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Abstract 23	  

Sex-linkage is predicted to evolve in response to sex-specific or sexually antagonistic 24	  

selection. In line with this prediction, most sex-linked genes are associated with 25	  

reproduction in the respective sex. In addition to traits directly involved in fertility 26	  

and fecundity, mediators of maternal effects may be predisposed to evolve sex-27	  

linkage because they indirectly affect female fitness through their effect on offspring 28	  

phenotype. Here we test for sex-linked inheritance of a key mediator of prenatal 29	  

maternal effects in oviparous species, the transfer of maternally-derived testosterone 30	  

to the eggs. Consistent with maternal inheritance, we found that in Japanese quail 31	  

(Coturnix japonica) granddaughters resemble their maternal, but not their paternal 32	  

grandmother in yolk testosterone deposition. This pattern of resemblance was not due 33	  

to non-genetic priming effects of testosterone exposure during prenatal development, 34	  

as an experimental manipulation of yolk testosterone levels did not affect the females’ 35	  

testosterone transfer to their own eggs later in life. Instead, W chromosome and / or 36	  

mitochondrial variation may underlie the observed matrilineal inheritance pattern. 37	  

Ultimately, the inheritance of mediators of maternal effects along the maternal line 38	  

will allow for a fast and direct response to female-specific selection, thereby affecting 39	  

the dynamics of evolutionary processes mediated by maternal effects. 40	  

 41	  
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Introduction 44	  

Sexual antagonism is common in nature and has important consequences for the 45	  

genomic arrangement of loci under sex-specific selection, as well as their inheritance 46	  

[1-3]. Indeed, because daughters are more likely to obtain high female-fitness alleles 47	  

from their mother than from their father, and vice versa, sex-specific (or sexually 48	  

antagonistic) selection will favour sex-linkage of traits differentially linked to male 49	  

and female fitness [4, 5]. A classic example for the evolution of sex-linkage in 50	  

response to sexually antagonistic selection is coloration in guppies (Poecilia 51	  

reticulata), which is associated with attractiveness in males [6], but makes males and 52	  

females more vulnerable to predation [7]. In response to these conflicting selection 53	  

pressures, a large proportion of the genetic variation in coloration has become linked 54	  

to the male-specific Y chromosome [8].  55	  

Even when selection is not acting in a sexually antagonistic way, sex-linkage may be 56	  

adaptive because it allows for a faster and more direct response to sex-specific 57	  

selection. Furthermore, if a trait is expressed in a sex-limited way, sex-linkage 58	  

prevents deleterious alleles from being sheltered from selection in the non-expressing 59	  

sex [4], again accelerating adaptive responses to selection. In line with these ideas, 60	  

male-specific fitness traits, such as sperm motility [9] or spermatogenesis [10], are 61	  

linked to the male-specific Y chromosome in species where the male is the 62	  

heterogametic sex (XY). And similarly, in species where the female is the 63	  

heterogametic sex (ZW), female fecundity and fertility traits are associated with the 64	  

female-specific W chromosome [11, 12].  65	  

We propose that in addition to traits directly involved in fecundity and fertility, 66	  

mediators of maternal effects (i.e. maternally-expressed traits that affect offspring 67	  

phenotype) may be predisposed to evolve sex-linkage because they indirectly affect 68	  
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female fitness through their effect on offspring phenotype [13]. Furthermore, we 69	  

argue that the potential for such sex-linkage of maternal effects mediators is 70	  

particularly high in taxa where the female is the heterogametic sex (such as birds).  71	  

Here we used a three-generation breeding design (ESM 1) in a captive Japanese quail 72	  

(Coturnix japonica) population to test for sex-linkage of a key mediator of prenatal 73	  

maternal effects in birds: the transfer of maternally-derived testosterone (T) to the 74	  

eggs (yolk T transfer) [14-16].  Maternally transferred T affects a wide range of 75	  

morphological, physiological, behavioural and life history traits in the offspring (i.e. it 76	  

acts as a mediator of maternal effects [14-16]), and the costs and benefits of T 77	  

exposure during prenatal development appear to depend on the social and 78	  

environmental conditions encountered by the offspring [17-19]. Yolk T transfer is 79	  

known to be heritable [20-22], but the design of previous studies did not allow to 80	  

detect potential sex-linkage. We predict that if yolk T transfer is inherited along the 81	  

maternal line, females will resemble their maternal, but not their paternal grandmother 82	  

in their transfer of T to the eggs. 83	  

 84	  

Material and methods 85	  

Study population  86	  

The study was conducted in a population of Japanese quail kept at the University of 87	  

Zurich, Switzerland. Males and females were housed in separate outdoor aviaries (7 x 88	  

5.5 m each). For breeding, male-female pairs were transferred to cages (122 x 50 x 50 89	  

cm) within our facility. Cages contained ad libitum food, water, grit, a source of 90	  

calcium, a shelter and a sand bath. The bottom of the cages was lined with sawdust. 91	  

The breeding facility was kept on a 16 h : 8 h light : dark cycle at 20 ± 3°C (see [23] 92	  

for a detailed description of animal husbandry).  93	  



	   5 

 94	  

Egg collection, incubation and offspring rearing 95	  

Eggs were collected daily, labelled with a non-toxic marker, and weighed. To 96	  

standardise incubation and rearing conditions, we artificially incubated the eggs 97	  

(mean ± SD: 9.5 ± 0.84 eggs per female) (Favorit, HEKA Brutgeräte, Germany; 98	  

37.8◦C, 55% humidity). For hatching, eggs were placed in individual containers to be 99	  

able to determine which chick hatched from which egg. After hatching, chicks were 100	  

raised in heated cages in mixed family groups (109 x 57 x 25 cm, Kükenaufzuchtbox 101	  

4002/C, HEKA Brutgeräte, Germany). Variation in the number of eggs laid while in 102	  

the breeding cages was small and there was no mother-daughter resemblance in the 103	  

number of eggs laid (generalised linear mixed model: χ2 = 0.264, P = 0.607).  104	  

For the yolk T analysis, yolk and albumen of one egg per female (the 5th) were 105	  

separated, weighed, homogenised, and frozen at –20°C. Previous work has shown that 106	  

within-clutch variation in yolk T concentration is small in Japanese quail (within-107	  

female repeatability across different stages of the reproductive cycle > 0.7 [24]) and 108	  

the 5th egg is thus representative of a female’s yolk T deposition to her eggs. Yolks 109	  

were collected across three generations (hereafter referred to as maternal and paternal 110	  

grandmothers, mothers, and (grand-) daughters) to assess the inheritance pattern (see 111	  

ESM 1). Within a generation, all females had the same age and had experienced the 112	  

same period of reproductive activity when eggs were collected.   113	  

 114	  

Yolk testosterone analysis 115	  

Yolk T extraction and radioimmunoassay were performed following previously 116	  

published protocols [22]. In short, 100-110 mg of yolk were spiked with 117	  

approximately 2500 dpm of [3H]-testosterone (PerkinElmer, USA) and extracted 118	  
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twice with a mixture of diethyl and petroleum ether (7 : 3). Yolk T concentrations (pg 119	  

/ mg yolk) were quantified in 10 µl aliquots using [1,2,6,7-3H]-testosterone 120	  

(PerkinElmer, USA, specific activity 63.47 Ci/mmoL) and a specific antibody 121	  

generated in rabbits against testosterone-3-(carboxy-methyl) oxime bovine serum 122	  

albumin conjugate [25]. The sensitivity of the assay was 1.62 ± 0.17 pg per tube. The 123	  

mean recovery rate ± SD was 79.3 ± 6.4%. The samples were analysed in two assays. 124	  

The intra- and inter-assay coefficients of variation were 4.7% and 6.5%, respectively.   125	  

To test for (matrilineal) inheritance of yolk T transfer, we analysed the yolk T 126	  

concentration in the eggs of 22 maternal grandmothers, 24 paternal grandmothers, 29 127	  

mothers and 40 (grand-) daughters (ESM 1). Yolk T concentrations were log 128	  

transformed and standardised within generation before analysis to ensure normality of 129	  

the residuals and equal variances across generations.  130	  

 131	  

 132	  

Yolk testosterone manipulation 133	  

To explore whether the resemblance in yolk T transfer along the maternal line (see 134	  

Results) is due to non-genetic priming effects, we experimentally manipulated yolk T 135	  

levels in eggs and tested 1) if T levels experienced during a female’s prenatal 136	  

development affect the transfer of T into her own eggs later in life, and 2) if the 137	  

manipulation affects the transfer of T into the eggs of the daughters of these females 138	  

(i.e. if the manipulation has a transgenerational effect). To this end, we experimentally 139	  

increased yolk T concentrations in the eggs of half of the females of the second 140	  

generation before incubation. This manipulation simulates an environmental effect on 141	  

maternal yolk T transfer (i.e. an environmental maternal effect), as for example 142	  
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observed in response to breeding density [26, 27], food availability [28, 29] or 143	  

parasite abundance [19].  144	  

We injected eggs with 15 ng testosterone (Sigma-Aldrich, Switzerland) dissolved in 145	  

20 µl safflower oil (Sigma-Aldrich, Switzerland) (T-treatment) or with 20 µl 146	  

safflower oil as a control (C-treatment). Clutches (N = 29) were assigned randomly to 147	  

one of the two treatment groups. The injected dose is equivalent to approximately 1 148	  

SD of the yolk T content in the study population (mean ± SD: 48.4 ± 16.9 ng / yolk; 149	  

range: 18.5 – 83.9 ng / yolk). Injections were performed at the pointed end of the egg, 150	  

using an insulin syringe (Terumo, Belgium). The hole in the shell was closed with an 151	  

adhesive film (Opsite, Smith & Nephew, Switzerland). There was no statistically 152	  

significant difference in hatching success between T-injected and control eggs [30]. 153	  

Furthermore, the yolk T manipulation did not significantly affect brood sex ratio 154	  

(ESM 2). When females originating from T-manipulated and control eggs reached 155	  

adulthood, we measured the T concentration they transferred to their own eggs (see 156	  

above). Moreover, we measured the yolk T concentration in the eggs of 26 daughters 157	  

of these females (as described above) to test for a transgenerational effect of the yolk 158	  

T manipulation on yolk T transfer.  159	  

 160	  

Statistical analysis 161	  

First, we used a linear mixed model to quantify the relationship between the yolk T 162	  

concentration in the eggs of mothers (explanatory variable) and daughters (response 163	  

variable). Family ID was included as a random effect to control for the non-164	  

independence of siblings.  165	  

Second, a similar model, this time with the T concentration in the eggs of the maternal 166	  

and paternal grandmother as explanatory variables, was used in order to estimate the 167	  
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relationship between the yolk T concentration in the eggs of both grandmothers and 168	  

their granddaughters. To confirm the results of these linear mixed models, we 169	  

conducted a model selection procedure using AICc criteria to determine if a model 170	  

that contains maternal and / or paternal grandmother yolk T best explains yolk T 171	  

transfer of granddaughters. Candidate models contained combinations of the maternal 172	  

grandmother’s and paternal grandmother’s yolk T concentrations. All candidate 173	  

models contained family ID as a random effect. Model selection was performed using 174	  

the ‘MuMIn‘ package [31] in R [32].  175	  

Third, we tested for an effect of the experimental yolk T manipulation on the transfer 176	  

of yolk T later in life in 1) females that developed in the manipulated eggs (i.e. 177	  

directly experienced manipulated T concentrations during their embryonic 178	  

development), and 2) in the daughters of these females (to test for transgenerational 179	  

effects of the manipulation) using linear mixed models that included T treatment, the 180	  

yolk T concentration in the eggs of the mother and their interaction as fixed effects, 181	  

and family ID as a random effect. For all linear mixed models, analyses were 182	  

performed using the package ‘lme4’ [33] in R [32]. P values were obtained by 183	  

comparing two nested models, with and without the variable of interest, using 184	  

likelihood ratio tests.  185	  

 186	  

Results 187	  

There was a significant positive relationship between the yolk T concentration in the 188	  

eggs of mothers and daughters (b ± SE: 0.437 ± 0.142; χ2 = 8.185, P = 0.004; Fig. 1A). 189	  

Similarly, a significant positive relationship between the yolk T concentrations in the 190	  

eggs of maternal grandmothers and granddaughters was found (b ± SE: 0.366 ± 0.147; 191	  

χ2 = 5.415, P = 0.020; Fig. 1B). In contrast, yolk T concentrations in the eggs of 192	  
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paternal grandmothers and granddaughters were unrelated (b ± SE: -0.027 ± 0.159; χ2 193	  

= 0.001, P = 0.973; Fig. 1C).  In comparison, the resemblance in yolk mass between 194	  

granddaughters and their maternal (b ± SE: 0.266 ± 0.158) or paternal grandmother (b 195	  

± SE: 0.250 ± 0.184) was very similar. As a consequence, analysing total yolk T 196	  

content instead of yolk T concentration gave comparable results in all analyses. 197	  

The finding that yolk T deposition is inherited along the maternal line was confirmed 198	  

by a model selection procedure based on AICc, which revealed that a model 199	  

containing only the maternal grandmother’s yolk T concentration explained the 200	  

granddaughters’ yolk T transfer best. Models that contained additionally the paternal 201	  

grandmother’s yolk T concentration or only the paternal grandmother’s yolk T 202	  

concentration all had ΔAICc > 4.5.   203	  

There was no indication that an experimental increase of yolk T levels experienced 204	  

during prenatal development influences a female’s own transfer of yolk T later in life 205	  

(χ2 = 0.243, P = 0.622; Fig. 2). Furthermore, the manipulation had no significant 206	  

transgenerational effect on the yolk T transfer of the daughters of females that 207	  

developed in the manipulated eggs (χ2 = 0.035, P = 0.851). 208	  

 209	  

Discussion 210	  

Using a three-generation breeding design, we provide evidence for a significant 211	  

within-family resemblance in the transfer of yolk T, an important mediator of prenatal 212	  

maternal effects in oviparous species [15, 16]. However, in contrast to what is 213	  

expected under autosomal inheritance, the resemblance in yolk T transfer between 214	  

mothers and daughters, and between maternal grandmothers and granddaughters was 215	  

very similar, whereas yolk T concentrations in eggs of paternal grandmothers and 216	  
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granddaughters were unrelated. This pattern of resemblance is consistent with female-217	  

linked inheritance.  218	  

Sex-linked inheritance can be caused by several non-mutually exclusive mechanisms. 219	  

First, information on the avian female-specific W chromosome, which is passed on 220	  

from mothers to daughters, may influence yolk T transfer. Although the W 221	  

chromosome contains only few genes [34, 35], it plays a key role in regulating female 222	  

fertility and fecundity [11, 12], likely through epistatic interactions between the W 223	  

chromosome and other parts of the genome [36]. Moreover, the expression of W 224	  

chromosome-linked genes has been found to rapidly respond to artificial selection on 225	  

female reproductive performance [12], again highlighting the important role of W-226	  

linked variation in mediating female fitness.  227	  

Second, mitochondrial effects may underlie the observed maternal resemblance in 228	  

yolk T transfer. Mitochondria are, like W chromosomes, inherited along the maternal 229	  

line and there is accumulating evidence that mitochondrial genetic variation is non-230	  

neutral [37, 38]. If mitochondrial variation affects yolk T transfer, for example by 231	  

influencing a female’s metabolic rate [39], this could explain the female-linked 232	  

inheritance pattern. Indeed, there is a strong positive relationship between a female’s 233	  

resting metabolic rate (RMR) and the amount of T she transfers to her eggs [40], 234	  

making this a plausible scenario. Interestingly, positive selection has shaped 235	  

ATP5A1W, a gene on the avian W chromosome that encodes a mitochondrial ATP 236	  

synthase subunit [41], suggesting that W- and mtDNA variation may epistatically 237	  

interact in shaping female-specific fitness traits [36].  Testing for associations 238	  

between sequence or structural [42] variation on the W-chromosome and / or the 239	  

mitochondria and variation in yolk T transfer will thus be a fruitful next step, and will 240	  
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allow for an in-depth investigation of the molecular mechanisms underlying the 241	  

maternal inheritance pattern observed in our study. 242	  

Besides sex-limited genetic variation, non-genetic mechanisms [43-45] may 243	  

contribute to the resemblance in yolk T transfer along the maternal line. For example, 244	  

prenatal exposure to yolk T may prime (‘program’) a female’s yolk T transfer to her 245	  

own eggs at adulthood. Indeed, experimental manipulations have shown that variation 246	  

in prenatal T exposure has long-term effects on both circulating T levels as well as T 247	  

sensitivity later in life [46, 47]. We directly tested this hypothesis, but found no 248	  

evidence that females originating from an egg with experimentally increased T 249	  

concentration differed in their yolk T transfer from control females. Moreover, we 250	  

found no evidence for a transgenerational effect of the yolk T manipulation on the 251	  

deposition of yolk T in the next generation (i.e. in the daughters of females that 252	  

developed in the manipulated eggs). 253	  

The former finding is in line with previous studies in pheasants (Phasianus 254	  

colchicus)[48] and canaries (Serinus canaria)[49] that found no effect of 255	  

experimentally increased prenatal T exposure on T transfer to the eggs. We can 256	  

exclude that the lack of an effect was due to an unsuccessful manipulation, because 257	  

the yolk T treatment affected a range of other behavioural and physiological traits in 258	  

our study [30] as well as in [48] and [49].  Rather, it suggests that whereas prenatal 259	  

exposure to T has long-term effects on both circulating T levels and T sensitivity [46, 260	  

47], it does not affect the transfer of T to the eggs.  261	  

Whereas we found no evidence that the T manipulation affected the (overall) yolk T 262	  

transfer in the next two generations, the manipulation may differentially affect the 263	  

deposition of yolk T to male and female eggs. However, this scenario appears 264	  

unlikely given that evidence for differential allocation of T to male and female eggs is 265	  
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weak across species [50], and absent in Japanese quail [51] (see also ESM 2). 266	  

Furthermore, although the T manipulation was performed within the natural range, it 267	  

is possible that the lack of a difference might be due to dose-response effects [52].  268	  

Given the highly controlled egg handling, incubation and chick rearing conditions in 269	  

our study, we can exclude that common postnatal environmental effects contribute to 270	  

the observed within-family resemblance. However as a third potential source of 271	  

matrilineal resemblance, other non-genetic effects such as the transmission of 272	  

epigenetic states across generations [45], other egg components (e.g. nutrients) that 273	  

indirectly prime yolk T transfer, or genomic imprinting may play a role. Although we 274	  

can currently not exclude such mechanisms, they are unlikely to explain our results 275	  

because to date neither the transgenerational transmission of epigenetic marks [53], 276	  

nor genomic imprinting [54, 55] have been documented in birds.  277	  

Ultimately, sex-linkage of yolk T transfer may have evolved in response to female-278	  

specific selection and / or in order to resolve sexual conflict [3, 56]. Although yolk T 279	  

transfer is a trait that is expressed only in females, any underlying autosomal genes 280	  

might have pleiotropic effects on traits expressed in males as well [57]. For example, 281	  

yolk T transfer may not be independent of T levels in the circulation, on which strong 282	  

sexually antagonistic selection is acting on [58]. Interestingly, the relationship 283	  

between yolk T and plasma T levels differs across species [59], which may reflect 284	  

different stages in the resolution of this conflict. Under this scenario, we would 285	  

predict pronounced sex-linkage of yolk T transfer in species where yolk T and 286	  

circulating T levels are not correlated (anymore) (e.g. our study species [22]), but no 287	  

or limited sex-linkage in species where the two traits are (still) correlated (e.g. canary 288	  

Serinus canaria [60]).  289	  
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In conclusion, we show that yolk T transfer, an important mediator of prenatal 290	  

maternal effects in oviparous species, is inherited along the maternal line in Japanese 291	  

quail. We can exclude the possibility that this maternal resemblance is due to common 292	  

postnatal environmental effects or non-genetic priming effects of prenatal exposure to 293	  

T on yolk T transfer later in life. Instead, our findings suggest that W-linked and / or 294	  

mitochondrial variation might underlie the observed inheritance pattern. Female-295	  

linked inheritance of maternal effect mediators allows for a fast and direct response to 296	  

female-specific selection and will thereby affect the dynamics of evolutionary 297	  

processes mediated by maternal effects, such as the adaptation of populations to 298	  

changing environments [61] or mother-offspring coadaptation [62].  299	  
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Figure legends 519	  

 520	  

Fig. 1. Resemblance in yolk testosterone deposition (log yolk T; pg / mg yolk) 521	  

among family members. A) relationship between mothers and daughters; B) 522	  

relationship between maternal grandmothers and granddaughters; C) relationship 523	  

between paternal grandmothers and granddaughters. 524	  

 525	  

  526	  
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Fig. 2. Effect of prenatal testosterone manipulation on the transfer of yolk 527	  

testosterone to the eggs. Shown is the difference between the yolk testosterone 528	  

concentration (log yolk T pg / mg yolk) in the eggs of females that have experienced 529	  

an experimentally increased yolk testosterone level during their prenatal development 530	  

(T) and females that developed in a control egg (C), and their mother. Means ± SE are 531	  

shown. 532	  

 533	  


