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ABSTRACT 1 

Behavioural flexibility has been argued to be an evolutionarily favourable trait that helps 2 

invasive species to establish themselves in non-native environments. But few studies have 3 

compared the level of flexibility (whether considered as an outcome or as a process) in 4 

mammalian invaders and related native species. Here, we tested whether flexibility differs 5 

between groups of free-ranging invasive Eastern grey squirrels (Sciurus carolinensis) and 6 

native Eurasian red squirrels (S. vulgaris) in the UK, using an easy and a difficult food–7 

extraction task. All individuals of both species showed flexibility, at the outcome level, in 8 

solving the easy task and solution time was comparable between species across a series of 9 

successes. A higher proportion of grey squirrels than red squirrels solved the difficult task. 10 

However, for those squirrels that did solve the task, solving efficiency was comparable 11 

between species on their first success, and a few red squirrels outperformed the grey squirrels 12 

in subsequent successes. Between species analysis showed that instantaneous flexibility, 13 

flexibility at the process level that was measured as the rate of switching between tactics after 14 

a failed attempt, was higher in red squirrels than in grey squirrels. Within species analysis 15 

also revealed that red squirrel problem solvers showed higher flexibility at the process level, 16 

than their non-solver counterparts. Non-solvers also failed to make ‘productive’ switches 17 

(switching from ineffective tactics to effective tactics). Together, the results suggest that 18 

problem-solving ability overlaps in the two species, but is less variable, and on average 19 

higher, in grey squirrels than in red squirrels. The superior behavioural flexibility of the grey 20 

squirrels, shown here by success at problem solving,  may have facilitated their invasion 21 

success, but it may also have resulted from selective pressures during the invasion process.  22 

Keywords: behavioural flexibility, invasive and native species, problem solving, squirrels  23 
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INTRODUCTION 24 

Behavioural flexibility has been argued to be an evolutionarily favourable trait for 25 

invasive species, as flexibility helps them adapt to non-native environments (e.g. Jarić, 26 

Jaćimović, Cvijanović, Knežević-Jarić, & Lenhardt, 2014; Webb, Letnic, Jessop, & 27 

Dempster, 2014; Lefebvre, Reader, & Sol, 2013; Sol, Timmermans, & Lefebvre, 2002; Sol 28 

& Lefebvre, 2000). Flexibility has been measured in a number of ways (see review by Audet 29 

& Lefebvre, 2017), and it has been conceptualised at different levels. On the one hand, it has 30 

been conceived as a process (hereafter, ‘the process level’) through which animals are able to 31 

vary their behaviours (e.g. Benson-Amram & Holekamp, 2012; Chow, Lea, & Leaver, 2016; 32 

Chow, Lea, Hempel, & Robert, 2017; Griffin, Diquelou, & Perea, 2014). For example, 33 

Lefebvre and colleagues have measured flexibility from the incidence of novel foraging 34 

techniques per taxon (Lefebvre et al., 2013; Sol et al., 2002; Sol & Lefebvre, 2000). On the 35 

other hand, flexibility has been conceived as an outcome of actions observed when animals 36 

show variations in responding to challenges (hereafter, ‘the outcome level’). For example, 37 

flexibility could be measured as the outcome of success or failure in solving artificial 38 

problem-solving tasks (review by Griffin & Guez, 2014) in which animals are required to 39 

overcome obstacles to obtain food rewards, either by applying previously learned tactics to 40 

solve a novel problem, or by developing novel tactics to solve old problems (Kummer & 41 

Goodall, 1985; Reader & Laland, 2003). In practice, the process can be also inferred from its 42 

behavioural outcome, for example, enhanced flexibility is indicated by success in solving 43 

artificial problem tasks. 44 

 45 

Both these approaches have been used to suggest a relationship between flexibility and 46 

success as an invasive species. Sol et al. (2002) and Sol and Lefebvre (2000) have shown 47 

that, across taxa, the incidence of novel foraging techniques reported is correlated with the 48 
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establishment of invasive bird species in new environments, while Griffin and Diquelou 49 

(2015) have used artificial problem–solving tasks to examine the level of flexibility in two 50 

successfully invasive bird species, Indian mynas (Acridotheres tristis) and noisy mynas 51 

(Manorina melanocephala). In the present paper, we take a more direct approach to the 52 

hypothesis of a relationship between flexibility and invasiveness, by comparing the 53 

flexibility, both at the outcome and at the process levels, shown by an invasive species and 54 

the native species it displaces. 55 

 56 

Our study model was a population of free-ranging invasive grey squirrels (Sciurus 57 

carolinensis) and a population of native red squirrels (S. vulgaris) in the UK, and we 58 

compared their flexibility, at the outcome level, by measuring their success in solving food-59 

extraction problems in field experiments. Although grey squirrels are larger than red squirrels 60 

(Bryce, Speakman, Johnson, & Macdonald, 2001), the two species share many morphological 61 

and ecological characteristics, so that niche overlap is high, see Koprowski (1994) for grey 62 

squirrels and Lurz, Gurnell, & Magris (2005) for red squirrels. Grey squirrels are regarded as 63 

one of the ‘100 World’s Worst Invasive Alien Species’ (Lowe, Browne, & Boudjelas, 2008). 64 

They were introduced to the UK and Ireland in the 19th century (Gurnell, 1987) and more 65 

recently to Italy (Bertolino, Lurz, Sanderson, & Rushton, 2008; Martinoli, Bertolino, 66 

Preatoni, Balduzzi, Marsan et al., 2010), and in all three countries the population of grey 67 

squirrels is still expanding (Huxley, 2003; Bosch & Lurz, 2012) and replacing red squirrels. 68 

When red squirrels in European countries are sympatric and have to compete with grey 69 

squirrels, they spend less time foraging and consume less high-energy food than their 70 

counterparts that live without the grey squirrels (Wauters, Gurnell, & Martinoli, 2001; 71 

Wauters, Tosi, & Gurnell, 2002). Measurable consequences of the competitive interactions 72 

between the species include significantly reduced red squirrel reproductive success and 73 
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juvenile recruitment, leading to a potentially rapid decline of the local red squirrel population 74 

(Gurnell, Wauters, Lurz, & Tosi, 2004). The red-grey squirrel system is therefore ideal for 75 

investigating whether differences in behavioural flexibility may play a part in the competitive 76 

success of the introduced species.  77 

 78 

We first examined whether flexibility, at the outcome level, was different in the two 79 

species, using the food-extraction problem paradigm (review by Griffin & Guez, 2014). 80 

Based on invasion history in the UK (e.g. Gurnell, Lurz, & Bertoldi, 2014), we predicted that 81 

grey squirrels would be more successful and efficient than the congeneric red squirrels in 82 

solving problems. It has already been shown that grey squirrels show better spatial memory 83 

than red squirrels (Macdonald, 1997), but this may be an example of niche-specific cognition 84 

since red squirrels are less dependent on recovering scatter-hoarded caches than grey 85 

squirrels (Bosch & Lurz, 2012).  86 

 87 

We then investigated whether flexibility, considered as a process, was a trait that 88 

predicts the differences in problem-solving performance at both between-species and within-89 

species levels. To examine this, we followed Chow et al. (2016), by measuring such 90 

‘flexibility’ as the rate of switching between tactics after a failed attempt (hereafter 91 

‘instantaneous flexibility’) to solve a given problem. Across species, problem-solving 92 

performance is not always a function of instantaneous flexibility: Other traits such as 93 

persistence (rate of attempts), motor diversity (rate of emitting new types of behaviour), and 94 

selectivity (the proportion of effective behaviours emitted) have often been implicated. For 95 

example, successful problem solvers showed increased persistence (Biondi, Bo, & Vassallo, 96 

2008; Benson-Amram & Holekamp, 2012; Chow et al., 2016; Griffin et al., 2014; Van Horik 97 

& Madden, 2016) and/or high motor diversity (Benson-Amram & Holekamp, 2012; Griffin et 98 
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al., 2014; Griffin & Diquelou, 2015; Diquelou et al., 2016). Enhanced efficiency as a result of 99 

practice can be related to increased persistence and increased selectivity (Chow et al., 2016), 100 

or decreased motor diversity with increased experience (Griffin et al., 2014). Accordingly, we 101 

included these three behavioural traits, alongside instantaneous flexibility, when examining 102 

between- and within-species differences in problem solving. 103 

 104 

Ideally, we would have compared red and grey squirrels living in the same habitat, to 105 

avoid any confound between environmental and species differences. However, this is not 106 

possible because once grey squirrels enter red squirrel habitats, either the number of red 107 

squirrels declines (often rapidly due to the added risk of squirrelpox virus disease 108 

transmission; Rushton, Lurz, Gurnell, & Fuller, 2000; Sainsbury, Nettleton, Gilray, & 109 

Gurnell, 2000) or the greys are removed by humans in an effort to prevent that happening (for 110 

an overview of the current removal project in Scotland, control operations and the pox issue, 111 

see https://scottishsquirrels.org.uk/about/project-overview/). We therefore had to study 112 

separate populations of the two species. Within the range of habitats currently occupied by 113 

red and grey squirrels in the UK, we matched our study sites as closely as we could for 114 

climate, season, vegetation types, predation risk, the number of foraging squirrels, and the 115 

level of human activity. We also used study sites as widely spread as possible within each 116 

habitat, to maximise the genetic diversity within our sample and in order to avoid sampling 117 

the same individuals from each population. 118 

 119 

METHODS 120 

Ethical note 121 

Our study was approved by the Ethical Review Group at the University of Exeter (no. 122 

2012/533). Experiments were carried out in accordance with Association for the Study of 123 

https://scottishsquirrels.org.uk/about/project-overview/
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Animal Behaviour guidelines on animal welfare and UK law. Initially, we used trapping 124 

method to identify individuals. Between April and September, 12 traps were set at different 125 

locations in the University of Exeter campus from dawn to dusk. Traps were checked every 126 

1.5-2 hours. When a squirrel was captured, we transferred it to a mesh cylinder-shaped tube 127 

(or a handling cone). We PIT tagged and marked each squirrel with a different pattern at 128 

different body parts, using commercial hair dye. Individuals were released once they had 129 

been sexed and weighed. No deaths occurred as a result of trapping. As the trapping process 130 

appeared to deter squirrels from participating in these experiments (only 4 out of 43 trapped 131 

squirrels interacted with the test apparatus), we used the individuals’ unique characteristics 132 

for identification for the rest of the experiment (see below ‘Animal Identification’). The 133 

experiments did not involve invasive methods; squirrels voluntarily approached and left the 134 

apparatus. The apparatus was placed away from roads and in locations with low risk of 135 

predation to avoid exposing the squirrels to added risk from participating in the experiments. 136 

 137 

Study habitats, study sites and study populations 138 

We collected data from two free-ranging squirrel populations in habitats that contained either 139 

grey squirrels or red squirrels exclusively. The grey squirrel habitat consisted of woodlands 140 

neighbouring the University of Exeter campus, Devon, England (50.74°N, 3.54°W), or on the 141 

campus itself. Data were collected from eight sites within this habitat, between October 2013 142 

and January 2014, and between December 2014 and February 2015. The red squirrel habitat 143 

consisted of woodlands around Brodick castle and country park (55.59°N, 5.15°W), Brodick, 144 

Isle of Arran, Scotland. Data were collected from seven sites within this habitat, from 145 

September to November 2014. All sites were public areas, were 500-800 m apart, had low 146 

predation risk, and had three to five squirrels that foraged regularly within them. Both 147 
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habitats had exotic trees such as Sessile oak (Quercus petraea), Scots Pine (Pinus sylvestris), 148 

beech (Fagus sylvatica) and ash (Fraxinus excelsior).  149 

 150 

Animal identification 151 

Squirrels were identified from video recordings, using frame-by-frame analysis in the 152 

software Adobe Premiere Pro CS6. Most squirrels were identified using their unique 153 

characteristics such as coat colour, tail shape, body size, ear shape, and paw colour, as well as 154 

identifiable marks on face and body. This procedure required intensive observer training, 155 

typically around two months for each species. Four grey squirrels had been marked with 156 

black hair dye in a previous trapping effort to facilitate identification. 157 

 158 

Apparatus and equipment 159 

We designed two problems that could both be solved within squirrels’ behavioural repertoire, 160 

but which varied in their expected difficulty so that we could observe a range of problem-161 

solving ability. Fig. 1a shows the apparatus for the easy task. It consisted of a hinged box (12 162 

x 12 x 4.5 cm, Length x Width x Height). It had four plastic wells, one at each corner (4.5 x 3 163 

x 1.5 cm), and each well was covered by a hinged transparent lid (3 x 3 cm). Fig. 1b shows 164 

the apparatus for the difficult task. It consisted of the puzzle box that had been used in a 165 

laboratory study (Chow et al., 2016). This task was expected to be more difficult than the 166 

hinged box task for the squirrels, as it required counter-intuitive methods to solve it. The 167 

apparatus consisted of a transparent Plexiglas box (25 x 25 x 19 cm), which had ten holes (2 168 

x 0.9 cm, W x H) located on each side, and a pyramid-shaped base (25 x 25 x 3 cm). The ten 169 

holes on each side of the box were horizontally but not vertically aligned with holes on the 170 

opposite side. Levers were inserted across the box through holes roughly opposite to each 171 

other. The box was secured above the base by four wooden legs so that there was a gap 172 
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between the box and the base, allowing a squirrel to obtain nuts when it had solved the 173 

problem. The gap for grey squirrels was 4.5 cm and for red squirrels was 3.5 cm, as red 174 

squirrels have shorter body length than grey squirrels. During the main testing, ten plastic 175 

levers were inserted through holes across the box, protruding from the box by 2.5 cm at each 176 

end. Each lever (1.5 x 29.8 x 0.5 cm; Length x Width x Thickness) had a 3-sided Plexiglas 177 

nut container (back: 2 x 1.5 cm; side: 1.5 x 1.5 cm) at one end; this was positioned just inside 178 

the box. The back of the nut container was transparent and its sides were white, so the 179 

squirrels could view the nut from two opposite sides of the box. This design allowed a 180 

squirrel to cause a lever to drop, and thereby obtain a nut if there was one in the nut 181 

container. This could be achieved by pushing the lever end that was near to the nut 182 

(henceforth, ‘near end’), or by pulling it from the opposite end (henceforth, ‘far end’). These 183 

tactics are referred to below as “effective”. However, the problem could not be solved by the 184 

more intuitively obvious tactics of pulling at the near end or pushing the far end; these tactics 185 

are referred to below as “ineffective”. 186 

Figure 1 

Procedures 187 

Before the experiment started, an experimenter (i.e. the first author) chose a location that was 188 

away from main roads and that was covered by bushes and trees. This aimed to minimise 189 

risks to the squirrels from predation risk or vehicles. Once a suitable location was chosen, the 190 

experimenter placed hazelnuts in the shell and hazelnut kernels to attract squirrels. Baits were 191 

checked twice a day for three consecutive days before the experiment. We re-baited the sites 192 

twice a day if squirrels took the hazelnuts. In the main experiment, we set the easy task on the 193 

ground at a random position to minimise the chance of squirrels using box position as a cue 194 

to open a lid. However, squirrels could use the length and the width of the lid to indicate 195 

which side to lift. During testing, each well contained one hazel nut. Because the difficult 196 
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task was much larger than the hinged box, and object size has been shown to affect 197 

neophobic response (Mettke-Hoffmann, Rowe, Hayden, & Canoine, 2006) and in turn, 198 

problem-solving performance (Overington et al., 2011), we minimised any such effect for the 199 

difficult task by giving a 4-hour habituation period to squirrels (Overington et al., 2011; 200 

Webster & Lefebvre, 2001). During this period, we presented the transparent box without 201 

levers, and placed 10 shelled hazelnuts on each side of the box. All squirrels approached and 202 

explored the apparatus. While we did not observe neophobic responses to either task during 203 

the main experiment (see videos in the supplementary materials), we could not completely 204 

exclude the possibility that squirrels were still neophobic to the apparatuses when they were 205 

solving the task. The box was placed either 80 cm away from a tree or inside bushes and 206 

close to trees to minimise predation risks. The puzzle box had ten levers inserted during the 207 

main testing; five levers were baited with hazelnuts and five levers were empty (control). 208 

Squirrels were free to come and go from the box and thus the number of nuts that each 209 

individual obtained could vary between trials. To prevent squirrels from using the positions 210 

of the holes or the direction of the cover relative to the tree to solve the task, we randomised 211 

the side from which the levers were inserted, the direction of the nut containers, and which 212 

levers were baited with nuts between trials. The order of presentation of the two tasks was 213 

counter-balanced across sites.  214 

 215 

Throughout the experiment, there were 2-4 squirrels active at each location. We took into 216 

account the individuals’ varied active periods to minimise conspecific competition. We set up 217 

the apparatuses daily from dawn to dusk regardless of weather condition. We further re-218 

baited the apparatus at one- to two-hour intervals. Accordingly, five to eight trials were 219 

carried out daily depending on the available daylight. This schedule allowed us to collect data 220 

from single individuals most of the time; fewer than 1% of attempts had two or more 221 



Problem solving 11 

 

individuals on or around the apparatus. In these situations, dominant squirrels chased 222 

subdominant squirrels away or subdominant squirrels would wait until the dominant squirrels 223 

left before approaching the apparatus. A video camera (Panasonic SWD HD-90) mounted on 224 

a tripod was placed 60 cm away from the apparatus to capture all task behaviours. During the 225 

data collection period with the grey squirrels, an experimenter (the first author) was present 226 

25 m away from the apparatus in three of the eight locations, since these squirrels were 227 

relatively habituated to humans using the university campus. 228 

 229 

Measurements 230 

To compare between-species problem-solving performance, we first divided squirrels in each 231 

species into ‘problem solvers’ and ‘non-solvers’. Problem solvers were squirrels that 232 

successfully solved the tasks repeatedly whereas non-solvers were those that never solved the 233 

tasks throughout the entire experiment, or that solved the tasks once but did not repeat that 234 

success on subsequent visits (squirrels that solved the problem more than once always went 235 

on to solve it multiple times). We then further divided problem solvers into ‘first-time 236 

solvers’ (those that solved the problems on their first visit) and ‘subsequent solvers’ (those 237 

that failed on their first visit but succeeded on a subsequent visit). A visit was recorded as 238 

starting when a squirrel was seen in the video to manipulate a lever or lid, and continued until 239 

it left the view of the video for two or more minutes. Visit durations largely reflected solving 240 

duration, but also included brief periods of visual ‘inspection’ of the apparatus. Success for 241 

the easy task was defined as a squirrel using its mouth, nose or front paw to lift up one of the 242 

four transparent lids. Success in the difficult task was defined as a squirrel using any of its 243 

body parts to manipulate a lever and causing the lever and/or a nut to drop.  244 

 245 
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To obtain detailed behavioural data about squirrels’ problem-solving process, we focused on 246 

the behaviours that were exhibited during each attempt at problem solution. An attempt 247 

started when a squirrel used any of its body parts to contact a transparent lid in the easy task 248 

or a lever in the difficult task and ended when the squirrel stopped contacting that part of the 249 

apparatus. A new attempt was counted if the squirrel changed to manipulating another part of 250 

the apparatus. Attempts were counted regardless of whether the squirrel employed effective 251 

or ineffective behaviours for the task, and regardless of any switches between tactics 252 

exhibited and of the number of types of behaviour used. Recording attempts provided two 253 

measurements for each task: 254 

 255 

Solving duration. We calculated each attempt duration as the time from when a squirrel used 256 

any of its body part to touch a lid/a lever to when the squirrel stopped touching the lid or 257 

lever (in the case of unsuccessful attempts) or when the squirrels opened a lid/made a lever 258 

and/or nut drop (in the case of success). The solving duration consisted of the sum of all 259 

attempt durations until a success occurred. Solving duration was our main measure of the 260 

efficiency of problem solving (i.e. how quickly a squirrel solved a task), but it was also used 261 

in our quantification of behavioural traits, as follows. 262 

 263 

Persistence. Following previous authors (Biondi et al., 2008; Chow et al., 2016; Griffin et al., 264 

2014), for each success, we obtained the total number of attempts, divided this number by the 265 

solving duration to obtain the rate of attempting to solve the problem, and used this as a 266 

measure of the behavioural trait persistence. Converting persistence to a rate allowed us to 267 

measure it independently of the inherent relationship between the number of attempts and 268 

solving duration (Chow et al., 2016). We regarded persistence as a measure of motivation for 269 
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problem solving (Griffin et al., 2014; Chow et al., 2016, Chow, Lea, Hempel de Ibarra, & 270 

Robert, 2017). 271 

 272 

The difficult task allowed squirrels to exhibit different types of contact with the apparatus. 273 

This enabled us to measure three further behavioural traits, namely motor diversity, 274 

selectivity and instantaneous flexibility. Like persistence, motor diversity and instantaneous 275 

flexibility were measured as rates (frequency of occurrence/total solving duration to success) 276 

to minimise confounding with solving duration.  277 

 278 

Motor diversity was measured as the rate of exhibiting different types of contact with the 279 

puzzle box, using the list of types shown in Table A1 (reproduced from Table 1 of Chow et 280 

al., 2016). Nine types of contact were recorded, including push up, push in, pull, tilt up, claw, 281 

lick, shake and two or more of these types of behaviours occurring simultaneously (hereafter, 282 

combined behaviours). Squirrels therefore received a score ranged from 1 to 9 as diversity. 283 

We then divided this number by their solving duration to obtain the rate of motor diversity. 284 

 285 

Instantaneous flexibility was measured as the rate of switching between tactics. Using the 286 

definitions of contact types in Table A1, a switch was recorded whenever a squirrel changed 287 

from one type of tactic to another type after a failed attempt. Switches were recorded 288 

regardless of whether the current tactic has been previously used and regardless of whether 289 

the tactic was effective or ineffective. We obtained the total number of switches across 290 

attempts and divided this number by the total solving duration to obtain the rate of 291 

instantaneous flexibility. 292 

 293 
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Selectivity was measured as the proportion of effective behaviours shown. As noted above, 294 

the effective behaviours were either pushing the ‘near-end’ or pulling the ‘far-end’ of a lever, 295 

and ineffective behaviours were either pushing the ‘far-end’ or pulling the ‘near-end’. We 296 

obtained the number of effective behaviours that a squirrel exhibited and divided this number 297 

by the total number of effective and ineffective behaviours to give our measure of selectivity. 298 

 299 

Statistical analyses 300 

For each task, we used Chi-square tests to compare the frequencies of individuals in the two 301 

species that obtained success in their first visit and success in the subsequent visits. 302 

Generalized Linear Model (GLM) was used to compare tasks’ (‘easy’ or ‘difficult’) solving 303 

duration on the first success for each species and to examine between-species (‘grey’ or ‘red’ 304 

squirrels) differences in behavioural traits on the first success for the difficult task. To 305 

examine how performance varied with experience, we chose a fixed number of successes, 306 

after which little or no improvement in performance could be detected, and eliminated data 307 

from squirrels that obtained fewer successes.  For the easy task, we used data from the first 308 

15 successes, and were able to include data from most of the squirrels (24 individuals, 11 309 

grey and 13 red squirrels, 75% of the total). For the difficult task, performance took longer to 310 

reach asymptote, and we used data from the first 40 successes, contributed by 18 individuals 311 

(11 grey and 7 red squirrels, 42% of the sample). In the analysis for the easy task, we used the 312 

Gamma log link function to accommodate values that were positively skewed but not 313 

massively concentrated on or close to zero for continuous variables, and the Poisson log link 314 

function for count variables. In the analysis for the difficult task, we used Generalized 315 

Estimating Equations (GEE) with exchangeable working correlation (Liang & Zeger, 1986) 316 

and Tweedie identity link function to accommodate mass values that were close to zero for 317 

continuous variables. We included species, success number and their interaction as 318 
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independent variables when analysing solution time across success number. GEE was also 319 

used to examine between- and within- species differences in each behavioural trait. Finally, 320 

GEE was used to examine what factors were associated with enhanced efficiency in the 321 

difficult task for each species. For this analysis, we log-transformed the solution times to 322 

normalise their distribution before applying the Gaussian distribution for model estimation. 323 

Pearson correlations were used to investigate highly correlated variables (i.e. r > 0.5; see 324 

supplementary material Table A2). As motor diversity and persistence were highly correlated 325 

in both species (r = 0.74 for red squirrels and r = 0.89 for grey squirrels), we minimised 326 

confusion in interpreting the results by dropping motor diversity from the analyses. The 327 

decision to retain persistence over motor diversity was because persistence has been shown to 328 

be a key trait for this difficult task (Chow et al., 2016). Significance levels reported here are 329 

two-tailed and criterial level was P ≤ 0.05. We further applied Bonferroni corrections to 330 

adjust the P values for multiple comparisons at between- and within- species levels, and 331 

significance level was then set at P ≤ 0.025. All data were analysed using SPSS version 23. 332 

 333 

RESULTS 334 

Within-species task comparison 335 

Task was a significant factor for solution duration in grey (GLM χ²1 = 7.81, P = 0.005) and 336 

red squirrels (χ²1 = 9.68, P = 0.002); the solution duration in the difficult task on the first 337 

success was significantly higher than in the easy task for both species. On their first success, 338 

grey squirrels took a mean of 4.3s (SE ± 1.2s) to solve the easy task whereas they took 12.7s 339 

(SE ± 4.7s) to solve the difficult task. Red squirrels took a mean of 3.9s (SE ± 0.7s) to solve 340 

the easy task on their first success whereas they took 9.4s (SE ± 2.1s) to solve the difficult 341 

task. This confirmed that, as intended, the puzzle box was more difficult than the hinged box 342 

for the squirrels. 343 
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 344 

 Performance in the easy task  345 

14 grey squirrels and 18 red squirrels attempted the easy task. Of these squirrels, 13 (93%) 346 

grey and 9 (50%) red squirrels solved the task on their first visit. This species difference in 347 

first-time success in solving the easy task was significant (Fisher’s exact test: P = 0.019). 348 

Amongst these first-time solvers, grey squirrels spent an average of 4.2s (SE ± 1.3s) solving 349 

the task whereas red squirrels spent an average of 1.6s (SE ± 0.2s) to solve the task. This 350 

species difference in first-time solvers’ solving duration was significant (GLM χ²1 = 9.27, P = 351 

0.002). Red squirrel non-solvers spent significantly longer time manipulating the task on their 352 

first visit (Mean = 5.19s, SE ± 8.8s) than red squirrel problem solvers (χ²1 = 5.66, P = 0.017), 353 

but their manipulation times did not differ significantly from those of grey squirrel problem 354 

solvers (χ²1 = 0.72, P = 0.396).  355 

 356 

The squirrels that did not succeed on their first visit all succeeded on subsequent visits (see 357 

Within-species task comparison above for the mean and standard errors of the solving 358 

duration on the first success in the easy task for each species, for the 14 grey and 18 red 359 

squirrel problem solvers). Fig. 2a shows the solving duration for the 24 squirrels (11 grey and 360 

13 red) that completed 15 successes. Species did not differ in solving duration (GEE χ²1 = 361 

1.40, P = 0.237). All squirrels increased their efficiency with experience of success (χ²1 = 362 

18.59, P < 0.001). The interaction between species and success number was not significant 363 

(χ²1 = 0.98, P = 0.323).  364 

 365 

Fig. 2b shows how attempt rate, our measure of persistence, varied with experience and 366 

species. It was significantly higher in the grey squirrels than the red squirrels (χ²1 = 4.95, P = 367 

0.026). Attempt rate increased with increased success number (χ²1 = 79.44, P < 0.001). Its 368 
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interaction with species was also significant (χ²1 = 10.51, P = 0.001); as Fig. 2b shows, with 369 

increased experience of success, attempt rate decreased in grey squirrels but increased in red 370 

squirrels. These results may reflect the two species using different strategies to interact with 371 

the task (e.g. grey squirrels may make few long-bout attempts whereas red squirrels may 372 

make more short-bout attempts across the success number). To understand this further, we 373 

focused on whether the two species differed in their actual number of attempts made and the 374 

mean duration of each attempt (i.e. solving duration/the number of attempts) when solving 375 

the easy task. Figure 2c shows the actual number of attempts made across 15 successes. 376 

Success number had a significant main effect (χ²1 = 21.27, P < 0.001); the number of attempts 377 

decreased across the 15 successes. Neither species (χ²1 = 0.88, P = 0.348) nor the interaction 378 

between species and success number were significant (χ²1 = 0.35, P = 0.851). Figure 2d 379 

shows the length of each attempt across 15 successes for each species. Species differed 380 

significantly in the mean attempt duration across 15 successes (χ²1 = 4.40, P = 0.036); grey 381 

squirrels made shorter attempts than red squirrels. Both species decreased the duration of 382 

each attempt across 15 successes (χ²1 = 19.04, P < 0.001) and the interaction of species with 383 

success number was also significant (χ²1 = 4.64, P = 0.031); across successes, red squirrels 384 

decreased the mean duration of an attempt bout more quickly than grey squirrels.  385 

Figure 2 

Performance in the difficult task 386 

All squirrels that participated in the easy task also participated in the difficult task. A further 387 

eight grey and three red squirrels participated in the difficult task, which yielded a total 388 

sample size of 43 (22 grey and 21 red squirrels) for this task. Fig. 3a left panel shows that 389 

14/22 (64%) grey and 6/21 (29%) red squirrels succeeded on their first visit (first-time 390 

solvers). The species differed significantly in the frequency of problem-solving success on 391 

their first visit (Fisher’s exact test: P = 0.021). These first-time solvers’ solving duration did 392 
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not differ significantly between species (GLM: χ²1 = 1.58, P = 0.209), although grey squirrels 393 

tended to take longer (Mean = 12.3s, SE ± 6.8s) than red squirrels (Mean = 5.7s, SE ± 2.4s) 394 

to solve the task on their first visit. Red squirrel non-solvers’ time spent on manipulating the 395 

task on their first visit did not differ significantly from that of their conspecifics who were 396 

first-time solvers (χ²1 = 3.07, P = 0.080), but they spent significantly less time than grey 397 

squirrel problem solvers (χ²1 = 14.32, P < 0.001) on the first visit. 398 

 399 

Fig. 3a right panel shows that 20/22 (91%) grey squirrels and 13/21 (62%) red squirrels 400 

solved the task on either their first or a subsequent visit; the difference between these 401 

frequencies was also significant (Fisher’s exact test: P = 0.039). Fig. 3b shows the mean 402 

solving duration for the 11 grey and 7 red squirrels that completed 40 successes. Among 403 

these successful problem solvers, species differed significantly in solving duration across 40 404 

successes (GEE χ²1 = 5.13, P = 0.024); the red squirrels were faster than the grey squirrels, in 405 

solving the difficult task (see Within-species task comparison above for the mean and 406 

standard errors of solving duration in the difficult task). Squirrels increased efficiency with 407 

increased experience (χ²1 = 8.34, P = 0.004). The interaction between species and success 408 

number had no significant effect on efficiency (χ²1 = 0.81, P = 0.369). 409 

Figure 3 

Difficult task: between-species’ behavioural trait differences, solving success  410 

On the first success, squirrels showed no significant species differences in any of the 411 

behavioural traits that we measured: rate of attempts (GLM χ²1 = 0.45, P = 0.504, 20 grey and 412 

13 red squirrel problem solvers), switch rate (χ²1 = 1.21, P = 0.272), proportion of effective 413 

behaviours (χ²1 = 0.58, P = 0.447) or rate of motor diversity (χ²1 = 0.01, P = 0.930). For those 414 

squirrels that achieved 40 successes (11 grey and 7 red squirrel problem solvers), the two 415 

species differed significantly in the switch rate across these successes, our measure of 416 
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instantaneous flexibility (GEE: χ²1 = 7.03, P = 0.008, P < 0.025 after Bonferroni correction), 417 

but not in rate of attempts (χ²1 = 0.62, P = 0.432), rate of motor diversity (χ²1 = 3.53, P = 418 

0.060), or the proportion of effective behaviours (χ²1 = 0.44, P = 0.506). Grey squirrel 419 

problem solvers showed lower switch rates than the red squirrel problem solvers. 420 

 421 

 Difficult task: within-species’ behavioural traits and solving duration 422 

Table 1 shows the varied contribution of behavioural traits to solving duration for each 423 

species. Grey squirrels increased efficiency was associated with a higher rate of attempts (P < 424 

0.001) and proportion of effective behaviours (P < 0.001) whereas red squirrels enhanced 425 

efficiency was related to a higher rate of attempts (P < 0.001), proportion of effective 426 

behaviours (P < 0.001) and level of instantaneous flexibility (P < 0.001).  427 

Table 1 

Difficult task: within-species’ behavioural traits and solving success 428 

Because almost all grey squirrels successfully solved the difficult task, within-species’ 429 

differences in traits and performance between solvers and non-solvers could only be analysed 430 

in red squirrels. To examine the differences between problem solvers and non-solvers, we 431 

investigated the minimal attempts that most non-solvers made. Seven out of eight non-solvers 432 

made at least 15 attempts. Accordingly, these non-solvers, along with all subsequent solvers 433 

(N=7) and first-time solvers (N=6) were included in this within-species analyses. 434 

 435 

Solving duration was not significantly different between non-solvers and first-time solvers 436 

(χ²2 = 1.70, P = 0.192, Fig. 4a) or between non-solvers and subsequent solvers (χ²2 = 2.04, P = 437 

0.154, Fig. 4a). Fig. 4b and c show the proportion of effective behaviours and the rate of 438 

motor diversity for the three types of solvers. Neither trait showed a significant difference 439 

between first-time solvers and non-solvers (selectivity: χ²2 = 1.97; P = 0.161; rate of motor 440 
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diversity: χ²2 = 4.37; P = 0.037, NS after Bonferroni correction) or between subsequent 441 

solvers and non-solvers (selectivity: χ²2 = 4.73; P = 0.030, NS after Bonferroni correction; 442 

rate of motor diversity: χ²2 = 0.039; P = 0.844). Fig. 4d shows the rate of instantaneous 443 

flexibility for the three types of solvers. Non-solvers showed significantly lower switch rates 444 

than first-time solvers (χ²1 = 13.68; P < 0.001; P < 0.025 after Bonferroni correction), but 445 

their rates were not different from those of subsequent solvers (χ²1 = 0.71; P = 0.401). We 446 

also examined the rate of producing productive switches (i.e. when squirrels switch from 447 

ineffective to effective behaviours after a failed attempt). Fig. 4e shows the rate of productive 448 

switches among the three categories of squirrel. Non-solvers showed a significantly lower 449 

rate of productive switches than first-time solvers (χ²2 = 13.68; P < 0.001, P < 0.025 after 450 

Bonferroni correction) and subsequent solvers (χ²2 = 13.68; P < 0.001, P < 0.025 after 451 

Bonferroni correction).  452 

Figure 4 

DISCUSSION 453 

Using two food-extraction tasks, we provide the first detailed empirical study of the 454 

differences in the level of flexibility between an invasive and a native mammalian species 455 

that compete with each other. In between-species analyses, our results indicate that invasive 456 

grey squirrels have higher behavioural flexibility at the outcome level than native red 457 

squirrels. The grey squirrels were more likely than the reds to solve the easy task on their first 458 

visit, and a higher proportion of grey than red squirrels solved the difficult task. However, red 459 

squirrel problem solvers showed comparable solving duration to grey squirrel problem 460 

solvers in the easy task, and among the squirrels that did solve the difficult task, grey 461 

squirrels were less efficient than red squirrels. At within-species level, red squirrel problem 462 

solvers’ increased efficiency was associated with an increase in instantaneous flexibility, and 463 

failure in problem solving was associated with low instantaneous flexibility. Together, these 464 
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data reveal that flexibility overlaps between the two species, but with a much wider range of 465 

problem-solving ability in the red squirrels than in the grey squirrels. Analyses of the 466 

contributions of problem-solving related behavioural traits showed that there are both 467 

similarities and differences between the two species in the problem-solving processes.  468 

 469 

The high success rate of grey squirrels in solving the easy problem on the first visit 470 

(93%) and the difficult problem (91%) show that this invasive species has an advantage in 471 

problem solving. Grey squirrels have replaced the native red squirrels in most habitats in the 472 

UK and Ireland, and parts of northern Italy. This successful invasion might reflect inherently 473 

high (or ‘superior’ as it is termed in other references e.g. Elton, 1958; Sakai, Allendorf, Holt, 474 

Lodge, Molofsky et al., 2001) flexibility in grey squirrels. However, the higher problem-475 

solving ability we observed could also be explained by selective pressure during the invasion 476 

process, if enhanced flexibility is favoured as a trait when invading a new environment 477 

(Wright, Eberhard, Hobson, Avery, & Russello, 2010). To disentangle inherent capacity from 478 

selective pressure, it would be necessary to compare the grey squirrels’ problem-solving 479 

ability in a non-native environment with their problem-solving ability in their native 480 

environment in Eastern North America. 481 

 482 

Given an easy problem, red squirrels non-solvers spent longer manipulating the task 483 

than their counterpart solvers and comparable amount of time to grey squirrels problem 484 

solvers, but still failed to solve the problem on their first visit. Given a more difficult 485 

problem, the majority of red squirrels (71%) failed to solve it on their first visit (Fig. 3a). 486 

Even though the 29% of the red squirrels that did solve the difficult task at their first visit 487 

showed comparable solving efficiency to grey squirrels, and those red squirrels that 488 

completed 40 successes came to outperform the grey squirrels with increased successes (Fig. 489 
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3b), these results indicate that at the population level the native red squirrels are less flexible 490 

at the outcome level than grey squirrels. Our analysis at within-species level further indicates 491 

that instantaneous flexibility, flexibility at the process level, was low among the red squirrel 492 

non-solvers. Where the two species co-exist, red squirrels’ foraging efficiency is depressed 493 

(Wauters et al., 2001, 2002), but since the habitats we used only had a single species, our 494 

results could not be due to such a competitive effect. Yet, clear differences in problem-495 

solving ability were observed. Although the habitats in which we observed the two species 496 

were not completely identical, as far as we know, none of the differences between them has 497 

been shown to correlate with differences in problem-solving performance. Accordingly, a 498 

difference in behavioural flexibility may be added to the causes that lead to the red squirrels’ 499 

population decline, alongside competition for food sources (Wauters et al., 2001, 2002) and 500 

squirrelpox (Rushton, Lurz, Gurnell, & Nettleton, 2006). Problem-solving ability will be 501 

critical for both species in resource exploitation and survival, so differences in flexibility may 502 

contribute to the observed patterns of species replacement, an aspect of the situation that has 503 

been completely unexplored up to now. 504 

 505 

The facts that all squirrels eventually solved the easy task, and that some red squirrels 506 

solved the difficult task and did so efficiently, show that problem-solving ability overlaps 507 

between the two species. Our analyses showed that the two species have both similarities and 508 

differences in problem solving. For the easy task, both red and grey squirrels showed 509 

comparable solving duration, but the two species were using different strategies to achieve 510 

efficiency; grey squirrels decreased attempt rate whereas red squirrels increased attempt rate 511 

across successes (Fig. 2b). The difference was due to grey squirrels making more, shorter 512 

attempt bouts whereas red squirrels made fewer, longer attempt bouts (Fig. 2d). For the 513 

difficult task, red and grey squirrels are similar in that in both species enhanced efficiency 514 
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was associated with increased persistence (the attempt rate) and selectivity (the proportion of 515 

effective behaviours). These two traits have been found to be associated with efficiency in 516 

our previous studies with captive grey squirrels solving this difficult task (Chow et al., 2016), 517 

and are similar to findings in other species, for example Indian mynas, pheasants, hyenas, and 518 

meerkats (Benson-Amram & Holekamp, 2012; Thornton & Samson, 2012; Griffin et al., 519 

2014; Van Horik & Madden, 2016). The differences in the species’ problem-solving 520 

processes lay in the effects of instantaneous flexibility. In red squirrels, but not grey squirrels, 521 

instantaneous flexibility increased efficiency among those animals that solved the problem 522 

repeatedly (Table 1). Our measure of instantaneous flexibility has been shown to be related to 523 

memory in this puzzle box (Chow et al., 2017), and ability to produce a switch from 524 

ineffective to effective tactic requires the individuals to remember the effective tactic. Given 525 

that the relationship between instantaneous flexibility and selectivity was positive for the 526 

small proportion of red squirrels that were problem solvers, but negative for the grey squirrel 527 

problem solvers (Table A2), it seems that these red squirrels, at least, have better memory for 528 

their past actions than the grey squirrel problem solvers. It follows that individual variation in 529 

problem-solving ability may be wider in red squirrels than grey squirrels. 530 

 531 

The fact that non-solvers’ failure lies in flexibility-related traits raises several 532 

questions, including whether low flexibility is correlated with other sub-optimal behavioural 533 

adjustments such as decreased foraging time and consuming low energy food, which have 534 

been observed when red squirrels cohabit with grey squirrels (Wauters et al., 2001, Wauters 535 

et al., 2002); and whether low flexibility is associated with measureable negative 536 

consequences in fitness. Although these questions remain to be investigated, inefficient 537 

foraging behaviours, including inefficient food-extraction, are predicted to decrease fitness, 538 

they necessarily reduce the chances that red squirrel juveniles would be equipped for 539 
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reproduction. Reduced reproductive success is a major factor for the decline of red squirrels 540 

(Gurnell et al., 2004), alongside squirrelpox (Rushton et al., 2006) and food competition 541 

(Wauters et al., 2001, Wauters et al., 2002). 542 

 543 

Conclusion 544 

Using two food-extraction tasks, we provide evidence for differences in behavioural 545 

flexibility between an invasive mammalian and a related native species. Our results show that 546 

invasive grey squirrels are more successful than the native red squirrels in solving a difficult 547 

problem, but the few red squirrels that solved the problem outperformed their grey congeners 548 

in efficiency. These results suggest that flexibility overlaps between the two species, but with 549 

a wider range of problem-solving ability in the red squirrels than in the grey squirrels. 550 

Overall, our results suggest that differences in behavioural flexibility, leading to more 551 

successful problem solving, could play a part in explaining the replacement of native red 552 

squirrels by the grey invaders. 553 
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Appendix 

Table A1. The type of behavioural tactics that squirrels used to solve the puzzle box task. 

Information is Table 1 extracted from (Chow, Lea and Leaver, 2016).  

* indicated as direct effective contact types. 

# indicated as non-effective contact types.  

Behaviours  Definitions 

Pull Effective* A squirrel uses its teeth to make an outward movement and a 

lever subsequently moves outside the box. This pulling 

behaviour must be performed on the near end of the nut 

container. 

Ineffective# A squirrel uses its teeth to make an outward movement and a 

lever does not move out of the box. This pulling behaviour 

must be performed on the far end of the nut container. 

Push Effective* A squirrel uses any of its body part, including nose (usually), 

teeth, paw or chin to make an inward movement of a lever and 

the lever subsequently moves inside the box. This pushing 

behaviour must be performed on the near end of the nut 

container. 

Ineffective# A squirrel uses any of its body part, including nose (usually), 

mouth, teeth, paw or chin to make an inward movement of a 

lever and the lever would not move. 

This pushing behaviour must be performed on the far end of 

the nut container. 

Push up  A squirrel uses its nose to make a push under an end of a lever. 

Push down 
 A squirrel puts force on a lever end with its paws or teeth. This 

behaviour makes the lever appear in a curved shape.  

Tilted up 
 A squirrel uses its nose to level up a lever end. This behaviour 

makes a lever turn 45 degrees.  

Claw  A squirrel uses it front paws to scratch a lever end. 

Lick  A squirrel uses its tongue to touch a lever end. 

Shake 
 A squirrel uses its teeth to bite a lever end causing an up-and-

down movement. 

Combined behaviours 
At least two of the behavioural types that mentioned above 

appear. 
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Table A2. Pearson correlations between traits within each species. Correlations at the top 

part are for grey squirrel problem solvers (N=11) whereas correlations at the lower part are 

for red squirrel problem solvers (N=7). 

 
Success  

number 
Persistence Selectivity 

Instantaneous 

flexibility 

Motor 

diversity 

Success 

number 
- -0.01 0.17 0.07 0.01 

Persistence 0.10 - 0.36 0.27 0.89 

Selectivity 0.43 0.28 - -0.06 0.34 

Instantaneous 

flexibility 
0.12 -0.07 0.09 - 0.62 

Motor 

diversity 
0.14 0.74 0.24 0.04 - 
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Figure captions 561 

Figure 1. a) an easy task: a hinged box that is constructed with four containers, one at each 562 

corner. Squirrels could lift up a lid using their front paw, nose or teeth to obtain a hazelnut. b) 563 

a difficult task: the puzzle box that has been used in Chow et al. (2016). It is a transparent 564 

box, constructed with 10 holes that are randomly located on each side. Squirrels could solve 565 

the task by pushing the near-end (close to the reward) or pulling the far-end (far from the 566 

reward).  567 

Figure 2. Easy task: across 15 successes, 24 squirrels’ (Ngrey = 11, Nred = 13) a) mean solving 568 

duration; b) mean attempt rate; c) mean number of attempts; and d) mean length per attempt 569 

(i.e. attempt duration) in seconds.  570 

Figure 3. Difficult task: percentage of problem solvers obtained first success in each species 571 

(Ngrey = 22, Nred = 21) on their first visit (left panel) and either on the first or at a subsequent 572 

visit (right panel). The number above each bar indicates the actual number of squirrels that 573 

successfully solved the task. *P<0.05. b) mean solving duration in seconds for 18 individuals 574 

that had completed 40 successes (Ngrey = 11, Nred = 7).  575 

Figure 4. Within-species analysis: box plot of each behavioural trait for non-solvers (N = 7), 576 

subsequent solvers (N = 7) and first-time solvers (N = 6). Whiskers of a box indicate 577 

minimum and maximum values, edges of the box indicate first and third quartiles and the 578 

internal line of the box indicates median. a) solving duration; b) selectivity, the proportion of 579 

effective behaviour; c) motor diversity, the rate of exhibiting different types of behaviours; d) 580 

instantaneous flexibility, the rate of switching between tactics after a failed attempt, 581 

regardless whether the tactic has been previously used; e) productive switch, the rate of 582 

switching from ineffective to effective tactics. *<0.05, **<0.01, ***<0.001 583 
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Figure 3 
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Table 1. Puzzle box task: GEE models examining the varied contribution of behavioural traits 

to problem-solving efficiency for each species (Ngrey = 11, Nred = 7).  

  40 successes 

Species Independent variable Estimates SE df χ² P 

Grey squirrels 

(N=11) 

 

Success number <0.01 <0.01 1 3.38 0.066 

Persistence -0.10 0.01 1 95.78 <0.001 

Selectivity -1.08 0.12 1 81.04 <0.001 

Instantaneous flexibility -0.01 0.02 1 0.21 0.644 

Red squirrels 

(N=7) 

Success number <-0.01 >0.01 1 1.60 0.206 

Persistence -0.09 0.01 1 317.47 <0.001 

Selectivity -0.37 0.11 1 11.09 0.001 

Instantaneous flexibility -0.05 0.01 1 34.32 <0.001 

Note: Factors include success number (40 trials), persistence (rate of attempts), selectivity 

(proportion of effective behaviours), and instantaneous flexibility (rate of switching between 

tactics). The table includes estimates, SE, df, χ² and P values. 

 


