we calculate the mean and standard de-
viation of the pairwise LOS velocity distribution, v, and o5 re-
spectively, as well as the maximum-likelihood velocity dispersion
o-f)z(p for an exponential distribution (equation 7), namely

N
exp _ V2 =
o= Zl Vi = 712l (14)

where the sum is carried out over all N galaxy pairs in each separ-
ation bin.

In Fig. 6, we show the mean and exponential dispersion of the
mock LOS pairwise velocities in bins of two-dimensional redshift-
space separation. It is interesting to see that the largest (negative)

8 This skewness in the pairwise velocity distribution has previously been
reported from simulations by Juszkiewicz et al. (1998) and Magira et al.
(2000). See Bianchi et al. (2015, 2016) for a bivariate Gaussian descrip-
tion for the pairwise velocity distribution function that can account for this
asymmetry.
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mean velocities and dispersions occur at very different separation
bins. The most negative mean velocities of vi; < —300km s71

are seen at projected separation r; 2 3 hl Mpc and LOS separ-
ation r| < 3 h~! Mpc. The highest velocity dispersions, of up to

of;p ~ ISOOkms_l, are seen at r; < 1h! Mpc and 10 < r s
304~ Mpc. The PVD is uniformly low, o>’ < 300kms™!, at

LOS separations r| < 5 h~1 Mpc regardless of projected separa-
tionr, .

Values of vi5(r1) and o']e ;P(r ) as a function of projected sep-
aration r alone are obtained by averaging over r|| separation bins,
weighting by the number of galaxy pairs per bin. It is clear that most
of the contribution to the velocity dispersion o-le;p(r 1) will come
from LOS separations 5 < r| < 30 k=1 Mpc. The estimated dis-
persion is insensitive to the upper limit of LOS separation beyond
rp ~ 30 h~! Mpc due to the modest drop in 0¥ values at larger
r||- The estimated mean velocity v12(r.) is sensitive to the limit-
ing r| due to the steady decline in [v12| beyond r|| 2 30 h~! Mpc,
so that the amplitude of vi(r,) decreases with increasing "l max-
Since galaxies with LOS separation r| 2 40 1 Mpc (Av 2
4000kms~!) are unlikely to be correlated, we impose an upper
limit of r| =40 hl Mpc when calculating v, (r, ) and o-fép(m_).

Note that it is unlikely that the mock catalogues have suffi-
cient resolution to reliably predict galaxy dynamics on scales below
about 0.1 h~! Mpc. Nevertheless, by comparing clustering-inferred
estimates of the PVD with those obtained directly from the peculiar
velocity information, we can still use the mocks to test our methods
down to scales r; = 0.01 h! Mpc.

Maximum-likelihood estimates of mean pairwise velocity and
exponential velocity dispersion are shown in Fig. 7 as a func-
tion of projected separation r, including pairs with LOS separ-
ation up to three different values of r| as indicated in the lower
panel. We see net LOS infall between pairs of galaxies on all
scales, with maximum infall of v{2(r.) ~ —200kms~! at separ-
ation r. ~ 2h~! Mpc with rp < 40 h~! Mpc. Exponential velo-
city dispersion rises from ale;p(r = 0.01 "' Mpc) =~ 200kms~!,
peaking at Gf;p(r ~ 0.4h~'Mpc) ~ 600kms~! and tending to
a'f;p(r ~ 100~ Mpc) ~ 500kms~! on large scales. Note that
the velocity dispersion estimates are insensitive to the upper limit
of projected separation.

Having made a direct measurement of the PVD from the mock
catalogues, we can now investigate PVD estimates based on the
anisotropy of redshift-space clustering.

5.2 Streaming model

We find the velocity dispersion oj7(ry ) in bins of projected separ-
ation r, by least-squares fitting of the observed two-dimensional
correlation function £(ry, 7)) with the prediction from equation

(6), using LOS bins r| < 40 h~! Mpc. We test this estimator for
the PVD using the volume-limited mock catalogues in Fig. 8. We
compare results obtained using power-law and binned estimates of
&-(r), as well as both directly-measured and the JSD model for
mean-streaming velocities v(r). All estimates are consistent with
the directly-determined PVD on small scales, r;, < 0.3 hl Mpc;
all tend to underestimate the PVD on larger scales. Of the four vari-
ants of this estimator, that using the JSD model for v, along with
a power-law fit for &, (r), performs better than the others, providing
reliable estimates of the PVDtor; <1 hl Mpc.
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Figure 7. LOS mean pairwise velocity v, (upper panel), and velocity dis-
persion o5 (lower panel) for pairs of mock galaxies as a function of pro-
jected separation. The different line styles and colours represent different
upper limits to projected separation 7| as indicated in the lower panel.

5.3 Dispersion model in configuration space

We find the velocity dispersion o-j»(r ) in bins of projected separ-
ation r, by least-squares fitting of the observed two-dimensional
correlation function £(ry, 7)) with the prediction from equation
(12), using LOS bins r| < 40 hl Mpc. We test this estimator for
the PVD using the volume-limited mock catalogues in Fig. 9. This
plot shows results using both power-law fits and binned measure-
ments of the real-space correlation function &,(r), and also with 3
fixed at 8 = 0.45 or allowed to vary as a free parameter. It is clear
that the binned estimates of &,(r) (blue squares and red triangles
for fixed and free S8 respectively) give a more reliable measure of
the PVD over a wider range of scales than a single power-law fit
to wp(rL) (black circles and green triangles). The former meas-
urements lies within ~ 1o of the directly-determined PVD on all
scales from 0.01 to 10 A~! Mpc.

Fig. 10 explores the effects of using the full covariance matrix
of the correlation function measurements £(ry, 7)), just the diag-
onal components, or the first five principal components, when fit-
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Figure 8. Pairwise LOS velocity dispersion estimates from the mock galaxy
VO samples. The continuous line and shaded region show the direct estim-
ate of o712(r,) and its standard deviation reproduced from Fig. 7. Symbols
show PVD estimates recovered by fitting the streaming model (Section 5.2)
to the two-dimensional correlation function. Black circles and blue squares
show results using the measured v,(r) and power-law and binned meas-
urements of &, (r), respectively. Green and red triangles show results using
the JSD model v,(r) and power-law and binned measurements of &, (r),
respectively.
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Figure 9. As Fig. 8 but showing PVD estimates recovered by fitting the
dispersion model (Section 5.3) to the two-dimensional correlation function.
Black circles show the results of using a power-law fit to w, (r,) to predict
&;(r), blue squares use a numerical inversion of the binned w, () meas-
urements to predict &, (r). Both of these measurements assume a fixed value
of 8 = 0.45. Allowing 3 to vary as a free parameter, the power-law &, ()
favours B8 = 0.66 (green triangles); the binned &, (r) favours 8 = 0.43 (red
triangles).

ting the dispersion model. While we see that using the full covari-
ance matrix improves the estimates on scales r|| < 1 k=1 Mpc, they
are worsened on larger scales. The full covariance matrix estim-
ates for the GAMA data will be nosier than those for the 26 mock
realisations, and so for our main results we use only the diagonal
elements.
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Figure 10. Dispersion model estimates of the PVD using the full covariance
matrix of £(ry, r)) (green triangles), the diagonal components only (black
circles), or the first five principal components (blue squares). We use binned
&, (r) measurements and hold B fixed at 8 = 0.5.

5.4 Dispersion model in Fourier space

We determine the redshift space power spectrum Pg(k, p) from the
two-dimensional correlation function £(r 1, r||) using the method of
Jing & Borner (2004):

Ps(k, ) =2n ZArﬁiAln ri €, r”l.)cos(kHr”i)
ij
Jolkorij)We(rojr,),

where Jg is the zeroth-order Bessel function. Following Li et al.
(2006), r|;; runs from —40 to 40 ~~' Mpc with Ar; = 1 h~! Mpc
and r j runs from 0.1 to 50 hl Mpc with Alnry; = 0.23. Wy is
a Gaussian window function used to down-weight noisy £(r., 7))
measurements at large scales:

We(ry,r) = exp| - , (15)

with smoothing scale § = 20 or 25 h~! Mpc.

As advised by Jing & Borner (2001a), we reduce the effects of
finite bin sizes in T and r, by dividing each T and Inr; bininto N
sub-bins and interpolate £(r1, ) at each sub-bin using a bilinear
cubic spline. We have found that N = 21 sub-bins is sufficient
to obtain reliable Pg(k, u) measurements on small scales (large k
values).

In Fig. 11 we show the real-space power spectrum P, (k) and
pairwise velocity dispersion o5 (k) estimated from the mock cata-
logues by fitting the model Pg(k, 1) (equation 9) to the observed
one, assuming a fixed value of 8 = 0.45. The 2 X ny-parameters,
where n; is the number of bins in which P, (k) and op(k) are
estimated, and the covariances between the parameters, are de-
termined using the EMCEE (Foreman-Mackey et al. 2013) Markov
Chain Monte Carlo code. Both power spectrum and velocity dis-
persion measurements become very noisy at small scales, k >
8 hMpc_1 orr < 0.6h~! Mpc. At larger scales, k < 8 hMpc~!,
the PVD estimated in Fourier is in very good agreement with
the direct estimate, particularly with a smoothing length of 25
11 Mpc.
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Figure 11. Real-space power spectrum P,- (k) (top panel) and pairwise velo-
city dispersion o17(k) (bottom panel) estimated from the mock catalogues
using the methods described in Section 5.4. The continuous line and shaded
region in the lower panel show the direct estimate of the real-space expo-
nential velocity dispersion o-le’z‘p(r) and its standard deviation reproduced
from Fig. 7, assuming that k = 27t/r. Blue squares and green triangles re-
spectively denote smoothing scales of § = 20, 25 h~! Mpc in equation (15).

5.5 Summary of tests

From these tests using mock catalogues, we conclude that the con-
figuration space dispersion model provides the most reliable estim-
ate of the PVD on scales (0.01 2~ "Mpc < r. < 10~ Mpo).
The Fourier-space dispersion model provides reliable estimates on
larger scales (0.6 ™! Mpc < ro 2 30 h~! Mpc). We show results

using both of these methods in the following section.

6 RESULTS AND DISCUSSION

In Fig. 12 we show the PVD o as a function of projected separa-
tion in bins of absolute magnitude for both GAMA and mock galax-
ies. In each panel, for luminosity bins M1-MS5, one should first
compare the direct (blue line) and dispersion model (blue squares)
estimates from the mocks. If these are in good agreement, then the
GAMA dispersion-model results are likely to be reliable. The space
density of galaxies in bin M1 is too low for a reliable estimate of
the PVD on small scales, but the estimates converge for separa-
tionsr; =1 ol Mpc. For the remaining luminosity bins, M2-MS5,
agreement between direct and dispersion-model estimates of the
mock PVDs is excellent on all scales measured.

Comparing GAMA and mock PVDs, for luminous galax-
ies, bins M1-M3, the amplitudes are consistent, and both peak
atr; ~ 0.3 hl Mpc. For fainter galaxies, bins M4 and M5, the
mock PVDs are systematically higher than the GAMA PVDs. This
is particularly noticeable for bin M4, where the GAMA estimates
are unusually low. Since the large-scale GAMA PVD increases
again in lower-luminosity bins, M5 and M6, this is most likely a
sampling fluctuation, perhaps due to the significant underdensity
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in the GAMA redshift distribution around z ~ 0.2-0.26, a region
from which many of the galaxies in bin M4 lie (see figs. 4 & 5 of
Farrow et al. 2015).

Since the GALFORM mock catalogues are reliable at only rel-
atively bright magnitudes (M, < —17 mag), we also compare our
GAMA PVD estimates with those from EAGLE hydrodynamical
simulation RefL,0100N1504 (Crain et al. 2015; Schaye et al.
2015; McAlpine et al. 2016). Placing the observer at the origin
of the z = 0.1 data cube, we use the Cartesian velocities of each
subhalo to calculate the line of sight peculiar velocity of each
galaxy, and hence the PVD, as a function of projected separation.
Uncertainties are estimated by subdividing the simulation cube into
eight sub-cubes and calculating jackknife errors. We have veri-
fied that EAGLE r-band absolute magnitudes are consistent with
GAMA: the luminosity functions agree extremely well over the
magnitude range —22 < M, < —15. We therefore use the same
absolute magnitude limits when comparing EAGLE with GAMA.

EAGLE simulation results, shown in Fig. 12 as a green line,
are noisy for luminous galaxies due to the limited volume probed
(106 Mpc3 for h = 0.6777). For moderate luminosities (bins M3—
M5), the agreement with GALFORM is good. The GAMA PVD is
also consistent with EAGLE for bin M6, but falls below the EAGLE
prediction for the two faintest bins, M7 and M8. The GAMA jack-
knife errors likely underestimate the uncertainties in these very
small volume samples, and so this is not necessarily indicating a
discrepancy with EAGLE at low luminosities.

To show the PVD dependence on luminosity more clearly, in
Fig. 13 we show the PVD o5 as a function of absolute magnitude
in broad bins of projected separation. To do this, we determine the
average PVD for four sets of three adjacent separation bins, with
separation limits as given in the figure legend. When averaging, we
weight each bin by its inverse-variance, and the variance on the
average is determined in the usual way as the reciprocal of the sum
of inverse variances.

For small scales, r, < 1h~! Mpc, corresponding to the top
three panels, the PVD for GAMA galaxies tends to decline near-
monotonically from bright to faint luminosities. The mock PVD
is much flatter, possibly even showing a small increase to fainter
luminosities. Thus the mocks do a good job at matching the ob-
served PVD for luminous galaxies, but over-predict the PVD for
fainter objects. The same result was found by Li et al. (2007) when
comparing two previous Millennium-based semi-analytic models
(Kang et al. 2005; Croton et al. 2006) with SDSS PVD measure-
ments. Li et al. (2007) show that the mocks most likely place too
many faint galaxies in massive halos. This problem thus appears to
persist in more recent semi-analytic models. This interpretation is
reinforced by the fact that the same mock catalogue significantly
over-predicts the small-scale projected correlation function of faint
(M, > —18 mag) galaxies (Farrow et al. 2015, fig. 11).

One should, however, be aware that the faintest galaxies can
only be seen in the very nearby Universe. Thus if the local volume
is underdense, as has been claimed by several authors, (e.g. Buss-
well et al. 2004; Keenan et al. 2013; Whitbourn & Shanks 2016),
a paucity of local, large structures might explain the low ob-
served PVD and projected clustering for the faintest galaxies. In
order to address this concern, we have defined a second, fainter,
volume-limited sample from GAMA with Olpg, < —18 mag and
z < 0.116. We then extract subsamples in bins of absolute mag-
nitude [-22, -21], [-21, —=20], [-20, —19], [-19, —18]. The galaxies
in these absolute magnitude bins are visible throughout the volume
and hence will not suffer from sampling fluctuations due to Malm-
quist bias. We show the PVDs from this volume-limited sample as
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Figure 13. Pairwise velocity dispersion for GAMA galaxies (black circles
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dashed lines) as a function of absolute magnitude in bins of projected sep-
aration r as labelled. Green triangles connected by dotted lines show the
PVD for galaxies selected from a volume-limited sample with M, < —18
mag.

green triangles in Fig. 13. While the trend with luminosity is less
clear than for the full GAMA sample, the results are broadly con-
sistent. Unfortunately, one cannot extend this analysis to the full lu-
minosity range plotted due to the tiny volume within which fainter
galaxies can be seen. Note that forming a (separate) volume-limited
sample for each luminosity bin would not alleviate sampling fluc-
tuations.

In Fig. 14 we show the Fourier-based PVD estimate as a func-
tion of wavenumber k. From comparison with the direct mock
estimates, we conclude that these Fourier-based PVD estimates
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should be reliable for moderate luminosity galaxies (bins M2-M5,
-22 < M, < —18) over the range of scales 0.2 < k < ShMpc_l.
We also show comparison results from Li et al. (2006). Given the
uncertainties, our results are broadly consistent with those of Li et
al. where we overlap, although we do measure systematically lower
PVD than Li et al. for the M4 (=20 < M, < —19 mag) bin.

In future, we plan to investigate the dependence of the PVD
on location within the cosmic web, on stellar mass and on redshift.
We also plan to investigate improvements to the mock catalogues
to better match the luminosity-dependence of the observed galaxy
PVD, along with other observational constraints. In the longer term,
it is be hoped that such measurements may be instrumental in ruling
out certain models of modified gravity.

7 CONCLUSIONS

We have presented measurements of the PVD for luminosity-
selected samples of galaxies from the GAMA equatorial regions,
using mock catalogues to check our estimators. GAMA’s relatively
deep flux limit, » < 19.8, and high redshift success rate, > 98 per
cent, have enabled us to measure the PVD down to a factor of ten
smaller in projected separation than was possible using SDSS data
(Li et al. 2007). Our findings can be summarized as follows.

(i) In agreement with previous work, (e.g. Hawkins et al. 2003)
we find that the form of the pairwise velocity distribution is much
better fit by an exponential than a Gaussian function.

(i) The dispersion model can make reliable predictions of the
PVD in configuration space for galaxy pairs with projected sep-
aration 0.01-10 h~! Mpc, thus allowing detailed tests of galaxy
formation models and hydrodynamical simulations.

(iii) In Fourier space, one can reliably measure the PVD of
GAMA galaxies for wave numbers in the range 0.2-8 /1 Mpc~!.
This is similar to the range of scales probed by Li et al. (2007) us-
ing SDSS data; thus the Fourier method employed here does not
enable us to exploit the small-scale fidelity of the GAMA data as
well as configuration-space methods.

(iv) For most luminosity bins, the PVD peaks at o =
600kms~! at projected separations r, ~ 0.3 h~! Mpc, although
some fainter bins show a monotonic increase in oo with separa-
tion.

(v) On small scales, r; < 1h7! Mpc, the measured PVD for
GAMA galaxies declines slightly from ~ 600kms~! at high lu-
minosities to ~ 400kms~! at low luminosities. This trend is not
seen at larger scales (0.8-3.3 h~! Mpc).

(vi) While the GALFORM mocks analysed here give a similar-
amplitude PVD as the GAMA galaxies, they show very little trend
with luminosity: if anything, they predict a slightly increaseing
PVD with decreasing luminosity for L* and fainter galaxies. Thus
the mocks do a good job at matching the observed PVD for lumin-
ous galaxies, but over-predict the PVD for fainter objects.
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row et al. (2015) is presented in Fig.Al. We select our samples
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largest samples in five %-0M, absolute magnitude bins from the top
of Table 2 in Farrow et al. Agreement is excellent on all scales.
We thus find that our independently-determined survey mask and
radial selection function do not impact measurements of the pro-
jected correlation function, on which our PVD estimates are based.
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Figure Al. Comparison of the projected correlation function for various
sub-samples of GAMA galaxies. Blue circles show measurements from the
present work; green squares show the comparison from Farrow et al. (2015).
Both sets of measurements have been divided by the reference power-law
used by Farrow et al. in their fig. 10 (viz rg = 5.33h~! Mpc, y = 1.81).

APPENDIX B: ACCURACY OF PROJECTED AND
REAL-SPACE CORRELATION FUNCTION ESTIMATES

We here test how accurately one can recover the projected,
wp(rL), and real space, &(r), correlation functions from the two-
dimensional redshift-space correlation function §(ry, r||), making
use of the GAMA mock catalogues. Since these mock catalogues
include cosmological redshift, due purely to Hubble expansion, as
well as observed redshift, including the LOS component of pecu-
liar velocity, one can obtain a direct estimate of &.(r) using equa-
tion (1), with galaxy coordinates determined using cosmological
redshift and counting galaxy and random pairs as a function of total
separation.

Carrying out this procedure for each of our mock catalogues,

Table B1. Testing estimates of wy, (r,) and &; () using 26 volume-limited
mock catalogues. The first row gives the power-law parameters obtained
directly from the direction-averaged correlation function calculated in real
space, i.e. using cosmological redshifts. The remaining rows show results
obtained by integrating £(r, ry) up to different values of ry . in equa-
tion (3). The first column gives the upper integration limit, r . the second
and third columns the mean and standard deviation of the recovered power-
law parameters y and ry. The fourth column ()(31) gives the y? residual
(for 20 degrees of freedom) between the direct estimate of &,-(r) using cos-
mological redshifts, and the non-parametric estimates obtained by inverting
wp (ry). The fifth column (le]) gives the x? residual (for 11 degrees of
freedom) for the power-law fit to the non-parametric estimate.

Plmax L2~ Mpc] Y ro (A" Mpe]  x3 /\{§1
Direct 1.84 +0.01 4.84+0.24 60
10 1.86+0.01 5.09+023 141 22
20 1.85+0.02 495+031 20 29
30 1.86+0.02  4.82+033 14 27
40 1.87+0.02  4.85+0.32 10 20
50 1.87+0.02 485+034 11 17
60 1.86+0.03 486+037 12 17
100 1.88+0.03 467039 12 15
10! T : .
Sy vepgyett i
G100 20QQEN i!i! |
= [ ]
ur
<
10-1 I I I
107 101 10° 10! 102

r [h "' Mpc]

Figure B1. Average real-space correlation function &, (r) measured from
26 mock catalogues using direction-averaged correlation function and cos-
mological redshifts (green squares) and estimated from projecting and in-
verting the two-dimensional correlation function (equations 3 and 4 with
Mlmax = 40h7! Mpc, blue circles). Both sets of measurements have been
divided by the power-law fit to the direct & (r) measurement (viz ry =
4.84h Mpc, y = 1.84).

we obtain a real space correlation function well-described by a
power law &.(r) = (r/rg)™ over the range of separations 0.01-5
h~! Mpc with parameters given in Table B1.

We then calculate the projected correlation function wp (r.)
for each of the mock catalogues as described in Section 3, fit a
power-law over the same range of scales, and use equation (5) to
find the real-space power-law parameters ry and y. We next invert
wp(rL) using equation (4) to obtain &,(r) estimates, and calculate
the y2 residuals from the direct estimate. For both power-law fits
and )(2 estimates, we utilise the full covariance matrices of wj,(r,)
and &,(r), respectively.

Our results, obtained using different values of r in equa-
tion (3), are given in Table B1. These results show that the XZ
residual between direct and indirect estimates of & (r) is minim-
ised for ry =40 k=1 Mpc. Moreover, power-law fits to wp(ry)
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have converged by this point; therefore weuse ry =40 =1 Mpc
when calculating w, (r, ) from the GAMA data.

In Fig. B1 we compare the real-space correlation function
from the mock catalogues obtained directly using the cosmological
redshifts, and using equations 3 and 4 with = 40 11 Mpc.
The deprojected correlation function is systematically lower than
the directly measured one, but the bias is within the standard devi-
ation of each measurement.

APPENDIX C: HAMILTON LINEAR INFALL EQUATIONS

Kaiser (1987) showed that coherent infall in Fourier space leads to
a redshift-space power spectrum Pg(k) = (1+ ﬁyi )P, (k). Hamilton
(1992) translated this into configuration space to show that the
redshift-space correlation function is given by

E'(ru,r) = &(s)Po(p) + E2(s)Po(p) + E4(s)Pa(p), (CH

where the P;(u) are Legendre polynomials. The harmonics of the
correlation function are given by

2
fols) = (1 + Ly %) £(r) ©2)
48 4p% _
a0 = (4 + %) e - 20 ©3)
8 2 5— 7=
£(s) = 5 [etr)+ S0 - 22|, ()
where
= 3 " N ’
§m=3éanﬂm, ©5)
= 5 r ’ 7 7
€n == A E(ryr'tar. (C6)

For a power-law form for the correlation function, £(r) = (r/rg)~7,
equations (C2—C4) reduce to (Hawkins et al. 2003)

2
fols) = (1 + Ly %) £0r) )
2
£(s) = (% + @) (%) £(r), (C8)
882 [ y(2+y)

&4(s) = ) &(r). (€9
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