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Abstract 23	
  

Sex-linkage is predicted to evolve in response to sex-specific or sexually antagonistic 24	
  

selection. In line with this prediction, most sex-linked genes are associated with 25	
  

reproduction in the respective sex. In addition to traits directly involved in fertility 26	
  

and fecundity, mediators of maternal effects may be predisposed to evolve sex-27	
  

linkage because they indirectly affect female fitness through their effect on offspring 28	
  

phenotype. Here we test for sex-linked inheritance of a key mediator of prenatal 29	
  

maternal effects in oviparous species, the transfer of maternally-derived testosterone 30	
  

to the eggs. Consistent with maternal inheritance, we found that in Japanese quail 31	
  

(Coturnix japonica) granddaughters resemble their maternal, but not their paternal 32	
  

grandmother in yolk testosterone deposition. This pattern of resemblance was not due 33	
  

to non-genetic priming effects of testosterone exposure during prenatal development, 34	
  

as an experimental manipulation of yolk testosterone levels did not affect the females’ 35	
  

testosterone transfer to their own eggs later in life. Instead, W chromosome and / or 36	
  

mitochondrial variation may underlie the observed matrilineal inheritance pattern. 37	
  

Ultimately, the inheritance of mediators of maternal effects along the maternal line 38	
  

will allow for a fast and direct response to female-specific selection, thereby affecting 39	
  

the dynamics of evolutionary processes mediated by maternal effects. 40	
  

 41	
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Introduction 44	
  

Sexual antagonism is common in nature and has important consequences for the 45	
  

genomic arrangement of loci under sex-specific selection, as well as their inheritance 46	
  

[1-3]. Indeed, because daughters are more likely to obtain high female-fitness alleles 47	
  

from their mother than from their father, and vice versa, sex-specific (or sexually 48	
  

antagonistic) selection will favour sex-linkage of traits differentially linked to male 49	
  

and female fitness [4, 5]. A classic example for the evolution of sex-linkage in 50	
  

response to sexually antagonistic selection is coloration in guppies (Poecilia 51	
  

reticulata), which is associated with attractiveness in males [6], but makes males and 52	
  

females more vulnerable to predation [7]. In response to these conflicting selection 53	
  

pressures, a large proportion of the genetic variation in coloration has become linked 54	
  

to the male-specific Y chromosome [8].  55	
  

Even when selection is not acting in a sexually antagonistic way, sex-linkage may be 56	
  

adaptive because it allows for a faster and more direct response to sex-specific 57	
  

selection. Furthermore, if a trait is expressed in a sex-limited way, sex-linkage 58	
  

prevents deleterious alleles from being sheltered from selection in the non-expressing 59	
  

sex [4], again accelerating adaptive responses to selection. In line with these ideas, 60	
  

male-specific fitness traits, such as sperm motility [9] or spermatogenesis [10], are 61	
  

linked to the male-specific Y chromosome in species where the male is the 62	
  

heterogametic sex (XY). And similarly, in species where the female is the 63	
  

heterogametic sex (ZW), female fecundity and fertility traits are associated with the 64	
  

female-specific W chromosome [11, 12].  65	
  

We propose that in addition to traits directly involved in fecundity and fertility, 66	
  

mediators of maternal effects (i.e. maternally-expressed traits that affect offspring 67	
  

phenotype) may be predisposed to evolve sex-linkage because they indirectly affect 68	
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female fitness through their effect on offspring phenotype [13]. Furthermore, we 69	
  

argue that the potential for such sex-linkage of maternal effects mediators is 70	
  

particularly high in taxa where the female is the heterogametic sex (such as birds).  71	
  

Here we used a three-generation breeding design (ESM 1) in a captive Japanese quail 72	
  

(Coturnix japonica) population to test for sex-linkage of a key mediator of prenatal 73	
  

maternal effects in birds: the transfer of maternally-derived testosterone (T) to the 74	
  

eggs (yolk T transfer) [14-16].  Maternally transferred T affects a wide range of 75	
  

morphological, physiological, behavioural and life history traits in the offspring (i.e. it 76	
  

acts as a mediator of maternal effects [14-16]), and the costs and benefits of T 77	
  

exposure during prenatal development appear to depend on the social and 78	
  

environmental conditions encountered by the offspring [17-19]. Yolk T transfer is 79	
  

known to be heritable [20-22], but the design of previous studies did not allow to 80	
  

detect potential sex-linkage. We predict that if yolk T transfer is inherited along the 81	
  

maternal line, females will resemble their maternal, but not their paternal grandmother 82	
  

in their transfer of T to the eggs. 83	
  

 84	
  

Material and methods 85	
  

Study population  86	
  

The study was conducted in a population of Japanese quail kept at the University of 87	
  

Zurich, Switzerland. Males and females were housed in separate outdoor aviaries (7 x 88	
  

5.5 m each). For breeding, male-female pairs were transferred to cages (122 x 50 x 50 89	
  

cm) within our facility. Cages contained ad libitum food, water, grit, a source of 90	
  

calcium, a shelter and a sand bath. The bottom of the cages was lined with sawdust. 91	
  

The breeding facility was kept on a 16 h : 8 h light : dark cycle at 20 ± 3°C (see [23] 92	
  

for a detailed description of animal husbandry).  93	
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 94	
  

Egg collection, incubation and offspring rearing 95	
  

Eggs were collected daily, labelled with a non-toxic marker, and weighed. To 96	
  

standardise incubation and rearing conditions, we artificially incubated the eggs 97	
  

(mean ± SD: 9.5 ± 0.84 eggs per female) (Favorit, HEKA Brutgeräte, Germany; 98	
  

37.8◦C, 55% humidity). For hatching, eggs were placed in individual containers to be 99	
  

able to determine which chick hatched from which egg. After hatching, chicks were 100	
  

raised in heated cages in mixed family groups (109 x 57 x 25 cm, Kükenaufzuchtbox 101	
  

4002/C, HEKA Brutgeräte, Germany). Variation in the number of eggs laid while in 102	
  

the breeding cages was small and there was no mother-daughter resemblance in the 103	
  

number of eggs laid (generalised linear mixed model: χ2 = 0.264, P = 0.607).  104	
  

For the yolk T analysis, yolk and albumen of one egg per female (the 5th) were 105	
  

separated, weighed, homogenised, and frozen at –20°C. Previous work has shown that 106	
  

within-clutch variation in yolk T concentration is small in Japanese quail (within-107	
  

female repeatability across different stages of the reproductive cycle > 0.7 [24]) and 108	
  

the 5th egg is thus representative of a female’s yolk T deposition to her eggs. Yolks 109	
  

were collected across three generations (hereafter referred to as maternal and paternal 110	
  

grandmothers, mothers, and (grand-) daughters) to assess the inheritance pattern (see 111	
  

ESM 1). Within a generation, all females had the same age and had experienced the 112	
  

same period of reproductive activity when eggs were collected.   113	
  

 114	
  

Yolk testosterone analysis 115	
  

Yolk T extraction and radioimmunoassay were performed following previously 116	
  

published protocols [22]. In short, 100-110 mg of yolk were spiked with 117	
  

approximately 2500 dpm of [3H]-testosterone (PerkinElmer, USA) and extracted 118	
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twice with a mixture of diethyl and petroleum ether (7 : 3). Yolk T concentrations (pg 119	
  

/ mg yolk) were quantified in 10 µl aliquots using [1,2,6,7-3H]-testosterone 120	
  

(PerkinElmer, USA, specific activity 63.47 Ci/mmoL) and a specific antibody 121	
  

generated in rabbits against testosterone-3-(carboxy-methyl) oxime bovine serum 122	
  

albumin conjugate [25]. The sensitivity of the assay was 1.62 ± 0.17 pg per tube. The 123	
  

mean recovery rate ± SD was 79.3 ± 6.4%. The samples were analysed in two assays. 124	
  

The intra- and inter-assay coefficients of variation were 4.7% and 6.5%, respectively.   125	
  

To test for (matrilineal) inheritance of yolk T transfer, we analysed the yolk T 126	
  

concentration in the eggs of 22 maternal grandmothers, 24 paternal grandmothers, 29 127	
  

mothers and 40 (grand-) daughters (ESM 1). Yolk T concentrations were log 128	
  

transformed and standardised within generation before analysis to ensure normality of 129	
  

the residuals and equal variances across generations.  130	
  

 131	
  

 132	
  

Yolk testosterone manipulation 133	
  

To explore whether the resemblance in yolk T transfer along the maternal line (see 134	
  

Results) is due to non-genetic priming effects, we experimentally manipulated yolk T 135	
  

levels in eggs and tested 1) if T levels experienced during a female’s prenatal 136	
  

development affect the transfer of T into her own eggs later in life, and 2) if the 137	
  

manipulation affects the transfer of T into the eggs of the daughters of these females 138	
  

(i.e. if the manipulation has a transgenerational effect). To this end, we experimentally 139	
  

increased yolk T concentrations in the eggs of half of the females of the second 140	
  

generation before incubation. This manipulation simulates an environmental effect on 141	
  

maternal yolk T transfer (i.e. an environmental maternal effect), as for example 142	
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observed in response to breeding density [26, 27], food availability [28, 29] or 143	
  

parasite abundance [19].  144	
  

We injected eggs with 15 ng testosterone (Sigma-Aldrich, Switzerland) dissolved in 145	
  

20 µl safflower oil (Sigma-Aldrich, Switzerland) (T-treatment) or with 20 µl 146	
  

safflower oil as a control (C-treatment). Clutches (N = 29) were assigned randomly to 147	
  

one of the two treatment groups. The injected dose is equivalent to approximately 1 148	
  

SD of the yolk T content in the study population (mean ± SD: 48.4 ± 16.9 ng / yolk; 149	
  

range: 18.5 – 83.9 ng / yolk). Injections were performed at the pointed end of the egg, 150	
  

using an insulin syringe (Terumo, Belgium). The hole in the shell was closed with an 151	
  

adhesive film (Opsite, Smith & Nephew, Switzerland). There was no statistically 152	
  

significant difference in hatching success between T-injected and control eggs [30]. 153	
  

Furthermore, the yolk T manipulation did not significantly affect brood sex ratio 154	
  

(ESM 2). When females originating from T-manipulated and control eggs reached 155	
  

adulthood, we measured the T concentration they transferred to their own eggs (see 156	
  

above). Moreover, we measured the yolk T concentration in the eggs of 26 daughters 157	
  

of these females (as described above) to test for a transgenerational effect of the yolk 158	
  

T manipulation on yolk T transfer.  159	
  

 160	
  

Statistical analysis 161	
  

First, we used a linear mixed model to quantify the relationship between the yolk T 162	
  

concentration in the eggs of mothers (explanatory variable) and daughters (response 163	
  

variable). Family ID was included as a random effect to control for the non-164	
  

independence of siblings.  165	
  

Second, a similar model, this time with the T concentration in the eggs of the maternal 166	
  

and paternal grandmother as explanatory variables, was used in order to estimate the 167	
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relationship between the yolk T concentration in the eggs of both grandmothers and 168	
  

their granddaughters. To confirm the results of these linear mixed models, we 169	
  

conducted a model selection procedure using AICc criteria to determine if a model 170	
  

that contains maternal and / or paternal grandmother yolk T best explains yolk T 171	
  

transfer of granddaughters. Candidate models contained combinations of the maternal 172	
  

grandmother’s and paternal grandmother’s yolk T concentrations. All candidate 173	
  

models contained family ID as a random effect. Model selection was performed using 174	
  

the ‘MuMIn‘ package [31] in R [32].  175	
  

Third, we tested for an effect of the experimental yolk T manipulation on the transfer 176	
  

of yolk T later in life in 1) females that developed in the manipulated eggs (i.e. 177	
  

directly experienced manipulated T concentrations during their embryonic 178	
  

development), and 2) in the daughters of these females (to test for transgenerational 179	
  

effects of the manipulation) using linear mixed models that included T treatment, the 180	
  

yolk T concentration in the eggs of the mother and their interaction as fixed effects, 181	
  

and family ID as a random effect. For all linear mixed models, analyses were 182	
  

performed using the package ‘lme4’ [33] in R [32]. P values were obtained by 183	
  

comparing two nested models, with and without the variable of interest, using 184	
  

likelihood ratio tests.  185	
  

 186	
  

Results 187	
  

There was a significant positive relationship between the yolk T concentration in the 188	
  

eggs of mothers and daughters (b ± SE: 0.437 ± 0.142; χ2 = 8.185, P = 0.004; Fig. 1A). 189	
  

Similarly, a significant positive relationship between the yolk T concentrations in the 190	
  

eggs of maternal grandmothers and granddaughters was found (b ± SE: 0.366 ± 0.147; 191	
  

χ2 = 5.415, P = 0.020; Fig. 1B). In contrast, yolk T concentrations in the eggs of 192	
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paternal grandmothers and granddaughters were unrelated (b ± SE: -0.027 ± 0.159; χ2 193	
  

= 0.001, P = 0.973; Fig. 1C).  In comparison, the resemblance in yolk mass between 194	
  

granddaughters and their maternal (b ± SE: 0.266 ± 0.158) or paternal grandmother (b 195	
  

± SE: 0.250 ± 0.184) was very similar. As a consequence, analysing total yolk T 196	
  

content instead of yolk T concentration gave comparable results in all analyses. 197	
  

The finding that yolk T deposition is inherited along the maternal line was confirmed 198	
  

by a model selection procedure based on AICc, which revealed that a model 199	
  

containing only the maternal grandmother’s yolk T concentration explained the 200	
  

granddaughters’ yolk T transfer best. Models that contained additionally the paternal 201	
  

grandmother’s yolk T concentration or only the paternal grandmother’s yolk T 202	
  

concentration all had ΔAICc > 4.5.   203	
  

There was no indication that an experimental increase of yolk T levels experienced 204	
  

during prenatal development influences a female’s own transfer of yolk T later in life 205	
  

(χ2 = 0.243, P = 0.622; Fig. 2). Furthermore, the manipulation had no significant 206	
  

transgenerational effect on the yolk T transfer of the daughters of females that 207	
  

developed in the manipulated eggs (χ2 = 0.035, P = 0.851). 208	
  

 209	
  

Discussion 210	
  

Using a three-generation breeding design, we provide evidence for a significant 211	
  

within-family resemblance in the transfer of yolk T, an important mediator of prenatal 212	
  

maternal effects in oviparous species [15, 16]. However, in contrast to what is 213	
  

expected under autosomal inheritance, the resemblance in yolk T transfer between 214	
  

mothers and daughters, and between maternal grandmothers and granddaughters was 215	
  

very similar, whereas yolk T concentrations in eggs of paternal grandmothers and 216	
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granddaughters were unrelated. This pattern of resemblance is consistent with female-217	
  

linked inheritance.  218	
  

Sex-linked inheritance can be caused by several non-mutually exclusive mechanisms. 219	
  

First, information on the avian female-specific W chromosome, which is passed on 220	
  

from mothers to daughters, may influence yolk T transfer. Although the W 221	
  

chromosome contains only few genes [34, 35], it plays a key role in regulating female 222	
  

fertility and fecundity [11, 12], likely through epistatic interactions between the W 223	
  

chromosome and other parts of the genome [36]. Moreover, the expression of W 224	
  

chromosome-linked genes has been found to rapidly respond to artificial selection on 225	
  

female reproductive performance [12], again highlighting the important role of W-226	
  

linked variation in mediating female fitness.  227	
  

Second, mitochondrial effects may underlie the observed maternal resemblance in 228	
  

yolk T transfer. Mitochondria are, like W chromosomes, inherited along the maternal 229	
  

line and there is accumulating evidence that mitochondrial genetic variation is non-230	
  

neutral [37, 38]. If mitochondrial variation affects yolk T transfer, for example by 231	
  

influencing a female’s metabolic rate [39], this could explain the female-linked 232	
  

inheritance pattern. Indeed, there is a strong positive relationship between a female’s 233	
  

resting metabolic rate (RMR) and the amount of T she transfers to her eggs [40], 234	
  

making this a plausible scenario. Interestingly, positive selection has shaped 235	
  

ATP5A1W, a gene on the avian W chromosome that encodes a mitochondrial ATP 236	
  

synthase subunit [41], suggesting that W- and mtDNA variation may epistatically 237	
  

interact in shaping female-specific fitness traits [36].  Testing for associations 238	
  

between sequence or structural [42] variation on the W-chromosome and / or the 239	
  

mitochondria and variation in yolk T transfer will thus be a fruitful next step, and will 240	
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allow for an in-depth investigation of the molecular mechanisms underlying the 241	
  

maternal inheritance pattern observed in our study. 242	
  

Besides sex-limited genetic variation, non-genetic mechanisms [43-45] may 243	
  

contribute to the resemblance in yolk T transfer along the maternal line. For example, 244	
  

prenatal exposure to yolk T may prime (‘program’) a female’s yolk T transfer to her 245	
  

own eggs at adulthood. Indeed, experimental manipulations have shown that variation 246	
  

in prenatal T exposure has long-term effects on both circulating T levels as well as T 247	
  

sensitivity later in life [46, 47]. We directly tested this hypothesis, but found no 248	
  

evidence that females originating from an egg with experimentally increased T 249	
  

concentration differed in their yolk T transfer from control females. Moreover, we 250	
  

found no evidence for a transgenerational effect of the yolk T manipulation on the 251	
  

deposition of yolk T in the next generation (i.e. in the daughters of females that 252	
  

developed in the manipulated eggs). 253	
  

The former finding is in line with previous studies in pheasants (Phasianus 254	
  

colchicus)[48] and canaries (Serinus canaria)[49] that found no effect of 255	
  

experimentally increased prenatal T exposure on T transfer to the eggs. We can 256	
  

exclude that the lack of an effect was due to an unsuccessful manipulation, because 257	
  

the yolk T treatment affected a range of other behavioural and physiological traits in 258	
  

our study [30] as well as in [48] and [49].  Rather, it suggests that whereas prenatal 259	
  

exposure to T has long-term effects on both circulating T levels and T sensitivity [46, 260	
  

47], it does not affect the transfer of T to the eggs.  261	
  

Whereas we found no evidence that the T manipulation affected the (overall) yolk T 262	
  

transfer in the next two generations, the manipulation may differentially affect the 263	
  

deposition of yolk T to male and female eggs. However, this scenario appears 264	
  

unlikely given that evidence for differential allocation of T to male and female eggs is 265	
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weak across species [50], and absent in Japanese quail [51] (see also ESM 2). 266	
  

Furthermore, although the T manipulation was performed within the natural range, it 267	
  

is possible that the lack of a difference might be due to dose-response effects [52].  268	
  

Given the highly controlled egg handling, incubation and chick rearing conditions in 269	
  

our study, we can exclude that common postnatal environmental effects contribute to 270	
  

the observed within-family resemblance. However as a third potential source of 271	
  

matrilineal resemblance, other non-genetic effects such as the transmission of 272	
  

epigenetic states across generations [45], other egg components (e.g. nutrients) that 273	
  

indirectly prime yolk T transfer, or genomic imprinting may play a role. Although we 274	
  

can currently not exclude such mechanisms, they are unlikely to explain our results 275	
  

because to date neither the transgenerational transmission of epigenetic marks [53], 276	
  

nor genomic imprinting [54, 55] have been documented in birds.  277	
  

Ultimately, sex-linkage of yolk T transfer may have evolved in response to female-278	
  

specific selection and / or in order to resolve sexual conflict [3, 56]. Although yolk T 279	
  

transfer is a trait that is expressed only in females, any underlying autosomal genes 280	
  

might have pleiotropic effects on traits expressed in males as well [57]. For example, 281	
  

yolk T transfer may not be independent of T levels in the circulation, on which strong 282	
  

sexually antagonistic selection is acting on [58]. Interestingly, the relationship 283	
  

between yolk T and plasma T levels differs across species [59], which may reflect 284	
  

different stages in the resolution of this conflict. Under this scenario, we would 285	
  

predict pronounced sex-linkage of yolk T transfer in species where yolk T and 286	
  

circulating T levels are not correlated (anymore) (e.g. our study species [22]), but no 287	
  

or limited sex-linkage in species where the two traits are (still) correlated (e.g. canary 288	
  

Serinus canaria [60]).  289	
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In conclusion, we show that yolk T transfer, an important mediator of prenatal 290	
  

maternal effects in oviparous species, is inherited along the maternal line in Japanese 291	
  

quail. We can exclude the possibility that this maternal resemblance is due to common 292	
  

postnatal environmental effects or non-genetic priming effects of prenatal exposure to 293	
  

T on yolk T transfer later in life. Instead, our findings suggest that W-linked and / or 294	
  

mitochondrial variation might underlie the observed inheritance pattern. Female-295	
  

linked inheritance of maternal effect mediators allows for a fast and direct response to 296	
  

female-specific selection and will thereby affect the dynamics of evolutionary 297	
  

processes mediated by maternal effects, such as the adaptation of populations to 298	
  

changing environments [61] or mother-offspring coadaptation [62].  299	
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Figure legends 519	
  

 520	
  

Fig. 1. Resemblance in yolk testosterone deposition (log yolk T; pg / mg yolk) 521	
  

among family members. A) relationship between mothers and daughters; B) 522	
  

relationship between maternal grandmothers and granddaughters; C) relationship 523	
  

between paternal grandmothers and granddaughters. 524	
  

 525	
  

  526	
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Fig. 2. Effect of prenatal testosterone manipulation on the transfer of yolk 527	
  

testosterone to the eggs. Shown is the difference between the yolk testosterone 528	
  

concentration (log yolk T pg / mg yolk) in the eggs of females that have experienced 529	
  

an experimentally increased yolk testosterone level during their prenatal development 530	
  

(T) and females that developed in a control egg (C), and their mother. Means ± SE are 531	
  

shown. 532	
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